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Abstract

In-context Ranking (ICR) is an emerging paradigm for Information Retrieval (IR),
which leverages contextual understanding of LLMs by directly incorporating the
task description, candidate documents, and the query into the model’s input prompt
and tasking the LLM to identify relevant document(s). While it is effective, effi-
ciency is a significant challenge in this paradigm, especially as the candidate list
grows due to quadratic / super-linear scaling of attention operation with context
length. To this end, this paper first identifies inherent and exploitable structures
in the attention of LLMs finetuned for ICR: (1) inter-document block sparsity
— attention is dense within each document block but sparse across different doc-
uments in the context; and (2) query-document block relevance — the attention
scores from certain query tokens to a document block in middle layers strongly
correlate with that document’s actual relevance. Motivated by these observations,
we introduce BlockRank (Blockwise In-context Ranking), a novel method that
adapts the attention operation in an LLM by (a) architecturally enforcing the ob-
served inter-document block sparsity, reducing attention complexity from quadratic
to linear without loss in performance, and (b) optimizing query-document block
relevance for true relevant documents during fine-tuning using an auxiliary con-
trastive training objective, improving retrieval in attention. Experiments on BEIR,
MSMarco and NQ with Mistral-7B demonstrate that BlockRank Mistral matches
or outperforms existing SOTA listwise rankers and controlled fine-tuned base-
line while being significantly more efficient at inference (4.7x for 100 MSMarco
documents in context) and scaling gracefully to long-context shortlists - around
500 documents in-context (~ 100K context length) within a second, presenting a
scalable and effective solution for ICR.

1 Introduction

Information retrieval (IR) is the problem of finding relevant content from a large document corpora.
While sparse retrieval methods based on word-level matching have existed for decades [Robertson
et al., 2009, [Formal et al., 2021]], modern IR systems increasingly leverage deep neutral network
based representations, which achieve their success through a superior ability to capture deep semantic
relationships [Karpukhin et al.l 2020]. Recently, generative large language models (LLMs) [Team
et al., 2023, |Achiam et al., [2023[] have emerged as a revolutionary paradigm that transforms many
sub-fields of machine learning, including IR. Through pre-training on the web, LLMs absorb an
enormous amount of world knowledge and demonstrate remarkable capabilities in dialogue, question
answering, reasoning, and beyond [Wei et al., [2022]].

The powerful capabilities of LLM open up novel approaches for IR as well. One emerging paradigm
is the In-context Ranking (ICR) [Lee et al.,|2024, |Ma et al., 2023|], which directly leverages an LLM’s
contextual understanding capabilities. In this setup, a query and a list of candidate documents are
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Figure 1: Analysis of attention patterns in Mistral-7B performing In-context Ranking (ICR) on
MSMarco. (left) Attention averaged over middle layers 16-21 reveals structural sparsity — a strong
diagonal (intra-document attention needed for local context processing) and significant attention to
the first row (focus on the query-based instruction). (middle) Attention in Layer 18 from individual
query tokens to document segments. Certain tokens (the last token, :”) attend primarily to the
relevant document only (i.e., Doc24, highlighted in green). (right) Attention from final query tokens
across layers shows retrieval signals strengthening in middle layers. These patterns motivate our
BlockRank approach.

formatted together within the LLM’s input prompt (see Figure[3), tasking the model to identify the
most relevant document(s), often through the generative decoding process. ICR holds the promise of
considering the query and all candidates simultaneously while performing relevance judgements.

Despite this promise, LLM-based ICR introduces significant efficiency challenges. As the num-
ber of candidate documents increases, the input context length grows rapidly, making inference
computationally expensive and memory-intensive, due to quadratic/super-linear complexity of the
attention mechanism. Current methods [Lee et al.,|2024, |Sun et al., [2023| |Pradeep et al.,|2023a/b|]
typically treat the LLM as a black-box or do not fully utilize the structure of the ICR task i.e. the
input prompt is composed of a sequence of potentially independent candidate documents conditioned
on a shared instruction prompt. Moreover, as we discuss in Section [5.3]and Section [D.T]of Appendix,
auto-regressive decoding is not best suited for this task when decoding multiple predictions from the
fine-tuned model (see Table [).

Paper Contributions. To this end, we first investigate how standard LLMs process information
within the specific task structure. We conduct an analysis of the attention patterns of a fine-tuned
Mistral-7B model when prompted on ICR examples derived from MSMarco dataset (see Section 3|
for details and Figure [1| for visualizations). This analysis reveals two structural properties: (1)
inter-document block sparsity — most document tokens focusing locally (primarily within their own
document, on instructions, or one or two other documents), rather than attending densely across all
candidate documents. (2) query-document block relevance — similar to the findings of Wu et al.
[2024], |Chen et al.| [2025]], we find that last and some specific query tokens like “:” (that signal start
of the potential document generation process) develop strong attention weights towards relevant
document tokens, particularly in the model’s middle layers.

Building up on these insights, we propose BlockRank (Blockwise In-context Ranking), an efficient
in-context ranking method. BlockRank introduces two modifications (visualized in Figure [2)) to
standard LLM architecture and fine-tuning: (1) architecturally, it imposes a structured sparse attention
in which document tokens attend only causally to their own content and shared instruction tokens,
reducing attention complexity from quadratic to linear; and (2) it incorporates a contrastive learning
objective to explicitly optimize internal attention from signal-carrying query tokens toward relevant
documents, which helps the BlockRank model in two fronts: (a) attend strongly to the relevant
document in context, improving retrieval quality (see Table[3)); (b) the ability to reliably infer relevance
based on attention concentration during the prefill stage, leading to further speedups in inference
compared to iterative decoding (see Section4.3). To summarize, the main contributions of this work
are:
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Figure 2: BlockRank starts with chunking the full prompt into segments and then processes it using
structured attention, where the documents only attend to themselves and the instruction segment,
while the query segment attends to the full prompt. It also incorporates an auxiliary attention loss
(Laux) from a middle layer (I*) that increases sharpness of attention on the relevant documents and
enables an alternate inference mechanism using attention scores derived from [*.

* an analysis that characterizes attention patterns in LLMs fine-tuned for ICR, identifying key sparsity
structures and latent retrieval signal carriers (specific query tokens in middle layers).

* an efficient approach BlockRank for In-context Ranking that enforces a structured sparse attention
and a contrastive training objective on internal attention.

