
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DUAL LORA: ENHANCING LORA WITH MAGNITUDE
AND DIRECTION UPDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank adaptation (LoRA) is one of the most popular methods among
parameter-efficient fine-tuning (PEFT) methods to adapt pre-trained large lan-
guage models (LLMs) to specific downstream tasks. However, the model trained
based on LoRA often has an unsatisfactory performance due to its low-rank as-
sumption. In this paper, we propose a novel method called Dual LoRA to im-
prove the performance by incorporating an inductive bias into the original LoRA.
Specifically, we separate low-rank matrices into two groups: the magnitude group
to control whether or not and how far we should update a parameter and the di-
rection group to decide whether this parameter should move forward or backward,
to better simulate the parameter updating process of the full fine-tuning based on
gradient-based optimization algorithms. We show that this can be simply achieved
by adding a ReLU function to the magnitude group and a sign function to the di-
rection group. We conduct several experiments over a wide range of NLP tasks,
including natural language generation (NLG), understanding (NLU), and com-
monsense reasoning datasets on GPT-2, RoBERTa, DeBERTa, and LLaMA-1/2/3
as baseline models. The results show that we consistently outperform LoRA and
its state-of-the-art variants with the same number of trainable parameters.

1 INTRODUCTION

Large language models (LLMs) have shown promising results on almost all natural language pro-
cessing (NLP) tasks (Touvron et al., 2023a; Achiam et al., 2023) and other multi-modal tasks (Liu
et al., 2024a), by adapting a well trained LLM to different downstream applications. Full fine-tuning
(FFT) is a straightforward way to achieve this goal, but it requires tremendous computational re-
sources and time to complete the fine-tuning process. Thus, parameter-efficient fine-tuning (PEFT)
which updates a small fraction (less than 2%) of parameters has attracted more and more attention
due to its low memory and time requirements.

Traditional PEFT methods include adapter tuning (Hu et al., 2023) which adds trainable tiny mod-
ules to adapt to downstream tasks, prompt tuning (Peng et al., 2024) that inserts learnable prompt
vectors to the existing input, and low-rank adaptation (LoRA) (Hu et al., 2021a) which updates the
original parameters by adding low-rank matrices. Among them, LoRA surpasses other methods by
achieving better performance without generating additional inference costs.

Many follow-ups manage to improve the fine-tuning performance of LoRA. LoRA+ (Hayou et al.,
2024) uses different learning rates to update low-rank matrices A and B and enhance the perfor-
mance with a well-chosen learning rate ratio. DoRA (Liu et al., 2024b) decomposes the original
weight matrix into a normalized matrix and its corresponding norm and applies the original LoRA
to the normalized matrix. FLoRA (Si et al., 2024) generates LoRA to high dimensional space
and inserts a low-rank core matrix into the original LoRA matrices to improve its performance.
MoRA (Jiang et al., 2024) replaces the low-rank matrices with a square matrix to achieve high-rank
updating and applies a compress layer and a decompress layer to maintain a roughly similar number
of trainable parameters. However, they share a common drawback: as the trainable parameters are
much fewer than those of FFT, updating them without incorporating prior knowledge will inevitably
result in unsatisfactory model accuracy.

Thus, in this paper we introduce an inductive bias into the original LoRA method, i.e., to simu-
late the parameter updating process of FFT, which utilizes gradient-based optimization algorithms.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Specifically, we divide the low-rank matrices into two groups: the magnitude group, which controls
whether and to what extent a parameter should be updated; and the direction group, which deter-
mines the direction of the update—–whether it should be positive or negative. The whole fine-tuning
process can be treated as adjusting the sign and magnitude of each element in the update matrix and
adding them back to the original parameters to gradually achieve the optimal solution. We conduct
experiments to validate the effectiveness of our method over a wide range of NLP tasks including
natural language generation (NLG), understanding (NLU), and commonsense reasoning to make a
fair comparison with state-of-the-art methods. The evaluation results on different LLM models such
as GPT-2, RoBERTa, DeBERTa, LLaMA-7B/13B, LLaMA2-7B, LLaMA3-8B, and LLaMA3-70B-
Instruct show that we can achieve consistent improvements over these SOTA methods by using the
same number of training parameters.

The contributions of our method are summarized as follows:

• We introduce Dual LoRA, a novel method that replaces the original low-rank matrices in
LoRA with two groups of parameters: a magnitude group and a direction group to sep-
arately determine the amplitude and sign of the update to the original parameters in the
LLMs. This can be treated as incorporating an inductive bias into the original LoRA to
better learn the parameter updating process of FFT, which can improve the performance.

• Dual LoRA consistently outperforms state-of-the-art methods on a wide range of NLP
tasks across various baseline models with different sizes (from 7B to up to 70B), which
demonstrates the effectiveness of our method.

2 RELATED WORKS

In this section, we first introduce different parameter-efficient fine-tuning (PEFT) methods, followed
by a deeper dive into the LoRA series methods.

2.1 PEFT METHODS IN LLMS

Prefix tuning is the first kind of methods (Li & Liang, 2021; Liu et al., 2022; Zhang et al., 2024)
in PEFT. It was first proposed by Li et.al. (Li & Liang, 2021), which was a lightweight alternative
to FFT that kept LLM parameters frozen and only optimized a sequence of continuous task-specific
vectors called prefix. Dynamic prefix-tuning (Liu et al., 2022) proposed a generative template-based
event extraction method with dynamic prefixes by integrating context information with type-specific
prefixes to learn a context-specific prefix for each context. Selective prefix-tuning (Zhang et al.,
2024) showed that prefix tokens carried context-specific information and enhanced their special-
ization can improve model performance. Thus, they integrated a selective mechanism inspired by
selective self-attention and introduced selective loss to encourage diversity in prefix tokens.

