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ABSTRACT

Explainable artificial intelligence (XAI) is an important area in the Al commu-
nity, and interpretability is crucial for building robust and trustworthy Al mod-
els. While previous work has explored model-level and instance-level explainable
graph learning, there has been limited investigation into explainable graph rep-
resentation learning. In this paper, we focus on representation-level explainable
graph learning and answer a fundamental question: What specific information
about a graph is captured in graph representations? Our approach is inspired by
graph kernels, which evaluate graph similarities by counting substructures within
specific graph patterns. First, we present an unsupervised ensemble graph kernel
method for representation or similarity explanation, which however has limita-
tions such as ignoring node features and being computationally expensive. To
address these limitations, we introduce a deep learning framework for learning
and explaining graph representations through graph pattern analysis. We start by
sampling graph substructures of various patterns. Then, we learn the representa-
tions of these patterns and combine them using a weighted sum, where the weights
indicate the importance of each graph pattern’s contribution. Note that our method
can be both unsupervised and supervised and is a one-shot explanation, not speci-
fied to single samples or predictions. We also theoretically analyze the robustness
and generalization ability of our models. Importantly, the generalization analysis
shows that incorporating multiple graph patterns lowers the generalization error
bound. In our experiments, we show how to learn and explain graph represen-
tations for real-world data using pattern analysis. Additionally, we compare our
method against multiple baselines in both supervised and unsupervised learning
tasks to demonstrate its superiority in terms of accuracy.

1 INTRODUCTION

The field of explainable artificial intelligence (XAI) (Dosilovi¢ et al.,|2018;|Adadi & Berrada, 2018;
Angelov et al., 2021} [Hassija et al.l 2024) is gaining significant attention in both Al and science
communities. Interpretability is crucial for creating robust and trustworthy Al models, especially
in critical domains like transportation, healthcare, law, and finance. Graph learning is an important
area of Al that particularly focuses on graph-structured data widely exist in social science, biology,
chemistry, etc. Explainable graph learning (XGL) (Kosan et al., 2023)) can be generally classified
into two categories: model-level methods and instance-level methods.

Model-level methods of XGL provide transparency by analyzing the model behavior. Examples in-
clude XGNN (Yuan et al.,2020), GLG-Explainer (Azzolin et al.,[2022), and GCFExplainer (Huang
et al} [2023). Instance-level methods of XGL offer explanations tailored to specific predictions, fo-
cusing on why particular instances are classified in a certain manner. For instance, GNNExplainer
(Ying et all 2019) identifies a compact subgraph structure crucial for a GNN’s prediction. PGEx-
plainer (Luo et al.||2020) trains a graph generator to incorporate global information and parameterize
the explanation generation process. AutoGR (Wang et al.}2021) introduces an explainable AutoML
approach for graph representation learning. UNR-Explainer (Kang et al.,|[2024) identifies the top-k
most important nodes in a graph to determine the most significant subgraph as the counterfactual
explanation. More about XGL can be found in the Appendix
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However, these works mainly focus on enhancing the transparency of GNN models or identifying the
most important substructures that contribute to predictions. The exploration of representation-level
explainable graph learning (XGL) is limited. We propose explainable graph representation learning
and ask a fundamental question: What specific information about a graph is captured in graph
representations? Formally, if we represent a graph G as a d-dimensional vector g, our goal is to
understand what specific information about the graph GG is embedded in the representation g. This
problem is important and has practical applications. Some graph patterns are highly practical and
crucial in various real-world tasks, and we want this information to be captured in representations.
For instance, in molecular chemistry, bonds between atoms or functional groups often form cycles
(rings), which indicate a molecule’s properties and can be used to generate molecular fingerprints
(Morganl [1965; |Alon et al., [2008}; [Rahman et al.,|2009; |0’ Boyle & Saylel 2016). Similarly, cliques
characterize protein complexes in Protein-Protein Interaction networks and help identify community
structures in social networks (Girvan & Newman, |2002; Jiang et al., 2010} |Fox et al., 2020).

Although some previous works such as (Kosan et al.,|2023)) aimed to find the most critical subgraph
S by solving optimization problems based on perturbation-based reasoning, either factual or coun-
terfactual, this kind of approach assumes that the most important subgraph S mainly contributes to
the representation g, neglecting other aspects of the graph, which doesn’t align well with our goal of
thoroughly understanding graph representations. Analyzing all subgraphs of a graph G is imprac-
tical due to their vast number. To address the challenge, we propose to group the subgraphs into
different graph patterns, like paths, trees, cycles, cliques, etc, and then analyze the contribution of
each graph pattern to the graph representation g.

Our idea of pattern analysis is inspired by graph kernels, which compare substructures of specific
graph patterns to evaluate the similarity between two graphs (Kriege et al.,2020). For example, ran-
dom walk kernels (Borgwardt et al.l |2005; |Géartner et al., 2003)) use path patterns, sub-tree kernels
(Da San Martino et al., 2012;|Smola & Vishwanathan, 2002) examine tree patterns, and graphlet ker-
nels (Przulj, 2007; Shervashidze et al., [2009) focus on graphlet patterns. The graph kernel involves
learning a pattern counting representation vector h, which counts the occurrences of substructures
of a specific pattern within the graph G. While the pattern counting vector h is an explainable rep-
resentation, it has some limitations, such as the high dimensionality and ignorance of node features.

There also exist some representation methods based on subgraphs and substructures, such as Sub-
graph Neural Networks (SubGNN) (Kriege & Mutzel, 2012), Substructure Assembling Network
(SAN) (Zhao et al., [2018]), Substructure Aware Graph Neural Networks (SAGNN) (Zeng et al.,
2023a)), and Mutual Information (MI) Induced Substructure-aware GRL (Wang et al.,|[2020). How-
ever, these methods mainly focus on increasing expressiveness and do not provide explainability for
representation learning. We will discuss the details in the Appendix [C.2]

In this work, we propose a novel framework to learn and explain graph representations via graph
pattern analysis. We start by sampling graph substructures of various patterns. Then, we learn the
representations of these patterns and combine them adaptively, where the weights indicate the im-
portance of each graph pattern’s contribution. We also provide theoretical analyses of our methods,
including robustness and generalization. Additionally, we compare our method against multiple
baselines in both supervised and unsupervised learning tasks to demonstrate its effectiveness and
superiority. Our contributions are summarized as follows:

* Unlike previous model-level and instance-level XGL, we introduce a new problem —
representation-level explainable graph learning. This problem focuses on understanding
what specific information about a graph is embedded within its representations in unsuper-
vised learning.

* We propose two strategies to learn and explain graph representations, including a graph
ensemble kernel method and a pattern analysis GNN method. The latter involves using
GNNss to learn the representations of each pattern and evaluate its contribution to the en-
semble graph representation.

* We provide robust analyses and generalization analysis for our methods theoretically. Par-
ticularly, our generalization analysis shows adding graph patterns lowers the generalization
error bound.
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2 NOTATIONS

In this work, we use z, , X, and X’ (or X) to denote scalar, vector, matrix, and set, respectively. We
denote [n] = {1,2,...,n}. Let G = (V, E) be a graph with n nodes and d-dimensional node features
{z, € R? | v € V}. We denote A € {0,1}"*" the adjacency matrix and X = [z1,...,x,]' €
R™*4 the node features matrix. Let G = {Gy,...,Gy} be a dataset of N graphs belonging C
classes, where G; = (V;, E;). For G;, we denote its number of nodes as n;, the one-hot graph label
as y; € {0,1}¢, the graph-level representation as a vector g; € R?, the adjacency matrix as A;,
and the node feature matrix as X,. Let S = (Vs, Es) be a subgraph of graph G = (V, E) such that
Vs C V and Es C E. The the adjacency matrix of S is denoted as Ag € {0, 1}!Vs1*IVsl and the

node feature matrix of .S is sampled from the rows of X, denoted as Xg € RIVsIxd,

The graph pattern is defined as a set of all graphs that share certain properties, denoted as P =
{P\,P,,...,P;,...}, where P; is the i-th example of this pattern. In this work, the graph patterns
are basic graph families such as paths, trees, cycles, cliques, etc. Detailed mathematical definitions
for some of these patterns are provided in Appendix [B] For example:

* Ppah = {phy, phy, ..., ph,,...} is a path pattern with ph; as a path of length i.
o Pr={T1,T>,...,T;,...} is a tree pattern where T; is the i-th tree.
* Py ={gl;,gly,...,gl;,...} is a graphlet pattern where gl, is the i-th graphlet.

Prath Pr Py
1 phy phg phy Ty T T3 Ty gly
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Figure 1: Examples of graph patterns: Pyan, Pr and Py

Figure |1| illustrates some intuitive examples of graph patterns. Notably, there are overlaps among
different patterns; for instance, the graph T3 € Pr and gl, € Py are identical, being both a tree and
a graphlet. Overlaps are inevitable due to the predefined nature of these basic graph families in graph
theory. We denote a set of M different patterns as {P1,Pa,...,Pm, ..., Pa}. Given the pattern

P and the graph G, the pattern sampling set is denoted as Si(m) and the pattern representation is
denoted as 2™ € R?.

3 LEARNING EXPLAINABLE GRAPH REPRESENTATIONS VIA ENSEMBLE
GRAPH KERNEL

In this section, we learn and explain the pattern counting graph representation via graph kernels.

3.1 PATTERN COUNTING KERNEL

A graph kernel K : G x G — R aims to evaluate the similarity between two graphs. Let G; and
G be two graphs in the graph dataset G and let # be a high-dimensional vector space. The key
to a graph kernel is defining a mapping from the graph space to the high-dimensional vector space
as ¢ : G — #H, where h; = ¢(G;) and h; = ¢(G;). Then, the graph kernel can be defined as
the inner product of h; and h;, i.e., K(G;, G;) := h; h;. The most widely used mapping ¢ is the
one counting the occurrences of each example in the pattern P within graph GG. The corresponding
pattern counting vector is defined as follows.

Definition 3.1 (Pattern Counting Vector). Given a graph G and a pattern P = {Py, P,,..., FP;, ...},
a pattern counting mapping ¢ : G — H is defined as

h = ¢(G;P), with h = [nV @ D ], (1)

where h(?) is the number of occurrences of pattern example P; as a substructure within graph G. We
call h a pattern counting vector of G related to pattern P.
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Then the pattern counting kernel Kp : G x G — R based on pattern P can be defined.