* extensive experiments on standard retrieval benchmarks (BEIR, MSMarco and NQ) demonstrating
that BlockRank achieve strong ICR performance, matching or outperforming strong baselines as
well as full fine-tuned model (see Table[I} [2), while being order of magnitude efficient at inference
(see Figure4).

The remainder of this paper is organized as follows: Section 2 describes the problem setup and
discusses related work. Section 3 details our analysis of LLM attention in ICR. Section 4 presents the
BlockRank methodology. Section 5 reports experimental results, and Section 6 concludes the paper.

2 Problem Setup and Related Work

This section formally defines the ICR task addressed in this paper. We also review relevant prior
work that uses LLM for IR, and position our BlockRank method in the context of the literature.

2.1 Problem Formulation: In-context Ranking

Given a collection of n documents D = {dy,...,d,} and a query ¢, the goal of IR is to return a
subset of D that are relevant to q. In this paper, we consider documents and queries in the form of
text that can be parsed by an LLM, though the discussion may also apply to visual and audio data
when the LLM is multi-modal. Following standard practices [[Lee et al.l2024]], we define an ICR
prompt as a composition of the list of documents together with the query as following:

prompt(Q7 D) = “{II’ZSZ‘/I. {dl}a ) {dN} {Q}” (1)

In practice, processing the entire corpus D (where n can be millions) within a single prompt is
infeasible due to LLM context length limitations. Therefore, the ICR task we consider in this paper
operates on a smaller candidate list D, = (d1,...,dn) C D, where N is the number of candidates
(N = O(100) in our experiments) retrieved by a first-stage retrieval model (e.g. dual-encoder). The
prompt in () is thus applied to this candidate list D,. Furthermore, each document representation
{d;} within the prompt often includes structured formatting beyond just the raw text c;, such as
its unique identifier id;. We adopt the format from [Lee et al., [2024], also illustrated in Figure [3]
explicitly demarcating document start, content, and end, along with identifiers (e.g., ID: id; |
CONTENT: ¢; | END ID: id;).

Inst is a description of the retrieval task and can also include the query q. While excluding the query
from the instruction prefix is desirable from an efficiency standpoint — as it would allow for the
query-independent representations of documents to be pre-processed and cached offline — we find
this leads to a noticable drop in performance in our experiments (see Table [6). We hypothesize,
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You will be given a query and a list of documents. Each document will be formatted as ID: <id>
CONTENT: <content> | END ID: <id>. You need to read carefully and understand all of them. The query
is: which classification group contains the most organisms, and your goal is to find all document(s)
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ID: 1 | CONTENT: This is a diverse group of organisms. It includes plants, animals.. | END ID: 1

[Documents in-between omitted for brevityl ...

ID: N | CONTENT: Organisms composed of eukaryotic cells are divided into 4 main.. | END ID: N

====== Now let’s start! ======
Which document is most relevant to answer the query? Print out the ID of the document. Query: which

classification group contains the most organisms. The following document(s) can help answer the query:
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Figure 3: Example structure of the prompt template used in our experiments, showing query-based
instruction, abbreviated document list, and the final query section.

including the query in Inst allows the model to condition each document’s representation on the
specific information need from the outset, enabling it to better focus on query-relevant facts and
signals within each document during processing. We note that existing listwise LLM re-rankers [Sun
et al., 2023} |Pradeep et al.,|2023b]| also apply a similar formatting where the query appears before the
documents. Our preliminary experiments show that one can replace the query with a similar-looking
document from the corpus, suggesting that future work can potentially explore conditioning document
representations within clusters to alleviate the need for query-dependent processing.

The objective of In-context Ranking is then formally defined as follows: given the prompt(q, Dg)
constructed from the query ¢ and the candidate list Dy, train or utilize an LLM fp, with 6 being the
model weight, to effectively identify and output the identifiers ¢d* corresponding to the d* € D,
deemed relevant to g. Typically it is achieved by predicting a ranked permutation of D, and taking
the top k elements. The central challenge addressed in this paper is to develop methods to train fy
and perform this prediction both effectively (high accuracy) and efficiently (low computational cost),
particularly as the candidate list size IV increases.

2.2 Related Work

Our work builds upon research in neural retrieval, the rapidly evolving field of using LLMs for IR,
and efficient attention mechanisms.

Neural Re-ranking and Retrieval Models. Prior to LLMs, neural information retrieval saw
significant progress with methods like dense dual-encoder retrieval (e.g., DPR [Karpukhin et al.,
2020]], ANCE [Xiong et al., 2020]) offering efficient first-stage filtering, and cross-encoder mod-
els (e.g., monoBERT [Nogueira and Cho| |2020], monoT5 [Nogueira et al., | 2020]]) providing high
re-ranking effectiveness through deep query-document interaction. Late interaction models like
ColBERTV2 [Santhanam et al., [2022]] aimed to balance the trade-off between dual and cross encoders.
Our work is architecturally distinct from traditional neural IR methods as it operates within the
in-context ranking paradigm, where a single LLM processes the query and the entire candidate list
simultaneously in one context window allowing full contextualization (query and output representa-
tions are conditioned on the full set of candidate documents) and complex instruction-following (e.g.,
"Find documents that disagree with...").

LLMs as Listwise Re-rankers. The ability of LLMs to process and reason over long contexts
spurred their application to listwise re-ranking [Ma et al.l 2023]] (or In-context Ranking), where
multiple candidates are processed simultaneously. Initial successes often involved prompting large
proprietary models like GPT-3.5/4 [Sun et al.| 2023 in zero-shot or few-shot settings. While effective,
these approaches typically incur high computational costs and often rely on auto-regressive generation
to output rankings or relevance scores, adding latency. More recent work focuses on adapting open-
source LLMs (e.g., Llama, Mistral, Zephyr, Vicuna) for this task [Pradeep et al., 2023bla, [Zhang



et al., [2023]] and improving efficiency, for instance using Seq2Seq architectures [[Tamber et al., 2023
and using single-token decoding [Reddy et al.l 2024f]. Recent papers have also shown the existence
of retrieval heads (attention heads that carry strong retrieval signals) in many modern LLMs [Wu
et al.}2024] and their usefulness in inferring retrieval signals [[Chen et al.,[2025]|. Our work differs
from these methods by introducing effective task specific restructuring of the attention architecture
for efficiency and an explicit fine-tuning objective to directly train the model’s attention patterns for
the ranking task.

