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Abstract

This paper explores new trends to improve rea-001
soning using multiagent linguistic debate and002
increased test-time compute. We offer a new003
benchmark to quantify how well unstructured004
linguistic reasoning can predict young adult005
recidivism on tabular statistical data. We com-006
pare popular small open LLMs with leading007
commercial LLMs and traditional statistical008
machine learning models. Two methods of009
linguistic reasoning are tested: (a) Standard-010
LLM using popular single chain-of-thought011
(CoT) prompts and variants, and (b) Agen-012
ticSimLLM using multi-agent debate. The013
latter simulates a simplified multi-turn court-014
room debate between prosecutor and defense015
agents with a decision by a judge agent. The016
simulation is loosely based on a US bench017
trial, which constrains reasoning based on roles,018
rules, and debate planning. Results show that019
SOTA commercial LLMs can use linguistic ap-020
proaches to improve statistical reasoning over021
tabular datasets, although the current gener-022
ation of leading smaller open LLMs strug-023
gle. Compared to internal reasoning models024
like OpenAI o3 or DeepSeek-r1, the Agen-025
ticSimLLM framework provides explicit fine-026
grained control over test-time reasoning with027
intuitive human-like reasoning explainability.028
Our ensemble of almost 90 unique combina-029
tions of models, sizes, and prompting strate-030
gies also shows that MAD simulations provide031
more stable performance with greater correla-032
tion between accuracy and F1-score metrics.033
Data, results, and code will be available at034
github.com/anon under the MIT license.035

1 Introduction036

The introduction of the Transformer architecture037

in 2017 launched an era of rapid progress. Un-038

til recently progress was dominated by the dic-039

tate that scale was all you needed (Kaplan et al.,040

2020). Progress on state-of-the-art (SOTA) models041

was limited by ever greater training-time resources042

of compute and data. In parallel, more efficient 043

training methodologies like LoRa and innovative 044

architecture modifications such as RoPE also ad- 045

vanced SOTA models (Hu et al., 2021; Su et al., 046

2023). Still, performance gains began to saturate as 047

training-time cost rose to over $100M USD (Cot- 048

tier, 2024). 049

New ways to use compute more efficiently in- 050

cluded techniques like model distillation and mix- 051

ture of experts (MoE) architectures (Kaplan et al., 052

2020). As LLMs became more performant, tra- 053

ditional benchmarks were ’solved’ and new types 054

of benchmarks emerged. New benchmarks tested 055

the most complex reasoning tasks in fields such 056

as mathematics, physics, and chemistry (Huang 057

et al., 2024). To address the numerical and statis- 058

tical limitations of language-based LLMs, many 059

models became mulit-step reasoners with agents 060

even using tools like Python interpreters and scien- 061

tific libraries. In contrast, specialized tabular LLMs 062

that rely on purely linguistic statistical reasoning 063

for structured tabular data science tasks like regres- 064

sion, classification, and SQL searches (Fang et al., 065

2024) arose. 066

Initially, prompt engineering techniques were de- 067

vised to guide and induce better reasoning perfor- 068

mance. The simple ‘let’s think step by step’ chain 069

of thought (CoT) prompt template generated an 070

increasingly complex set of variations such as Tree 071

of Thought (ToT) and Forest of Thoughts (FoT). 072

Other prompt techniques like self-consistency (SC), 073

ReAct, and meta-prompting with reflection fur- 074

ther improved performance by shifting from sim- 075

ple one-off prompting towards more explicit multi- 076

turn reasoning. The success of reasoning models 077

such as OpenAI o1 has demonstrated SOTA perfor- 078

mance on frontier benchmarks by formalizing these 079

prompting strategies through reinforcement learn- 080

ing model training. This has shifted more compute 081

resources to test-time compute (Schulhoff et al., 082

2024). 083
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In aggregate, these advances have produced084