Definition 3.2 (Pattern Counting Kernel). Given the a pattern counting mapping ¢(G; P), a pattern
counting kernel is defined as

Kp(Gi,Gj) := (¢(Gy; P),(Gy; P)) = h h; 2)

The pattern counting kernel Kp is uniquely determined by the pattern P. For example, if P is
selected as the path pattern Pp,m, we obtain a random walk kernel (Borgwardt et al., 2005} (Gértner
et al., |2003). If P is the tree pattern Pr, we get a sub-tree kernel (Da San Martino et al., 2012;
Smola & Vishwanathan, 2002). Similarly, if P is the graphlet pattern Py, we derive a graphlet
kernel (Przulj, 2007).

3.2 PATTERN ANALYSIS USING GRAPH KERNELS

Let {P1,Pa,...,Pr} be aset of M different graph patterns. For instance, P; represents the path
pattern and Py represents the tree pattern. Then, we can define a set of M different graph kernels
as {Kp,,Kp,,...,Kp,, }. Since the pattern counting kernel Kp,_ is uniquely determined by the
pattern P,,,, we can analyze the importance of pattern P, by evaluating the importance of its pattern
counting kernel K'p . To achieve this, we define a learnable ensemble kernel as follows:

Definition 3.3 (Learnable Ensemble Kernel). Let A = [A1, Aa, ..oy Ay ooy Ars] T be a positive weight
parameter vector. The ensemble kernel matrix K (X) € RI9/%19 is defined as the weighted sum of

M different kernels {K'p,, Kp,, ..., Kp,, }. Given two graphs G; and G; in G, the element at the
i-th row and j-th column of K () is given by

M M
Kij(A):= > Am Kp,(Gi,Gj), st > An=1, and A, >0, Vm € [M].  (3)
m=1 m=1

Here, the weight parameter ), indicates the importance of the kernel Kp , as well as the corre-
sponding graph pattern P, within the dataset G. Instead of the constrained optimization (3), we
may consider replacing \,, with exp(w,)/ Z%Zl exp(w,y,) such that the constraints are satisfied
inherently, which leads to an unconstrained optimization in terms of w = [wy,...,w M]T. In the
following context, for convenience, we just focus on (3), though all results are applicable to the
unconstrained optimization. To obtain the weight parameter A, we provide the supervised and un-
supervised loss functions as follows.

Supervised Contrastive Loss Following (Oord et al.| 2018)), given a kernel matrix K(\) €
RY*N we define the supervised InfoNEC as follows

Lsc(A) = = Tiy—y) <10g Kij(A) —1og | > Tiymyp izi Kit () + 1) H[yﬁéyk]Kik(A)] )

i#j k k
“4)
where [ is an indicator function and x > 0 is a hyperparameter.
Unsupervised KL Divergence Inspired by (Xie et al.,[2016), given a kernel matrix I € RV*N,

we define the unsupervised KL divergence loss as follows
KR/

> KNy
where r; are soft cluster frequencies. By minimizing the KL divergence, the model adjusts the
parameters A to more accurately represent the natural clustering property of the dataset.

We use the Lscp, or Lki. as our loss function, i.e., Lxer(A) = Lsc (K (A)) or Lxi(K(A)), when
the graphs are labeled or unlabeled. Then the weight parameter A can be obtain by solving

A" = argmin 1T, 2=1, A>0 Lier(N), (6)

Lxe(A) = KL(K(X), K'(X)), with K/;(X) and 7; = ZKM()\), (5)

where A* = [}, ..., A5, ...\%,] T and \%, indicates the importance of kernel Kp,, as well as pattern
Pr. In Figure [2) we can see that the ensemble Kernel performs better than each single kernel and
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the pattern analysis identifies the importance of each kernel as well as the related graph pattern. We
call this method pattern-based XGL with ensemble graph kernel, abbreviated as PXGL-EGK. This
method not only yields explainable similarity learning but also provides an approach to selecting
graph kernels and their hyperparameters automatically if we consider different kernel types with
different hyperparameters.

(@) A (b) K(\): ensemble (c) Kp,: path (d) Kp,: tree (e) Kp,: graphlet
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Figure 2: t-SNE visualizations of different kernel embeddings for the dataset PROTEINS.

3.3 LIMITATIONS OF PATTERN COUNTING VECTOR

The pattern counting vector h from Definition is easy to understand and its importance can be
evaluated using the weight parameter A* from ( [‘]i However, it cannot directly explain the repre-
sentation of graph G due to the following limitations, which are also the limitations of the proposed
PXGL-EGK.

* Ignoring Node Features: h captures the topology of G but ignores node features X. As
shown by previous GNN works, node features are crucial for learning graph representa-
tions.

* High Dimensionality: The pattern set P = {P;, P»,..., P;,...} can be vast, making h
high-dimensional and impractical for many tasks.

» High Computational Complexity: Counting patterns F; in G is time-consuming due to
the large number of patterns in P. The function ¢(G; P) needs to be run for each new
graph. In addition, in PXGL-EGK, the computation of the M kernel matrices of size |G| x
|G| is very expensive especially when |G| is large.

¢ Lacking Implicit Information and Strong Expressiveness: h is fixed and not learnable.
GNN (Kipf & Welling} [2016) shows that message passing can learn implicit information
and provide better representations, which should be considered if possible.

4 LEARNING EXPLAINABLE GRAPH REPRESENTATIONS VIA GNNS

In this section, we address the limitations pointed out in Section[3.3]by proposing a GNN framework
to learn and explain graph representations via pattern analysis. We present the following definitions.

Definition 4.1 (Pattern Sample Set). A P-pattern sample set S of a given graph G is defined as

S:={5,52,...,5...., 5} (7
where Sy, ¢ € [Q], is a subgraph of pattern P (see the examples in Figure [1)) randomly sampled
from GG using some sampling function

Definition 4.2 (Pattern Representation). Let S be a P-pattern sample set of a graph GG. For each
subgraph S' € S, denote its node set, adjacency matrix, and node feature matrix as Vg, Ag, and X g
respectively. Let F': {0, 1}1VsIxIVsl 5 RIVsIxd R% be a pattern representation learning function
parameterized by WV, then the P-pattern representatlon z € R? of G is defined as

z=15 ZF (Ag, X5;W). (8)
18] =%
"The specific ® follows|https://ysig.github.io/GraKeL/0.1a8/
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The pattern representation learning function F' could be any graph neural network such as GCN
(Kipf & Welling| 2016)), GIN (Xu et al} 2018), and graph transformer (Rampasek et al 2022)). In
this paper, we use GCN only for convenience. Because of the presence of node features, the chance
that overlaps occur between patterns is tiny. Nevertheless, we can use the WL-test
in each sampling phase to ensure that new samples are unique from existing ones, which is
efficient as the subgraphs are small.

Finally, the ensemble representation g is a weighted sum of the M pattern representations as follows.

Definition 4.3 (Ensemble Representation). Given a graph G and consider a set of M differ-

ent patterns {Py,Pa, ..., Pm,-..,Par}, we denote 2(m) the ‘P -pattern representation obtained
from the P,,-pattern set S(") using a pattern representation learning function F,,. Let A =
A1, A2, Ay .- -, Aar] T be a parameter vector, where 1,A = 1 and \,, > 0V m € [M].

Then the ensemble representation g € RY of G is defined as

M

1
_ (m) : (m) _ : . (m)
g= g Amz ™, with 22" = BRI . ES( )Pm(AS,X57W ), Vme[M]. (9
cS(m

m=1

Note that instead of explicitly considering the constraints for A, we can use the same softmax trick
in computing the ensemble kernel (@) to simplify the problem.

Let W := {W® W@ win) WAL pe the parameters of the M GNNs. In unsuper-
vised representation learning, we define the similarity between two graphs’ ensemble representa-
tions as K;;(X, W) = exp (—7|\g; — g;||*), where v > 0 is a hyperparameter. Then similar to ,
we minimize the following objective function to optimize W

where the computation of K’ is the same as that in (5).

In supervised learning, given a graph G € G with ensemble representation g, denote y € {0,1}¢
the ground truth label. Let §§ € [0,1]¢ be the predicted label given by a softmax classifier f, :
R? — RY parameterized by W, i.e., § = f.(g). Let £cg be the multi-class cross-entropy loss, i.e.,
lee(y,9) = 25:1 Y log g.. Then we minimize the following objective to optimize the parameters
W = {W, Wc}i

ECE )\ W yz’fc g ) (11)

HMZ

Let X* = [A},..., A%, ..., \%] T be the optimal X obtained from minimizing @) or (11). A%,
indicates the contribution of the pattern representation z(") to the ensemble graph representatlon g.
In Figure@ we visualize the g and each z(™) and show that the ensemble representation g performs
the best and the A}, explains the contribution of each pattern representation z(™) to learning g. For

convenience, we call this method pattern-based XGL with GNNs, abbreviated as PXGL-GNN.

5 THEORETICAL ANALYSIS

In this section, we analyze the robustness property, generalization ability, and computational com-
plexity of our methods theoretically, which not only is important to understand the proposed methods
but also provides theoretical support for the effectiveness of the proposed methods. We defer the
detailed proof to Appendices [D]and[E]

5.1 ROBUSTNESS ANALYSIS

Following (O’Bray et al.| [2021)), a learning method should be robust to small perturbations. Let
A4 and Ax be perturbations on the adjacency matrix and node attributes of a graph G whose
representation is denoted as g. Then the perturbed graph is G =(A+ As X + Ax), of which
the representation is denoted as §. We seek the upper bound of ||g — g|| and want to know how
it is related to A4 and Ax as Well as the representation learning function F. Without loss of
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Figure 3: Proposed GNN framework for computing the ensemble graph representation

generality, we assume that G has n nodes, F' is an L-layer GCN (Kipf & Welling| [2016)), and all
the activation functions are o(-). For each pattern P,,, the parameter set of F'(A, X; W(™)) are
wm) = (wmb) W L)Y where W (™! denotes the parameter matrix in the I-th layer.
We further assume that for each pattern P,,, the output vector representation is obtained by the
average pooling. Then we have the following theorem.

Theorem 5.1. Let A = A+ Ay and X = X + Ax. Suppose ||[Alls < Ba, | X||r < Bx,
WDy < Bw for all m € [M] and 1 € [L], and o(-) is p-Lipschitz continuous. Let o be
the minimum node degree of G, and Ap = I — diag(1" (I + A + Aa))2diag(1T A)"2. Let
B4 = 1+ Ba. Then the representation robustness of PXGL-GNN to perturbations A 4 and Ax is
shown as

g —gll < %PLﬁva(BA +1Aall2) "1+ )T [(Ba + 20Aall2)[Ax |7 +2LBxBal Apl2]

The bound reveals that PXGL-GNN is sensitive to the graph structure perturbation A 4 when L is
large and is relatively not sensitive to the feature matrix perturbation on Ax. On the other hand,
when «, the minimum node degree, is larger, the method is more robust.