In-context Retrieval / Ranking |Lee et al.|[2024] studied the In-context Retrieval (ICR) paradigm
for various frontier LLMs, demonstrating that long-context models can match the performance of
specialized retrieval systems when processing corpora of up to a few thousand documents. Our work
builds on this paradigm but addresses a more challenging setting. The evaluation in that study is
performed on a random subset of documents from the full corpus. In contrast, our experiments focus
on ranking the top-k hard candidates returned by a strong first-stage retriever i.e. In-context Ranking
task. This task is arguably more difficult, as the model must distinguish between many semantically
similar documents to identify the correct answer. We argue that this hard negative setting is a more
faithful simulation of the practical application of LLMs in retrieval pipelines. Moreover, processing
long lists of documents within the LLM context remains challenging, with studies highlighting
difficulties in effectively utilizing long-range information [Goldman et al.| 2024]).

Efficient and Structured Attention. The quadratic complexity of the standard self-attention has
spurred extensive research into more efficient attention approximations. Many successful approaches
enforce a structured sparsity on the attention matrix, reducing complexity from quadratic to sub-
linear. Notable examples include methods based on sliding windows (e.g., Longformer [Beltagy
et al., 2020]]), global-local patterns (e.g., BigBird [Zaheer et al., 2020]), and other block-wise
structures. While these methods are designed for general long-context processing, BlockRank’s
structured attention can be seen as a task-specific instance of this paradigm. BlockRank’s sparsity
is semantically informed by the logical structure of the in-context ranking task itself—separating
instructions, documents, and the query. This content-aware structuring allows for a highly efficient
architecture tailored for ICR.

3 Emergence of Structured Attention in In-context Ranking

Before introducing our method, we first analyze the attention mechanisms of a standard LLM when
performing the ICR task defined in Section The analysis below is anchored on Figure [T] which is
based on a random sample, we provide more results in the Appendix Section D}

Analysis Setup. 'We conduct our analysis using a Mistral-7B-v0.3 model [Jiang et al.,[2023] fine-
tuned on the ICR task with data derived from MSMarco (as described in Section @ In particular,
our fine-tuning objective is the standard Next Token Prediction (NTP) loss, without any modifications.
We feed this model prompt(q, D, ). Let the resulting input token sequence be T' = (¢1,...,tL).

Our analysis focuses on the attention probabilities computed within the transformer layers. Given a

layer index I € {1,..., Limodei} Where Ly,o4e; is the total number of layers, and an attention head
(1,h)

ij

index h, we denote the attention probability from a query token ¢; to a key/value token ¢; as o

We often consider the attention averaged across all H heads in a layer: 041(.;) = % Zle agﬁ’h). We
examine interactions between different types of tokens by partitioning the token indices {1,..., L}
into sets corresponding to the instructions (T7,s), the query (75), and each document (7, for
k € {1,...,N}). We visualize these interactions using heatmaps, with representative examples

shown in Figure[I]

Observation 1: Inter-document Block Sparsity Our first key observation is that the attention
patterns exhibited by document tokens are structured and sparse, rather than uniformly dense. This
is clearly visible in Figure[I[a), which shows the segment-wise attention in the middle layers. The

heatmap is dominated by the diagonal, indicating strong intra-document attention: for a token ¢; €
O]

T}, . the sum of attention probabilities towards other tokens within the same document, th ety Xij
J k

is significantly higher than attention towards other parts of the context.

This observed structured sparsity implies that computing full attention matrix might be largely
redundant for this task. A significant portion of the computation could potentially be saved by



enforcing an attention pattern that focuses on local (intra-document) and instructional context,
directly motivating the structured sparse attention employed in BlockRank.

Observation 2: Query-document Block Relevance Our second key observation is that certain
tokens within the query T, attends primarily to relevant documents only, particularly in the middle
layers of the transformer.

Figure[T|b) illustrates this at Layer 18. It maps the attention from individual query tokens (x-axis) to
the different document segments (y-axis). We observe that certain tokens, such as delimiters (¢ :?)
and end of prompt tokens, exhibit distinct sharp attention distributions. These specific “signal carrier”
tokens attend more strongly towards the segment corresponding to the ground-truth relevant document
d* (i.e., Doc24, highlighted in the figure) compared to irrelevant documents dy, (k # *). Formally,

let AEZ de = 2ot €Ty, ag-) be the total attention from query token ¢; to document dy, at layer [. For

specific t; € T, identified as signal carriers and middle layers [, we observe Ag o > AEZ a,, for
most k # x. We hypothesize that such structural tokens carry strong retrieval signals as they often
precede Ty- (by design during fine-tuning but also during pre-training), hence their attention gets

biased towards the in-context d* segment in order to predict the succeeding 74+ tokens.

Furthermore, the layer depth plays a critical role in the emergence of these signals. Figure [T|c)

tracks the attention Agg 4,, from final query tokens ¢; to all document segments dj, across all layers

1 € {1,..., Limoder}- The plot shows that the discriminative signal is weak in the initial layers,
emerges and strengthens significantly in the middle layers (approximately layers 8-24), and persists
or slightly diffuses in the final layers.

4 BlockRank: Blockwise In-context Ranking

Motivated by the attention analysis presented in Section[3] we propose Blockwise In-context Rank-
ing (BlockRank), an efficient in-context ranking method. BlockRank comprises of following
components (see Figure [2): a structured attention mechanism enforcing sparsity, an auxiliary at-
tention loss to enhance retrieval signals in attention operation, and an alternative attention-based
inference method. We detail each component below.

4.1 Blockwise Structured Attention

The core of BlockRank’s efficiency during fine-tuning and inference stems from restructuring of
attention mechanism designed to enforce the sparse patterns observed in Section 3]

Enforcing inter-document block sparsity. we modify attention operation such that:

* Document Tokens (¢; € Ty, fork € {1,..., N}): only attend to tokens within their own document
chunk (¢; € T}, ) and tokens within the instruction chunk (t; € Trps¢).

* Query Tokens (t; € T;): attend to all tokens in the prompt (t; € T' = U, T},) to gather context for
identifying the relevant document(s).

* Instruction Tokens (¢; € T7,,s:): attend causally within the instruction segment itself.

Instead of constructing large, explicit sparse attention masks, we implement this structured attention
efficiently using the chunked representation defined as follows: the long prompt is first segmented
into its logical components Sy = Inst, S, = dj, fork € {1,..., N}, and Sy4+1 = q. Each segment
Sk is then processed (via standard sequence length chunking or padding) to form fixed-length
chunks, typically of length L.p,,k tokens. Let the token sequence corresponding to chunk Sy be
T, CT = (t1,...,tr,), where T is the (potentially virtual) concatenation of all chunk sequences.