Prompt tuning is the second kind of PEFT method that added trainable embeddings to original word
embeddings and learned these soft prompts through back-propagation and tuned them to incorporate
signals from any number of labeled examples (Lester et al., 2021). P-Tuning v2 (Liu et al., 2021)
empirically found that properly optimized prompt tuning can be universally effective across a wide
range of model scales and NLU tasks, which increased the capacity of continuous prompts and
closed the gap to FFT. Knowledgeable Prompt-tuning (Hu et al., 2021b) improved and stabilized the
original prompt-tuning method by expanding the label word space of the verbalizer with external
knowledge bases and refining it with PLM before predicting.

Representation fine-tuning (REFT) aims to train interventions that manipulate model represen-
tations to steer model behaviors on downstream tasks at inference time. ReFT (Wu et al., 2024)
introduced a family of ReFT methods that operated on a frozen base model and learned task-specific
interventions on hidden representations.

Although the aforementioned methods improved the performance of LLMs in downstream tasks,
they suffered the problem that the original architecture of the baseline model needed to be changed
and the inference speed was slowed down. Compared to them, LoRA-based methods had exactly
the same inference latency to the baseline LLMs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 LORA-BASED METHODS

LoRA (Hu et al., 2021a) assumed that only a small number of task-specific parameters needed to
be tuned to fit the downstream tasks and updated the weights with two low-rank matrices. These
matrices can be merged back into the original weights during inference to avoid additional compu-
tational costs. LoRA+ (Hayou et al., 2024) argued that LoRA led to sub-optimal results, and the
problem can be corrected by setting different learning rates for the low-rank matrices A and B with
a fixed learning rate ratio. MoRA (Jiang et al., 2024) believed that the low-rank updating mechanism
limited the ability of LLMs and used a square matrix to achieve high-rank updating with the same
number of trainable parameters. Two non-parameter operators were used to reduce the input dimen-
sion and increase the output dimension of this square matrix. DoRA (Liu et al., 2024b) decomposed
the pre-trained weight into magnitude and direction for fine-tuning, and employed original LoRA
for direction component update to accelerate the training process.

The methods mentioned above can improve the performance of downstream tasks. However, their
performance is still unsatisfactory because of the low-rank assumption (Hu et al., 2021a; Hayou
et al., 2024; Liu et al., 2024b). Although MoRA (Jiang et al., 2024) attempted to address this issue
by using a high-rank matrix, its rank and the number of trainable parameters remained significantly
lower than those in FFT. Thus, it is difficult to achieve satisfactory model performance without
incorporating prior knowledge into the training process.

Note that both DoRA and our method have magnitude and direction groups, but the meaning behind
them is totally different. The direction and magnitude in DoRA can be treated as a normalized
weight matrix and its corresponding norm. In our method, we are trying to simulate the parameter
updating process of FFT which utilizes gradient-based optimization algorithms. Thus, the direction
and magnitude control the sign and to what extent a parameter should be updated.

Another family of methods aim to modify the gradient calculation and backward propagation process
of training, such as GaLore (Zhao et al., 2024), FLoRA (Hao et al., 2024) and GaRare (Liu et al.).
These methods are orthogonal to the proposed Dual LoRA which only focuses on the architecture
and forward pass modification, and a detailed discussion falls outside the scope of this paper.

3 METHOD

In this section, we first introduce the preliminaries of LoRA and optimization methods. Then, we
give a thorough analysis of our proposed Dual LoRA and explain its advantage over previous LoRA-
based methods.

3.1 LOW-RANK ADAPTATION (LORA)

Given a pre-trained weight matrix W0 ∈ Rd×k, LoRA (Hu et al., 2021a) assumes that a low “intrin-
sic rank” is enough during adaptation on downstream tasks and constrains the updated matrix with
a low-rank decomposition:

W ′ = W0 +∆W = W0 +
α

r
·BA, (1)

where B ∈ Rd×r and A ∈ Rr×k are two low-rank matrices with rank r ≪ min(d, k), α is a fixed
hyper-parameter to control the influence of the low-rank matrices, and W ′ is the final weight matrix
after fine-tuning.

Given an original forward pass h = W0x with an input x, the modified forward pass can be ex-
pressed as:

h = W0x+∆Wx = (W0 +
α

r
·BA)x. (2)

Note that the usage of LoRA does not affect the inference speed since the low-rank matrices A and
B can be merged back into the original weight W0, and the dimension of the final weight matrix
W ′ is the same as the pre-trained weight matrix W0. Since the trainable low-rank matrices have
fewer parameters (less than 2%) compared to the original matrices, LoRA usually has insufficient
performance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Pretrained

Weight

𝑾 ∈ ℝ𝒅×𝒌

𝑩 = 𝟎

𝒙 ∈ ℝ𝒅

𝒉 ∈ ℝ𝒌

𝑨 = 𝓝(𝟎, 𝝈𝟐)

(a) LoRA

Pretrained

Weight

𝑾 ∈ ℝ𝒅×𝒌
𝑩 = 𝓝(𝟎, 𝝈𝟐)

𝒙 ∈ ℝ𝒅

𝒉 ∈ ℝ𝒌

𝑫 = 𝓝(𝟎, 𝝈𝟐)

ReLU Sign

magnitude direction

𝑨 = 𝓝(𝟎, 𝝈𝟐) 𝑪 = 𝓝(𝟎, 𝝈𝟐)

(b) Dual LoRA

Figure 1: The architecture of the original LoRA and our proposed Dual LoRA. The low-rank update
matrices are separated into the magnitude group and the direction group.