5.2 GENERALIZATION ANALYSIS

Following (Bousquet & Elisseeffl 2002} [Feldman & Vondrak, 2019), we use uniform stability to
derive the generalization bound for PXGL-GNN. Let A and W be known parameters. The super-
vised loss /cg in (T1)) is guaranteed with a uniform stability parameter 7. For convenience, we let

(X, W;G) := lcg(y,9). Considering the empirical risk E[¢(A, W;G)] = + Zf\il (N W;GY)
and true risk E[/(X, W; G)], we have the following high-probability generalization bound: for con-
stant cand § € (0, 1),

_ - N log(1/6
Pr |[E[lce( N, W; G) — E[lce(X, W; G)]| > ¢ (nlog(N) log (5) + Og_(zv/)ﬂ <4, (12)
Let D := {Gy,...,Gn} be the training data. By removing the i-th graph G;, we get D\ =
{G1,....Gi_1,Gip1,...,Gn}. Let Ap and Wp := {We, WS™" ¥m € [M],1 € [L]} be the
parameters trained on D. Let Apy; and Wy = {Wc\i,Wg@’l)Nm € [M],l € [L]} be the
parameters trained on D\*. We aim to find an 7 such that
[lce(Ap, Wp; G) — Lee(Api, Wpni; G)| <1 (13)
We have the following result for 7).
m,l 5
|2, max,, e, 1e[z) HWZ()\ )||2} < Bw
We — Weill2 < yac [Wenill2 < e

Theorem 5.2. Suppose max{max,,c ) ie(z] ||W1()m’l)

m,l m,l A
and maxme[M]’le[L] ||Wé ) - Wé\l )”2 < 6AWy
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Suppose the f. in lcg is a linear classifier, which is T-Lipschitz continuous. Suppose Thus the
n for estimation error (12)) and uniform stability (I3) is:

)= ﬁpLB‘e‘;lﬁX(l + B84 (1 + )t [mec +7c (2BW + LBAW)] (14)

Invoking (T4) into (I2), we obtain the generalization error bound of our model. We see that when o
is larger and 84, Bx are smaller, the generalization ability is stronger. It is worth noting that in the
proof (see (33)) of the theorem, we used an aggressive relaxation such that X was not present in 7).
By keeping A, we can obtain

n=—=p" Bl Bx(1+ B (1 + )" [Bwyac +7c (Bw A0 = Apy
(15)

f
Since || Ap|l1 = [[Apvill1 = 1, when M is larger, |[Ap — Api|| and ||[Ap\: || are potentially smaller.
This means that when we include more graph patterns, the generalization bound of our PXGL-GNN

becomes tighter, which potentially leads to higher classification accuracy.

+ Liaw | Ap:

5.3 TIME AND SPACE COMPLEXITY

Given a dataset with N graphs (each has n nodes and e edges), we select M different patterns and

sample @ subgraphs of each pattern. First, our PXGL-EGK requires computing M kernel matrices,

of which the space complexity is O(M N?) and the time complexity is O(N? Zf: 1 ¥i), where

1p; denotes the time complexity of the m-th graph kernel. For instance, the time complexities of
the graphlet kernel, shortest path kernel, and Weisfeiler-Lehman Subtree kernel are O(n*), O(n?),
and O(hn + he) respectively, where k and h are some kernel-specific hyperparameters. When N is
large, the method has high time and space complexities. Regarding PXGL-GNN, suppose each rep-
resentation learning function F;,, is an L-layer GCN, of which the width is linear with d. For both
supervised and unsupervised learning, suppose the batch size and the number of iterations in the
optimization are B and T respectively. Then, in supervised learning, the space complexity and time
complexity are O(BMQ(e + nd) + M Ld? + Cd) and O(TBMQL(ed + nd?) + N " _ Q0,,)
respectively, where 9J,,, denotes the time complexity of generating a sample of the m-th pattern. For
instance, when the m-th pattern is graphlets with size k € {3,4, 5}, we have Qv,,, < nuk—1
vashidze et al 2009), where u denotes the maximum node degree of the graph. In unsupervised
learning, the space complexity and time complexity are O(BMQ(e+nd) + M Ld* 4+ Cd+ B?) and
O(I'BMQL(ed + nd*) + TB? + N Zﬁz:l QV,,) respectively. PXGL-GNN is scalable to large
graph datasets because the complexities are linear with BM (@ and B? and ¥, are controllable.

6 RELATED WORKS

Due to space limitation, we introduce previous works on explainable graph learning (XGL), graph
representation learning (GCL), and graph kernels in Appendix [C}

7 EXPERIMENTS

We test our method on the TUdataset

2020) for both supervised and unsu- Table 1: Statistics of Datasets
pervised learning tasks, as shown in Table [I]
Our goal is to learn explainable graph repre- Name #of | #of | #of | nmode | node
sentations. We provide the weight parameter A graphs | classes | modes | labels | attributes
and visualize the ensemble representation g and MUTAG 188 20|79 e e
X PROTEINS | 1113 2 391 | yes yes
the pattern representation z(™). We use seven DD 1178 2 28432 | yes o
graph patterns: paths, trees, graphlets, cycles, NCI1 4110 2 209 | yes o
cliques, wheels, and stars, sampling Q = 50 COLLAB 5000 3 7449 | o no
subgraphs for each. We use a 5-layer GCN for IMDB-B 1000 2 198 | no 1o
the representation learning function F' and a 3- REDDIT-B | 2000 2 | 42963 | no no
layer DNN with softmax for classification func- ~ REDDIT-M5K | 4999 5 |50852 | mo no

tion f.. We repeat the experiments ten times



Under review as a conference paper at ICLR 2025

and report the average value with standard de-
viation. Due to the space limitation, the results of PXGL-EGK and other figures are shown in

Appendix [F]

(b) g: ensemble (©) 2. path (d) 23 tree (e) PCR graphlet

(@) A

SM Apzt™ (A1 = 0.5504) (A2 = 0.0746) (A3 = 0. 08103)

Figure 4: t-SNE v1sua11zat1ons of GNNs’ pattern representations (supervised) for PROTEINS.

7.1 SUPERVISED LEARNING

We conduct supervised XGL via pattern analysis by solving optimization (??) with the classification
loss (TT). The dataset is split into 80% training, 10% validation, and 10% testing data. The weight
parameter A, indicating each pattern’s contribution to graph representation learning, is reported in
Table l We also visualize the graph representation g and three pattern representations z(") of
PROTEINS in Figure 4] Results show the paths pattern is most important for learning g, and the
ensemble representation g outperforms single pattern representations z (™).

Table 2: X of supervised PXGL-GNN. The largest value is bold and the second largest value is blue.

Pattern MUTAG PROTEINS DD NCIT COLLAB IMDB-B REDDIT-B REDDIT-M5K
paths 0.095 £0.0I14 0.550£0.070 0.093 £0.012 0.022£0.002 0.587 £0.065 0.145+0.0I18 0.I131£0.027 0.027 £ 0.003
trees 0.046 £0.005 0.07440.009 0.054 £0.006 0.063 +0.008 0.105+0.013  0.022 £0.003 0.055+0.007  0.025 £ 0.003

graphlets | 0.0624+0.008 0.081+0.011 0.125+0.015 0.101+£0.013  0.063 £0.008 0.08440.011  0.026 £0.003  0.054 & 0.007

cycles |[0.654+£0.085 0.099£0.013 0.09440.012 0.176 £0.022  0.0224+0.003  0.123 £0.016  0.039 0.005 0.037 £ 0.005

cliques | 0.082+0.011 0.098 +0.012 0.572+0.073 0.574+0.075 0.134£0.017 0.453 +0.054 0.279+0.069 0.256 4 0.067

wheels | 0.026 £0.003 0.03940.005 0.051£0.007 0.01240.002 0.068 £0.009 0.037 +0.004 0.036 £ 0.005 0.023 £ 0.003
stars 0.035+0.005  0.056 £0.007  0.0114+0.002  0.052 £0.007  0.02140.003  0.136 £0.017 0.447 +0.006 0.578 £+ 0.033

We compare our method with classical GNNs including GIN (Xu et al.,|2018)), DiffPool (Ying et al.,
2018), DGCNN (Zhang et al.,[2018)), GRAPHSAGE (Hamilton et al.,[2017), subgraph-based GNNs
including SubGNN (Kriege & Mutzel, |2012), SAN (Zhao et al., 2018)), SAGNN (Zeng et al., 2023a),
and recent methods including S2GAE (Tan et al.,2023) and ICL (Zhao et al.,|2024). The accuracies
in Table 3] show that our method performs the best.

Table 3: Graph Classification Accuracy (%). The best accuracy is bold and the second best is blue.

Method MUTA PROTEIN DD NCII LLAB IMDB-B REDDIT-B REDDIT-M5K
GIN . . 83 L 1.29 72. . 327T£1. 57
DiffPool 86,72 £ 1.95 76.07 £1.62 7742 £2.14 7542 +2.16 78.77 = 1.36 7355 £ 2.14 84.16 £ 128 51.39 & 1.48
DGCNN 8429 £1.16 75.53 £2.14 76.57 £1.09 74.81 £1.53 77.59 £2.24 72.19 £1.97 8633 £229 53.18 +2.41
GRAPHSAGE | 86.35 £ 1.31 74.21 £1.85 79.24 £2.25 77.93 £2.04 76.37 +2.11 73.86 +2.17 85.59 £1.92 51.65+2.55
SubGNN 87.52 £2.37 7638 £1.57 82.51 £1.67 82.58 £1.79 81.26 +1.53 71.58 £1.20 88.47 £1.83 53.27 £1.93
SAN 92.65 £ 1.53 75.62 £2.39 81.36 +£2.10 83.07 £1.54 82.73 £1.92 7527 £1.43 9038 £ 1.54 5549+ 1.75
SAGNN 93.24 £2.51 75.61 +£2.28 84.12 £1.73 81.29 £1.22 79.94 + 1.83 74.53 £2.57 89.57 £2.13 54.11 £1.22
ICL 91.34 £2.19 7544 +£1.26 82.77 £1.42 83.45+1.78 8145+ 121 7329 £1.46 90.13 £1.40 56.21 £1.35
S2GAE 89.27 £1.53 76.47 £1.12 84.30 £1.77 82.37 £2.24 82.35+2.34 7577 £1.72 90.21 £1.52 54.53 £2.17

7.2 UNSUPERVISED LEARNING

We conduct unsupervised XGL via pattern analysis by solving optimization (??( with the KL di-
vergence loss (I0). The weight parameter A for XGL is reported in Table ] The visualization of
unsupervised XGL results are in Appendix @ Results show that the ensemble representation g
outperforms single pattern representations z

For clustering performance, we use clustering accuracy (ACC) and Normalized Mutual Informa-
tion (NMI). Baselines include four kernels: Random walk kernel (RW) (Borgwardt et al., |2005)),
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Table 4: X of unsupervised PXGL-GNN. The largest value is bold and the second largest value is
blue.