many open LLMs that are either competitive with085

SOTA commercial offerings or sufficiently capable086

for a growing number of narrow tasks when fine-087

tuned. Open LLMs offer numerous advantages088

including cost, speed, stability, customizability, pri-089

vacy, security, and edge deployment portability.090

Leading open source models like DeepSeek r1 fine-091

tuned Qwen 7b appear to be only several months092

behind and offer distinct advantages over SOTA093

commercial reasoning models like OpenAI’s oN094

series (Altman, 2025; Byers, 2025).095

This paper presents the use case of predicting096

criminal recidivism using various prompting strate-097

gies on structured data as a new frontier bench-098

mark for open LLM linguistic reasoning, a task099

that is particularly challenging for three reasons.100

First, LLM attention heads are optimized for linear101

1D associations and struggle with both numeric102

computations and structured tabular data. Tabular103

data presents unique challenges because its features104

(columns) do not follow a fixed spatial or sequential105

structure, making it difficult for models to capture106

complex interactions and dependencies effectively107

(Ruan et al., 2024). Real-world datasets usually do108

not have easily separable class boundaries. Instead,109

samples and features demonstrate overlapping pat-110

terns, noise, and intricate feature relationships. The111

result is lower performance metrics in an effort to112

avoid overfitting. Finally, this use case illustrates113

ethically-fraught aspects of high-stakes, real-world114

decision-making. AI models may play an increas-115

ing role in high-stakes decisions from hiring to116

battlefield target identification. Although Agentic-117

SimLLM is presented in the context of young adult118

criminal recidivism, the methodology generalizes119

to any well-structured and deliberative decision-120

making process. We make the following contribu-121

tions:122

• A comparison of several types of linguistic123

reasoning using LLMs for statistical tabular124

prediction tasks.125

• A new and generalizable multi-agent debate126

(MAD) court simulation methodology that127

provides precise control over test-time rea-128

soning129

• Direct comparison of reasoning using tradi-130

tional chain of thought (CoT) prompting vs131

MAD simulations. We demonstrate a MAD132

reasoning methodology using a simplified US133

bench criminal trial for young adult offenders 134

based upon real-world data and outcomes 135

• A Benchmark that includes in-depth perfor- 136

mance of almost 90 unique combinations of 137

both leading open-source and SOTA commer- 138

ical LLMs by combinations of type, size, and 139

reasoning strategies 140

• Demonstrated benefits of increased test-time 141

compute reasoning using MAD simulations, 142

including enhanced explainability, improved 143

stability and generalizability (evidenced by a 144

stronger correlation between accuracy and the 145

F1 metric), finer control over reasoning steps, 146

and the ability to profile real-world perfor- 147

mance across different combinations of model 148

types, sizes, and reasoning strategies. 149

2 Background 150

Artificial Intelligence has augmented human 151

decision-making in numerous high-stakes environ- 152

ments. In the US judicial system, the most well 153

known use case has been in predicting recidivism 154

with the Correctional Offender Management Pro- 155

filing for Alternative Sanctions (COMPAS), a pro- 156

prietary algorithm designed to make parole recom- 157

mendations that has been subject to heated interpre- 158

tations (Barenstein, 2019). Young adults 18-22 are 159

frequently recognized as a distinct group in legal 160

and criminological studies due to their transitional 161

developmental stage of ongoing cognitive, emo- 162

tional, and social maturation and their higher rates 163

of re-offense. 164

A ProPublica critique of COMPAS found 165

“blacks are almost twice as likely as white to be 166

labeled a higher risk but not actually reoffend” 167

(Angwin et al., 2016). A later paper found COM- 168

PAS’ use of 137 features was neither more accurate 169

nor fairer than predictions made by laypeople and 170

performed on par with a simple linear model using 171

only two features (Dressel and Farid, 2018). More 172

recent research confirmed humans and algorithms 173

perform comparably in predicting recidivism under 174

similar conditions, but algorithms outperform hu- 175

mans in rich data or where immediate feedback is 176

unavailable (Lin et al., 2020). More recently, even 177

after police adjust for recidivism predictions based 178

on algorithms, racial disparities may remain (Hetey 179

and Eberhardt, 2018). 180

Our dataset is derived from the National Longi- 181

tudinal Survey of Youth 1997 (Moore et al., 2000) 182
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and is a nationally representative survey starting in183

