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Figure 1: Unified Multimodal Learning. Meta-Transformer utilizes the same backbone to encode
natural language, image, point cloud, audio, video, infrared, hyperspectral, X-ray, time-series, tabular,
Inertial Measurement Unit (IMU), and graph data. It reveals the potential of transformer architectures
for unified multi-modal intelligence.

ABSTRACT

Multimodal learning aims to build models that can process and relate information
from multiple modalities. Despite years of development in this field, it still remains
challenging to design a unified network for processing various modalities (e.g.
natural language, 2D images, 3D point clouds, audio, video, time series, tabular
data) due to the inherent gaps among them. In this work, we propose a framework,
named Meta-Transformer, that leverages a frozen encoder to perform multimodal
perception without any paired multimodal training data. In Meta-Transformer,
the raw input data from various modalities are mapped into a shared token space,
allowing a subsequent encoder with frozen parameters to extract high-level se-
mantic features of the input data. Composed of three main components: a unified
data tokenizer, a modality-shared encoder, and task-specific heads for downstream
tasks, Meta-Transformer is the first framework to perform unified learning across
12 modalities with unpaired data. Experiments on different benchmarks reveal
that Meta-Transformer can handle a wide range of tasks including fundamental
perception (text, image, point cloud, audio, video), practical application (X-Ray,
infrared, hyperspectral, and IMU), and data mining (graph, tabular, and time-series).
Meanwhile, it also excels in multimodal understanding on cross-modal retrieval,
referring segmentation, and grounding tasks. Meta-Transformer indicates a promis-
ing future for developing unified multimodal intelligence with transformers. We
will release well-documented code and pretrained weights soon.
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1 INTRODUCTION

The human brain, which is considered the inspiration for neural network models, processes informa-
tion from various sensory inputs, e.g. visual, auditory, and tactile signals, simultaneously. Moreover,
the brain simultaneously learns multi-sensory knowledge efficiently. However, in deep learning, it is
significantly invaluable and meaningful to design a unified network capable of processing a wide
range of data formats of high efficiency due to challenging modality gaps (Wang et al., 2021d;c;
2022c).

Each data modality presents unique data patterns, which makes it difficult to adapt models trained on
one modality to another. For instance, images exhibit a high degree of information redundancy due to
densely packed pixels, which is not the case with natural language (He et al., 2022). Point clouds, on
the other hand, have a sparse distribution in 3D space, making them more susceptible to noise and
challenging to represent (Qi et al., 2017a). Audio spectrograms are time-varying and non-stationary
data patterns consisting of combinations of waves across frequency domains (Gong et al., 2021).
Video data contains a sequence of image frames, which gives it the unique capability to capture both
spatial information and temporal dynamics (Bertasius et al., 2021). Graph data represents entities as
nodes and relationships as edges in a graph, modeling complex, many-to-many relationships between
entities (Gilmer et al., 2017). Owing to the substantial differences inherent to various data modalities,
it is common practice to utilize distinct network architectures to encode each modality separately.
For instance, Point Transformer (Zhao et al., 2021) leverages vector-level position attention to extract
structural information from 3D coordinates, but it cannot encode an image, a natural language
paragraph, or an audio spectrogram slice. Therefore, designing a unified framework capable of
utilizing a modality-shared parameter space to encode multiple data modalities remains a significant
challenge. Recently, the development of unified frameworks such as VLMO (Wang et al., 2021c),
OFA (Wang et al., 2022a), and BEiT-3 (Wang et al., 2022c) have improved the ability of the network
for multimodal understanding, through large-scale multimodal pretraining on paired data (Wang et al.,
2022c;a; 2021c), but they are more focused on vision and language, and unable to share the whole
encoder across modalities.

The transformer architecture and attention mechanism, proposed by Vaswani et al. (2017) for natural
language processing (NLP), have made a significant difference in deep learning (Vaswani et al., 2017;
Carion et al., 2020b; Dosovitskiy et al., 2021a; Zhai et al., 2022; Xie et al., 2021; Wang et al., 2021a).
These advancements have been instrumental in enhancing perception across different modalities such
as 2D vision (Dosovitskiy et al., 2021b; Chen et al., 2022; Liu et al., 2021b), 3D vision (Zhao et al.,
2021; Yu et al., 2022; Qian et al., 2022b), audio signal processing (Gong et al., 2021) , etc. These
works have demonstrated the versatility of transformer-based architectures, inspiring researchers to
explore whether it’s possible to develop foundation models capable of unifying multiple modalities,
ultimately achieving human-level perception across all modalities.

Table 1: Comparison between Meta-Transformer and related works on perception tasks.