3.2 OPTIMIZATION METHODS

Given a loss function ℓ(ŷ, y) which measures the cost between the prediction ŷ and the ground-truth
label y, we can choose a family F of functions fw(x) with learnable weight w and input x, and seek
the function f ∈ F to minimize the loss ℓ(fw(x), y) averaged on the input examples:

En(fw) =
1

n

n∑
i=1

ℓ(fw(xi), yi). (3)

In order to minimize the empirical risk En(fw), a global optimum weight w∗ needs to be found step
by step using a series of optimization methods. Specifically, we have:

wt+1 = wt + γ∆w, (4)

where γ is the learning rate and wt+1 is expected to converge to the global optimum w∗ as the
training proceed.

To achieve this, different optimization methods leverage different ways to compute ∆w. For ex-
ample, gradient descent (Bottou, 2010) uses ∆w = 1

n

∑n
i=1 ∇wℓ(f(xi), yi) to compute the update,

and Adam (Kingma, 2014) uses ∆w = m̂t/(
√
v̂t+ϵ) where m̂t and v̂t are the first-moment estimate

and second-moment estimate, and ϵ = 10−8.

Both FFT and LoRA fine-tune the model based on the optimization methods mentioned above.
However, FFT assumes ∆w is a full-rank matrix while LoRA decomposes ∆w into two low-rank
matrices and trains them without any other prior knowledge, which is the main reason that causes
the performance drop.

3.3 DUAL LORA

Note that the update matrix ∆w can always be decomposed into magnitude and direction regardless
of the optimization method used. Learning these components separately can be treated as adding
an inductive bias into the original LoRA, aiding in facilitating the search for the optimal solution
within the solution space.

Instead of using two low-rank matrices, we use four low-rank matrices and separate them into a
magnitude group and a direction group in Dual LoRA, as shown in Fig. 1.

Magnitude group. Given two low-rank matrices A ∈ Rr1×k and B ∈ Rd×r1 , the magnitude group
can be computed as:

Wm = ReLU(BA), (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

which has two effects. Firstly, non-negative outputs can be treated as learning the magnitude of the
update during the training process. Secondly, we can easily freeze some of the elements that are
already well-trained for the downstream tasks in the original weight matrix by learning the output
elements of BA to be negative and filter them out with ReLU function, which is hard for previous
LoRA-based methods to achieve such a goal.

Direction group. Given two low-rank matrices C ∈ Rr2×k and D ∈ Rd×r2 , the direction group
can be computed as:

Wd = Sign(DC), (6)
where Sign(·) is an element-wise operation that outputs +1 for positive input and −1 otherwise.
Note that the gradient of the sign function is zero almost everywhere, and backward propagation
cannot be applied during training. Thus, given xb = Sign(x), the straight-through estimator (STE)
method (Bengio et al., 2013) is introduced to compute its gradient as:

∂L
∂x

= Clip(
∂L
∂xb

,−1, 1), (7)

in which L is the corresponding loss function for a downstream task and:

Clip(x,−1, 1) =

{ −1, if x < −1,
x, if − 1 ≤ x < 1,
1, otherwise.

(8)

The direction group can control the sign of each element in the update matrix, which is a two-
way direction to decide whether the element in the original weight matrix should move forward or
backward.

Overall update. Given a pre-trained weight matrix W0, the overall update of our Dual LoRA can
be expressed as:

W ′ = W0 +∆W = W0 +
α

√
r1r2

Wm ⊙Wd, (9)

where ⊙ represents an element-wise product (Hadamard product) between two matrices. Similarly,
given the original forward pass h = W0x, the modified forward pass is:

h = W0x+∆Wx = (W0 +
α

√
r1r2

Wm ⊙Wd)x, (10)

which does not affect the inference process as long as we merge ∆W into W0.

Initialization. LoRA uses random Gaussian initialization for A and zero for B to make sure the
update matrix is zero at the beginning of training, as shown in Fig. 1(a). In Dual LoRA, however,
none of the low-rank matrices in the magnitude group should be initialized with zero. Otherwise,
either all trainable parameters are dead, or we cannot achieve the goal that the update matrix is zero
due to the ReLU(·) function and Sign(·) function.

Specifically, given
∆W =

α
√
r1r2

ReLU(BA)⊙ Sign(DC), (11)

we can compute the gradient of the loss function L with respect to four low-rank matrices as:

∂L
∂A

=
∂L

∂∆W
· α
√
r1r2

B⊤ · Sign(DC) · 1BA>0,
∂L
∂B

=
∂L

∂∆W
· α
√
r1r2

Sign(DC) · 1BA>0 ·A⊤,

∂L
∂C

= Clip(
∂L

∂∆W
,−1, 1) · α

√
r1r2

D⊤ · ReLU(BA),
∂L
∂D

= Clip(
∂L

∂∆W
,−1, 1) · α

√
r1r2

ReLU(BA) · C⊤,

(12)
where 1 is the indicator function.

It is easy to know that when setting A = 0 or B = 0, we will have 1BA>0 = 0 and ReLU(BA) = 0
and all four gradients in Eq. 12 are zeros which will cause the training process to be dead. Setting
C = 0 or D = 0 will not result in such a problem, but it cannot achieve the goal that the update
matrix Eq. 11 is zero at the beginning of training since Sign(x) always outputs +1 or −1 depending
on the input. Thus, during the experiments, we use random Gaussian initialization for all four low-
rank matrices and apply a warm-up strategy for the first few training steps to make sure that ∆W = 0
at the start.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: The results of the proposed Dual LoRA and other competitors with LLaMA-7B/13B,
LLaMA2-7B, LLaMA3-8B and LLaMA3-70B-Instruct on commonsense reasoning datasets. For
all matrices, higher is better.