1997 of a cohort of individuals born between 1980184

and 1984. NLSY97 provides rich, longitudinal185

data encompassing a wide range of demographic,186

social, behavioral, and economic factors, allowing187

for in-depth analyses of individual trajectories over188

time. Unlike widely-used recidivism datasets such189

taken from COMPAS decisions, which primarily190

focus on static, justice-related variables (e.g., crim-191

inal history, age at first arrest, offense severity),192

the NLSY97 offers a multi-dimensional, longitudi-193

nal perspective to examine the interplay between194

life circumstances and recidivism. The NLSY97195

data has been rigorously prepared and released un-196

der protocols that strictly protect respondent con-197

fidentiality and prevent the disclosure of person-198

ally identifying information including pre-release199

anonymization by the Bureau of Labor Statistics200

(BLS) as well as data collection and processing201

procedures compliant with Federal law and Office202

of Management and Budget (OMB).203

Recidivism prediction is typically reframed as204

a binary classification task: predict the recidivism205

label ‘YES’ or ‘NO’ given a row of tabular pre-206

dictive features like age, gender, education, and207

arrest record. Traditional statistical machine learn-208

ing models like XGBoost have been state-of-the-art209

(SOTA) models for such tasks. However a grow-210

ing number of specialized “Tabular LLMs” like211

TabPFN excel in small data regimes under 10,000212

samples/rows (Liu et al., 2025). Tabular LLMs po-213

tentially offer accurate statistical analysis of ubiq-214

uitous structured datasets but with the advantages215

of using natural language prompt interfaces.216

More recently, OpenAI, DeepSeek, and Stanford217

University have shown significant performance218

gains by training models to perform extensive test-219

time reasoning (OpenAI, 2024; DeepSeek-AI et al.,220

2025; Snell et al., 2024). Argumentative MAD221

LLMs offer a different reasoning approach through222

agentic debate (Freedman et al., 2024). Our MAD223

courtroom simulation provides both a challenging224

statistical reasoning benchmark with the potential225

benefits of natural language prompting and expla-226

nations as well as the advantages of open models227

(e.g. cost, privacy, security, customization, accessi-228

bility, portability to edge devices) (Gharieb et al.,229

2024).230

LLMs increasingly utilize agents to enhance rea-231

soning capabilities (Gao et al., 2024). Traditionally,232

LLM reasoning has been centered on deterministic233

problems in coding and mathematics (Haji et al.,234

2024). However, recent attempts have sought to 235

generalize reasoning through structured thought tra- 236

jectories, enabling more flexible problem-solving 237

(Yue et al., 2024). Another key approach to im- 238

proving AI reasoning involves focusing on abstract 239

semantics, allowing models to engage in more nu- 240

anced and context-aware interpretations (Li et al., 241

2024). 242

Building on these developments, Multi-Agent 243

Debate (MAD) systems have emerged as a power- 244

ful framework for enhancing reasoning by simu- 245

lating dynamic, argument-driven linguistic interac- 246

tions. These systems have been shown to improve 247

knowledge representation and performance on QA 248

benchmarks (Wang et al., 2023). MAD systems 249

have gone beyond deterministic reasoning by lever- 250

aging Toulmin’s model of argumentation, which 251

structures claims, evidence, and counterarguments 252

to refine reasoning in a more explainable and itera- 253

tive manner (Castagna et al., 2024). This enables 254

agentic reasoning to extend beyond traditional ap- 255

plications in math, coding, and QA tasks by exploit- 256

ing more accessible language and rhetoric struc- 257

tures. 258

Using LLMs to augment human decision- 259

making presents both common and unique chal- 260

lenges, as seen in earlier AI-driven systems like 261

COMPAS. A major concern is that LLMs func- 262

tion as “black boxes,” making it difficult to apply 263

most eXplainable AI (XAI) methods to clarify how 264

they arrive at decisions. Every AgenticSimLLM 265

MAD court simulation records all public utterances, 266

private planning strategies, and clear reasoning 267

and justification for the final recidivism prediction. 268

These provide valuable transparency with clear ex- 269

planation as to the reasoning and decision-making. 270

For example, MAD-based LLMs can support hu- 271

man caregivers by providing medical reasoning, 272

improving decision-making with explainable out- 273

puts (Hong et al., 2024). Similarly, our MAD court- 274

room simulation generates transcripts from unique 275

fact sets and serves as a highly interpretable form 276

of XAI. These XAI transcripts are not grounded 277

in sound mechanistic interpretations, however, and 278

our research shows self-reported prediction confi- 279

dence does not correlate with performance metrics. 280

XAI transcripts should be used as only one plausi- 281

ble explanation rather as a method for determining 282

objective correctness. 283
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3 Methodology284

Our tabular dataset consists of 1412 rows of court285

cases with 28 columns: 1 target label (True or False286

for 3-year rearrest) and 27 features. The feature287

set includes demographics, education, employment,288

family, drug use, religion, depression, relationships,289

and criminal history collected between 1997-2002290

using the NYSL. The target label was unbalanced291

with 72% “NO” and 28% “YES”. A few features292

were more balanced (e.g. sex 51% male/49% fe-293

male) while most were unbalanced. Racial/ethnic294

composition was as follows: 51.93% non-black,295

non-Hispanic; 25.99% black; 21.16% Hispanic;296

and 0.92% mixed non-Hispanic. Our task to predict297

recidivism was a binary classification task based298

upon a natural language narrative. The narrative299

was injected into the prompt as a string generated300

by concatenating all case facts in the form ’<fea-301

ture> is <value>’ (e.g. ’sex is male’).302

All simulations were run in parallel on a local303

Ryzen 9 AMD PC with 128GB of RAM and dual304

NVIDIA 3090 GPUs (48GB VRAM total), Ollama305

version 0.5.7 with GPU acceleration using CUDA306

12.6 and Python 3.10.12. Models were served us-307

ing ollama library version 0.4.5 and default hy-308

perparameters with the temperature set to 0.0 for309

single-turn CoT prompting and 0.7 to explore more310

creative MAD simulations.311

Models were grouped into three ensembles of312

different sizes: 16 models with 7-14b parameters313

shown in Table 1 was our primary ensemble with314

two larger ensembles of 37 and 81 models with315

0.5-72b parameters shown in Appendix D. All316

models are 4 bit quantized (q4_K_M) unless other-317

wise noted and pulled directly from the ollama.ai318

website (Ollama, 2025). Models were selected319

by popularity, performance and recency accord-320

ing to ollama.ai and Huggingface.co Open LLM321

Leaderboard (Huggingface, 2025). Special mod-322

els were selected including the uncensored model323

(e.g. Dolphin 3), older models for comparison324

(e.g. Llama 3.1), as well as models focused on325

reasoning (e.g. DeepSeek-r1, Marco-o1). While326

performance across the larger ensemble confirms327

results are generalizable, the small tractable 16-328

model ensemble afforded more thorough testing329

for both performance and compute.330

We benchmarked two reasoning methods: stan-331

dard single-shot prompting (StandardLLM) and332

multi-turn MAD courtroom simulation (Agentic-333

SimLLM). StandardLLM reasoning consisted of334

Figure 1: AgenticSimLLM Framework

Model Size
aya-expanse 8b
deepseek-r1 7b
dolphin 3 8b
exaone 3.5 8b
falcon 3 7b
gemma 2 9b
glm 2 9b
granite 3.1 8b

Model Size
hermes 3 8b
llama 3.1 8b
marco-01 7b
mistral 7b
olmo 2 7b
phi 4 14b
qwen 2.5 7b
tulu 3 8b

Table 1: Small Model Ensemble

3 increasingly complex prompts designed to elicit 335

more complex reasoning including: 1) a minimal 336

‘system1’ immediate request for simple prediction 337

(Kahneman, 2011), 2) a chain of thought (CoT) 338

prompt that elicits reasoning steps before a predic- 339

tion and 3) a CoT with n-shot examples prompt 340

that injects n=30 labeled examples before elicit- 341

ing reasoning steps followed by a prediction. Ap- 342

pendix A shows these prompt templates with an 343

injected string representation of a dataset sample. 344

AgenticSimLLM is the second linguistic rea- 345

soning technique. It predicts recidivism using a 346

MAD court simulation between prosecution and 347

defense agents that are arguing before a judge agent. 348

This simulation involves 7 total API calls: 6 alter- 349

nating turns between the prosecution and defense 350

followed by a judge ruling. There are approxi- 351

mately 1300 tokens per API call or 9100 tokens 352

per total simulation. We explore the benefits to 353

AI reasoning–specifically predicting recidivism– 354

derived from this substantial increase in test-time 355

compute with detailed linguistic debate over single- 356

shot CoT prompting. The structure of this MAD 357

courtroom simulation is shown in Figure 1. It sim- 358

plifies an actual US bench criminal trial by exclud- 359
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ing witnesses, expert testimony, and prosecutor360

