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ABSTRACT

Low-rank adaptation (LoRA) is one of the most popular methods among
parameter-efficient fine-tuning (PEFT) methods to adapt pre-trained large lan-
guage models (LLMs) to specific downstream tasks. However, the model trained
based on LoRA often has an unsatisfactory performance due to its low-rank as-
sumption. In this paper, we propose a novel method called Dual LoRA to im-
prove the performance by incorporating an inductive bias into the original LoRA.
Specifically, we separate low-rank matrices into two groups: the magnitude group
to control whether or not and how far we should update a parameter and the di-
rection group to decide whether this parameter should move forward or backward,
to better simulate the parameter updating process of the full fine-tuning based on
gradient-based optimization algorithms. We show that this can be simply achieved
by adding a ReLU function to the magnitude group and a sign function to the di-
rection group. We conduct several experiments over a wide range of NLP tasks,
including natural language generation (NLG), understanding (NLU), and com-
monsense reasoning datasets on GPT-2, RoBERTa, DeBERTa, and LLaMA-1/2/3
as baseline models. The results show that we consistently outperform LoRA and
its state-of-the-art variants with the same number of trainable parameters.

1 INTRODUCTION

Large language models (LLMs) have shown promising results on almost all natural language pro-
cessing (NLP) tasks (Touvron et al., 2023a; Achiam et al., 2023) and other multi-modal tasks (Liu
et al., 2024a), by adapting a well trained LLM to different downstream applications. Full fine-tuning
(FFT) is a straightforward way to achieve this goal, but it requires tremendous computational re-
sources and time to complete the fine-tuning process. Thus, parameter-efficient fine-tuning (PEFT)
which updates a small fraction (less than 2%) of parameters has attracted more and more attention
due to its low memory and time requirements.

Traditional PEFT methods include adapter tuning (Hu et al., 2023) which adds trainable tiny mod-
ules to adapt to downstream tasks, prompt tuning (Peng et al., 2024) that inserts learnable prompt
vectors to the existing input, and low-rank adaptation (LoRA) (Hu et al., 2021a) which updates the
original parameters by adding low-rank matrices. Among them, LoRA surpasses other methods by
achieving better performance without generating additional inference costs.

Many follow-ups manage to improve the fine-tuning performance of LoRA. LoRA+ (Hayou et al.,
2024) uses different learning rates to update low-rank matrices A and B and enhance the perfor-
mance with a well-chosen learning rate ratio. DoRA (Liu et al., 2024b) decomposes the original
weight matrix into a normalized matrix and its corresponding norm and applies the original LoRA
to the normalized matrix. FLoRA (Si et al., 2024) generates LoRA to high dimensional space
and inserts a low-rank core matrix into the original LoRA matrices to improve its performance.
MoRA (Jiang et al., 2024) replaces the low-rank matrices with a square matrix to achieve high-rank
updating and applies a compress layer and a decompress layer to maintain a roughly similar number
of trainable parameters. However, they share a common drawback: as the trainable parameters are
much fewer than those of FFT, updating them without incorporating prior knowledge will inevitably
result in unsatisfactory model accuracy.

Thus, in this paper we introduce an inductive bias into the original LoRA method, i.e., to simu-
late the parameter updating process of FFT, which utilizes gradient-based optimization algorithms.
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Specifically, we divide the low-rank matrices into two groups: the magnitude group, which controls
whether and to what extent a parameter should be updated; and the direction group, which deter-
mines the direction of the update—–whether it should be positive or negative. The whole fine-tuning
process can be treated as adjusting the sign and magnitude of each element in the update matrix and
adding them back to the original parameters to gradually achieve the optimal solution. We conduct
experiments to validate the effectiveness of our method over a wide range of NLP tasks including
natural language generation (NLG), understanding (NLU), and commonsense reasoning to make a
fair comparison with state-of-the-art methods. The evaluation results on different LLM models such
as GPT-2, RoBERTa, DeBERTa, LLaMA-7B/13B, LLaMA2-7B, LLaMA3-8B, and LLaMA3-70B-
Instruct show that we can achieve consistent improvements over these SOTA methods by using the
same number of training parameters.

The contributions of our method are summarized as follows:

• We introduce Dual LoRA, a novel method that replaces the original low-rank matrices in
LoRA with two groups of parameters: a magnitude group and a direction group to sep-
arately determine the amplitude and sign of the update to the original parameters in the
LLMs. This can be treated as incorporating an inductive bias into the original LoRA to
better learn the parameter updating process of FFT, which can improve the performance.

• Dual LoRA consistently outperforms state-of-the-art methods on a wide range of NLP
tasks across various baseline models with different sizes (from 7B to up to 70B), which
demonstrates the effectiveness of our method.

2 RELATED WORKS

In this section, we first introduce different parameter-efficient fine-tuning (PEFT) methods, followed
by a deeper dive into the LoRA series methods.