Each chunk S}, can be processed largely in parallel (e.g., distributed along the batch dimension). Let

Qg), K ,gl), Vk@ be the query, key, and value matrices for chunk Sy, at layer {. The attention output for

a token ¢; in chunk .Sy, is computed as follows:

o If Sy, is a document chunk (k € {1,..., N}): The attention output is computed using self-attention
within the chunk and cross-attention only to the keys and values from the instruction chunk:

Attention( ,(Cl), (K ,gl), K}Qst], [Vk,(l), VI(TIL)St]). Attention to other document chunks S,,, 2, and the
query chunk S, is effectively masked out.



o If Sj is the query chunk (k¢ = N + 1): The attention output is computed using self-
attention within the chunk and cross-attention to the keys and values from all other chunks:

Attention( Sll), [Kél), K}izst, Kt(ill)7
l l l l I
KLV Vi Vi VD,
e Instruction chunk attention (¥ = 0) is standard causal self-attention.

This computes only the necessary attention scores, drastically reducing the computational cost, con-
verting quadratic attention to linear. Please see Appendix Section [C]for more details and complexity
analysis.

Permutation-invariant Position Embedding. To complement the structured attention, we employ
a specialized position embedding that reinforces the logical separation of the prompt’s components.
This also helps the model learn position-invariant representations for documents [Tang et al., |2023|]
and distinguish the query’s unique role. Specifically, tokens in the instruction segment (77,,s;) are
assigned standard sequential positions starting from 0. For all document segments (1}, ), we use a
shared local position space. Each document’s tokens are assigned positions beginning immediately
after the instruction segment, as if it were the only document present. For example, if the instruction
has length Ly, s, the first token of every document dy, is assigned the position Ly, s:. This encourages
the model to apply a consistent, order-invariant function to each document, mitigating any bias from
its absolute position in the candidate list. Finally, to distinctly separate the query from the document
corpus, its tokens (7;) are assigned positions starting from a large, fixed offset. In our experiments,
we use an offset of 8192, so the query tokens receive positions [8192,8193,...]. This large gap
ensures that the relative positional encodings between any query token and any document token are
significantly different.

4.2 Auxiliary Attention Loss (Laux)

To explicitly optimize query-document block relevance for relevant documents during fine-tuning,
we introduce an auxiliary loss £,,x applied at a specific middle layer {* (determined empirically, see
Section in the Appendix). This loss encourages “signal-carrier” query tokens to attend more
strongly to the relevant document.

More specifically, let T}, signar C Tj be the set of indices for the identified signal-carrying query
tokens. Based on our prompt template and empirical analysis we set Tj, signat = [“:”, “[¢”]. Let
Tdoes = Uszl T4, be the set of indices for all tokens belonging to any document segment. For
each signal token t; € T§ signal at layer [*, we compute attention scores towards document tokens
t; € Tyocs as following: 1. Obtain query vectors QZ(-I ) for t; € T} signai and key vectors K ](-l )
for t; € Tgocs. 2. Compute raw attention logits z;; = QZ(-l )(K](.l ))T/\/cl;C for all t; € Tyocs. 3.
Compute normalized attention probabilities only over the document tokens: o; = softmax;(z;;),
where the softmax is computed across all j such that t; € T;ocs. This normalization focuses the
probability mass exclusively on the candidate documents, ignoring instructions and query tokens. 4.
Aggregate these probabilities to compute an attention mass score for each document dy.: S(q,dy) =

€T, sigmat > t,€Ty, «}; (Alternative: could use mean aggregation over ¢;). This score S(q, dx)

quantifies the relevance signal from the carrier tokens towards document dj. 5. Apply a contrastive
loss using these scores. We use the InfoNCE loss with temperature 7:

exp(S(g, d*)/7)
S exp(S(q, dy,) /7)

where d* is the ground-truth relevant document. This loss encourages the score S(g, d*) for the
relevant document to be higher than scores for irrelevant documents.

Eaux = EInfoNCE(S(Q7 d*), {S(q, dk)}k#*; T) = - IOg (2)

Overall Training Objective. The BlockRank model is fine-tuned by minimizing a combined loss
function that includes both the standard next-token prediction objective and our auxiliary attention
loss:

Lrotal = LNTP + ALlaux 3)

Here, £ n7p is the cross-entropy loss calculated on the answer tokens (similar to standard instruction
tuning) based on the model’s prediction of the next token in the sequence, computed using the



final hidden states which are generated respecting the structured attention masks defined in Sec-
tion Lau is the auxiliary InfoNCE loss defined in Equation 2] applied only at layer I*. Xis a
hyperparameter balancing the two losses (we use A = 0.1 in our experiments).

4.3 Efficient Attention-Based Inference

An advantage of BlockRank is that the auxiliary loss explicitly optimizes the attention scores S(q, dj,)
to reflect relevance. This allows for an alternate efficient inference mechanism during the prefill
stage of the context processing. It can bypass the iterative auto-regressive decoding process, and
even the full forward pass (depending on the choice of [*). The inference mechanism can be defined
as follows: 1. Given a prompt(q, D), perform a partial forward pass of the BlockRank model up
to the target middle layer [*. 2. Compute the document relevance scores S(q, di) for all candidate
documents k € {1,..., N} using the exact same procedure as described for the auxiliary loss
calculation (Section[4.2] steps 1-4), utilizing the signal carrier tokens T signq: and performing the

softmax over document tokens 7,5 only. 3. Identify the index k of the document with the highest

score: k = argmaxy S(q,dy). 4. Output the corresponding document identifier id;,, for top-K
predictions output arg top, S (g, d)

5 Experimental Results

This section empirically evaluates the proposed BlockRank method. We conduct two sets of
experiments: first, an evaluation on the BEIR benchmark to assess zero-shot generalization against
state-of-the-art re-rankers, and second, a controlled in-domain evaluation to analyze effectiveness,
efficiency, and scalability. We aim to answer the following research questions: (RQ1) How does
BlockRank compare against strong baselines in terms of retrieval effectiveness, both in zero-shot
generalization and in-domain settings? (RQ2) What are the efficiency benefits of BlockRank
compared to standard fine-tuning, particularly when scaling the number of in-context documents?
(RQ3) What is the contribution of BlockRank’s core components (structured sparse attention,
auxiliary attention loss, and attention-based inference) to its overall performance?