Method Modalities Share Parameters Unpaired Data
Transformer ✘ ✘
ViT, Swin Transformer, MAE ✘ ✘
Point Transformer, PCT, Point ViT ✘ ✘
AST, SSAST ✘ ✘
CLIP, Flamingo, VLMO, OFA ✘ ✘
BEiT-3 Several Layers ✘
ImageBind ✘ ✘
Meta-Transformer [ours] Whole Backbone ✔

In this paper, we explore the potential of transformer architecture to process 12 modalities including
images, natural language, point cloud, audio spectrogram, video, infrared, hyperspectral, X-Ray,
IMU, tabular, graph, and time-series data, as shown in Figure 1. We discuss the learning process
with transformers for each modality and address the challenges associated with unifying them into a
single framework. Consequently, we propose a novel unified framework named Meta-Transformer
for multimodal learning. Meta-Transformer is the first framework to simultaneously encode
data from a dozen of modalities using the same set of parameters, allowing a more cohesive
approach to multimodal learning (as shown in Table 1). Meta-Transformer incorporates three simple
and effective components: a modality-specialist (§ 3.2) for data-to-sequence tokenization, a modality-
shared encoder (§ 3.3) for extracting representations across modalities, and task-specific heads
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for downstream tasks. Specifically, Meta-Transformer first utilizes modality-specific tokenizers
to transform multimodal data into token sequences that share a common manifold space. Then,
a modality-shared encoder with frozen parameters is used to extract representations. Finally, the
representations will be input into different downstream task heads. With this simple framework, both
task-specific and modality-generic representations can be effectively learned, from unpaired data.

We conduct extensive experiments on various benchmarks of 12 modalities. By utilizing images of
LAION-2B (Radford et al., 2021) dataset for pretraining exclusively, Meta-Transformer demonstrates
remarkable performance in processing data from multiple modalities, consistently achieving superior
performances over state-of-the-art methodologies across different multimodal learning tasks. More
detailed experimental settings can be found in § D.

In conclusion, our contributions can be summarized as follows:

• For multimodal research, we propose a novel framework, Meta-Transformer, which utilizes
a unified encoder to simultaneously extract representations from multiple modalities with
the same set of parameters.

• For multimodal network design, we comprehensively examine the functions of transformer
components (e.g. embeddings, tokenization) and encoders in processing various modalities.
Meta-Transformer provides valuable insights and sparks a promising new direction in
developing a modality-agnostic foundation model capable of unifying all modalities.

• Experimentally, Meta-Transformer achieves outstanding performance on various datasets
spanning 12 modalities and excels in multimodal understanding, which validates the further
potential of Meta-Transformer for unified multimodal learning.

2 RELATED WORK

2.1 SINGLE-MODALITY PERCEPTION

Multi-Layer Perceptron for pattern recognition. At the beginning, support vector machine (SVM)
and multi-layer perceptron (MLP) are applied to text (Xu et al., 2003), image (LeCun et al., 1989),
point cloud (Qi et al., 2017b), and audio (Dhanalakshmi et al., 2009) classification.

Recurrent & Convolutional Neural Network. Hopfield Network (Hopfield, 1982) is the original
form of recurrent networks, then LSTM (Hochreiter & Schmidhuber, 1997) and GRU (Chung
et al., 2014) further explore the advantages of RNNs in sequence modeling and application in NLP
tasks (Nallapati et al., 2016; Cho et al., 2014; Tang et al., 2015), which is also widely applied in audio
synthesis (Kalchbrenner et al., 2018). Meanwhile, the success of CNNs including LeNet (LeCun et al.,
1998), AlexNet (Krizhevsky et al., 2017), VGG (Simonyan & Zisserman, 2015), GoogleNet (Szegedy
et al., 2015) and ResNet (He et al., 2016) in image recognition greatly promote the application of
CNNs in other fields such as text classification (Zhang et al., 2015; Zhang & Wallace, 2015), point
cloud understanding (Li et al., 2018; Maturana & Scherer, 2015; Thomas et al., 2019), and speech
classification (Abdel-Hamid et al., 2014).

Transformer. Recently, transformer architecture (Vaswani et al., 2017) has been adopted in various
tasks such as text understanding (Devlin et al., 2019) and generation (Brown et al., 2020) in NLP,
classification (Dosovitskiy et al., 2021a), detection (Carion et al., 2020a) and segmentation (Xie
et al., 2021) in images, point cloud understanding (Guo et al., 2021; Zhao et al., 2021), and audio
recognition (Gong et al., 2021; 2022).

2.2 TRANSFORMED-BASED MULTIMODAL PERCEPTION

Yu et al. (2019) proposes the deep modular co-attention networks between vision and language,
which performs the cross-modal alignment. Then it becomes a consensus (Wang et al., 2021c;d;
2022a;c) to utilize a cross-attention mechanism to bridge different modalities. More works are focused
on how to effectively align representations extracted across modalities by pretraining. VL-BERT (Su
et al., 2019) pioneers modality-aligned representations for generic vision-language understanding.
Then Oscar (Li et al., 2020) described the object semantics in both visual and textural contents.
Frameworks such as Vinvl (Zhang et al., 2021), Simvlm (Wang et al., 2021d), VLMO (Wang et al.,
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Figure 2: Meta-Transformer consists of data-to-sequence tokenization, unified feature encoding, and
down-stream task learning. The framework is illustrated with text, image, point cloud, and audio.