2.1 PEFT METHODS IN LLMS

Prefix tuning is the first kind of methods (Li & Liang, 2021; Liu et al., 2022; Zhang et al., 2024)
in PEFT. It was first proposed by Li et.al. (Li & Liang, 2021), which was a lightweight alternative
to FFT that kept LLM parameters frozen and only optimized a sequence of continuous task-specific
vectors called prefix. Dynamic prefix-tuning (Liu et al., 2022) proposed a generative template-based
event extraction method with dynamic prefixes by integrating context information with type-specific
prefixes to learn a context-specific prefix for each context. Selective prefix-tuning (Zhang et al.,
2024) showed that prefix tokens carried context-specific information and enhanced their special-
ization can improve model performance. Thus, they integrated a selective mechanism inspired by
selective self-attention and introduced selective loss to encourage diversity in prefix tokens.

Prompt tuning is the second kind of PEFT method that added trainable embeddings to original word
embeddings and learned these soft prompts through back-propagation and tuned them to incorporate
signals from any number of labeled examples (Lester et al., 2021). P-Tuning v2 (Liu et al., 2021)
empirically found that properly optimized prompt tuning can be universally effective across a wide
range of model scales and NLU tasks, which increased the capacity of continuous prompts and
closed the gap to FFT. Knowledgeable Prompt-tuning (Hu et al., 2021b) improved and stabilized the
original prompt-tuning method by expanding the label word space of the verbalizer with external
knowledge bases and refining it with PLM before predicting.

Representation fine-tuning (REFT) aims to train interventions that manipulate model represen-
tations to steer model behaviors on downstream tasks at inference time. ReFT (Wu et al., 2024)
introduced a family of ReFT methods that operated on a frozen base model and learned task-specific
interventions on hidden representations.

Although the aforementioned methods improved the performance of LLMs in downstream tasks,
they suffered the problem that the original architecture of the baseline model needed to be changed
and the inference speed was slowed down. Compared to them, LoRA-based methods had exactly
the same inference latency to the baseline LLMs.
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2.2 LORA-BASED METHODS

LoRA (Hu et al., 2021a) assumed that only a small number of task-specific parameters needed to
be tuned to fit the downstream tasks and updated the weights with two low-rank matrices. These
matrices can be merged back into the original weights during inference to avoid additional compu-
tational costs. LoRA+ (Hayou et al., 2024) argued that LoRA led to sub-optimal results, and the
problem can be corrected by setting different learning rates for the low-rank matrices A and B with
a fixed learning rate ratio. MoRA (Jiang et al., 2024) believed that the low-rank updating mechanism
limited the ability of LLMs and used a square matrix to achieve high-rank updating with the same
number of trainable parameters. Two non-parameter operators were used to reduce the input dimen-
sion and increase the output dimension of this square matrix. DoRA (Liu et al., 2024b) decomposed
the pre-trained weight into magnitude and direction for fine-tuning, and employed original LoRA
for direction component update to accelerate the training process.

The methods mentioned above can improve the performance of downstream tasks. However, their
performance is still unsatisfactory because of the low-rank assumption (Hu et al., 2021a; Hayou
et al., 2024; Liu et al., 2024b). Although MoRA (Jiang et al., 2024) attempted to address this issue
by using a high-rank matrix, its rank and the number of trainable parameters remained significantly
lower than those in FFT. Thus, it is difficult to achieve satisfactory model performance without
incorporating prior knowledge into the training process.

Note that both DoRA and our method have magnitude and direction groups, but the meaning behind
them is totally different. The direction and magnitude in DoRA can be treated as a normalized
weight matrix and its corresponding norm. In our method, we are trying to simulate the parameter
updating process of FFT which utilizes gradient-based optimization algorithms. Thus, the direction
and magnitude control the sign and to what extent a parameter should be updated.

Another family of methods aim to modify the gradient calculation and backward propagation process
of training, such as GaLore (Zhao et al., 2024), FLoRA (Hao et al., 2024) and GaRare (Liu et al.).
These methods are orthogonal to the proposed Dual LoRA which only focuses on the architecture
and forward pass modification, and a detailed discussion falls outside the scope of this paper.

3 METHOD

In this section, we first introduce the preliminaries of LoRA and optimization methods. Then, we
give a thorough analysis of our proposed Dual LoRA and explain its advantage over previous LoRA-
based methods.

3.1 LOW-RANK ADAPTATION (LORA)

Given a pre-trained weight matrix W0 ∈ Rd×k, LoRA (Hu et al., 2021a) assumes that a low “intrin-
sic rank” is enough during adaptation on downstream tasks and constrains the updated matrix with
a low-rank decomposition:

W ′ = W0 +∆W = W0 +
α

r
·BA, (1)

where B ∈ Rd×r and A ∈ Rr×k are two low-rank matrices with rank r ≪ min(d, k), α is a fixed
hyper-parameter to control the influence of the low-rank matrices, and W ′ is the final weight matrix
after fine-tuning.

Given an original forward pass h = W0x with an input x, the modified forward pass can be ex-
pressed as:

h = W0x+∆Wx = (W0 +
α

r
·BA)x. (2)

Note that the usage of LoRA does not affect the inference speed since the low-rank matrices A and
B can be merged back into the original weight W0, and the dimension of the final weight matrix
W ′ is the same as the pre-trained weight matrix W0. Since the trainable low-rank matrices have
fewer parameters (less than 2%) compared to the original matrices, LoRA usually has insufficient
performance.