5.1 Experimental Setup

Goal & Task. Given a query and a list of candidate documents retrieved by an initial, potentially
weaker retriever, the goal is to identify the most relevant document(s) from within that list by
processing the entire list in the LLM’s context.

Datasets & Formatting. For assessing zero-shot generalization, we use 11 diverse datasets from
the BEIR benchmark [Thakur et al.,|2021] replicating Table 1 in Reddy et al.[[2024]. In this setting,
the task is to rerank the top-100 documents provided by Contriever [Izacard et al., 2021]] model.
For in-domain analysis, we use two standard passage retrieval benchmarks: MSMarco Passage
Ranking [Bajaj et al.l 2018] and Natural Questions (NQ) [Kwiatkowski et al.l [ 2019]. During training,
we construct candidate lists for each query by retrieving an initial set of 30 passages using a pre-
trained sentence transformer model with teacher-forcing (i.e. always adding ground-truth documents).
This list is then formatted into the prompt structure shown in Figure 3] During in-domain evaluation,
we construct lists of varying sizes (N = 10 to 500) to test scalability. More details can be found in

Appendix

Evaluation. We evaluate model performance on two primary aspects: effectiveness and efficiency.
For BEIR, effectiveness is measured using nDCG @ 10. For in-domain experiments on MSMarco and
NQ, we report Precision@1 and Mean Reciprocal Rank @ 10 (MRR @ 10). Efficiency is quantified
by Inference Latency, the end-to-end wall-clock time per query.

Baselines. We compare BlockRank against a comprehensive set of baselines tailored to each
experimental setting. For the BEIR generalization benchmark, we compare against contempo-
rary listwise re-rankers, including a strong cross-encoder, RankVicuna [Pradeep et al., 2023a]],
RankZephyr [Pradeep et al., 2023b]], and the recent state-of-the-art model, FIRST [Reddy et al.|
2024]]. For in-domain analysis, our primary comparison is with Full Fine-tuning (Full-FT) (full causal
attention with only NTP loss) of the same base model and the same training data. We also include
results from zero-shot LLMs (Mistral-7B-Instruct, Gemini-2.0-flash). For broader context, we include



Table 1: nDCG@10 on BEIR benchmark, all re-ranker rank top-100 documents retrieved from
Contriever retrieval model. Bold indicates the best numbers.

Train Climate- DB- . Hotpot MS NF- Sci-  Sci- Trec-
Reranker Data AYE: FEVER Pedia FEVER FiQA 04" Marco Corpus NQ docs fact COVID
None (Contriever) MS Marco 459 23.7 41.3 75.8 329 63.8 40.7 32.8 498 165 67.7 59.6
Cross-Encoder MS Marco  50.7 25.5 47.0 81.9 35.6 71.8 47.0 345 576 170 69.1 71.0
Rank Vicuna GPT 3.5 50.7 28.2 50.0 81.0 359 73.5 36.7 33.1 58.6 184 70.5 71.3
Rank Zephyr GPT 3.5+4 53.7 25.6 50.0 80.1 422 71.6 42.7 377 65.6 20.5 76.7 78.4
FIRST GPT-4 54.3 26.7 50.9 81.7 422 74.2 44.4 37.4 664 204 746 78.8

BlockRank Mistral MS Marco ~ 54.8 26.8 49.7 87.3 44.9 75.5 48.6 36.6 624 187 176.5 76.2

Traditional Retrieval Models such as the lexical baseline BM25, the dense retriever GTR [N1 et al.}
2021]], ColBERTV2 [Santhanam et al., [2022]], and best performing Sentence Transformer Encoders
specific to each dataset (msmarco-distilbert-dot-v5 for MSMarco and al1-MinilM-L12-v2
for NQ). Furthermore, we consider pairwise cross-encoder baselines like monoBERT [Nogueira and
Chol 2020]] and improved versions of monoT5 [Nogueira et al.| [2020].

Implementation Details. BlockRank and the Full-FT baseline utilize Mistral-7B-v0.3 as the
base model. For fine-tuning both models, we employ the Adafactor optimizer [Shazeer and Sternl,
2018]] with a learning rate of 3 x 10~7 and a global batch size of 32 (accumulated across replicas).
Each model is trained for 1 epoch with a linear warmup followed by cosine decay. For BlockRank, the
auxiliary loss weight A is set to 0.1, and 7 is set to 0.05. Unless stated otherwise, BlockRank results
employ the proposed attention-based inference. Decoding based experiments with BlockRank, LLM
baselines (Full-FT Mistral and Zero-Shot LLMs) utilize greedy decoding to generate the relevant
document identifier(s); to get multiple predictions (for MRR @ 10 evaluation) we use constrained
beam decoding with beam-size set to 10, where only valid outputs are generated. All LLM fine-tuning
and inference experiments were conducted using JAX on Google Cloud TPUs (specifically, 8 chip
v6e configuration), and reported efficiency metrics correspond to this setup as well.

5.2 Main Performance Comparison

Generalization to Diverse Tasks (RQ1) The results in Table |1| show that MSMarco-trained
BlockRank Mistral (54.8) outperforms FIRST (54.3), RankZephyr (53.7), and RankVicuna (50.7),
demonstrating strong out-of-distribution generalization. Importantly, BlockRank achieves strong
results with the significant efficiency gains (Figure [, presenting a compelling combination of
effectiveness and scalability. Furthermore, it gets the strong performance by processing the entire
list of 100 candidate documents in a single forward pass instead of multiple sliding-window forward
passes over the candidate set — which is required for other listwise ranking models. These results also
indicate that BlockRank is not sensitive to the first-stage retriever, as it effectively ranks candidates
from Contriever despite its training data being constructed with a different retrieval model.

In-Domain Performance (RQ1) Table 2| summarizes the quality comparisons on the NQ and
MSMarco in a controlled environment where both BlockRank and Full-FT Mistral are trained on the
same training data and evaluated on in-domain data, for broader comparison we also provide results
for additional baselines trained on the same data. Our proposed BlockRank consistently outperforms
its direct counterpart, Full-FT Mistral (7B).