Paitern - < <
paths .085 . .05 082 . . +0. . . . . 0. K .
trees 0.027 £0.005  0.082£0.008 0.069 +0.007  0.042 £0.002 0.127+0.017  0.082 £0.009  0.060 4 0.003  0.036 £ 0.002

graphlets | 0.074 40.009 0.085+0.010 0.1724£0.020 0.10540.012  0.055£0.006 0.098 +0.011  0.025 £0.002  0.055 % 0.005

cycles |0.546 +0.065 0.095+0.011 0.1084+0.013  0.276 £0.033  0.0224+0.002  0.124 £0.014  0.043 +0.005 0.028 £ 0.003

cliques | 0.197£0.023 0.207 £0.025 0.527 £0.063 0.482+0.058 0.243 £0.029 0.423 +£0.051 0.212£0.061 0.157 & 0.067

wheels | 0.032+0.003 0.036+0.004 0.018 £0.002 0.013+0.001 0.044+0.005 0.035+0.004 0.036 +0.003  0.025 £ 0.013
stars 0.039 £0.004 0.03240.002 0.023 £0.003  0.059 £ 0.007  0.0314+0.001 0.085+0.010 0.455+0.019 0.585 + 0.022

Sub-tree kernels (Da San Martino et al) |2012; Smola & Vishwanathan| 2002)), Graphlet kernels
(Przuly, 2007), Weisfeiler-Lehman (WL) kernels (Kriege & Mutzel, 2012); and three unsupervised
graph representation learning methods with Gaussian kernel in (10): InfoGraph (Sun et al., 2019),
GCL (You et al,, [2020), GraphACL (Luo et al.| 2023). The results are in Table E} Our method
outperformed all competitors in almost all cases.

Table 5: ACC and NMI of Graph Clustering. The best ACC is bold and the the second best ACC is

blue. The best NMI is and the second best NMI is with *.
Method Metric MUTAG PROTEINS DD NCII COLLAB IMDB-B REDDIT-B REDDIT-M5K
RW ACC [ 0.724 £0.023  0.718 £0.019 0.529 £ 0.017 0519 £0.025 0.596 £0.019 0.669 £0.028 > T day > T day
NMI | 0.283 +0.008 0.226 +0.008 0.207 + 0.003 0.218 £0.009 0.356* +0.002 0.295 +0.006 > 1 day > 1 day
hree | ACC 07160017 0683 £0.023 0563 L0026 0332 £0016 0333 £0.021 062720022 = Tday S Tday
S NMI | 0217 40.005 0.167 + 0,004 0.225+0.005 0.295 £0.004 0.198 £0.005 0254 £0.007 > I day S 1 day
Graphler | ACC [ 0727£0.020 0,653 £ 0.017 0. ) X 525 £0.4 X X S Tday S Tday
NMI | 0.225 +£0.003 0.131 £+ 0.009 0.273 +0.005 0.217 £0.003  0.210 £0.004 > 1 day > 1 day
— ACC [ 0.695 20031 0.647£0.032 0517 £0020 0.57 £0.028 0.569 £0.017 0.635 £0.017 > I day S Tday
NMI | 0.185 40.007 0.135 &+ 0,001 0.192+0.008 0.234 £0.007 0253 £0.007 0.26]1 £0.003 > I day S 1 day
InfoGraph ACC | 0.729 £0.02T 0.716 £ 0.019 0.549 £0.035 0.535 £0.012 0.597 £0.020 0.624 £0.0I6 0.582 £0.023  0.597 £0.019
aph | NMI | 0.236 £0.005 0231 £0.003 0.266 &+ 0.004 0.263 £0.005 0.311 +0.008 0.198 £0.005 0.206 £0.006 0.386° -£0.006
GoL | ACC 0761 $0014 0723 £0025 0.563 £ 0016 0558 T0.010 0382 F0.015 0633 T0.024 0573 Z0015 0.382 20017
NMI | 0337 40.003 0.258 & 0,002 0.289 % 0.009 0293 £0.009 0253 £0.008 0.195 £0.005 _0.266 -0.005
GraphACL ACC | 0.742 £0.023 0.731 £0.027 0.572 £0.027 0.522 £0.0I13 0.554 £0.013 0.679 £0.013 0.594 £0.014 0.567 £0.023
P NMI | 0.347* £0.007 0.274* £0.008 0312+ 0.003 0260 £0.007 0236 £0.006 0.315° £0.007 0.315* = 0.006 0.238 % 0.009
PXGL.GNN | ACC [ 0778 0029 0,746 = 0.019 0,576 £ 0.035 0,564 £0; £0. 0. 0.
NMI 0317* £ 0.003 0.327* +0.008

8 CONCLUSION

This paper studied the explainability of graph representations. We proposed two strategies to learn
and explain effective graph representations. The first one is based on graph ensemble kernel and
the second one is based GNNs that learns from different graph patterns such as path, tree, etc. We
also provide some theoretical analysis for the proposed method, including robustness analysis and
generalization bound. The experiments showed that our method not only provides higher accuracy
of classification and clustering than its competitors but also yields explainable results.

REFERENCES

Amina Adadi and Mohammed Berrada. Peeking inside the black-box: a survey on explainable
artificial intelligence (xai). IEEE access, 6:52138-52160, 2018.

Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and S Cenk Sahinalp.
Biomolecular network motif counting and discovery by color coding. Bioinformatics, 24(13):
i241-i249, 2008.

Alireza Amouzad, Zahra Dehghanian, Saeed Saravani, Maryam Amirmazlaghani, and Behnam
Roshanfekr. Graph isomorphism u-net. Expert Systems with Applications, 236:121280, 2024.

Plamen P Angelov, Eduardo A Soares, Richard Jiang, Nicholas I Arnold, and Peter M Atkinson.
Explainable artificial intelligence: an analytical review. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 11(5):e1424, 2021.

Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Lid, and Andrea Passerini. Global explain-
ability of gnns via logic combination of learned concepts. arXiv preprint arXiv:2210.07147,
2022.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth IEEE
international conference on data mining (ICDM’05), pp. 8—pp. IEEE, 2005.

10



Under review as a conference paper at ICLR 2025

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schonauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl_1):
147156, 2005.

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learn-
ing Research, 2:499-526, 2002.

Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. Machine learn-
ing on graphs: A model and comprehensive taxonomy. Journal of Machine Learning Research,
23(89):1-64, 2022.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383-10395, 2020.

Giovanni Da San Martino, Nicolo Navarin, and Alessandro Sperduti. A tree-based kernel for graphs.
In Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 975-986. SIAM,
2012.

Kaize Ding, Yancheng Wang, Yingzhen Yang, and Huan Liu. Eliciting structural and semantic
global knowledge in unsupervised graph contrastive learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pp. 7378-7386, 2023.

Filip Karlo Dosilovié, Mario Brcié, and Nikica Hlupié. Explainable artificial intelligence: A survey.
In 2018 41st International convention on information and communication technology, electronics

and microelectronics (MIPRO), pp. 0210-0215. IEEE, 2018.

Jingcan Duan, Siwei Wang, Pei Zhang, En Zhu, Jingtao Hu, Hu Jin, Yue Liu, and Zhibin Dong.
Graph anomaly detection via multi-scale contrastive learning networks with augmented view. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 7459-7467, 2023.

Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly stable al-
gorithms with nearly optimal rate. In Conference on Learning Theory, pp. 1270-1279. PMLR,
2019.

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten Borgwardt. Scal-
able kernels for graphs with continuous attributes. Advances in neural information processing
systems, 26, 2013.

Jacob Fox, Tim Roughgarden, C Seshadhri, Fan Wei, and Nicole Wein. Finding cliques in social
networks: A new distribution-free model. SIAM journal on computing, 49(2):448-464, 2020.

Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding and
extending subgraph gnns by rethinking their symmetries. Advances in Neural Information Pro-
cessing Systems, 35:31376-31390, 2022.

Thomas Girtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient
alternatives. In Learning theory and kernel machines, pp. 129-143. Springer, 2003.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263-1272. PMLR, 2017.

Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks.
Proceedings of the national academy of sciences, 99(12):7821-7826, 2002.

Lorenzo Giusti, Teodora Reu, Francesco Ceccarelli, Cristian Bodnar, and Pietro Lio. Cin++: En-
hancing topological message passing. arXiv preprint arXiv:2306.03561, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence and
Machine Learning, 14(3):1-159, 2020.

11



Under review as a conference paper at ICLR 2025

Vikas Hassija, Vinay Chamola, Atmesh Mahapatra, Abhinandan Singal, Divyansh Goel, Kaizhu
Huang, Simone Scardapane, Indro Spinelli, Mufti Mahmud, and Amir Hussain. Interpreting
black-box models: a review on explainable artificial intelligence. Cognitive Computation, 16(1):
45-74, 2024.

Shohei Hido and Hisashi Kashima. A linear-time graph kernel. In 2009 Ninth IEEE International
Conference on Data Mining, pp. 179—188. IEEE, 2009.

Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its
variants. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8533—8537. IEEE, 2021.

Zexi Huang, Mert Kosan, Sourav Medya, Sayan Ranu, and Ambuj Singh. Global counterfactual ex-
plainer for graph neural networks. In Proceedings of the Sixteenth ACM International Conference
on Web Search and Data Mining, pp. 141-149, 2023.

Suk-Geun Hwang. Cauchy’s interlace theorem for eigenvalues of hermitian matrices. The American
mathematical monthly, 111(2):157-159, 2004.

Chuntao Jiang, Frans Coenen, and Michele Zito. Finding frequent subgraphs in longitudinal social
network data using a weighted graph mining approach. In Advanced Data Mining and Appli-
cations: 6th International Conference, ADMA 2010, Chongqing, China, November 19-21, 2010,
Proceedings, Part I 6, pp. 405—416. Springer, 2010.