3
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(a) LoRA
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(b) Dual LoRA

Figure 1: The architecture of the original LoRA and our proposed Dual LoRA. The low-rank update
matrices are separated into the magnitude group and the direction group.

3.2 OPTIMIZATION METHODS

Given a loss function ℓ(ŷ, y) which measures the cost between the prediction ŷ and the ground-truth
label y, we can choose a family F of functions fw(x) with learnable weight w and input x, and seek
the function f ∈ F to minimize the loss ℓ(fw(x), y) averaged on the input examples:

En(fw) =
1

n

n∑
i=1

ℓ(fw(xi), yi). (3)

In order to minimize the empirical risk En(fw), a global optimum weight w∗ needs to be found step
by step using a series of optimization methods. Specifically, we have:

wt+1 = wt + γ∆w, (4)

where γ is the learning rate and wt+1 is expected to converge to the global optimum w∗ as the
training proceed.

To achieve this, different optimization methods leverage different ways to compute ∆w. For ex-
ample, gradient descent (Bottou, 2010) uses ∆w = 1

n

∑n
i=1 ∇wℓ(f(xi), yi) to compute the update,

and Adam (Kingma, 2014) uses ∆w = m̂t/(
√
v̂t+ϵ) where m̂t and v̂t are the first-moment estimate

and second-moment estimate, and ϵ = 10−8.

Both FFT and LoRA fine-tune the model based on the optimization methods mentioned above.
However, FFT assumes ∆w is a full-rank matrix while LoRA decomposes ∆w into two low-rank
matrices and trains them without any other prior knowledge, which is the main reason that causes
the performance drop.

3.3 DUAL LORA

Note that the update matrix ∆w can always be decomposed into magnitude and direction regardless
of the optimization method used. Learning these components separately can be treated as adding
an inductive bias into the original LoRA, aiding in facilitating the search for the optimal solution
within the solution space.

Instead of using two low-rank matrices, we use four low-rank matrices and separate them into a
magnitude group and a direction group in Dual LoRA, as shown in Fig. 1.

Magnitude group. Given two low-rank matrices A ∈ Rr1×k and B ∈ Rd×r1 , the magnitude group
can be computed as:

Wm = ReLU(BA), (5)

4
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which has two effects. Firstly, non-negative outputs can be treated as learning the magnitude of the
update during the training process. Secondly, we can easily freeze some of the elements that are
already well-trained for the downstream tasks in the original weight matrix by learning the output
elements of BA to be negative and filter them out with ReLU function, which is hard for previous
LoRA-based methods to achieve such a goal.

Direction group. Given two low-rank matrices C ∈ Rr2×k and D ∈ Rd×r2 , the direction group
can be computed as:

Wd = Sign(DC), (6)
where Sign(·) is an element-wise operation that outputs +1 for positive input and −1 otherwise.
Note that the gradient of the sign function is zero almost everywhere, and backward propagation
cannot be applied during training. Thus, given xb = Sign(x), the straight-through estimator (STE)
method (Bengio et al., 2013) is introduced to compute its gradient as:

∂L
∂x

= Clip(
∂L
∂xb

,−1, 1), (7)

in which L is the corresponding loss function for a downstream task and:

Clip(x,−1, 1) =

{ −1, if x < −1,
x, if − 1 ≤ x < 1,
1, otherwise.

(8)

The direction group can control the sign of each element in the update matrix, which is a two-
way direction to decide whether the element in the original weight matrix should move forward or
backward.

Overall update. Given a pre-trained weight matrix W0, the overall update of our Dual LoRA can
be expressed as:

W ′ = W0 +∆W = W0 +
α

√
r1r2

Wm ⊙Wd, (9)

where ⊙ represents an element-wise product (Hadamard product) between two matrices. Similarly,
given the original forward pass h = W0x, the modified forward pass is:

h = W0x+∆Wx = (W0 +
α

√
r1r2

Wm ⊙Wd)x, (10)

which does not affect the inference process as long as we merge ∆W into W0.

Initialization. LoRA uses random Gaussian initialization for A and zero for B to make sure the
update matrix is zero at the beginning of training, as shown in Fig. 1(a). In Dual LoRA, however,
none of the low-rank matrices in the magnitude group should be initialized with zero. Otherwise,
either all trainable parameters are dead, or we cannot achieve the goal that the update matrix is zero
due to the ReLU(·) function and Sign(·) function.

Specifically, given
∆W =

α
√
r1r2

ReLU(BA)⊙ Sign(DC), (11)

we can compute the gradient of the loss function L with respect to four low-rank matrices as:

∂L
∂A

=
∂L

∂∆W
· α
√
r1r2

B⊤ · Sign(DC) · 1BA>0,
∂L
∂B

=
∂L

∂∆W
· α
√
r1r2

Sign(DC) · 1BA>0 ·A⊤,

∂L
∂C

= Clip(
∂L

∂∆W
,−1, 1) · α

√
r1r2

D⊤ · ReLU(BA),
∂L
∂D

= Clip(
∂L

∂∆W
,−1, 1) · α

√
r1r2

ReLU(BA) · C⊤,

(12)
where 1 is the indicator function.