Scalability (RQ2). Figure[4underscores BlockRank’s Figure 4: P@1 and Latency (annotated) of
substantial inference efficiency advantage over the Full- BlockRank vs Full-FT Mistral, scaling N on
FT baseline as the number of in-context documents (V) MSMarco.

increases. BlockRank model consistently exhibits lower [~

latency; at N = 100, it is approximately 4.7x faster. [ — -2
More critically, its latency scales linearly with IV, reach- '
ing 1.15s at N = 500. Furthermore, BlockRank model
maintains its P@1 (peaking around 29.2% for N = 200 1

and remaining at 28.7% for N = 500), whereas Full-FT’s 270} |72 Hocank

P@1 sharply degrades beyond N = 100 (dropping to 265t -

=~ 26.7% at N = 500). Number of In-context Documents (N)

— 285 304 ms

118 ms




Table 2: Comparison on MSMarco and NQ datasets in controlled settings. Encoder methods are
evaluated on the full corpus while the rest of the baselines are evaluated on a shortlist. Best results
are highlighted in Bold.

e N

Category Method Model Size NQ MSMarco
Precision@1 Precision@l MRR@10

Sparse Retrieval BM25 - 29.7 - 18.4
Sentence-transformer [Reimers and Gurevych{2019] 66M 58.8 24.8 37.2
Dual-Encoder GTR-XXL [Ni et al.|)2021] 4.8B - - 38.8
ColBERTV2 [Santhanam et al.|[2022] 110M - - 39.7
Cross-Encoder monoBERT [Nogueira and Cho/[2020] 110M - - 38.2
o monoT5-XL [Nogueira et al.[|2020] 3B - - 41.2

Mistral-7B-v0.3-it [Jiang et al.|[2023] 7B 43.5 13.1 -

Zero-Shot LLM G nini 2.0-flash [Team et al|2023] . 65.1 169 -
. Full-FT Mistral 7B 75.5 28.7 38.3
Fine-uned LLM g6, ckRank Mistral (Ours) 7B 76.2 29.1 2.0

5.3 Ablation Studies Table 3: Impact of training loss on

Attention-based (Attn) and Decoding
To understand contribution of components of BlockRank (Decode) Inference.
(RQ3), we perform several ablation experiments, primarily

s \

on the MSMarco dataset with NV = 50. More ablation is Training Configuration *recision@1
provided in Section [D]of Appendix. Decode  Attn
Full-FT 287 276
I £ Traini L Tabl bl h b Full-FT (w/ aux) 28.7 28.1
mpact of 1raining Loss a eE]a ates the clontrl u- BlockRank (w/o ntp) 58 286
tions of Lyrp and L4, to P@1, evaluated with both BlockRank (w/o aux) 284 278
auto-regressive and attention-based inference. Introduc- BlockRank (full) 287 291

\ J

ing L4, consistently enhances performance for attention-
based inference, and for BlockRank (which incorporates structured attention), it increases from 27.8
to 29.1. As expected, the £y p objective is crucial for generative decoding performance, as seen by
the sharp drop in Decode Prec@1 for ‘BlockRank (w/o ntp)’ to 15.8. Notably, the full BlockRank
configuration achieves the highest Attn Prec@1 (29.1), demonstrating that L,,,, effectively optimizes
attention scores for direct retrieval, making attention-based inference the preferred mode for our
method.

Impact of Inference Method Table [] ablates the in- Table 4: Ablation: Inference Method
ference, comparing decoding against our attention-based Effectiveness & Latency (MSMarco,
approach on P@1 and MRR@10; for Full-FT, Decode N=50).

MRR @10 uses a beam size of 10. The results show that

while auto-regressive decoding yields comparable P@ 1 Mod Iﬁﬁfﬁﬁﬁe ret MrReLo
for both Full-FT (28.7) and BlockRank (28.7) models, it Full-FT Decode 287 384
is significantly less effective at producing a strong ranked Full FT Atn 276 388
list for MRR @10. In contrast, BlockRank with attention- BIOCKIANI D cc ol - 0.0

BlockRank Attn 29.1 42.0

based inference performs best, achieving a notably better
MRR @10 (42.0). BlockRank’s attention-based inference, optimized via its auxiliary loss, is more
calibrated at assigning relevance across multiple predictions.

6 Conclusion

This work addresses the efficiency challenge in In-Context Retrieval (ICR) by analyzing LLM atten-
tion, identifying structured sparsity and query-token retrieval signals. We introduced BlockRank, a
method that enforces this task-specific sparsity for linear complexity and uses a contrastive auxiliary
loss to directly optimize these internal attention signals for relevance. Experiments on MSMarco and
NQ show BlockRank (Mistral-7B) matches or surpasses standard fine-tuning effectiveness while be-
ing significantly more efficient at inference and training. This offers a scalable and effective approach
for LLM-based ICR. However, we acknowledge our current findings are primarily demonstrated on a
specific model architecture, and the robustness of the learned attention signals for direct inference
across highly diverse tasks needs more investigation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims are clearly written in abstract and introduction and justified using
appropriate experiments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have written limitation of our work in Section [A]of the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theory

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We discuss all experimental details in Section [5.1]and Section [B]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All dataset used is already open-source. Code will be released at here.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Justification: We discuss all experimental details in Section [5.1]and Section B}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to scale of the experiments it is computationally challenging to do multiple
evaluations to get reliable error estimates.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Described in Section[3.1] and Section
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Conform with Code of Ethics
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Section [Al
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We don’t release any data or model
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cite all existing works, pre-trained models and datasets used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing or human subject
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: no core LLM use
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Societal Impact

The BlockRank methodology, by enhancing the efficiency and scalability of In-context Retrieval
(ICR) in Large Language Models (LLMs), makes advanced semantic retrieval more computationally
tractable and can democratize access to powerful information discovery tools. This could acceler-
ate research, improve educational outcomes by providing more relevant information quickly, and
empower individuals and organizations with better decision-making capabilities. Furthermore, the
increased efficiency directly translates to reduced energy consumption for retrieval-intensive LLM
applications, contributing to more environmentally sustainable Al development and deployment. By
enabling effective ICR on potentially smaller or more optimized models, BlockRank could also
broaden the reach of these technologies in resource-constrained environments.

However, like many advancements in Al, more efficient information retrieval also presents challenges.
The underlying LLMs can inherit and potentially amplify societal biases present in their training
data. Therefore, continued research in this area should be accompanied by a strong emphasis on
transparency, and the development of robust mechanisms to identify and mitigate the spread of
harmful or misleading content.

B Dataset and Hyperparameter Details

This section provides a detailed description of the dataset and hyperparameters used in this study to
ensure reproducibility.

B.1 Datasets
We use two standard passage retrieval benchmarks:

* MSMarco Passage Ranking [Bajaj et al.l 2018]]: We use MSMarco v1 passage retrieval
dataset, it has total 8.8 M passages, ~ 500K training queries and 6980 validation queries.
We directly utilize the hard negatives collectio from huggingface for training. Dur-
ing test we retrieve the top-N passages using msmarco-distilbert-dot-v5 sentence-
transformer.