closing.361

The prosecution opens, the defense makes the362

closing statements, there are three turns by each363

side, and the judge provides a CoT-like sequencing364

of opinion, verdict, and self-reported confidence365

level. Each prompt restates the courtroom rules,366

expectations, and fixed case facts and injects the367

ordered utterance history. Each agent is prompted368

to formulate private strategies before creating any369

utterance (opening, rebuttal, closing). This prompt370

template includes elements of reflection, an iter-371

ative self- and cross-critique by both sides, and372

planning. In parallel to the three-turn debate be-373

tween the prosecutor and defense, the judge silently374

observes and updates their belief state after each of375

the six public utterances, thus explicitly tracking376

their own private prediction, confidence, reasoning,377

and critique of arguments from both sides. See378

Appendix B for detailed examples.379

Our simulation incorporates several best prac-380

tices from prompt engineering research, reason-381

ing research, and multi-agent simulations to mimic382

human language-based reasoning (Sreedhar and383

Chilton, 2024). Prompts include elements of384

chain of thought, n-shot prompting, reflection, self-385

critique, distinct agent personas, and strategic plan-386

ning. We leverage argumentative LLMs as a basis387

for formal reasoning grounded in linguistics and388

rhetoric. Finally, we use our LLMs as judges fol-389

lowing this established subfield of research (Schul-390

hoff et al., 2024).391

The dataset of 1412 cases was divided into392

60/20/20 test/train/validation splits by custom with393

potential future follow-up research to include tra-394

ditional statistical ML. For StandardLLM, each395

unique model and prompt type combination was396

tested by pseudo-randomly selecting 150 labeled397

cases from the 847 test cases. Due to the much398

higher compute costs, we only ran 100 simulations399

for each of the 16 models in the small ensemble.400

Due to the high malformed response rate, we used401

4 methods to parse the API response object: 2 using402

stricter JSON methods and 2 using more permis-403

sive regex patterns. For each simulation, additional404

details of all 7 API calls were logged including the405

history of all public utterances, the private evolu-406

tion of internal belief states, and the opinion along-407

side detailed reasoning. An API request to the408

ollama server allowed us to parse the response and409

compare the prediction with the ground truth la-410

bel. For each unique combination of model and411

Figure 2: StandardLLM Accuracy (Small Ensemble)

prompt type, summary statistics were compiled 412

that included mean prediction accuracy, distribu- 413

tion, confusion matrix, F1 score, and API metadata 414

for calculating compute resources (e.g. execution 415

time and token counts). 416

4 Results 417

4.1 StandardLLM Performance Metrics 418

All models are benchmarked using accuracy and 419

F1 score metrics for binary classifiers. Due to 420

complexity of our prompts and expected responses, 421

the small model size, and the stochastic nature of 422

LLMs, the simulations often produced malformed 423

JSONs and did not always complete all six de- 424

bate turns. However, verbal fluency and reasoning 425

were remarkably consistent with performance well 426

above random, as seen in Figures 2 and 3. 427

LLM performance should increases when shift- 428

ing from system1 to CoT and then to n-shot CoT 429

prompting as more information is provided. For 430

our ensemble of small (7-14b) models, a near rever- 431

sal of this order takes place: system1 outperforms 432

on accuracy and is competitive with n-shot CoT 433

on F1 metrics. This suggests two primary and 434

nonexclusive explanations: 1) system1 prompts 435

randomly overfit the data, and 2) models lack the ca- 436

pacity to fully exploit greater information in more 437

sophisticated prompts. Note that Dolphin 3 and 438

gemma 2 do well, in contrast to the poor perfor- 439

mance of the typically higher-ranked models. This 440

further suggests that performance on this challeng- 441

ing task does not generalize well (Hartford, 2024; 442

AI, 2024a). Note that several models like Qwen 443

QwQ 32b and o1-AI yi 6, 9 and 34b had to be ex- 444

cluded due to excessive timeout issues beyond 300 445

sec/API call. Recent reasoning models like Qwen’s 446
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Figure 3: StandardLLM F1 Score (Small Ensemble)

QwQ and DeepSeek-r1 returned many malformed447

responses and also exhibited API timeout issues448

(AI et al., 2024; Team, 2024a,b).449

N-shot CoT had a slight advantage over system1450

prompts in terms of performance and stability. The451

slightly higher performance suggests that the small452

models are able to benefit slightly from the 30 ex-453

amples injected into the n-shot CoT prompt. An454

interesting finding is that the highest F1 perform-455

ers are generally a mix of relatively older models456

and those that excel on traditional benchmarks like457

the Huggingface Open LLM Leaderboard. Newer458

performant models and those explicitly trained459

for reasoning like Marco-o1 are middling to poor460

on our task. This reinforces the idea that in the461

small model regime, traditional single shot system1462

prompts generally outperform reasoning models463

even on explicit reasoning tasks but must be care-464

fully selected based on specific datasets and tested465

against overfitting.466

The top three models for accuracy are the un-467

censored Llama 3.1 version of Dolphin 3 and two468

Chinese reasoning models, Qwen 2.5 and Marco-469

o1. This may suggest that human alignment for470

these models is innately or culturally less focused471

on debiasing factors like race, which is a greater472

concern in the English-speaking west. The relative473

ranking of Dolphin 3 compared to the uncensored474

Llama model it is based on (accuracy +11, F1 score475

-3) provides some evidence that antibias alignment476

may be slightly decreasing performance. Further477

evidence can be found in the fact that Google has478

been known for over-tuning models for anti-bias.479

Google’s gemma 2 model is ranked 12th of 16480

models in more stable F1 score despite ranking 4th481

in accuracy. Finally, Tsinghua University GLM-4482

(GLM et al., 2024) reflects the performance gaps483

Figure 4: AgenticSimLLM Accuracy (Small Ensemble)