Model Methods Trainable Commonsense Reasoning Datasets
Param. (%) BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

L-7B

Adapter-P 3.54 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.2
LoRA (r = 64) 1.64 67.3 79.0 76.3 76.6 78.8 74.5 59.3 77.4 73.6
DoRA (r = 32) 0.84 68.7 83.3 79.4 85.5 81.3 80.8 66.0 78.8 78.0
DoRA (r = 64) 1.65 68.9 82.1 77.4 75.9 80.0 80.0 64.8 81.0 76.3

Dual LoRA (r = 32) 1.64 70.0 83.2 79.5 87.3 83.0 81.6 65.2 81.0 78.9

L-13B

LoRA (r = 32) 0.67 71.6 83.4 80.0 89.9 84.2 81.2 67.7 80.8 79.9
DoRA (r = 16) 0.35 71.7 84.2 80.6 90.5 85.2 83.1 68.4 80.4 80.5
DoRA (r = 32) 0.68 72.4 84.9 81.2 91.5 83.7 84.6 68.9 81.6 81.1

Dual LoRA (r = 16) 0.67 72.5 84.2 79.9 92.7 83.8 84.8 72.4 83.2 81.7

L2-7B

LoRA (r = 16) 0.41 70.4 82.9 79.0 81.3 81.5 82.4 69.2 80.4 78.4
LoRA (r = 32) 0.83 68.9 82.2 78.1 86.9 81.2 79.3 65.4 78.4 77.6
DoRA (r = 16) 0.43 63.5 82.8 79.5 90.6 82.4 83.9 69.9 81.8 79.3
DoRA (r = 32) 0.84 72.2 83.5 80.3 89.0 82.5 84.1 69.5 80.4 80.2

Dual LoRA (r = 16) 0.83 72.3 83.3 79.8 89.8 84.6 84.8 70.2 82.8 81.0

L3-8B

RandLoRA 0.70 76.3 88.1 80.3 95.7 86.1 90.4 80.9 87.0 85.6
LoRA (r = 16) 0.35 71.7 86.8 79.5 93.9 84.4 87.4 76.3 84.2 83.0
LoRA (r = 32) 0.70 71.2 85.1 79.3 92.1 82.6 85.2 70.1 81.4 80.9
DoRA (r = 16) 0.35 75.1 87.8 80.8 95.6 86.3 90.4 80.0 85.6 85.2
DoRA (r = 32) 0.71 71.7 88.0 80.2 95.5 86.6 90.7 78.4 85.0 84.5

Dual LoRA (r = 16) 0.70 75.5 89.2 81.4 95.8 86.0 90.5 81.1 86.6 85.8

L3-70B
LoRA (r = 16) 0.197 78.6 92.8 83.4 92.7 92.6 97.5 91.7 94.4 90.5
DoRA (r = 16) 0.202 78.4 93.0 83.8 96.5 92.3 97.6 92.3 94.6 91.1

Dual LoRA (r = 8) 0.197 81.4 94.0 84.4 97.9 93.6 97.3 91.0 95.2 91.9

4 EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed Dual LoRA on various NLP tasks. We
compare our methods with other PEFT competitors by fine-tuning LlaMA-7B/13B, LLaMA2-7B,
LLaMA3-8B, and LLaMA3-70B-Instruct models on a series of commonsense reasoning datasets.
Then, we explore the ability of our method on the neural language understanding (NLU) dataset
GLUE by fine-tuning RoBERTa base/large and DeBERTa XXL. Furthermore, we conduct exper-
iments on neural language generation (NLG) datasets including E2E NLG Challenge, DART and
WebNLG using GPT2 M and GPT2 L as backbones (see Appendix A). All experiments above show
that Dual LoRA can surpass other LoRA-based methods with the same or fewer trainable parameters
and achieve state-of-the-art results. Finally, we analyze our method further by performing a series
of ablation studies. In the following experiments, we set the rank of the magnitude group and the
direction group as the same, i.e., r1 = r2 = r unless specified.

Competitors. We compare Dual LoRA with a series of baseline methods including LoRA-based
methods (LoRA (Hu et al., 2021a), LoRA+ (Hayou et al., 2024), GaLore (Zhao et al., 2024),
GaRare (Liu et al.), Delta-LoRA (Zi et al., 2023), CorDA (Yang et al., 2024), VeRA (Kopiczko
et al., 2024), RandLoRA (Albert et al., 2025), and DoRA (Liu et al., 2024b)) and other PEFT meth-
ods (efficient adapter design with LayerNorm (Adapter-L) (Lin et al., 2020), parallel adapter tuning
(Adapter-P) (He et al., 2021) and prefix-layer tuning (Prefix) (Li & Liang, 2021)).

4.1 COMMONSENSE REASONING

Datasets and baseline models. We evaluate Dual LoRA and different PEFT methods on the com-
monsense reasoning task which is composed of eight different sub-tasks including BoolQ (Clark
et al., 2019), PIQA (Bisk et al., 2020), Social IQa (Sap et al., 2019), HellaSwag (Zellers et al.,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: The results of the proposed Dual LoRA and other competitors with RoBERTa base/large
and DeBERTa XXL on GLUE datasets. For all matrices, higher is better.

Model Methods Trainable GLUE
Param. (M) MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

RoBbase

FFT 125.0 87.6 94.8 90.2 63.6 92.8 91.9 78.7 91.2 86.4
GaLore (r = 8) 0.3 87.2 94.4 92.0 61.8 92.3 91.2 79.1 90.8 85.9
GaRare (r = 8) 0.3 87.2 94.4 91.5 61.1 92.3 90.9 79.3 90.3 85.9

Delta-LoRA (r = 8) 0.3 87.5 95.1 90.2 63.8 93.1 90.9 87.0 91.6 87.4
CorDA (r = 128) 21 - 93.1 89.7 59.6 91.5 - 88.1 90.2 -

VeRA 0.3 - 91.9 88.4 59.9 90.5 - 74.9 90.4 -
RandLoRA 0.7 - 92.2 88.0 59.4 91.3 - 74.7 90.3 -

LoRA (r = 8) 0.3 87.0 94.6 89.2 60.9 92.9 90.7 92.0 91.1 86.1
LoRA (r = 16) 0.6 87.0 95.1 89.0 63.9 93.0 91.2 83.4 91.1 86.7