It is easy to know that when setting A = 0 or B = 0, we will have 1BA>0 = 0 and ReLU(BA) = 0
and all four gradients in Eq. 12 are zeros which will cause the training process to be dead. Setting
C = 0 or D = 0 will not result in such a problem, but it cannot achieve the goal that the update
matrix Eq. 11 is zero at the beginning of training since Sign(x) always outputs +1 or −1 depending
on the input. Thus, during the experiments, we use random Gaussian initialization for all four low-
rank matrices and apply a warm-up strategy for the first few training steps to make sure that ∆W = 0
at the start.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: The results of the proposed Dual LoRA and other competitors with LLaMA-7B/13B,
LLaMA2-7B, LLaMA3-8B and LLaMA3-70B-Instruct on commonsense reasoning datasets. For
all matrices, higher is better.

Model Methods Trainable Commonsense Reasoning Datasets
Param. (%) BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

L-7B

Adapter-P 3.54 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.2
LoRA (r = 64) 1.64 67.3 79.0 76.3 76.6 78.8 74.5 59.3 77.4 73.6
DoRA (r = 32) 0.84 68.7 83.3 79.4 85.5 81.3 80.8 66.0 78.8 78.0
DoRA (r = 64) 1.65 68.9 82.1 77.4 75.9 80.0 80.0 64.8 81.0 76.3

Dual LoRA (r = 32) 1.64 70.0 83.2 79.5 87.3 83.0 81.6 65.2 81.0 78.9

L-13B

LoRA (r = 32) 0.67 71.6 83.4 80.0 89.9 84.2 81.2 67.7 80.8 79.9
DoRA (r = 16) 0.35 71.7 84.2 80.6 90.5 85.2 83.1 68.4 80.4 80.5
DoRA (r = 32) 0.68 72.4 84.9 81.2 91.5 83.7 84.6 68.9 81.6 81.1

Dual LoRA (r = 16) 0.67 72.5 84.2 79.9 92.7 83.8 84.8 72.4 83.2 81.7

L2-7B

LoRA (r = 16) 0.41 70.4 82.9 79.0 81.3 81.5 82.4 69.2 80.4 78.4
LoRA (r = 32) 0.83 68.9 82.2 78.1 86.9 81.2 79.3 65.4 78.4 77.6
DoRA (r = 16) 0.43 63.5 82.8 79.5 90.6 82.4 83.9 69.9 81.8 79.3
DoRA (r = 32) 0.84 72.2 83.5 80.3 89.0 82.5 84.1 69.5 80.4 80.2

Dual LoRA (r = 16) 0.83 72.3 83.3 79.8 89.8 84.6 84.8 70.2 82.8 81.0

L3-8B

RandLoRA 0.70 76.3 88.1 80.3 95.7 86.1 90.4 80.9 87.0 85.6
LoRA (r = 16) 0.35 71.7 86.8 79.5 93.9 84.4 87.4 76.3 84.2 83.0
LoRA (r = 32) 0.70 71.2 85.1 79.3 92.1 82.6 85.2 70.1 81.4 80.9
DoRA (r = 16) 0.35 75.1 87.8 80.8 95.6 86.3 90.4 80.0 85.6 85.2
DoRA (r = 32) 0.71 71.7 88.0 80.2 95.5 86.6 90.7 78.4 85.0 84.5

Dual LoRA (r = 16) 0.70 75.5 89.2 81.4 95.8 86.0 90.5 81.1 86.6 85.8

L3-70B
LoRA (r = 16) 0.197 78.6 92.8 83.4 92.7 92.6 97.5 91.7 94.4 90.5
DoRA (r = 16) 0.202 78.4 93.0 83.8 96.5 92.3 97.6 92.3 94.6 91.1

Dual LoRA (r = 8) 0.197 81.4 94.0 84.4 97.9 93.6 97.3 91.0 95.2 91.9

4 EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed Dual LoRA on various NLP tasks. We
compare our methods with other PEFT competitors by fine-tuning LlaMA-7B/13B, LLaMA2-7B,
LLaMA3-8B, and LLaMA3-70B-Instruct models on a series of commonsense reasoning datasets.
Then, we explore the ability of our method on the neural language understanding (NLU) dataset
GLUE by fine-tuning RoBERTa base/large and DeBERTa XXL. Furthermore, we conduct exper-
iments on neural language generation (NLG) datasets including E2E NLG Challenge, DART and
WebNLG using GPT2 M and GPT2 L as backbones (see Appendix A). All experiments above show
that Dual LoRA can surpass other LoRA-based methods with the same or fewer trainable parameters
and achieve state-of-the-art results. Finally, we analyze our method further by performing a series
of ablation studies. In the following experiments, we set the rank of the magnitude group and the
direction group as the same, i.e., r1 = r2 = r unless specified.

Competitors. We compare Dual LoRA with a series of baseline methods including LoRA-based
methods (LoRA (Hu et al., 2021a), LoRA+ (Hayou et al., 2024), GaLore (Zhao et al., 2024),
GaRare (Liu et al.), Delta-LoRA (Zi et al., 2023), CorDA (Yang et al., 2024), VeRA (Kopiczko
et al., 2024), RandLoRA (Albert et al., 2025), and DoRA (Liu et al., 2024b)) and other PEFT meth-
ods (efficient adapter design with LayerNorm (Adapter-L) (Lin et al., 2020), parallel adapter tuning
(Adapter-P) (He et al., 2021) and prefix-layer tuning (Prefix) (Li & Liang, 2021)).