Hyunju Kang, Geonhee Han, and Hogun Park. Unr-explainer: Counterfactual explanations for
unsupervised node representation learning models. In The Twelfth International Conference on
Learning Representations, 2024.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Risi Kondor and Horace Pan. The multiscale laplacian graph kernel. Advances in neural information
processing systems, 29, 2016.

Mert Kosan, Samidha Verma, Burouj Armgaan, Khushbu Pahwa, Ambuj Singh, Sourav Medya, and
Sayan Ranu. Gnnx-bench: Unravelling the utility of perturbation-based gnn explainers through
in-depth benchmarking. arXiv preprint arXiv:2310.01794, 2023.

Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. arXiv preprint
arXiv:1206.6483, 2012.

Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels. Applied
Network Science, 5:1-42, 2020.

O-Joun Lee et al. Transitivity-preserving graph representation learning for bridging local connec-
tivity and role-based similarity. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 12456-12465, 2024.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. Advances in neural information pro-
cessing systems, 33:19620-19631, 2020.

Xiao Luo, Wei Ju, Yiyang Gu, Zhengyang Mao, Luchen Liu, Yuhui Yuan, and Ming Zhang. Self-
supervised graph-level representation learning with adversarial contrastive learning. ACM Trans-
actions on Knowledge Discovery from Data, 2023.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International conference on machine learning, pp. 4363-4371. PMLR, 2019.

Harry L Morgan. The generation of a unique machine description for chemical structures-a tech-
nique developed at chemical abstracts service. Journal of chemical documentation, 5(2):107-113,
1965.

12



Under review as a conference paper at ICLR 2025

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL www .
graphlearning.io.

Leslie O’Bray, Max Horn, Bastian Rieck, and Karsten Borgwardt. Evaluation metrics for graph
generative models: Problems, pitfalls, and practical solutions. arXiv preprint arXiv:2106.01098,
2021.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Noel M O’Boyle and Roger A Sayle. Comparing structural fingerprints using a literature-based
similarity benchmark. Journal of cheminformatics, 8:1-14, 2016.

NataSa Przulj. Biological network comparison using graphlet degree distribution. Bioinformatics,
23(2):e177-e183, 2007.

Syed Asad Rahman, Matthew Bashton, Gemma L Holliday, Rainer Schrader, and Janet M Thornton.
Small molecule subgraph detector (smsd) toolkit. Journal of cheminformatics, 1:1-13, 2009.

Ladislav Rampasek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501-14515, 2022.

Caihua Shan, Yifei Shen, Yao Zhang, Xiang Li, and Dongsheng Li. Reinforcement learning en-
hanced explainer for graph neural networks. Advances in Neural Information Processing Systems,
34:22523-22533, 2021.

Xiao Shen, Dewang Sun, Shirui Pan, Xi Zhou, and Laurence T Yang. Neighbor contrastive learning
on learnable graph augmentation. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pp. 9782-9791, 2023.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Ef-
ficient graphlet kernels for large graph comparison. In Artificial intelligence and statistics, pp.
488-495. PMLR, 2009.

Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, and SVN Vishwanathan.
Hash kernels for structured data. Journal of Machine Learning Research, 10(11), 2009.

Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skianis,
and Michalis Vazirgiannis. Grakel: A graph kernel library in python. J. Mach. Learn. Res., 21
(54):1-5, 2020.

Geri Skenderi, Hang Li, Jiliang Tang, and Marco Cristani. Graph-level representation learning with
joint-embedding predictive architectures. arXiv preprint arXiv:2309.16014, 2023.

Alex Smola and SVN Vishwanathan. Fast kernels for string and tree matching. Advances in neural
information processing systems, 15, 2002.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. arXiv
preprint arXiv:1908.01000, 2019.

Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to im-
prove graph contrastive learning. Advances in Neural Information Processing Systems, 34:15920—
15933, 2021.

Qiaoyu Tan, Ninghao Liu, Xiao Huang, Soo-Hyun Choi, Li Li, Rui Chen, and Xia Hu. S2gae: self-
supervised graph autoencoders are generalizable learners with graph masking. In Proceedings of
the sixteenth ACM international conference on web search and data mining, pp. 787-795, 2023.

Quang Truong and Peter Chin. Weisfeiler and lehman go paths: Learning topological features via
path complexes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
15382-15391, 2024.

13


www.graphlearning.io
www.graphlearning.io

Under review as a conference paper at ICLR 2025

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas Courty. Template
based graph neural network with optimal transport distances. Advances in Neural Information
Processing Systems, 35:11800-11814, 2022.

Pengyang Wang, Yanjie Fu, Yuanchun Zhou, Kunpeng Liu, Xiaolin Li, and Kien A Hua. Exploiting
mutual information for substructure-aware graph representation learning. In IJCAI pp. 3415—
3421, 2020.

Xin Wang, Shuyi Fan, Kun Kuang, and Wenwu Zhu. Explainable automated graph representation
learning with hyperparameter importance. In International Conference on Machine Learning, pp.
10727-10737. PMLR, 2021.

Chunyu Wei, Yu Wang, Bing Bai, Kai Ni, David Brady, and Lu Fang. Boosting graph contrastive
learning via graph contrastive saliency. In International conference on machine learning, pp.
36839-36855. PMLR, 2023.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
In International conference on machine learning, pp. 478-487. PMLR, 2016.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. Infogcl: Information-
aware graph contrastive learning. Advances in Neural Information Processing Systems, 34:30414—
30425, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Yihang Yin, Qingzhong Wang, Siyu Huang, Haoyi Xiong, and Xiang Zhang. Autogcl: Automated
graph contrastive learning via learnable view generators. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 8892-8900, 2022.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems,
33:5812-5823, 2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning auto-
mated. In International Conference on Machine Learning, pp. 12121-12132. PMLR, 2021.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of
graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 430-438, 2020.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In International conference on machine learning, pp. 12241-
12252. PMLR, 2021.

Dingyi Zeng, Wanlong Liu, Wenyu Chen, Li Zhou, Malu Zhang, and Hong Qu. Substructure aware
graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 37, pp. 11129-11137, 2023a.

Liang Zeng, Lanqing Li, Ziqi Gao, Peilin Zhao, and Jian Li. Imgcl: Revisiting graph contrastive

learning on imbalanced node classification. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 11138-11146, 2023b.

14



Under review as a conference paper at ICLR 2025

Jiaxing Zhang, Dongsheng Luo, and Hua Wei. Mixupexplainer: Generalizing explanations for graph
neural networks with data augmentation. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 3286-3296, 2023a.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 32, 2018.

Yifei Zhang, Hao Zhu, Zixing Song, Piotr Koniusz, and Irwin King. Spectral feature augmentation
for graph contrastive learning and beyond. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 11289-11297, 2023b.

Xiaohan Zhao, Bo Zong, Ziyu Guan, Kai Zhang, and Wei Zhao. Substructure assembling network
for graph classification. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 32, 2018.

Zhe Zhao, Pengkun Wang, Haibin Wen, Yudong Zhang, Zhengyang Zhou, and Yang Wang. A
twist for graph classification: Optimizing causal information flow in graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17042-17050,
2024.

A APPENDIX

You may include other additional sections here.

B MATH DEFINITIONS OF PATTERNS

In our work, graph patterns refer to as subgraphs with practical meanings. Let G = (V, E) be a
graph. A subgraph S = (Vg, Eg) of G is defined such that Vg C V and Es C EN (Vs x Vg). The
math definitions of graph patterns are as follows:

 Paths: S is a path if there exists a sequence of distinct vertices vy, ..., v; € Vg such that
Es = ((vi,vit1) ri=1,...,k = 1).

* Trees: S is a tree if it is connected and contains no cycles, i.e., it is acyclic and |Eg| =
[Vs| — 1.

» Graphlets: S is a graphlet if it is a small connected induced subgraph of G, typically
consisting of 2 to 5 vertices.

* Cycles: S is a cycle if there exists a sequence of distinct vertices v, . .., v € Vg such that
Es = ((v,vi41) :i=1,...,k— 1)U ((vg,v1))-

* Cliques: S is a clique if every two distinct vertices in Vg are adjacent, thus Eg = ((v;, v;) :
Vi, Uy € VS7i # .7)

* Wheels: S is a wheel if it consists of a cycle with vertices vy, ..., v;_1 and an additional
central vertex vy such that vy, is connected to all vertices of the cycle.

e Stars: S is a star if it consists of one central vertex v, and several leaf vertices
v1,...,U5—1, where each leaf vertex is only connected to v.. Thus, Es = ((ve,v;) :
i=1,...,k—1).

C RELATED WORKS

In this section, we introduce previous works on explainable graph learning (XGL), graph represen-
tation learning (GRL), and graph kernels.
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C.1 EXPLAINABLE GRAPH LEARNING (XGL)

Explainable artificial intelligence (XAI) is a rapidly growing area in the AI community (Dosilovié
et al.l 2018 |Adadi & Berrada, [2018; |/Angelov et al.l 2021} [Hassija et al., [2024). Explainable graph
learning (XGL) (Kosan et al., 2023) can be roughly classified into two categories: model-level
methods and instance-level methods.

Model-level Model-level or global explanations aim to understand the overall behavior of a model
by identifying patterns in its predictions. For example, XGNN(Yuan et al., |2020) trains a graph
generator to create graph patterns that maximize a certain prediction, providing high-level insights
into GNN behavior. GLG-Explainer(Azzolin et al., [2022) combines local explanations into a logi-
cal formula over graphical concepts, offering human-interpretable global explanations aligned with
ground-truth or domain knowledge. GCFExplainer(Huang et al.| [2023) uses global counterfactual
reasoning to find representative counterfactual graphs, providing a summary of global explanations
through vertex-reinforced random walks on an edit map of graphs.