LoRA+ (r = 16) 0.6 87.8 95.2 90.4 65.9 92.6 91.2 82.3 91.4 87.1
DoRA (r = 16) 0.6 87.7 95.3 87.8 64.8 92.6 90.8 82.2 90.8 86.5

Dual LoRA (r = 8) 0.6 87.8 95.8 91.7 67.8 93.3 90.7 88.1 91.7 88.3

RoBlarge

FFT 355.0 90.2 96.4 90.9 68.0 94.7 92.2 86.6 92.4 88.9
GaLore (r = 16) 1.6 90.8 96.1 91.7 68.3 95.7 91.9 87.0 92.5 89.3
GaRare (r = 16) 1.6 91.3 96.2 91.7 67.9 94.6 91.8 87.4 92.3 89.2

VeRA 0.3 - 95.8 89.3 65.3 94.1 - 81.6 91.8 -
RandLoRA 1.8 - 95.5 90.1 67.4 94.1 - 84.5 91.4 -

LoRA (r = 8) 0.8 90.2 95.6 89.5 63.8 94.5 91.5 88.8 92.5 88.3
LoRA (r = 16) 1.6 90.2 95.9 90.9 66.0 94.4 91.6 87.4 92.3 88.6

LoRA+ (r = 16) 1.6 90.3 96.3 91.4 68.7 94.7 91.6 88.8 92.5 89.3
DoRA (r = 16) 1.6 90.5 96.2 89.7 68.5 92.6 91.5 89.2 92.3 88.8

Dual LoRA (r = 8) 1.6 90.5 96.4 91.9 70.2 95.1 91.2 89.5 92.6 89.7

DeBXXL

FFT 1500.0 91.8 97.2 92.0 72.0 96.0 92.7 93.9 92.9 91.1
LoRA (r = 16) 4.7 91.7 96.6 89.7 70.8 95.7 92.6 95.0 92.4 90.6
LoRA (r = 32) 9.4 92.0 97.5 91.2 68.7 96.0 91.9 92.8 92.4 90.3

LoRA+ (r = 32) 9.4 91.7 97.5 91.2 68.7 96.0 92.3 94.6 92.4 90.5
DoRA (r = 32) 9.4 91.9 96.9 90.9 71.2 95.8 92.3 92.6 92.3 90.5

Dual LoRA (r = 16) 9.4 91.9 97.1 91.9 74.0 96.2 92.6 95.3 93.4 91.6

2019), WinoGrande (Sakaguchi et al., 2021), ARC-easy/challange (Clark et al., 2018) and Open-
BookQA (Mihaylov et al., 2018). Similarly to DoRA, we merge the training sets from all sub-tasks
to get the final training set and perform evaluations on their own testing datasets for each task.

For the baseline models, we use LLaMA-7B/13B (Touvron et al., 2023a), LLaMA2-7B (Touvron
et al., 2023b), LLaMA3-8B (Dubey et al., 2024), and LLaMA3-70B-Instruct (Dubey et al., 2024).
We halve the rank of our low-rank matrices to ensure that the same number of trainable parameters
are used compared to other LoRA-based methods. We tune the learning rate for our method, and all
other training hyper-parameters are kept unchanged as in DoRA in order to make a fair comparison.
We train one epoch for LLaMA3-70B-instruct, and three epochs for other baseline models.

Results. The results in Tab. 1 show that we can consistently outperform DoRA with less trainable
parameters on all of the baseline models. For example, Dual LoRA enhances the average accuracy
by 0.9%/0.6% compared to the previous best result on LLaMA-7B/13B. The performance gains are
still notable on LLaMA2-7B, LLaMA3-8B and LLaMA3-70B-Instruct, which are 0.8%, 0.2% and
0.8%.

4.2 NEURAL LANGUAGE UNDERSTANDING (NLU)

Datasets and baseline models. We evaluate our method on a widely used natural language under-
standing dataset GLUE. It consists of eight different datasets includes MNLI (Williams et al., 2017),
SST-2 (Socher et al., 2013), MRPC (Dolan & Brockett, 2005), CoLA (Warstadt, 2019), QNLI (Ra-
jpurkar et al., 2018), QQP, RTE, and STS-B (Cer et al., 2017). The diversity makes the GELU
benchmark a robust dataset for evaluating LLMs on NLU tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

For the baseline models, we use RoBERTa base/large (Liu, 2019) and DeBERTa XXL (He et al.,
2020) as pretrained baseline models from the HuggingFace Transformers library (Wolf et al., 2020).
Similarly to LoRA, we initialize the model to the LoRA-adapted MNLI checkpoint for MRPC, RTE,
and STSB rather than the pre-trained baseline model. All other training parameters are the same as
LoRA except for the learning rate.

Results. As shown in Tab. 2, the proposed Dual LoRA shows state-of-the-art results on all three
baseline models. For example, on the small model RoBERTa base we can defeat previous methods
LoRA, LoRA+, and DoRA by 1.6%, 1.2%, and 1.8% average accuracy. Similarly, on medium-sized
model RoBERTa large, our Dual LoRA surpasses LoRA, LoRA+, and DoRA by 1.1%, 0.4%, and
0.9%. On DeBERTa XXL model with over 1500M total parameters, Dual LoRA can still exceed
LoRA, LoRA+, and DoRA by 1.3%, 1.1%, and 1.1%. Note that we can even surpass the FFT meth-
ods on these baseline models by 1.9%, 0.8%, and 0.5%, which shows the priority of the proposed
method.

4.3 ABLATION STUDY

We conduct several ablation studies to further verify the effectiveness of the proposed method.