* Natural Questions (NQ320K) [Kwiatkowski et al., 2019]: We use NQ320K passage
retrieval dataset which has ~ 320K passages in the corpus, ~ 300K training queries and
7830 validation queries. For NQ, we collect hard negatives using all1-Minil.M-L12-v2
sentence-transformer model for training. We use the same model during inference as well to
retrieve top-/NV passages.

B.2 Fine-tuning Details (BlockRank and Full-FT)
The following fine-tuning settings were used for both BlockRank and Full-FT Mistral-7B:

* Optimizer: Adafactor [Shazeer and Stern|, 2018]] with 5; = 0.9.

* Learning Rate: 3 x 1077.

* Learning Rate Schedule: Linear warmup for 50 steps followed by a cosine decay.
» Batch Size: A global batch size of 32, accumulated across replicas.

* Number of Epochs: 1 epoch.

* Weight Decay: No weight decay.

* Gradient Clipping: gradient norm clipped to 1.0.

* Loss for Full-FT: Standard Next Token Prediction (NTP) cross-entropy loss, calculated on
the answer tokens (i.e., the ID of the relevant document).

"https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3
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B.3 BlockRank Specific Hyperparameters

In addition to the general fine-tuning settings, the following hyperparameters are specific to the
BlockRank method:

* Auxiliary Loss Weight ()\): The hyperparameter balancing the NTP loss and the auxiliary
attention 1oss (L44.) Was set to A = 0.1 this ensures that both loss have the same scale.

* InfoNCE Temperature (7): The temperature parameter for the InfoNCE loss (L) was
setto 7 = 0.05.

* Signal-Carrying Query Tokens (77 s;gnq:): Based on our prompt template and empirical
analysis (Section @, the set of tokens for signal-carrying query tokens was T} signai =
[n:n’ n[‘n]‘

» Middle Layer for Auxiliary Loss (I*): The auxiliary loss L, was applied at a specific
middle layer [* = 20, determined empirically as described in Section[D.3]

e Chunk Length (L.p,n1): The fixed length for chunks used in the structured attention
mechanism. We set L¢pyni = 160 for MSMarco and L pynr = 384 for NQ, this ensures
that ~ 95% of the passages get full represented in L¢punk sequence length.

C Attention Complexity Analysis

This section provides a analysis of the computational complexity of the structured attention mech-
anism within a single layer of the BlockRank model architecture. Our aim is to clearly illustrate
the scalability benefits of BlockRank, particularly its linear scaling with respect to the number of
candidate documents, IN. We define L pqn1 as the fixed characteristic length (number of tokens) for
segments after processing, and d as the hidden dimension of the model. For this analysis, we assume
that the instruction segment, each of the IV document segments, and the query segment have effective
lengths Lypst = Lenunks Laoc = Lehunk, and Lg = Lepyni respectively, when their attention com-
putations are considered. This section focuses exclusively on the attention component’s complexity,
as this is where BlockRank introduces its primary architectural modification for efficiency.

The BlockRank model implements a structured sparse attention mechanism, as detailed in Section
4.1 of the main paper, where different parts of the input prompt adhere to distinct attention patterns.
The instruction segment, with its effective length of L jnk, performs causal self-attention, leading
to a complexity of Corin, rnst = O(Lihunk -d). For the N document segments, each also of effective
length L pnk, tokens attend both within their own segment and to tokens within the instruction
segment. This means the effective context length for a token in any given document segment is
Lehunk + Lenunk = 2Lchunk. Consequently, the attention complexity for a single document segment
is O(Lehunk * 2Lchunk - d) = O(2Lghunk - d). Summing across all N document segments, their
total attention complexity is Cyttn,Doc = N - (’)(2L§,“m g d).

The query segment, also with an effective length of L.k, has the full attention scope. It attends to its
own tokens, tokens from the instruction segment, and tokens from all /N document segments. The total
context length for these query tokens becomes Lepunk + Lenunk + (N Lenunk) = (N + 2) Lehunk-
The attention complexity for the query segment is therefore Coiin Query = O(Lchunk - (N +
Summing the complexities of these components gives the total attention complexity per layer for the
BlockRank model, Cattn,BIockRank:

C(Ltt’rL,BbCkRank = Cattn,[nst + Cattn,Doc + Cattn,Query
Clattn,BlockRank = O(LZpunid) + N - O(2L2) i d) + O((N 4 2) L2, 1d)
This simplifies to O(3L%, ,,..d + 3NL?,. . d), whichis O((N + 1)L?, . . d). The dominant term
thus yields a total attention complexity of Coy1, BlockRank = O(IV - thunk - d). This result clearly

shows that the attention complexity in the BlockRank architecture scales linearly with N, the number
of documents.

In contrast, a standard Transformer model processing a sequence of comparable total length S ~
(N + 2) Lepunk would exhibit an attention complexity of Cytr, 50 = O(S? - d). For large N, this is
approximately O(((N + 2)Lepunk)? - d) = O(N? - L2, . - d), which is quadratic with respect to
N.
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D Additional Results

D.1 Calibration Problem in Beam Decoding with Full-FT Model

To analyze the behavior of the standard fine- Table 5: Entropy of predicted document ID digits
tuned (Full-FT) model when generating multi- (;d, and id;) over 10 beam-decoded predictions
ple distinct predictions via beam decoding, we  for the Full-FT model versus random predictions.
conducted an entropy analysis on the individ- Lower entropy indicates less diversity in the gener-
ual tokens of the predicted document identifiers. ated digits across the prediction list.
This experiment was designed to assess the di-
versity of predictions for structured identifiers Prediction Model Entropy idy  Entropy id;
(two-digit IDs from 0-99, given N = 100 can- Full-FT 298 +0.43 2.19 4+ 0.46
didate documents). For each query in the test

. BlockRank 2.54+0.24 2.67+0.24
set, we generated 10 unique document ID pre-
dictions from the Full-FT model. We then com- | Random 2.55+£0.25  2.66+0.24
puted the entropy of the distribution of the first
digit (idy) and the second digit (¢d;) across these 10 predictions. This was compared against the
entropy derived from 10 randomly drawn unique two-digit IDs. Because the candidate list is randomly
shuffled and the ID assigned to each document is completely independent from its content, a lower
entropy would indicate a undesirable concentration of predicted digits, suggesting a lack of diversity
in the generated list beyond the top few candidates.