Figure 5: AgenticSimLLM F1 Score (Small Ensemble)

often seen between industry and academic LLMs. 484

The highly ranked DeepSeek-r1 model performs 485

suprisingly poorly by both metrics and displays the 486

most coherent measures across all three prompts. 487

Deepseek-r1 is trained to produce long reasoning 488

chains, giving it the longest system1 token counts 489

by 39%: approximately 1875 vs 1350 average. It 490

also produces an excess of malformed responses, 491

perhaps because its verbal fluency and bias for 492

longer textual responses make it difficult to parse 493

successfully. 494

4.2 AgenticSimLLM: Small Open LLMs 495

In contrast to our StandardLLM approach, tradi- 496

tional open LLM benchmark rankings do not reli- 497

ably predict our MAD courtroom reasoning perfor- 498

mance. Moreover, and in contrast to the high vari- 499

ance in accuracy performance across the 3 prompt 500

types under StandardLLM, the AgenticSimLLM 501

F1 scores were more consistent for the small model 502

ensemble. While greater test-time compute of 503

MAD simulations resulted in negligible improve- 504

ments over StandardLLM system1 performance 505

metrics, multi-agent linguistic debate offers notable 506

improvements in stability and generalizability com- 507

pared to CoT and n-shot CoT prompting. 508

Aside form the exaone 3.5 outlier, the rank order 509

for accuracy vs F1-score for AgenticSimLLM mod- 510

els are somewhat reversed from the StandardLLM 511

order (Research et al., 2024). The newer, uncen- 512
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sored and more highly ranked reasoning models513