Dealing with the sign function. In the previous section and experiments, we use the straight-
through estimator (STE) method (Bengio et al., 2013) to compute the gradient of the sign function.
Note that the sign function is a standard operator in the area of binary neural networks (BNNs), and
there are many studies on dealing with the forward and backward passes of the sign function. For
example, XNOR-Net (Rastegari et al., 2016) scales the weights after binarized:

Forward: xb = Sign(x)× EF (|x|), Backward:
∂L
∂x

=
∂L
∂xb

, (13)

where EF (|x|) is the mean of the absolute value of each output channel of weights. Dorefa-
Net (Zhou et al., 2016) uses a constant scalar to scale all of the weights instead of doing channel-wise
scaling:

Forward: xb = Sign(x)× E(|x|), Backward:
∂L
∂x

=
∂L
∂xb

. (14)

Table 3: Different methods are used to deal
with sign function. The experiments are con-
ducted on LLaMA-7B and the commonsense
reasoning dataset.

Method Trainable Params (%) Avg.

STE (ours) 1.64 78.9
XNOR-Net 1.64 77.9
Dorefa-Net 1.64 78.1

The experimental results of using different meth-
ods to deal with the sign function are shown
in Tab. 3. The original STE method performs
best among different methods. This conclusion
is different from that in BNNs. We analyze that
this is because both XNOR-Net (Rastegari et al.,
2016) and Dorefa-Net (Zhou et al., 2016) modify
the forward pass of sign function by adding per-
channel scales or a constant scale, which contam-
inate the direction group and make it unable to
focus on giving the correct binary outputs.

The influence of r1 and r2. As shown in Sec. 3.3,
r1 and r2 are the ranks of the low-rank matrices
in the magnitude and direction groups, respectively. In previous experiments, we set r1 = r2 = r in
default to avoid introducing new hyper-parameters compared to other LoRA-based methods. Thus,
in this section we dive deeper into the influence of r1 and r2.

Specifically, we keep the total trainable parameters unchanged by setting r1 + r2 = 2r, and adjust
the ratio of parameters in the magnitude group and direction group, which are controlled by r1 and
r2, respectively. We conduct experiments on the commonsense reasoning dataset with LLaMA3-
8B as our baseline model and set 15 different ratios. Other training hyper-parameters are kept the
same as in the previous experiments. The results are shown in Fig. 2. We can see that the proposed
Dual LoRA can consistently outperform LoRA and DoRA when having a roughly balanced param-
eter ratio between the magnitude group and direction group (from 25% to 70%), which shows the
robustness of our method.

More ablation studies are shown in Appendix B.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.125 0.250 0.375 0.500 0.625 0.750 0.875
magnitude ratio (%)

81

82

83

84

85

86

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Dual LoRA (r=16)
LoRA (r=16)
DoRA (r=16)
LoRA (r=32)
DoRA (r=32)

Figure 2: Average accuracy on the common-
sense reasoning datasets using LLaMA3-8B as
the baseline model with r1 = {2, 4, · · ·, 30} and
r2 = 32− r1 in the experiments. The red line is
the proposed Dual LoRA, the blue/orange lines
represent DoRA/LoRA with different ranks.

3300

3400

3500

3600

3700

3800

3900

4000

4100

0 5 10 15 20 25 30
0

100

Layer Number

Ra
nk

 (
 W

)

Dual LoRA (overall)
Dual LoRA (direction)
Dual LoRA (magnitude)
LoRA

Figure 3: The average rank of ∆W for LoRA,
magnitude group of Dual LoRA, direction group
of Dual LoRA, and the overall Dual LoRA. The
experiments are conducted on LLaMA2-7B.

5 ANALYSIS OF THE RANK OF THE UPDATE MATRIX

In this section, we given an analyze of the rank of the update matrix Eq. 11 to further show the
priority of our method. Note that for a given matrix X ∈ Rm×n, Rank(x)≤ min(m,n) always
holds true. Thus, in the original LoRA, given A ∈ Rr×k and B ∈ Rd×r with r ≪ min(d, k), the
rank of the update matrix ∆W = α

r ·BA is upper bounded by:
Rank(∆W) = Rank(BA) ≤ min(Rank(A),Rank(B)) ≤ r. (15)

In the proposed Dual LoRA, however, we found that the rank of the update matrix can achieve a
higher upper bound. Specifically, given two low-rank matrices A ∈ Rr1×k and B ∈ Rd×r1 in the
magnitude group and two low-rank matrices C ∈ Rr2×k and D ∈ Rd×r2 in the direction group with
r1, r2 ≪ min(d, k), the rank of the update matrix ∆W ′ = α√

r1r2
ReLU(BA)⊙ Sign(DC) is:

Rank(∆W ′) = Rank(ReLU(BA)⊙ Sign(DC))

≤ Rank(ReLU(BA))× Rank(Sign(DC))

≤ min(k, d)2. (16)
Note that the ReLU(·) and Sign(·) operations break the low-rank limitation of the original input
matrix and derive output matrices with high rank.

In Fig. 3, we explicitly show the average rank of the update matrix in LoRA and the proposed
Dual LoRA (magnitude group, direction group, and overall) over different layers. The experiments
are conducted on LLaMA2-7B. We can see that the update matrix and the direction group almost
achieve full rank (4096). The magnitude group has a relatively lower rank but is still much larger
than that in LoRA. The results show the priority of our method from the perspective of matrix rank.