The results, summarized in Table [5] show that the Full-FT model exhibits lower average entropy
for both idy (2.28 + 0.43) and id; (2.19 £ 0.46) compared to the random baseline (2.55 + 0.25
for ¢dy and 2.66 4 0.24 for ¢d;). This decreased entropy indicates that the sequence of document
identifiers generated by the Full-FT model via beam decoding tends to be less diverse in its constituent
digits than random chance would suggest. To give an example, we observe that let’s say the model
predicts 73 as it’s top prediction with high confidence, then there is a high likelihood that it will
predict other IDs either starting with 7 or ending with 3. Such concentration implies that while the
model may identify a strong top candidate, its ability to produce a well-calibrated and varied set of
subsequent predictions is limited, due to the nature of auto-regressive log-probability distributions.
This observation supports the main paper’s discussion (Section [5.3] Tabled) on the sub-optimality of
beam decoding for generating ranked lists for ICR.

D.2 Analysis of Retrieval Signals in Attention Patterns of Full-FT Mistral

To substantiate the claims made in Section 3 of the main paper regarding the presence of retrieval
signals within the internal attention patterns of a standard fine-tuned (Full-FT) language model,
we conducted a series of analytical experiments. These experiments, detailed below, confirm the
characteristics of such signals using attention-based inference on the MSMarco dev dataset.

Full-FT Mistral Attention Accuracy vs Query Token

First, we investigate the specific carriers of the re-
trieval signals. Figure [5] presents the P@1 perfor-
mance of attention-based inference when attention
scores are extracted from different query tokens
within the prompt. This analysis reveals that cer-
tain query tokens, particularly those located towards
the end of the query or specific delimiter tokens such %y %y By A, . g,
as “:” and terminal prompt markers, serve as strong %",
"signal carriers," yielding significantly higher P@1 querytorers
when their attention patterns are used to predict the

relevant document.

Precision@1
e e oN N
5 5 8 0w

“

T ot b B - o
S . 7Y %, s .
%%, %%, 0%,

Figure 5: Performance of Full-FT model’s
attention-based inference vs the query token
for which attention scores are extracted from.

Complementing this, Figure [6] evaluates both P@1 and Mean Reciprocal Rank @10 for attention-
based inference as a function of the Transformer layer index from which attention scores are derived.
This experiment confirms that the retrieval signal is most prevalent in the middle layers of the Full-FT
model, with performance declining in earlier and later layers. Collectively, these empirical findings
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Full-FT Mistral Attention Accuracy vs Layer Index
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Figure 6: Performance of Full-FT model’s attention-based inference as a function of the Transformer

Layer Index from which attention scores are extracted (MSMarco).

demonstrate that standard LLMs fine-tuned for In-context Retrieval exhibits latent retrieval signals
within their attention mechanisms. These signals are characterized by their preferential emergence in
middle layers and their association with specific query tokens.

D.3 Layerwise Emergence of Retrieval Signals and Choice of [*

Figure [7) illustrates the evolution of layerwise Pre-
cision@1 derived from attention scores on a held- 08
out subset of MSMarco training data as the Full-FT
model undergoes training. It is observed that effective
retrieval signals, as measured by the attention-P@ 1
metric, do not develop uniformly across all layers. In-
stead, they emerge more prominently and strengthen
considerably in the middle layers of the transformer
(layers 12 through 24) as training progresses, while
shallower and deeper layers exhibit comparatively 0 2000 4000 Tf:?{fmgag(;‘;pioooo 12000 14000
weaker signal strength. Based on this we set the

[* = 20 for all of our BlockRank experiments. Al-
though, we find that the choice of [* in BlockRank
is not very sensitive to this specific layer, any reason-
able middle layer gives similar performance.

o
=)

Precision@1
o
=

o
]

o
o

Figure 7: Layerwise Attention Precision@1
on a held-out subset of MSMarco training
data vs training steps for Full-FT model

D.4 Impact of Including Query in Prompt Prefix

We investigated whether providing the query Table 6: Ablation on Including Query in Prompt
context upfront, in addition to its standard posi- Prefix. Comparison of Precision@ 1 on MSMarco

tion at the end of the prompt, impacts retrieval =100) for Full-FT BlockRank 1
performance. Table[6]compares the Precision@ 1 (N=100) for Fu and BlockRank models.

results on MSMarco for the Full-FT baseline Model Query in Prefix Prec@1
and our BlockRank model using the standard

. Full-FT-Mistral X 27.2
format (query only at end; denoted by X in the FEH-FT—M;;EI v 287
table) versus the query-prefix format (query at BlockRank-Mistral P 242
beginning and end; denoted by v'). Including the BlockRank-Mistral v 291

query redundantly in the prefix (v) improved
performance over the standard format (X) for
both models. The Full-FT model’s Prec@1 increased from 27.2 to 28.7 (+1.5), while our BlockRank
model saw a more substantial increase from 24.2 to 28.1 (+3.9). This suggests that priming the model
with the query context before it processes the candidate documents is beneficial, perhaps allowing
attention mechanisms, particularly the specialized ones in BlockRank, to focus more effectively
on query-relevant information throughout the sequence. Given this clear advantage, we utilize the
prompt format that includes the query in the prefix for all other reported experiments.
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D.5 Cross-dataset Generalization

To assess the generalization of the BlockRank
models, we evaluated BlockRank Mistral mod-
els trained on one dataset and tested on another,
unseen dataset. Specifically, models were fine-
tuned separately on the MSMarco and Natural
Questions (NQ) training sets, and their Preci-
sion@1 (P@1) performance was subsequently
measured on the test sets of both NQ and MS-
Marco. For reference, we also include the perfor-
mance of a zero-shot Mistral-7B-instruct model
(denoted as No Training). The results of this
cross-dataset evaluation are presented in Table
As expected, BlockRank models achieve their

Table 7: Cross-dataset generalization performance
of BlockRank Mistral models. P@1 scores are re-
ported on the NQ and MSMarco test sets for mod-
els with no training (zero-shot Mistral-7B-instruct),
fine-tuned on NQ, and fine-tuned on MSMarco.

Training Data NQP@1 MSMarco P@1

No Training 43.5 13.1
NQ 76.2 18.2
MSMarco 62.0 29.1

best performance when evaluated on the in-domain test set. When evaluated on out-of-domain
datasets, the performance, shows positive transfer above the No Training baseline but is considerably

lower than in-domain scores.
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