like Qwen 2.5, Marco-o1, GLM-4, and Phi-4 are514

top in accuracy (Zhao et al., 2024; GLM et al.,515

2024; Research, 2024b). Older and lower ranked516

models like Llama 3.1, mistral, and hermes 3 rank517

near the bottom (AI, 2024b, 2023; Teknium et al.,518

2024). This is slightly reversed for the F1-metric,519

suggesting that reasoning models like OLMo 2,520

Marco-o1, Qwen 2.5 and DeepSeek r1 have no521

advantage when reasoning using our MAD simula-522

tions.523

Aside from some agreement on the top-ranked524

models by accuracy, there is little correlation be-525

tween the performance rankings under Standard-526

LLM and AgenticSimLLM methodologies. Qwen527

2.5, Marco-o1 and Dolphin 3 cluster together as528

top models by accuracy scores for both. However,529

the clustering of older, less performant models like530

gemma 2, Lamma 3.1, and mistral at the top of531

AgenticSimLLM F1-scores suggests these simple532

models can benefit most from reasoning derived533

from an explicit multi-round, multi-agent struc-534

tured linguistic debate simulation. These results535

highlight that traditional LLM leaderboard rank-536

ings do not generalize well to our reasoning tasks537

using either traditional CoT prompting or MAD538

simulations. The github repo logs provide com-539

plete details on exact compute time and token re-540

sources of every model, prompt and API request as541

summarized in Appendix C.542

4.3 AgenticSimLLM: Commerical LLMs543

We also tested our StandardLLM prompts on four544

SOTA commerical LLMs to validate the assump-545

tion that more complex and informative reasoning546

prompts should result in better reasoning and pre-547

dictions. Table 2 shows these models all trend in548

this direction, although only the most performant,549

OpenAI’s o3-mini model, actually demonstrated550

this with realistic statistical distributions. Haiku-551

3-5’s slightly higher metrics are discounted by the552

fact that it only predicted ’no’ for every API call.553

Please see Appendix E554

5 Discussion555

Standard benchmarks have long been criticized as556

poor predictors of real-world performance. This557

paper further explores this phenomenon by using558

small 7-14b open LLMs on the extremely chal-559

lenging task of young adult recidivism prediction.560

Statistical ML models like XGBoost typically far561

Model Prompt Accuracy Precision
gpt-4o-mini system1 0.48 0.60

cot 0.71 1.00
cot-nshot 0.47 0.49

o3-mini system1 0.49 0.63
cot 0.53 0.60
cot-nshot 0.70 0.96

haiku-3-5 system1 0.34 0.21
cot 0.71 1.00
cot-nshot 0.71 1.00

sonnet-3-5 system1 0.43 0.44
cot 0.53 0.68
cot-nshot 0.57 0.72

Table 2: SOTA Commercial LLMs Performance

outperforman general LLM linguistic reasoning 562

over tabular data. Our results show that perfor- 563

mance on our recidivism prediction tasks is specific 564

to the particular combination of data, model type, 565

size, and reasoning methodology, whether Stan- 566

dardLLM prompting or AgenticSimLLM MAD 567

linguistic simulations. 568

Within our resource constraints, we show that 569

neither top models on traditional benchmark leader- 570

boards nor the recent crop of fine-tuned reasoning 571

models have any consistent advantages in reason- 572

ing. In fact, the oldest, lowest performing mod- 573

els benefited most from MAD simulations when 574

ranked by F1-score. The newest, highly regarded 575

DeepSeek r1 7b performed near the bottom. Simple 576

system1 prompting exhibited the highest accuracy 577

and was tied for the highest F1-score. However, 578

the significant variance in system1 performance 579

suggests this may be due to overfitting and that 580

the data, task/prompt, model type and size all need 581

to be jointly optimized to generalize. Finally, we 582

demonstrate that four SOTA commerical LLMs 583

show that much more powerful models benefit from 584

the more complex reasoning prompts and simula- 585

tions, highlighting the limitations of smaller open- 586

source LLMs at this point in time. 587

While this is an exploratory introduction to a 588

novel approach to apply MAD simulations for tab- 589

ular LLM predictions, our findings are preliminary. 590

On our hardware and software setup, it took approx- 591

imately 4 weeks to test all our model variants across 592

both StandardLLM prompts and AgenticSimLLM 593

MAD simulations. With many more resources, the 594

study could be multiplied many-fold to parame- 595

terize the statistical stability of these findings and 596

7



define confidence ranges.597

6 Conclusion598

This paper presents two reasoning methodologies599

to benchmark and improve tabular LLM predic-600

tions of young adult criminal recidivism. Both601

use linguistic reasoning approaches, but only the602

multi-agent linguistic debate simulations showed603

clear advantages in improving performance. Stan-604

dardLLM uses several popular one-off CoT prompt605

techniques to benchmark both the innate (system1)606

and step-by-step reasoning for predicting recidi-607

vism. AgenticSimLLM attempts to enhance rea-608

soning with a multi-agent debate courtroom sim-609

ulation that incorporates best practices for both610

prompting and agentic debate. Executing both rea-611

soning methodologies against small (16 model),612

medium (37 model), and large (81 model+prompt)613

ensembles showed benefits of AgenticSimLLM to614

improve decision-making. Not only does Agentic-615

SimLLM improve performance, but it offers more616

fine-grained control over test-time reasoning, of-617

fers intuitive human-like reasoning as a proxy for618

blackbox explainability and transparency, and in-619

creases correlation between F1-score and accuracy620

performance metrics resulting in more stable and621

generalizable performance.622

Using small open LLMs with AgenticSimLLM623

also offers the practical benefits of a highly explain-624

able local decision-support system that is private,625

customizable, reliable, fast, portable, auditable, and626

inexpensive. It can also be used to make informed627

choices on the tradeoff between alignment and per-628

formance as well as provide feedback to improve629

alignment training. Finally, surprisingly, the new630

DeepSeek-r1 model performs far below expecta-631

tions due in part to not being trained for structured632

function calling that may bias predictions.633

7 Ethics Statement634

Given the high-stakes implications of recidivism635

prediction within the judicial system, we recog-636

nize the potential ethical implications associated637

with this work. The NLSY97 dataset is publicly638

available and no personally identifiable informa-639

tion was used. We acknowledge that algorithmic640

predictions, particularly in sensitive domains like641

criminal justice, can perpetuate or amplify exist-642

ing societal biases. Recognizing the risk of "anti-643

bias" overtuning, where attempts to correct biases644

can inadvertently introduce new ones, we suggest645

some anti-bias overtuning may explain our findings. 646

We caution against over-reliance on algorithmic 647

predictions and stress the importance of human- 648

in-the loop supervision, contextual factors, legal 649

standards, and ethical considerations in decision- 650

making processes. Our findings should be inter- 651

preted as part of an ongoing dialogue on the re- 652

sponsible, ethical and legal use of AI in high-stakes 653

decision making. 654

8 Limitations and Future Work 655

Anthropomorphizing terms like ‘strategize’, ‘de- 656

bate’, and ‘internal belief states’ are descriptive 657

shorthand for describing the functional aspects of 658

our agents and simulation. They are not to be taken 659

literally or suggest that the authors are ascribing 660

full and genuine human attributes to AI. 661

The primary focus on this paper is to develop 662

a sufficiently difficult tabular LLM benchmark to 663

surface the reasoning limits and open LLMs, par- 664

ticularly in the 7-14b parameter range popular with 665

local deployments. A future goal is to use more 666

statistically sound and experimentally exhaustive 667

experiments to benchmark performance of a few 668

of these 81 unique combinations of models, size, 669

and prompt. This would include surveying a vari- 670

ety of disparate tabular datasets, creating prompt 671

optimization methods, and ensuring repeated sam- 672

pling/runs to develop statistical confidence metrics. 673

Again, given the stochastic nature of LLMs, their 674

inherent innumeracy, and 1D linear attention mech- 675

anisms, tabular predictions currently only excel 676

on tabular predictions in low data regimes beyond 677

which statistical ML models like XGBoost are 678

SOTA. To exploit the strengths of LLM/LMMs 679

would involve incorporating multi-step process- 680

ing, synthesizing multi-modal data, and employing 681

agentic tool use with complementary abilities (e.g. 682

a python interpreter with automl to drive XGBoost 683

models). 684
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A StandardLLM Prompt Templates and Data Sample988

A.1 Dataset Sample Represented as a String989

The person is an 18-year-old male who identifies himself as Hispanic. He has been arrested 6 times990

and has been convicted. He is 5 feet 0 inches and weighs between 150 and 174 lbs. He has never been991

married and is currently not living alone. He does not have a high school diploma or GED certificate and992

is not enrolled in college. He has held no jobs during the year. He has used drugs in the past four years993

(marijuana) and has not felt depressed over the past month. At a young age, he lived with his biological994

mother in a household of size 6, in an urban area. He considers that God has something to do with what995

happens to him personally.996

A.2 Prompt Templates997

prompts:998

prompt_persona: |999

You are a highly experienced criminal justice risk assessment expert1000

employing advanced statistical and judicial knowledge.1001

1002

system1: |1003

You are a risk assessment expert. Analyze the following risk factors1004

to determine if they indicate high risk.1005

You must respond ONLY with a JSON object in exactly this format,1006

with no additional text:1007

1008

{1009

"prediction": "YES" or "NO",1010

"confidence": number between 0 and 1001011

}1012

Risk Factors to analyze:1013

{risk_factors}1014

1015

cot: |1016

You are a criminal risk assessment expert. Step back, take a deep breath1017

and carefully think step by step to assign a relative weight [low, medium, high]1018

to each risk factor before using them to collectively predict 3-year1019

rearrest recidivism:1020

{risk_factors}1021

After your analysis, you must respond ONLY with a JSON object in exactly1022

this format, with no additional text:1023

1024

{1025

"risk_factors": [1026

("factor1", "low"|"medium"|"high", "textual reasoning"),1027

("factor2", "low"|"medium"|"high", "textual reasoning"),1028

...1029

],1030

"prediction": "YES" or "NO",1031

"confidence": number between 0 and 1001032

}1033

1034

cot-nshot: |1035

You are a criminal risk assessment expert. First,analyze the following1036

example cases of risk factors and resulting 3 year rearrest recidivism outcome:1037