6 CONCLUSION

Original LoRA and its followers fine-tune the model without incorporating any prior knowledge and
share a common drawback: as the trainable parameters are limited, the model accuracy is unsatisfac-
tory. In this paper, we propose a new LoRA-based method called Dual LoRA, which incorporates
an inductive bias into the original LoRA and improve the performance by introducing four low-rank
matrices and separating them into the magnitude group and the direction group. The former controls
the amplitude and whether or not we should update a parameter, and the latter decides whether or
not this parameter should be updated in a positive or negative direction. Parameters in two groups
are combined together to simulate the parameter updating process of FFT with gradient-based op-
timization methods. Experimental results on a wide range of NLP tasks and baseline models show
that our Dual LoRA can consistently outperform LoRA and other state-of-the-art methods such as
LoRA+ and DoRA with the same or less number of trainable parameters.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Paul Albert, Frederic Z Zhang, Hemanth Saratchandran, Cristian Rodriguez-Opazo, Anton van den
Hengel, and Ehsan Abbasnejad. Randlora: Full-rank parameter-efficient fine-tuning of large mod-
els. International Conference on Learning Representations, 2025.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010: 19th International Conference on Computational StatisticsParis France, Au-
gust 22-27, 2010 Keynote, Invited and Contributed Papers, pp. 177–186. Springer, 2010.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third international workshop on paraphrasing (IWP2005), 2005.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. The webnlg
challenge: Generating text from rdf data. In 10th International Conference on Natural Language
Generation, pp. 124–133. ACL Anthology, 2017.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. International conference on machine learning, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021a.

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan Liu, Jingang Wang, Juanzi Li, Wei Wu, and
Maosong Sun. Knowledgeable prompt-tuning: Incorporating knowledge into prompt verbalizer
for text classification. arXiv preprint arXiv:2108.02035, 2021b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
Feng Sun, Qi Zhang, Deqing Wang, et al. Mora: High-rank updating for parameter-efficient fine-
tuning. arXiv preprint arXiv:2405.12130, 2024.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
adaptation. International Conference on Learning Representations, 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile generative language model
via parameter-efficient transfer learning. arXiv preprint arXiv:2004.03829, 2020.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024a.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024b.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-
tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021.

Xiao Liu, Heyan Huang, Ge Shi, and Bo Wang. Dynamic prefix-tuning for generative template-
based event extraction. arXiv preprint arXiv:2205.06166, 2022.

Xu-Hui Liu, Yali Du, Jun Wang, and Yang Yu. On the optimization landscape of low rank adaptation
methods for large language models. In International Conference on Learning Representations.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364, 2019.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh,
Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, et al. Dart: Open-domain structured
data record to text generation. arXiv preprint arXiv:2007.02871, 2020.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for end-
to-end generation. arXiv preprint arXiv:1706.09254, 2017.

Cheng Peng, XI Yang, Kaleb E Smith, Zehao Yu, Aokun Chen, Jiang Bian, and Yonghui Wu. Model
tuning or prompt tuning? a study of large language models for clinical concept and relation
extraction. Journal of biomedical informatics, 153:104630, 2024.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822, 2018.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525–542. Springer, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Chongjie Si, Xuehui Wang, Xue Yang, Zhengqin Xu, Qingyun Li, Jifeng Dai, Yu Qiao, Xi-
aokang Yang, and Wei Shen. Flora: Low-rank core space for n-dimension. arXiv preprint
arXiv:2405.14739, 2024.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

A Warstadt. Neural network acceptability judgments. arXiv preprint arXiv:1805.12471, 2019.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D Man-
ning, and Christopher Potts. Reft: Representation finetuning for language models. arXiv preprint
arXiv:2404.03592, 2024.

Yibo Yang, Xiaojie Li, Zhongzhu Zhou, Shuaiwen Song, Jianlong Wu, Liqiang Nie, and Bernard
Ghanem. Corda: Context-oriented decomposition adaptation of large language models for task-
aware parameter-efficient fine-tuning. Advances in Neural Information Processing Systems, 37:
71768–71791, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Hongyi Zhang, Zuchao Li, Ping Wang, and Hai Zhao. Selective prefix tuning for pre-trained lan-
guage models. In Findings of the Association for Computational Linguistics ACL 2024, pp. 2806–
2813, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. In International
conference on machine learning. PMLR, 2024.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-
lora: Fine-tuning high-rank parameters with the delta of low-rank matrices. arXiv preprint
arXiv:2309.02411, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A EXPERIMENTS ON NEURAL LANGUAGE GENERATION (NLG)

Datasets. We conduct experiments on E2E NLG Challenge (Novikova et al., 2017), DART (Nan
et al., 2020) and WebNLG (Gardent et al., 2017) datasets. The E2E dataset consists of approximately
42,000 training data, 4,600 validation data, and 4,600 test data. Each sample is composed of a
sequence of slot-value pairs (x, y) and a corresponding natural language reference text. DART is
an open-domain data-to-text dataset with around 82,000 samples, each sample is structured as a
sequence of entity-relation-entity triple. WebNLG has a total of 22,000 examples from 14 different
categories, each sample is structured as a sequence of subject-property-object triple.

Table 4: The results of the proposed Dual LoRA and other competitors with GPT2 M and GPT2 L
on the E2E NLG Challenge dataset. For all matrices, higher is better.

Model Methods Trainable E2E NLG Challenge
Parameters (M) BLEU NIST MET ROUGE-L CIDEr

GPT2 M

FFT 354.92 68.2 8.62 46.2 71.0 2.47
Adapter-L 11.09 68.9 8.71 46.1 71.3 2.47

Prefix 0.35 69.7 8.81 46.1 71.4 2.49
LoRA (r = 4) 0.35 68.9 8.69 46.4 71.4 2.52
LoRA (r = 8) 0.70 69.9 8.77 46.8 71.7 2.50

LoRA+ (r = 8) 0.70 70.2 8.81 46.6 71.6 2.53
DoRA (r = 8) 0.71 69.5 8.75 46.4 71.4 2.52

Dual LoRA (r = 4) 0.70 70.6 8.86 46.9 72.4 2.56

GPT2 L

FFT 774.03 68.5 8.78 46.0 69.9 2.45
Adapter-L 23.00 69.1 8.68 46.3 71.4 2.49

Prefix 0.77 70.3 8.85 46.2 71.7 2.47
LoRA (r = 4) 0.77 70.3 8.85 46.8 71.9 2.52
LoRA (r = 8) 1.54 70.0 8.80 46.8 71.7 2.54

LoRA+ (r = 8) 1.54 70.0 8.83 46.8 71.9 2.53
DoRA (r = 8) 1.56 69.8 8.78 46.6 71.6 2.52

Dual LoRA (r = 4) 1.54 70.6 8.86 47.1 72.5 2.54

Table 5: The results of the proposed Dual LoRA and other competitors with GPT2 M and GPT2 L
on DART and WebNLG datasets. The up arrow indicates that the higher is better, and the down
arrow indicates that the lower is better.