4.1 COMMONSENSE REASONING

Datasets and baseline models. We evaluate Dual LoRA and different PEFT methods on the com-
monsense reasoning task which is composed of eight different sub-tasks including BoolQ (Clark
et al., 2019), PIQA (Bisk et al., 2020), Social IQa (Sap et al., 2019), HellaSwag (Zellers et al.,

6
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Table 2: The results of the proposed Dual LoRA and other competitors with RoBERTa base/large
and DeBERTa XXL on GLUE datasets. For all matrices, higher is better.

Model Methods Trainable GLUE
Param. (M) MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

RoBbase

FFT 125.0 87.6 94.8 90.2 63.6 92.8 91.9 78.7 91.2 86.4
GaLore (r = 8) 0.3 87.2 94.4 92.0 61.8 92.3 91.2 79.1 90.8 85.9
GaRare (r = 8) 0.3 87.2 94.4 91.5 61.1 92.3 90.9 79.3 90.3 85.9

Delta-LoRA (r = 8) 0.3 87.5 95.1 90.2 63.8 93.1 90.9 87.0 91.6 87.4
CorDA (r = 128) 21 - 93.1 89.7 59.6 91.5 - 88.1 90.2 -

VeRA 0.3 - 91.9 88.4 59.9 90.5 - 74.9 90.4 -
RandLoRA 0.7 - 92.2 88.0 59.4 91.3 - 74.7 90.3 -

LoRA (r = 8) 0.3 87.0 94.6 89.2 60.9 92.9 90.7 92.0 91.1 86.1
LoRA (r = 16) 0.6 87.0 95.1 89.0 63.9 93.0 91.2 83.4 91.1 86.7

LoRA+ (r = 16) 0.6 87.8 95.2 90.4 65.9 92.6 91.2 82.3 91.4 87.1
DoRA (r = 16) 0.6 87.7 95.3 87.8 64.8 92.6 90.8 82.2 90.8 86.5

Dual LoRA (r = 8) 0.6 87.8 95.8 91.7 67.8 93.3 90.7 88.1 91.7 88.3

RoBlarge

FFT 355.0 90.2 96.4 90.9 68.0 94.7 92.2 86.6 92.4 88.9
GaLore (r = 16) 1.6 90.8 96.1 91.7 68.3 95.7 91.9 87.0 92.5 89.3
GaRare (r = 16) 1.6 91.3 96.2 91.7 67.9 94.6 91.8 87.4 92.3 89.2

VeRA 0.3 - 95.8 89.3 65.3 94.1 - 81.6 91.8 -
RandLoRA 1.8 - 95.5 90.1 67.4 94.1 - 84.5 91.4 -

LoRA (r = 8) 0.8 90.2 95.6 89.5 63.8 94.5 91.5 88.8 92.5 88.3
LoRA (r = 16) 1.6 90.2 95.9 90.9 66.0 94.4 91.6 87.4 92.3 88.6

LoRA+ (r = 16) 1.6 90.3 96.3 91.4 68.7 94.7 91.6 88.8 92.5 89.3
DoRA (r = 16) 1.6 90.5 96.2 89.7 68.5 92.6 91.5 89.2 92.3 88.8

Dual LoRA (r = 8) 1.6 90.5 96.4 91.9 70.2 95.1 91.2 89.5 92.6 89.7

DeBXXL

FFT 1500.0 91.8 97.2 92.0 72.0 96.0 92.7 93.9 92.9 91.1
LoRA (r = 16) 4.7 91.7 96.6 89.7 70.8 95.7 92.6 95.0 92.4 90.6
LoRA (r = 32) 9.4 92.0 97.5 91.2 68.7 96.0 91.9 92.8 92.4 90.3

LoRA+ (r = 32) 9.4 91.7 97.5 91.2 68.7 96.0 92.3 94.6 92.4 90.5
DoRA (r = 32) 9.4 91.9 96.9 90.9 71.2 95.8 92.3 92.6 92.3 90.5

Dual LoRA (r = 16) 9.4 91.9 97.1 91.9 74.0 96.2 92.6 95.3 93.4 91.6

2019), WinoGrande (Sakaguchi et al., 2021), ARC-easy/challange (Clark et al., 2018) and Open-
BookQA (Mihaylov et al., 2018). Similarly to DoRA, we merge the training sets from all sub-tasks
to get the final training set and perform evaluations on their own testing datasets for each task.

For the baseline models, we use LLaMA-7B/13B (Touvron et al., 2023a), LLaMA2-7B (Touvron
et al., 2023b), LLaMA3-8B (Dubey et al., 2024), and LLaMA3-70B-Instruct (Dubey et al., 2024).
We halve the rank of our low-rank matrices to ensure that the same number of trainable parameters
are used compared to other LoRA-based methods. We tune the learning rate for our method, and all
other training hyper-parameters are kept unchanged as in DoRA in order to make a fair comparison.
We train one epoch for LLaMA3-70B-instruct, and three epochs for other baseline models.