12



{nshot_example_str} 1038

1039

Next, step back and take a deep breath and carefully think step by step 1040

to assign a relative weight [low, medium, high] to each risk factor before 1041

using them to collectively predict 3-year rearrest recidivism for this case: 1042

{risk_factors} 1043

Based on the above n-shot examples and your weighted risk factor analysis 1044

for this particular case, predict the 3-year rearrest recidivism outcome 1045

for this case. 1046

Respond ONLY with a JSON object in exactly this format, with no additional text: 1047

1048

{ 1049

"risk_factors": [ 1050

("factor1", "low"|"medium"|"high", "textual reasoning"), 1051

("factor2", "low"|"medium"|"high", "textual reasoning"), 1052

... 1053

], 1054

"prediction": "YES" or "NO", 1055

"confidence": number between 0 and 100 1056

} 1057
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B Sample Courtroom Debate Simulation1058

We present a sample debate simulation from Granite3.1-dense:8b (transcript_row-123_ver-3.json (Re-1059

search, 2024a)).1060

B.1 Case Facts1061

Age: 22, Prior Arrests: 2, Actual Recidivism: No1062

Additional characteristics: highest degree is not enrolled with high school degree; parent/guardian1063

relationship at age 12 is Unknown; married/cohabitation status is never married, not cohabiting; resident1064

locale is Unknown; no other adult family member in jail in previous 5 years; total jobs in last year is 0; not1065

homeless for 2+ days in past 5 years; reports asking God for help; male; no food stamp usage in last year.1066

B.2 Debate Transcript1067

Prosecutor 1: (Judge Prior: No, 40%) The defendant’s history of two prior arrests within the last five1068

years, combined with his young age and lack of employment or education, suggests a significant risk for1069

reoffending within three years. This pattern aligns with recidivism research indicating that individuals1070

with multiple arrests and limited prosocial factors are at heightened risk.1071

Defense 1: (Judge Prior: Yes, 65%) The court should consider the defendant’s strong potential for1072

rehabilitation despite his past arrests. His young age, at 22, and lack of employment or education are not1073

necessarily predictors of future criminal behavior when viewed in isolation. Instead, we must examine his1074

individual circumstances and positive factors that can mitigate risk.1075

Prosecutor 2: The defendant’s history of two prior arrests within the last five years is a significant risk1076

factor for reoffending within three years. According to the Bureau of Justice Statistics, individuals with1077

multiple arrests have a higher likelihood of recidivism compared to those without such records.1078

Defense 2: While acknowledging the defendant’s two prior arrests, it is crucial to consider his strong1079

potential for rehabilitation and various positive factors that can mitigate recidivism risk. His young age of1080

22 suggests a significant amount of untapped growth potential. Additionally, although he lacks a high1081

school degree or employment, his spirituality - indicated by seeking help from God - can serve as a1082

protective factor against criminal behavior.1083

Prosecutor 3: The defendant’s history of two prior arrests within the last five years, combined with his1084

young age and lack of employment or education, indicates a significant risk for reoffending within three1085

years. This aligns with recidivism research which shows that individuals with multiple arrests and limited1086

prosocial factors have heightened recidivism rates.1087

Defense 3: The court should consider the defendant’s strong potential for rehabilitation despite his past1088

arrests. His young age of 22, coupled with the lack of a high school degree and employment, does not1089

necessarily predict future criminal behavior when viewed in isolation. Instead, we must examine his1090

individual circumstances and positive factors that can mitigate risk.1091

B.3 Final Judge’s Ruling1092

After careful consideration of all presented arguments and evidence, it is determined that the defendant1093

poses a significant risk for reoffending within three years. The two prior arrests within the last five1094

years, combined with his young age and lack of employment or education, align with recidivism research1095

indicating heightened risks for individuals with multiple arrests and limited prosocial factors. (Prediction:1096

Yes with 70%, INCORRECT)1097

B.4 Judge Reasoning1098

• The defendant’s history of two prior arrests within the last five years is a significant risk factor1099

for reoffending within three years, as supported by the Bureau of Justice Statistics indicating that1100

individuals with multiple arrests have higher recidivism rates compared to those without such records.1101
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• Although the defendant’s young age (22) suggests potential for growth and change, it is combined 1102

with other risk factors, such as lack of employment or education, which do not bode well for his 1103

prospects for rehabilitation. 1104

• While the defendant’s spirituality can serve as a protective factor against criminal behavior, this 1105

mitigating factor does not outweigh the substantial risks posed by his history of arrests and lack of 1106

prosocial factors. 1107

B.5 Judge Critique 1108

The prosecutor effectively utilized recidivism research to argue for a heightened risk of reoffending due 1109

to the defendant’s multiple arrests and limited prosocial factors. Conversely, the defense attempted to 1110

highlight potential for rehabilitation based on the defendant’s young age and spirituality. However, the 1111

cumulative weight of his history of two prior arrests and lack of employment or education outweighed 1112

these mitigating factors in this judge’s evaluation. 1113
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C Comparing Performance vs Compute (by time and tokens)1114

C.1 StandardLLM: Performance vs Wall Clock Time1115

Both token counts and API wall clock execution time were recorded for all MAD court simulations.1116