Instance-level Instance-level methods offer explanations tailored to specific predictions, focusing
on why particular instances are classified in a certain manner. For instance, GNNExplainer (Ying
et al., |2019) identifies a compact subgraph structure and a small subset of node features crucial for
a GNN’s prediction. PGExplainer (Luo et al., 2020) trains a graph generator to incorporate global
information and uses a deep neural network (DNN) to parameterize the explanation generation pro-
cess. SubgraphX (Yuan et al.,[2021)) efficiently explores different subgraphs using Monte Carlo tree
search to explain predictions. RG-Explainer (Shan et al.,|2021)) constructs a connected explanatory
subgraph by sequentially adding nodes, consistent with the message passing scheme. MixupEx-
plainer (Zhang et al.| [2023a)) introduces a general form of Graph Information Bottleneck (GIB) to
address distribution shifting issues in post-hoc graph explanation. AutoGR (Wang et al., [2021) in-
troduces an explainable AutoML approach for graph representation learning. UNR-Explainer (Kang
et al.,[2024)) identifies the top-k most important nodes in a graph to determine the most significant
subgraph. It is a classic instance-level explainable graph learning method focused on node rep-
resentation. However, this task is entirely different from our approach, as it addresses node-level
representation rather than representation-level explainability. For this reason, we did not include a
comparison.

C.2 GRAPH REPRESENTATION LEARNING

Graph representation learning is crucial for transforming complex graphs into vectors, particularly
for tasks like classification. The methods for graph representation learning are mainly classified into
two categories: supervised and unsupervised learning.

Supervised Representation Learning Most GNNs can be used in supervised graph represen-
tation learning tasks by aggregating all the node embeddings into a graph representation using a
readout function (Hamilton, 2020; (Chami et al [2022). Besides traditional GNNs like GCN (Kipf
& Welling, [2016)), GIN (Xu et al., [2018), and GAT (Velickovi¢ et al., [2017)), recent works include:
Template-based Fused Gromov-Wasserstein (FGW) (Vincent-Cuaz et al., 2022) computes a vec-
tor of FGW distances to learnable graph templates, acting as an alternative to global pooling lay-
ers. Path Isomorphism Network (PIN) (Truong & Chinl [2024) introduces a graph isomorphism test
and a topological message-passing scheme operating on path complexes. Graph U-Net (Amouzad
et al.| [2024) proposes GIUNet for graph classification, combining node features and graph struc-
ture information using a pqPooling layer. Unified Graph Transformer Networks (UGT) (Lee et al.,
2024) integrate local and global structural information into fixed-length vector representations us-
ing self-attention. CIN++ (Gtusti et al.| |2023) enhances topological message passing to account for
higher-order and long-range interactions, achieving state-of-the-art results. Graph Joint-Embedding
Predictive Architectures (Graph-JEPA) (Skenderi et al., 2023) use masked modeling to learn em-
beddings for subgraphs and predict their coordinates on the unit hyperbola in the 2D plane.

Unsupervised Representation Learning Unsupervised methods aim to learn graph representa-
tions without labeled data. Notable methodologies include: InfoGraph (Sun et al.,|2019) emphasizes
mutual information between graph-level and node-level representations. Graph Contrastive Learn-
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ing techniques (You et al.}|2020; Suresh et al.|[2021;|You et al.||2021) enhance graph representations
through diverse augmentation strategies. AutoGCL (Yin et al., 2022) introduces learnable graph
view generators. GraphACL (Luo et al., 2023) adopts a novel self-supervised approach. InfoGCL
(Xu et al., 2021) and SFA (Zhang et al.| 2023b) focus on information transfer and feature augmen-
tation in contrastive learning. Techniques like GCS (Wei et al., [2023), NCLA (Shen et al., [2023)),
S3-CL (Ding et al., 2023), and InGCL (Zeng et al., [2023b) refine graph augmentation and learn-
ing methods. GRADATE (Duan et al.| 2023)) integrates subgraph contrast into multi-scale learning
networks.

GNNs using Subgraphs and Substructures Our pattern analysis method samples subgraphs
from different graph patterns to conduct explainable graph representation learning. The key novelty
and contribution of our paper is that graph pattern analysis provides explainability for representa-
tions. We discuss other GNN methods based on subgraphs and substructures here: Subgraph Neural
Networks (SubGNN) (Kriege & Mutzel, [2012) learn disentangled subgraph representations using
a novel subgraph routing mechanism, but they sample subgraphs randomly, lacking explainability.
Substructure Aware Graph Neural Networks (SAGNN) (Zeng et al., [2023a) use cut subgraphs and
return probability to capture structural information but focus on expressiveness rather than explain-
ability. Mutual Information (MI) Induced Substructure-aware GRL (Wang et al.| 2020) maximizes
MI between original and learned representations at both node and graph levels but does not pro-
vide explainable representation learning. Substructure Assembling Network (SAN) (Zhao et al.,
2018) hierarchically assembles graph components using an RNN variant but lacks explainability in
representation learning.

Several works focus on analyzing the expressiveness of methods by their ability to count substruc-
tures, but they do not provide explainable representation learning. For example: (Chen et al., [2020)
analyze the expressiveness of MPNNs (Gilmer et al.|[2017)) and 2nd-order Invariant Graph Networks
(2-IGNs) (Maron et al., |2019) based on their ability to count specific subgraphs, highlighting tasks
that are challenging for classical GNN architectures but not focusing on explainability. (Frasca et al.,
2022) compare the expressiveness of SUbGNN (Kriege & Mutzel, [2012) and 2-IGNs (Maron et al.,
2019) using symmetry analysis, establishing a link between Subgraph GNNs and Invariant Graph
Networks.

C.3 GRAPH KERNELS

Graph kernels evaluate the similarity between two graphs. Over the past decades, numerous graph
kernels have been proposed (Siglidis et al., 2020). We classify them into two categories: pattern
counting kernels and non-pattern counting kernels.

Pattern Counting Kernels Pattern counting kernels compare specific substructures within graphs
to evaluate similarity (Kriege et al., 2020). For examples, Random walk kernels (Borgwardt et al.,
2005}, |Girtner et al., [2003) measure graph similarity by counting common random walks between
graphs. Shortest-path kernels(Borgwardt & Kriegel, 2005) compare graphs using the shortest dis-
tance matrix generated by the Floyd-Warshall algorithm, based on edge values and node labels.
Sub-tree kernels (Da San Martino et al., [2012; |Smola & Vishwanathan| [2002) decompose graphs
into ordered Directed Acyclic Graphs (DAGs) and use tree kernels extended to DAGs. Graphlet
kernels (Przulj, [2007) count small connected non-isomorphic subgraphs (graphlets) within graphs
and compare their distributions. Weisfeiler-Lehman subtree kernels (Kriege & Mutzel, 2012) use
small subgraphs, like graphlets, to compare graphs, allowing flexibility to compare vertex and edge
attributes with arbitrary kernel functions.

Non-pattern Counting Kernels Non-pattern counting kernels evaluate graph similarity without
relying on specific substructure counts. For examples, Neighborhood hash kernel (Hido & Kashimal
2009) use binary arrays to represent node labels and logical operations on connected node labels.
This kernel has linear time complexity. GraphHopper kernel (Feragen et al.,|2013) compare shortest
paths between node pairs using kernels on nodes encountered while hopping along shortest paths.
Graph hash kernel (Shi et al., [2009) use hashing for efficient kernel computation, suitable for data
streams and sparse feature spaces, with deviation bounds from the exact kernel matrix. Multiscale
Laplacian Graph (MLG) kernel (Kondor & Pan, 2016) account for structure at different scales using
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Feature Space Laplacian Graph (FLG) kernels, applied recursively to subgraphs. They introduce a
randomized projection procedure similar to the Nystrom method for RKHS operators.

D PROOF FOR ROBUSTNESS ANALYSIS

Let A4 and A x be some perturbations on adjacency matrix and node attributes, then the perturbed
graph is denoted as G = (A + A4, X + Ax). Let g be the graph representation of G and g be the
graph representation of GG. The robustness analysis is to find the upper bound of ||g — g

Assumptions and Notations: Let A = A+A 4 and X = X +Ax. We suppose that lAll2 < Ba,
|X|lr < Bp and [WmD |y < By, (Vm € [M], | € [L]), the activation o(-) of GCN is p-
Lipschitz continuous. We denote the minimum node degree of GG as «, the effects of structural
perturbation as x = min(1TA4), and Ap := I — diag(1T (I + A+ A,))2diag(1T A)"z.

Theorem: Our conclusion for robustness analysis is as follows:

PP Bl Bx (L4 ) F(1+ Ba + 1A al)E (14 2L1Aplla + L(1+ Ba+ [Aall2) | Aal))
(16)

To provide a clearer analysis, we first use the whole graph G' and G as the input of the pattern
representation learning function F' without sampling the subgraphs. Then we consider using the
subgraph sampling to analyze g and g and finally finish the proof of robustness analysis.

1
S
59l < 7

D.1 LEARNING PATTERN REPRESENTATIONS USING THE WHOLE GRAPH WITHOUT
SAMPLING

In this section, we first consider using the whole graph G and G as the input of the pattern represen-
tation learning function F' without sampling the subgraphs, i.e., we analyze F(A, X; W(m)) and
F(A, X;wWim),

Representation Learning Function F' In theoretical analysis, we suppose the pattern represen-
tation learning function F' is a L-layer GCN (Kipf & Welling, |2016) with an average pooling
avg-pool : R"*4 — R? as the output layer. The pattern learning function for the pattern P, is
denoted as F(A, X; W), where W™ = (WD Wwmd WLy and W s
the trainable parameter of the [-th layer. We use the adjacency matrix A and node feature matrix
X of G as the input. Then the self-connected adjacency matrix is A=1+ A, the dlagonal matrix
is D = d1ag(1TA) then the normalized self-connected adjacency matrix is U = D zAD .
Let o(-) be an activation function, then the hidden embedding X (™) of the I-th layer is defined as

follows
x(mb) _ U(U...U(UXW(m’l))...W(m’l)), Vie [L}7

a7)
I times l times
The pattern representation z(™) of pattern P, is obtained by
2" = F(A, X; W) = avg-pool(X (™) = LT x0m0) (18)
n

For a perturbed graph G, weuse A and X to denote the adjacency matrix and feature matrix respec-
tively. The corresponding self-connected adjacency matrix is A’ =T+ Aand the degree matrix as
D’ = diag(17 A’). Then the normalized self-connected adjacency matrix is U = D'~2 A’D’~2
The [-th layer hidden embedding of G is defined as follows

Xl — (0.0 (U X WMD) WDy v elL],

19)
I times [ times
The perturbed pattern representation Z(") of pattern P,, is obtained by
2 = P(A, X; W) = avg-pool (X (™F)) = Limxom (20)
n
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Lemma D.1. Ler X and Y be two square matrices, || - ||2 be the spectral norm and || - ||r be the
Frobenius norm , then | X |2 < || X ||r, | XY |2 < [| X|12|Y |l2 and | XY ||F < | X 2] Y || -

Lemma D.2 (Inequalities). Some inequalities that will be used in our proof:

[Ull2 < (14 a) "1+ Ba)
102 < (1 +a+8) "1+ Ba+[|Aall2)
[Aulla <21+ Ba)(L+a) Az + (1+ a+ &) H|Aall:

|Axenn e < By Bx (1+ @) (14 Ba + 1A all2)! (14 20 Aplla + U1+ Ba + [ Aall2) 1A ll2))

Proof. Since the minimum node degree of G is a, then we have |[D~2|j; < (14 )~ 2. Since
[All2 < Ba,then ||Al2 < 14 54. We have
U2 < D722 All5[| D722 < (14 )" (1 + Ba). @21

Similarly, since the effects of structural perturbation is £ = min(1T Ay), we have | D'z, <
(14+a+k)"z2. Since |A’|ly < || Al + [|[Aallz < 14 B4 + ||Aal|2, we obtain

1Tz < 1D’ 2 ||| A" 2| D" 2 [l2 < (14 a + 1)1 (14 Ba + [ Aall2). 22)

Letting Ay = U — U, we have

1Al =T -Ul> = |D'"3(A+A4)D'~% — D3 AD 3|
= D' tADE D' PAD T 4 DiA AD} 4+ D' hALD b
<D FADE — D)o+ |(DF ~ D H)AD |y + D' EALD |,

1

AL Ay L N Ay L AL ~Ay— L I §
<D™zl + D[l All2 D72 = D72l + [ D72 [l Aall2[ D2 |2

<((+a) T+ (1 +a+r)2)A+B)ID 72 =D s+ (1+a+r) " Al
<214 Ba)1+0a) D72 =D o+ (1+a+ k) "H|A4l

<21+ 81 +a) 21 +a+r) I —DED 3|y + (1+a+r) Al
=2(1484)1+a) 2(1+a+r)"Z|Aplla + (1 +a+r) A4

<201+ Ba) 1+ ) M Aplz2 + (1 +a+ k)" Al

(23)
where Ap =T — D2 D2 =T — diag(1T (I + A+ Ay))z2diag(1T A)~ 2.

The X (™) is the hidden embedding of the I-layer GCN of F/(A, (X); W(™!), which is the repre-
sentation learning function related to P,,,. Then we have

|X D) p = [lo(UX DWW D)
< plUX WD
< plU ||| XD || p W D]
< pBw (L +a) 1+ )| XV p
<p' By (1+ Ba) (1 + )| X ||
<P By Bx(1+ B4 1+ )™

(24)
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For A x(m,y = X (™D — X(m:D) we have

1A 5w ||F = | X ™D — X0 5
= |lo(U U X (mil= 1)W(z)) (UX(l_l)W(l))HF
< p|UX =D — g x (=D g |
< pBw (101214 xm -0l + [ A0 21| X0 )
< PRNTIBIA xns-s L+ 7B T2 A0 X2+ oy Al X 4D

l
< A B T I Ax ] + 3 B IT IS Ay ol X9 -
k=1

<P By (L4 Ba+11Aal2) A+ ) (14 Ba+ 2 Aall2)[Ax || F +218x (1 + Ba)
(25)

O

[Apl2]

D.2 LEARNING GRAPH REPRESENTATIONS VIA SAMPLING SUBGRAPHS

In this section, we consider learning the graph representation g and g respectively by sampling
subgraphs of graph patterns. That is, we analyse F'(Ag, X g;W(™)) and F(Ag, Xg;W™). And
then we provide the upper bound of |g — g||.

Let S be a subgraph of graph G and S be a subgraph of graph G. Let A4 s and Ax, be some

perturbations on adjacency matrix and node attributes, then the perturbed graph is denoted as S =
(AS + AAS? Xs + AXS)'

Assumptions and Notations: Let A=A+A and X = X+Ax. We suppose that || Al|2 < 84,
| X||r < Bp and |[WD |y < By, (Vm € [M], I € [L]), the activation o(-) of GCN is p-
Lipschitz continuous. We denote the minimum node degree of G as «, the effects of structural
perturbation as x = min(1TAy), and Ap := I — diag(1T (I + A 4+ A,))2diag(1T A)~z. We
present the following useful lemmas.

Lemma D.3 (Eigenvalue Interlacing Theorem (Hwang, 2004)). Suppose A € R"*™ is symmetric.
Let B € R™*"™ with m < n be a principal submatrix (obtained by deleting both the i-th row and
i-th column for some value of i). Suppose A has eigenvalues Ay < --- < \,, and B has eigenvalues
B1 < < By Then

Ak < Bk < Agtn—m  fork=1,--- m
Lemma D.4. Since X g and Ax are submatrices of X and A x respectively, then we have

| Xsllr < | X][lF, and ||Axsllr < [|Ax]F.

Let Ap, = I —diag(1T (I + Ag + A4, ))2diag(1T Ag)~2. Base on the Eigenvalue Interlacing
Theorem, for any subgraph S of graph G, since As, Aa., Apg are principal submatrices of A,
A 4, Ap respectively, then we have

[Asll2 < [|All2 < Ba,  [[Aagllz < [|Aall2,  [[Apsllz < |Ap]f2-

Notations: For a subgraph S of graph G, the self-connected adjacency matrix is Ag = I + Ag,
the degree matrlx is DS = dlag(lTAs) and the normalized self-connected adjacency matrix is

Us = D T4 SD 5

For a subgraph S of graph C~¥,~we define some notations here. We denote the self-connected adja-

cency matrix as Ay = I + Ag, the diagonal matrix as D} = diag(lTAg), and the normalized

self-connected adjacency matrix as ﬁé = ﬁ’s_%figﬁg_%. We also denote Ay, = ﬁs —Ug and
— Yy .(m, (m,1)

Ay = X5t — X g™,
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Lemma D.5 (Inequalities). Base on Lemma [D4| for any subgraph S of graph G, the inequalities
in the Lemma|[D.2)still holds for S, shown as follows:

[Usll2 < (1+a)~ ' (1+ Ba)

1Usll2 < (1+a+r) " (1+ 84+ [[Aal2)

[Avgllz <21+ Ba)1+a) Aplla + (1+a+ k) Al
IX5™DNle < o'l Bx (14 Ba) (1 + )"

1A yonolle < p'Bi (14 Ba+ [ Aall2) " 1+ )7 [(1+ Ba+ 2] Aall2) [Ax | F + 218x (14 Ba) | Apll2]
(26)

Proof. The proof is mainly based on Lemma[D.4]
Similar to (1)), we have

|Usllz < D5 % ol Asll2| Dg * [l2 < | D # |2l Al D~2]l2 < (1 + @)} (14 8a). @7)
Similar to (22), we have

~ a1 2 A, 1 A, N A, 1
[Usllz < |1D5™ 2 [l2|A"|l2| D52 2 < |1D"7 2 [2[| A"[l2[| D" 2|2

) (28)
<(I+a+r)"" 1+ Ba+[A4]2).

Similar to 23], we have
A1 Ay 1 2 Ayl A—1 Ayl Ayl
1Aull2 < (1Dg |2 + D52 [2) | All2| Dy ™% — Dg? |l + 1D =% || Aalll| D% %
< (D% + | D% |) | Allo[| D=5 — D73 ||p + |D" "5 |o| Asllo| D" F ], 29
<214+ BA) A +a) Aplla+ (1 +a+r) A4l

Similar to (24), we have

ml m,l—1
||qu ) Ir < P||Us||2||Xé )||F||W(m,1)||2
< pl|U 2| XD WD 30)

< P By Bx(1+ Ba) (1 +a)™

Similar to (23)), we have

- - - -
HAXgmwl) lr < 02ﬂ12/v||US||§||AXg72>||F + P2 B3 | Usll2| Avg 121 XS W17 + pBw | Aus 2 XSV | e
< B IO3IIAx a2 |lF + p* B 10 2| Au 21l X 2 5 + pBw | Avll2| X T~
<P By (L4 Ba+11Aal2) "X+ ) (14 Ba+ 2 Aall2)[Ax || F +218x (1 + Ba)
(31)

|Ap|l2]

O

Finally, we can prove our theorem of robustness analysis in the main paper using Lemma as
follows.
Proof. Given a pattern sampling set S(™), we assume the S* satisfies

S* = argmax [|A om0 || F-
Sesim) o

Since the Lemma [D.5]holds for any subgraph S, we have

1Ay oo llr < p' By (1+Ba+ A all2) (1) T (1 + Ba + 2 Aall) [ Ax |7+ 208x (1 + Ba)|Ap]a]
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Then the upper bound of ||g — g|| is given by

M M
Z Am (207 — 20|l < Z Am [|E0™) = 20|
m=1

m=1

g —gll =

M
1 J
== A | YD F(Ag, X W)= 3" F(Ag, Xgs W)
Q m=1 SeSm) Sesm)
1 & - -
S A Y ||F(As X W) - F(As, Xss W)
Qm:l Ses(m)
1 < 1 (m,L) (m,L)
_ - T/~ (m,L _ m,L
_QZ)\m > oo X )HF
m=1 SeS(m)
1« 1 (m,L) )
o (m,L m,L
<G Ay IR - x|
m=1 SeSs(m)
1 M
LIS S PV S T
Qvn m=1 Sesm) ? F
1 M
< —— Am HA m,
< gur 2 el
1
< 7#6%(1 +Ba+1Aal2)" 1+ a) (1 + Ba + 20 Aall2) [Ax || 7 + 2LBx (1 + Ba) | Apll2]
(32)
O

E PROOF FOR GENERALIZATION ANALYSIS OF SUPERVISED LOSS
Before providing our theorem, we need to provide the classification loss function f..

Classification loss function f.: We use a linear classifier with parameter W € R4*¢ and use
softmax as the activation function as the classification function f., i.e., § = softmax(gW¢). We
suppose that | We |2 < Be.

Then the classification loss is as follows

Leg(A, W) = cross-entropy(y, §) = cross-entropy(y, softmax(gW¢)). (33)
To simplify the proof, we rewrite supervised loss {cg(X, W) function as

w(gWe) := cross-entropy (y, §) = cross-entropy(y, softmax(gWc)).

Lemma E.1. Let v be a vector, there exits a positive constant T such that ¢(v) is a T-Lipschitz
continuous function.