Results. The results in Tab. 1 show that we can consistently outperform DoRA with less trainable
parameters on all of the baseline models. For example, Dual LoRA enhances the average accuracy
by 0.9%/0.6% compared to the previous best result on LLaMA-7B/13B. The performance gains are
still notable on LLaMA2-7B, LLaMA3-8B and LLaMA3-70B-Instruct, which are 0.8%, 0.2% and
0.8%.

4.2 NEURAL LANGUAGE UNDERSTANDING (NLU)

Datasets and baseline models. We evaluate our method on a widely used natural language under-
standing dataset GLUE. It consists of eight different datasets includes MNLI (Williams et al., 2017),
SST-2 (Socher et al., 2013), MRPC (Dolan & Brockett, 2005), CoLA (Warstadt, 2019), QNLI (Ra-
jpurkar et al., 2018), QQP, RTE, and STS-B (Cer et al., 2017). The diversity makes the GELU
benchmark a robust dataset for evaluating LLMs on NLU tasks.
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For the baseline models, we use RoBERTa base/large (Liu, 2019) and DeBERTa XXL (He et al.,
2020) as pretrained baseline models from the HuggingFace Transformers library (Wolf et al., 2020).
Similarly to LoRA, we initialize the model to the LoRA-adapted MNLI checkpoint for MRPC, RTE,
and STSB rather than the pre-trained baseline model. All other training parameters are the same as
LoRA except for the learning rate.

Results. As shown in Tab. 2, the proposed Dual LoRA shows state-of-the-art results on all three
baseline models. For example, on the small model RoBERTa base we can defeat previous methods
LoRA, LoRA+, and DoRA by 1.6%, 1.2%, and 1.8% average accuracy. Similarly, on medium-sized
model RoBERTa large, our Dual LoRA surpasses LoRA, LoRA+, and DoRA by 1.1%, 0.4%, and
0.9%. On DeBERTa XXL model with over 1500M total parameters, Dual LoRA can still exceed
LoRA, LoRA+, and DoRA by 1.3%, 1.1%, and 1.1%. Note that we can even surpass the FFT meth-
ods on these baseline models by 1.9%, 0.8%, and 0.5%, which shows the priority of the proposed
method.

4.3 ABLATION STUDY

We conduct several ablation studies to further verify the effectiveness of the proposed method.

Dealing with the sign function. In the previous section and experiments, we use the straight-
through estimator (STE) method (Bengio et al., 2013) to compute the gradient of the sign function.
Note that the sign function is a standard operator in the area of binary neural networks (BNNs), and
there are many studies on dealing with the forward and backward passes of the sign function. For
example, XNOR-Net (Rastegari et al., 2016) scales the weights after binarized:

Forward: xb = Sign(x)× EF (|x|), Backward:
∂L
∂x

=
∂L
∂xb

, (13)

where EF (|x|) is the mean of the absolute value of each output channel of weights. Dorefa-
Net (Zhou et al., 2016) uses a constant scalar to scale all of the weights instead of doing channel-wise
scaling:

Forward: xb = Sign(x)× E(|x|), Backward:
∂L
∂x

=
∂L
∂xb

. (14)

Table 3: Different methods are used to deal
with sign function. The experiments are con-
ducted on LLaMA-7B and the commonsense
reasoning dataset.

Method Trainable Params (%) Avg.

STE (ours) 1.64 78.9
XNOR-Net 1.64 77.9
Dorefa-Net 1.64 78.1

The experimental results of using different meth-
ods to deal with the sign function are shown
in Tab. 3. The original STE method performs
best among different methods. This conclusion
is different from that in BNNs. We analyze that
this is because both XNOR-Net (Rastegari et al.,
2016) and Dorefa-Net (Zhou et al., 2016) modify
the forward pass of sign function by adding per-
channel scales or a constant scale, which contam-
inate the direction group and make it unable to
focus on giving the correct binary outputs.

The influence of r1 and r2. As shown in Sec. 3.3,
r1 and r2 are the ranks of the low-rank matrices
in the magnitude and direction groups, respectively. In previous experiments, we set r1 = r2 = r in
default to avoid introducing new hyper-parameters compared to other LoRA-based methods. Thus,
in this section we dive deeper into the influence of r1 and r2.

Specifically, we keep the total trainable parameters unchanged by setting r1 + r2 = 2r, and adjust
the ratio of parameters in the magnitude group and direction group, which are controlled by r1 and
r2, respectively. We conduct experiments on the commonsense reasoning dataset with LLaMA3-
8B as our baseline model and set 15 different ratios. Other training hyper-parameters are kept the
same as in the previous experiments. The results are shown in Fig. 2. We can see that the proposed
Dual LoRA can consistently outperform LoRA and DoRA when having a roughly balanced param-
eter ratio between the magnitude group and direction group (from 25% to 70%), which shows the
robustness of our method.