Figure 6 shows differences in F1-score variance by model (label) and prompt type (shape). The wider1117

spread of system1 prompts (green triangles) and model ranking largely uncorrelation with expected1118

performance rankings like the Huggingface Open LLM benchmark. This suggests models may be1119

overfitting to our data on this task. Conversely, CoT prompts provide the narrowest variation in F1-1120

scores/more stable performace albeit with top values generally below those of system1 and cot-nshot1121

prompts. Finally, Figure 6 show all models and prompt combination are similarly bounded by the same1122

F1 score ceiling suggesting optimization on this task should focus on the tradeoffs between computational1123

efficiency (system1) and generalizability (cot).1124

Figure 6: StandardLLM F1-score vs API Wall Clock Time)

C.2 AgenticSimLLM: Performance vs Token Count1125

Figure 7 focuses F1-score performance vs total token count for making recidivism predictions using MAD1126

court simulations. Aside for the exaone 3.5 outlier, this shows the same pattern as Figure 6. That is, using1127

token count as a proxy for reasoning thoroughness, we see models on the left using less reasoning has a1128

wider range of F1 score metrics that do not correlate with popular leaderboard benchmarks. However,1129

again we see that with more reasoning the F1 score become more stable and predictable albeit slightly1130

below the highest scores among the band of models that do less reasoning.1131
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Figure 7: AgenticLLM F1-score vs Token Count
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D MAD Simulation Stabilize Performance Metrics1132

D.1 StandardLLM: Large Ensemble1133

Figure 8 plots 81 unique combinations of model+prompt sorted by decreasing F1 score in blue paired with1134

corresponding model accuracy in orange. Note the top F1 scores, are dominated by a concentration of1135

large parameter models using cot-nshot (e.g. athene 72b, qwen 2.5 72b, and llama 3.3 70b) and unexpected1136

smaller models (e.g. llama 3.1 8b, falcon3 7b, llama 3.2 3b). The systematic concentration of large models1137

contrasts with the almost randomize order of smaller models. This again suggests smaller models are1138

overfitting to the data while the large models may be more generalizable.1139

Figure 8: StandardLLM on a Large Ensemble (81 models+prompts)

D.2 StandardLLM: Small Ensemble1140

In contrast to the StandardLLM large ensemble in Figure 8, the medium ensemble using AgenticSimLLM1141

in Figure 9 highlights several points. First, the F1-score is highly correlated with accuracy in a range1142

(0.47-0.87) consistently above the range for StandardLLM’s F1-score (0.09-0.58). This suggests that1143

agentic thinking regularizes performance and makes small model accuracy a much more reliable and1144

generalizable metric. Second, two of the three large +70b LLMs rank in the top four confirming larger1145

models more reliably benefity from agentic reasoning on this task. Third, among the highly-regarded1146

recent reasoning models the performace is poor to mediocre ( Deepseek-r1, Tulu3, OLMo2) suggesting1147

internally reasoning models offer no additional advantages over our explicit external structured reasoning1148

using MAD court simluations (DeepSeek-AI et al., 2025; Lambert et al., 2025; OLMo et al., 2025).1149

Finally, the Llama models illustrate how performance roughly increases with both model size and more1150

quantization levels (fp16 > 4 bit) under our AgenticSimLLM reasoning method.1151
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Figure 9: AgenticSimLLM on a Medium Ensemble (37 models+prompts)
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E SOTA Linguistic vV Statistical Reasoning1152

Although this paper is not focused on optimizing performance metrics for our task, readers may be1153

interested in this related topic. Here we provide SOTA performance metrics on tabular data tasks for (a)1154

traditional statistical machine learning models (ML models), (b) specialized tabular LLMs, and (c) current1155

leading SOTA general LLMs on our recidivism prediction task.1156

E.1 General Purpose LLM1157

Model Prompt Accuracy Precision TP TN FP FN
OpenAI gpt-4o-mini system1 0.48 0.60 29 10 19 42

cot 0.71 1.00 71 29 0 0
cot-nshot 0.47 0.49 23 5 24 48

OpenAI o3-mini system1 0.49 0.63 31 11 18 40
cot 0.53 0.60 32 8 21 39
cot-nshot 0.70 0.96 67 26 3 4

Anthropic Claude haiku-3-5 system1 0.34 0.21 7 2 27 64
cot 0.71 1.00 71 29 0 0
cot-nshot 0.71 1.00 71 29 0 0

Anthropic Claude sonnet-3-5 system1 0.43 0.44 19 5 24 52
cot 0.53 0.68 36 12 17 35
cot-nshot 0.57 0.72 41 13 16 30

Table 3: Performance using SOTA Commercial LLMs

E.2 Statistical ML and Specialized Tabular LLMs1158

Table 4 compares the median performance metrics for both the leading traditional statistical ML model1159

(XGBoost) and two popular specialized tabular LLMs (TabPFN, TabNet) (Ma et al., 2024). These metrics1160

are based on performance over 48 OpenML tabular datasets where ICD boosts performance with "in-1161

context distillation" (ICD) for more efficent use of n-shot examples. The recent tabular LLM TabPFN1162

model claims SOTA peformance in low data regimes with datasets under 10,000 samples (Hollmann et al.,1163

2025). Note, performance metrics for these models on our recidivism prediction tasks are likely to differ1164

from these benchmark OpenML datasets.1165

Model Median AUC Median F1 Median Accuracy
XGBoost (Tuned) 0.969 0.921 0.923
TabPFN-ICD 0.967 0.899 0.902
XGBoost 0.953 0.893 0.894
TabPFN 0.951 0.847 0.844
TabNet 0.939 0.887 0.887

Table 4: SOTA Metrics for Statistical ML and Specialized Tabular LLMs
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