Model Methods Trainable DART WebNLG
Parameters (M) BLEU↑ MET↑ TER↓ BLEU↑ MET↑ TER↓

GPT2 M

LoRA (r = 4) 0.35 47.4 0.36 0.47 55.0 0.37 0.39
LoRA (r = 8) 0.70 47.5 0.36 0.47 55.6 0.38 0.39

LoRA+ (r = 8) 0.70 47.6 0.36 0.47 56.1 0.38 0.39
DoRA (r = 8) 0.71 47.0 0.36 0.48 53.5 0.36 0.40

Dual LoRA (r = 4) 0.70 48.3 0.36 0.47 56.6 0.38 0.38

GPT2 L

LoRA (r = 4) 0.35 47.7 0.36 0.47 57.1 0.37 0.38
LoRA (r = 8) 0.70 47.5 0.36 0.47 57.6 0.38 0.38

LoRA+ (r = 8) 0.70 47.7 0.36 0.47 57.5 0.38 0.38
DoRA (r = 8) 0.71 47.2 0.36 0.47 57.4 0.39 0.38

Dual LoRA (r = 4) 0.70 48.4 0.36 0.47 57.7 0.39 0.38

Results. As in previous experiments, we reduce our rank to half of the other LoRA-based methods
to ensure the same number of trainable parameters. All other hyper-parameters are the same as
LoRA, except that we tune the learning rate. As the results shown in Tab. 4 and Tab. 5, Dual LoRA
can consistently outperform all other competitors on three different datasets with baseline model
GPT2 M and GPT2 L.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B MORE ABLATION STUDIES

In this section, we conduct more ablation studies on the proposed Dual LoRA.

B.1 DIFFERENT FORMS OF THE UPDATE MATRIX

Specifically, we investigate the following settings:

• Setting 1: Remove ReLU(·) function in Dual LoRA, which means ∆W = α√
r1r2

(BA) ⊙
Sign(DC).

• Setting 2: Remove Sign(·) function in Dual LoRA, which means ∆W =
α√
r1r2

ReLU(BA)⊙ (DC).

• Setting 3: Replace the output of the direction group with a random-initialized binary matrix
and fix this matrix during training. Given Wb as the random initialized binary matrix, we
have ∆W = α

r1
ReLU(BA)⊙Wb.

Table 6: The results of the previous settings on the commonsense reasoning dataset, with LLaMA-
7B as the base model.

Methods Trainable Commonsense Reasoning Datasets
Param. (%) BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

Dual LoRA (r = 32) 1.64 70.0 83.2 79.5 87.3 83.0 81.6 65.2 81.0 78.9
Setting 1 (r = 32) 1.64 70.3 82.9 78.8 85.4 83.3 82.1 65.2 79.4 78.4
Setting 2 (r = 32) 1.64 70.6 80.8 78.9 84.7 81.8 80.4 65.2 78.8 77.7
Setting 3 (r = 32) 0.84 60.4 0.2 1.7 0.2 0.2 0.5 0 0 7.9
Setting 3 (r = 64) 1.64 36.3 36.2 6.6 0 14.3 4.9 11.5 0 13.7

We conduct experiments on LLaMA-7B and perform an evaluation on the commonsense reasoning
dataset. The results are shown in Tab. 6. We can see that removing ReLU(·) and Sign(·) func-
tions cause marginal performance drop, and using a random initialized binary matrix to replace the
direction group severely degrades the performance, which shows the importance of the proposed
architecture.

B.2 DIFFERENT ACTIVATION FUNCTIONS FOR THE MAGNITUDE GROUP

In the main paper, we use ReLU(·) function for the magnitude group. There are other functions that
can keep the activation greater than zero, such as Abs(x) = |x| and Sigmoid(x) = 1/(1 + e−x).
We compare them in Tab. 7 on the commonsense reasoning dataset with LLaMA-7B model.

Table 7: The results of different activation functions for the magnitude group on the commonsense
reasoning dataset, with LLaMA-7B as the base model.

Activation Commonsense Reasoning Datasets
BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

ReLU (ours) 70.0 83.2 79.5 87.3 83.0 81.6 65.2 81.0 78.9
Abs 68.6 82.9 77.9 74.3 74.0 81.6 65.8 79.6 75.6

Sigmoid 66.5 80.3 78.5 77.8 79.4 75.4 60.9 76.6 74.4

We can see that the original setting with ReLU(·) function performs the best. This is because
neither the Abs(·) function nor the Sigmoid(·) function can flexibly give zero output. Note that zero
output means that we can easily freeze some of the elements that are already well-trained for the
downstream tasks in the original weight matrix, which is the advantage of the ReLU(·) function.

14

	Introduction
	Related Works
	PEFT Methods in LLMs
	LoRA-Based Methods

	Method
	Low-Rank Adaptation (LoRA)
	Optimization Methods
	Dual LoRA

	Experiments
	Commonsense Reasoning
	Neural Language Understanding (NLU)
	Ablation Study

	Analysis of the Rank of the Update Matrix
	Conclusion
	Experiments on Neural Language Generation (NLG)
	More Ablation Studies
	Different forms of the update matrix
	Different activation functions for the magnitude group