More ablation studies are shown in Appendix B.
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Figure 2: Average accuracy on the common-
sense reasoning datasets using LLaMA3-8B as
the baseline model with r1 = {2, 4, · · ·, 30} and
r2 = 32− r1 in the experiments. The red line is
the proposed Dual LoRA, the blue/orange lines
represent DoRA/LoRA with different ranks.
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Figure 3: The average rank of ∆W for LoRA,
magnitude group of Dual LoRA, direction group
of Dual LoRA, and the overall Dual LoRA. The
experiments are conducted on LLaMA2-7B.

5 ANALYSIS OF THE RANK OF THE UPDATE MATRIX

In this section, we given an analyze of the rank of the update matrix Eq. 11 to further show the
priority of our method. Note that for a given matrix X ∈ Rm×n, Rank(x)≤ min(m,n) always
holds true. Thus, in the original LoRA, given A ∈ Rr×k and B ∈ Rd×r with r ≪ min(d, k), the
rank of the update matrix ∆W = α

r ·BA is upper bounded by:
Rank(∆W ) = Rank(BA) ≤ min(Rank(A),Rank(B)) ≤ r. (15)

In the proposed Dual LoRA, however, we found that the rank of the update matrix can achieve a
higher upper bound. Specifically, given two low-rank matrices A ∈ Rr1×k and B ∈ Rd×r1 in the
magnitude group and two low-rank matrices C ∈ Rr2×k and D ∈ Rd×r2 in the direction group with
r1, r2 ≪ min(d, k), the rank of the update matrix ∆W ′ = α√

r1r2
ReLU(BA)⊙ Sign(DC) is:

Rank(∆W ′) = Rank(ReLU(BA)⊙ Sign(DC))

≤ Rank(ReLU(BA))× Rank(Sign(DC))

≤ min(k, d)2. (16)
Note that the ReLU(·) and Sign(·) operations break the low-rank limitation of the original input
matrix and derive output matrices with high rank.

In Fig. 3, we explicitly show the average rank of the update matrix in LoRA and the proposed
Dual LoRA (magnitude group, direction group, and overall) over different layers. The experiments
are conducted on LLaMA2-7B. We can see that the update matrix and the direction group almost
achieve full rank (4096). The magnitude group has a relatively lower rank but is still much larger
than that in LoRA. The results show the priority of our method from the perspective of matrix rank.

6 CONCLUSION

Original LoRA and its followers fine-tune the model without incorporating any prior knowledge and
share a common drawback: as the trainable parameters are limited, the model accuracy is unsatisfac-
tory. In this paper, we propose a new LoRA-based method called Dual LoRA, which incorporates
an inductive bias into the original LoRA and improve the performance by introducing four low-rank
matrices and separating them into the magnitude group and the direction group. The former controls
the amplitude and whether or not we should update a parameter, and the latter decides whether or
not this parameter should be updated in a positive or negative direction. Parameters in two groups
are combined together to simulate the parameter updating process of FFT with gradient-based op-
timization methods. Experimental results on a wide range of NLP tasks and baseline models show
that our Dual LoRA can consistently outperform LoRA and other state-of-the-art methods such as
LoRA+ and DoRA with the same or less number of trainable parameters.
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Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.
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A EXPERIMENTS ON NEURAL LANGUAGE GENERATION (NLG)

Datasets. We conduct experiments on E2E NLG Challenge (Novikova et al., 2017), DART (Nan
et al., 2020) and WebNLG (Gardent et al., 2017) datasets. The E2E dataset consists of approximately
42,000 training data, 4,600 validation data, and 4,600 test data. Each sample is composed of a
sequence of slot-value pairs (x, y) and a corresponding natural language reference text. DART is
an open-domain data-to-text dataset with around 82,000 samples, each sample is structured as a
sequence of entity-relation-entity triple. WebNLG has a total of 22,000 examples from 14 different
categories, each sample is structured as a sequence of subject-property-object triple.

Table 4: The results of the proposed Dual LoRA and other competitors with GPT2 M and GPT2 L
on the E2E NLG Challenge dataset. For all matrices, higher is better.

Model Methods Trainable E2E NLG Challenge
Parameters (M) BLEU NIST MET ROUGE-L CIDEr

GPT2 M

FFT 354.92 68.2 8.62 46.2 71.0 2.47
Adapter-L 11.09 68.9 8.71 46.1 71.3 2.47

Prefix 0.35 69.7 8.81 46.1 71.4 2.49
LoRA (r = 4) 0.35 68.9 8.69 46.4 71.4 2.52
LoRA (r = 8) 0.70 69.9 8.77 46.8 71.7 2.50

LoRA+ (r = 8) 0.70 70.2 8.81 46.6 71.6 2.53
DoRA (r = 8) 0.71 69.5 8.75 46.4 71.4 2.52

Dual LoRA (r = 4) 0.70 70.6 8.86 46.9 72.4 2.56

GPT2 L

FFT 774.03 68.5 8.78 46.0 69.9 2.45
Adapter-L 23.00 69.1 8.68 46.3 71.4 2.49

Prefix 0.77 70.3 8.85 46.2 71.7 2.47
LoRA (r = 4) 0.77 70.3 8.85 46.8 71.9 2.52
LoRA (r = 8) 1.54 70.0 8.80 46.8 71.7 2.54

LoRA+ (r = 8) 1.54 70.0 8.83 46.8 71.9 2.53
DoRA (r = 8) 1.56 69.8 8.78 46.6 71.6 2.52

Dual LoRA (r = 4) 1.54 70.6 8.86 47.1 72.5 2.54

Table 5: The results of the proposed Dual LoRA and other competitors with GPT2 M and GPT2 L
on DART and WebNLG datasets. The up arrow indicates that the higher is better, and the down
arrow indicates that the lower is better.