Generalization Error Let D := {G1, ..., G|p|} be the training data. By removing the i-th graph
of D, we have D\ = {G1, ..., Gi_1,Git1, -, Gyp|_1}. Let Ap and Wp := {Weo, W™ v €
[M], 1 € [L]} be the parameters trained on D. Let Ap\; and Wy := {Wes, Wg@’“, Vm €
[M], 1 € [L]} be the parameters trained on D\?. Then our goal is to find a 7 such that

[lce(Ap, Wp; G) — bep(Apvi, Wi G) < (34
Theorem E.2. Given a graph G, let g be the graph representations learned with parameter Ap and
Wop and g\' be the graph representations learned with parameter Ap; and Wpy..
To simplify the proof, we denote that By = max(Bywp, Bypri ), where

~ — W(’ml) ’ d A L= W(m,’l) )
Bwop memi}l(e[L]|| o 2, and Byrp mE[IJIVIIE]l,}l(e[L]” el
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We also denote that . (m.) (mD)
Baw = . IWp™ = Wpi 2

Then we have

1= et Bl Bx (1B ()™ B[ W - W

Proof. We provide two lemmas used in our proof

Lemma E.3. ||g| < ﬁpLﬁA{}VBX(l +Ba)F(1+a) F

+ LBaw | Aprs

2+ [We

2 (BWHM) — Ap\i

)

Lemma E 4.

) 1 N _ « «
lg —g¥ll < Z=p" B Bx (14 Ba) (1 + o) = (BwlAp = Ayl + LBaw | Ap:

)

The main proof of our Theorem
[lce(Ap, Wp; G) — lee(Apri, Wpnis G)| = [0(g\ Wens) — o(gWo)|

<7||gWe — g\ Weu||

=7||gWe — gWeni + gWeni — g\ Wen|

<7llgll|We — Wenill2 + 7llg — gV || Wen

2

L JLAE B (1 + Ba)E(1 4 a)E

<7|[We — We 2%

1, s R
FIWenlle e B Bx (1 840 (1 )~ (Bw Ao = Apu | + Liaw Ao
T PO _ ~ ~ ~
=Tt Bx (4 Ba) (k@) B W = Weuilla + IWelle (Bw o = Apull + Liawl Ao )|

(35)

Since Z£1 Ai <1land A; > 0, wehave | A|| < 1and ||[A—Ap\|| < 2. This finished the proof. [

E.1 PROOF FOR LEMMAS

Lemma E.5. Ler v be a vector, there exits a positive constant T such that o(v) is a T-Lipschitz
continuous function.

Proof. Step 1: Softmax is Lipschitz The softmax function is known to be Lipschitz continuous.
Specifically, there exists a constant K such that:

||softmax(v) — softmax(w)||; < Li|jv — w]|2,

where || - ||1 is the ¢;-norm and || - ||2 is the £5-norm. For the ¢;-norm, L can be bounded by 1, but
generally, for different norms, the exact Lipschitz constant might vary.

Step 2: Cross-Entropy is Lipschitz on the Simplex Given q = softmax(v) and r = softmax(w),
we need to check the Lipschitz continuity of the cross-entropy loss function with respect to these
distributions:

|cross-entropy (p, q) — cross-entropy(p, r)| < Ls|lq — r||.

The cross-entropy loss is a convex function and it is smooth with respect to the probability distribu-
tions q and r. Given the boundedness of the probability values (since q and r lie in the probability
simplex), the gradient of the cross-entropy loss is also bounded.

Combining Steps Since both the softmax function and the cross-entropy loss function are Lipschitz
continuous, their composition will also be Lipschitz continuous. Therefore, there exists a constant
7 = L1 Ly such that:

lp(v) — p(w)] < 7llv —wl.

Hence, p(v) = cross-entropy (softmax(v)) is 7-Lipschitz continuous. O
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Lemma E.6. |lg|| < J=p" B Bx (1+ Ba)"(1+ )"

Proof. Given a pattern sampling set S(™), we assume the S* satisfies

S* = argmax ||Xg‘> |7
Ses(m)

Since the Lemma [D.5]holds for any subgraph S, then we have
IXST Ve < o' BlyBx (14 Ba) (1 + @)

Then, we have

M M
lgll = 13" A 2] < 7 A [[207]
m=1 m=1

M
1
=0 Dol Y F(Ag, Xe; W)
m=1 SeSsim)
1 M
SQZA’IU Z ||F(A57X53W(M))”
m=1 Ses(m)
1 & 1
m,L
=g 2 Am > T
m=1 SeS(m) (36)
11
m,L
<o 2 Ama > IRIXE
m=1 Ses(m)
1 M
m,L
:Wz)\m Z HX.; )”F
m=1 SeS(m)
R (m.L)
< — 5" A, Xtk
< 77 2 X e
1

< 7 pLBE Bx (14 Ba) (1 + )~

O
Lemma E.7.
9 =9V < =B (L + B 1+ )7 (BlAp = Aol + Liaw|Ap )
Proof. To simplify the proof, we denote
3. _ W(m 1) (m,l)
bw =max{ max | o, mmax (IWpl2} .

_ m,l) (m,l)
Baw = e W™ = WaiD .

Let X ,(5”; ") be the embedding features of the [-th layer GCN with the parameter W(Dm) learned from
dataset D. Let X! be the embedding features of the [-th layer GCN with the parameter wim

SD\i D\

learned from dataset D\?.

(1) (m)1T .M (m)T
We denote Zp = [zp”, ..., zp | and Zpi = [z, - D\L] . Let

g = argmax 25", g2 = argmax | 252 — 202
me[M] me[M]

Then we have (o) ) (42)

1Zoll2 < 12571, 112D — Zpuillz < [l282) — 252)].
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Similar to (36), we have

1 N
=5 | < =" B Bx (14 Ba) (1 + )~ (38)

NG

O (QZvl) (qz,l) o . . .
Denote A xlaz0 = X' =X SN then, similar to inequality |i we have

M—=1 R
1A ol = lo(Us X G IWE?) — o (Us X Wl

< p||USH2||Xéflg7l—1)W£Q27l—1) _ X(le—l)W(le—l)”F

SD\i D\i
Jg—1 A—1 Jg—1 Jg—1 A—1 Jg—1 JA—1 Jg—1
< plUs o XG5 Vg™ — X Dwin Y ¢ x (@ Uwp ) - x e
=1 -1 1—1 =1 1—1 =1
< p|Usllz| X $2" D (W=t — w0y (xfet=h - x i ywle ),
A—1 -1 =1 -1 -1 =1
< p|Usll2(1 XSV | p w0 = wie =V, 4 | x 20 — X @200 | wiest=Yy)

) ’ N
= PIUsll2Bw A g @10 || + pllUs||2Baw | X251 |1 5
l

A Ak—15 Ak
< PIUSIbBY 1A g 1+ 3 U535 Baw | X5
k=1
(39
where [|A .0 ||F = | Xs — X5/ = 0. We can directly use the inequality , such that
SD

IXS30lr < p'Bly Bx (1 + Ba) (1 + )™ (40)
Thus, we continue the proof
l

l LAl k kpk—1 43 JA—k
18 a0l < P ITSIsB 1A am e+ 3 P IUS SBL Baw 1 X551
k=1

<Ip (14 )71 + Ba) Bl Baw Bx

Also similar to (D23)), we have

(g2)
D\é

(41)

HF(ASvXSQng)) - F(As,Xs;W(qz))

”z(qu) -z D\i

|
1 2,L 2,L
= X" - 1T x|

(42)

L xr(a2.) (g2,L) 1
%HXSB - ng\i lF= ﬁHAxg‘gL)”F
L L —L LAL—17)
< %P (1+a) (14 Ba)" By  BawBx

Finally, we have
lg — gVl = IALZp — Ap\i Zpri
= AbZp — AL Zp + AL Zp — AL Zp |
= (A = Apvi) Zp + A (Zp — Zpu) ||
<A = Ap\illllZpll2 + [[Ap\il[lZD — Zpri

< A0 = Apu 2571 + [ Apu |22 — 242

pLBE Bx (14 Ba) L (1 + )~

2

1 (43)
<|[[Ap - )‘D\inﬁ

L « .
%PL(l +a) F1+ 6A)LB{€V_16AW5X
1

= A B (L B (L @)™ (Bwlxe g

+ [[Api

+ LBaw | Ap:

)
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F EXPERIMENT
In this section, we present additional experiments and supplementary figures.

F.1 EVALUATING THE ENSEMBLE KERNEL (PXGL-EGK)

Here, we compare our ensemble kernel (PXGL-EGK) as defined in Definition @] with individual
kernels Kp. We report the results as follows. Specifically, we use three pattern counting kernels in
the ensemble method: Random Walk (RW) kernels (Borgwardt et al., 2005; (Girtner et al., |2003)),
Sub-tree kernels (Da San Martino et al.| [2012; |Smola & Vishwanathan,|2002), and Graphlet kernels
(Przuljl [2007). Since graph kernels are unsupervised learning methods, we compare the clustering
accuracy and Normalized Mutual Information (NMI) of each kernel, as shown in Table@ The result
shows that PXGL-EGK outperform each individual kernels it used.

Table 6: ACC and NMI of Graph Clustering. The best ACC is bold and the best NMI is

Method [ Metric MUTAG PROTEINS DD IMDB-B
RW ACC 10.743 £0.052 0.712 £0.021 0.516 £0.0I5 0.658 £ 0.014
NMI | 0.238 £0.016 0.268 £ 0.016 0.187 +0.002 0.266 + 0.019
ACC 10.729 £0.0I13 0.692 £ 0.027 0.542 £0.016 0.612 £0.0I8
NMI | 0.195 £0.047 0.151 £0.028 0.229 +0.015 0.242 4 0.013
Graphlet ACC 10.735 £0.026 0.636 £ 0.017 0.568 £0.0I13 0.614 £ 0.012
NMI |0.214 £0.019 0.154 £0.026 0.285 +0.011 0.214 & 0.025
PXGL-EGK ?I%/ICI 0.761 £ 0.025 0.721 £0.028 0.572 £ 0.025 0.672 £ 0.023

Sub-tree

F.2 SUPERVISED LEARNING

In this section, we provide the figures to visualize weight vector A, graph representation g and
pattern representations z ("™ learned by solving the supervised loss (11).

F.3 UNSUPERVISED LEARNING

In this section, we provide the figures to visualize weight vector A, graph representation g and
pattern representations z("™) learned by solving the unsupervised loss ll
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Figure 13: t-SNE visualizations of GNNs’ pattern representations (unsupervised) for the dataset
COLLAB.
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Figure 14: t-SNE visualizations of GNNs’ pattern representations (unsupervised) for the dataset
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Figure 15: t-SNE visualizations of GNNs’ pattern representations (unsupervised) for the dataset
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