Model Methods Trainable DART WebNLG
Parameters (M) BLEU↑ MET↑ TER↓ BLEU↑ MET↑ TER↓

GPT2 M

LoRA (r = 4) 0.35 47.4 0.36 0.47 55.0 0.37 0.39
LoRA (r = 8) 0.70 47.5 0.36 0.47 55.6 0.38 0.39

LoRA+ (r = 8) 0.70 47.6 0.36 0.47 56.1 0.38 0.39
DoRA (r = 8) 0.71 47.0 0.36 0.48 53.5 0.36 0.40

Dual LoRA (r = 4) 0.70 48.3 0.36 0.47 56.6 0.38 0.38

GPT2 L

LoRA (r = 4) 0.35 47.7 0.36 0.47 57.1 0.37 0.38
LoRA (r = 8) 0.70 47.5 0.36 0.47 57.6 0.38 0.38

LoRA+ (r = 8) 0.70 47.7 0.36 0.47 57.5 0.38 0.38
DoRA (r = 8) 0.71 47.2 0.36 0.47 57.4 0.39 0.38

Dual LoRA (r = 4) 0.70 48.4 0.36 0.47 57.7 0.39 0.38

Results. As in previous experiments, we reduce our rank to half of the other LoRA-based methods
to ensure the same number of trainable parameters. All other hyper-parameters are the same as
LoRA, except that we tune the learning rate. As the results shown in Tab. 4 and Tab. 5, Dual LoRA
can consistently outperform all other competitors on three different datasets with baseline model
GPT2 M and GPT2 L.
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B MORE ABLATION STUDIES

In this section, we conduct more ablation studies on the proposed Dual LoRA.

B.1 DIFFERENT FORMS OF THE UPDATE MATRIX

Specifically, we investigate the following settings:

• Setting 1: Remove ReLU(·) function in Dual LoRA, which means ∆W = α√
r1r2

(BA) ⊙
Sign(DC).

• Setting 2: Remove Sign(·) function in Dual LoRA, which means ∆W =
α√
r1r2

ReLU(BA)⊙ (DC).

• Setting 3: Replace the output of the direction group with a random-initialized binary matrix
and fix this matrix during training. Given Wb as the random initialized binary matrix, we
have ∆W = α

r1
ReLU(BA)⊙Wb.

Table 6: The results of the previous settings on the commonsense reasoning dataset, with LLaMA-
7B as the base model.

Methods Trainable Commonsense Reasoning Datasets
Param. (%) BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

Dual LoRA (r = 32) 1.64 70.0 83.2 79.5 87.3 83.0 81.6 65.2 81.0 78.9
Setting 1 (r = 32) 1.64 70.3 82.9 78.8 85.4 83.3 82.1 65.2 79.4 78.4
Setting 2 (r = 32) 1.64 70.6 80.8 78.9 84.7 81.8 80.4 65.2 78.8 77.7
Setting 3 (r = 32) 0.84 60.4 0.2 1.7 0.2 0.2 0.5 0 0 7.9
Setting 3 (r = 64) 1.64 36.3 36.2 6.6 0 14.3 4.9 11.5 0 13.7

We conduct experiments on LLaMA-7B and perform an evaluation on the commonsense reasoning
dataset. The results are shown in Tab. 6. We can see that removing ReLU(·) and Sign(·) func-
tions cause marginal performance drop, and using a random initialized binary matrix to replace the
direction group severely degrades the performance, which shows the importance of the proposed
architecture.

B.2 DIFFERENT ACTIVATION FUNCTIONS FOR THE MAGNITUDE GROUP

In the main paper, we use ReLU(·) function for the magnitude group. There are other functions that
can keep the activation greater than zero, such as Abs(x) = |x| and Sigmoid(x) = 1/(1 + e−x).
We compare them in Tab. 7 on the commonsense reasoning dataset with LLaMA-7B model.

Table 7: The results of different activation functions for the magnitude group on the commonsense
reasoning dataset, with LLaMA-7B as the base model.

Activation Commonsense Reasoning Datasets
BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

ReLU (ours) 70.0 83.2 79.5 87.3 83.0 81.6 65.2 81.0 78.9
Abs 68.6 82.9 77.9 74.3 74.0 81.6 65.8 79.6 75.6

Sigmoid 66.5 80.3 78.5 77.8 79.4 75.4 60.9 76.6 74.4

We can see that the original setting with ReLU(·) function performs the best. This is because
neither the Abs(·) function nor the Sigmoid(·) function can flexibly give zero output. Note that zero
output means that we can easily freeze some of the elements that are already well-trained for the
downstream tasks in the original weight matrix, which is the advantage of the ReLU(·) function.
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