2021c), ALBEF (Li et al., 2021), Florence (Yuan et al., 2021) and Unified-IO (Lu et al., 2022) further
explore the advantages of joint representations between text and image. Omnivore (Girdhar et al.,
2022) is only focused on visual modalities.

3 META-TRANSFORMER

Despite the advances mentioned above, designing unified multimodal networks remains challenging
due to the inherent disparities between modalities. Moreover, most research in this area has primarily
focused on vision and language tasks, and may not directly contribute to tasks associated with other
modalities, such as 3D point cloud understanding, audio recognition, and time-series analysis.

3.1 PRELIMINARY

Formally, we denote the input space of n modalities as {X1,X2, · · · ,Xn}, while {Y1,Y2, · · · ,Yn}
are the corresponding label spaces. In addition, we assume there exists an effective parameter space
Θi for each modality, where any parameter θi ∈ Θi can be utilized for processing data xi ∈ Xi from
that modality. We say that the essence of Meta-Transformer is to find a shared θ∗ that satisfies:

θ∗ ∈ Θ1 ∩Θ2 ∩Θ3 ∩ · · · ∩Θn, (1)

with the hypothesis:

Θ1 ∩Θ2 ∩Θ3 ∩ · · · ∩Θn ̸= ∅. (2)

The multimodal neural networks can be formulated as a unified mapping function F : x ∈ X →
ŷ ∈ Y , where x is the input data coming from any modality {X1,X2, · · · ,Xn} and ŷ denotes
the prediction of the network. Denoted by y the ground truth labels and L the loss function, the
multimodal pipeline can be formulated as:

ŷ = F(x; θ∗), θ∗ = argmin
x∈X

[L(ŷ, y)]. (3)

3.2 DATA-TO-SEQUENCE TOKENIZATION

We take text, image, point cloud, and audio as examples shown in Figure 3. More details can be
found in B.1 and B.3. In specific, we use xT , xI , xP , and xA to denote a data sample of text, image,
point cloud, and audio spectrogram.

Natural Language. Following the common practice (Devlin et al., 2019; Liu et al., 2019), we use
WordPiece embeddings (Wu et al., 2016) with a 30,000 token vocabulary. WordPiece segments
original words into subwords. For example, the original sentence: “The supermarket is hosting a
sale”, could be converted to: “ The super market is host ing a sale”. Each subword corresponds
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Figure 3: Illustration of Data-to-Sequence Tokenization 3.2. We propose the meta scheme in (a)
containing grouping, convolution, and transformation progress. Then (b)-(e) represents the building
blocks applied with our meta scheme on texts, images, point clouds, and audio spectrograms.

to a unique token in a vocabulary, and then gets projected to a high-dimensional feature space with
word embedding layers. As a result, each input text is transformed to a set of token embeddings
x ∈ Rn×D, where n is the number of tokens and D is the dimension of embedding.

Image. To accommodate 2D images, we reshape the image x ∈ RH×W×C into a sequence of
flattened 2D patches xp ∈ RNs×(S2·C), where (H,W ) represents the original image resolution, C
denotes the number of channels; S is the patch size, and Ns = (HW/S2) is the resulting number of
patches. After that, a projection layer is utilized to project the embedding dimension to D:

xI ∈ RC×H×W → x′
I ∈ RNs×(S2·C) → x′′

I ∈ RNs×D. (4)

Point Cloud. To learn 3D patterns with transformers, we convert point clouds from raw input space
to the token embedding space. X = {xi}Pi=1 denotes a point cloud of P points, where xi = (pi,fi),
pi ∈ R3 represents the 3D coordinates, and fi ∈ Rc is feature of the i-th point. Generally, fi contains
visual hints such as color, viewpoint, normal, etc. We employ the Farthest Point Sampling (FPS)
operation to sample a representative skeleton of original point clouds. Then we employ K-Nearest
Neighbor (KNN) to group neighboring points. We construct the adjacency matrix with center points
of grouped subsets. Finally, we aggregate the structural representations from K subsets. We obtain
point embeddings as:

xP ∈ RP×(3+c) → x′
P ∈ R

P
4 ×D

2 → x′′
P ∈ R

P
16×D. (5)

Audio Spectrogram. Initially, we pre-process the audio waveform with the duration of t seconds
with log Mel filterbank (Schneider et al., 2019). Then we employ the Hamming window with a stride
of ts on the frequency of fs to split the original wave into l = (t/ts) intervals and further transform
the original wave into l-dimensional filterbank. Subsequently, we split the spectrogram into patches
from time and frequency dimensions with the same patch size of S. Different from image patches,
audio patches overlap on spectrograms. Following AST (Gong et al., 2021), we choose to split the
whole spectrograms into Ns = 12[(100t− 16)/10] patches by S × S convolution, then we flatten
patches into token sequences. The whole process can be summarized as:

xA ∈ RT×F → x′
A ∈ RNs×S×S → x′′

A ∈ R(Ns·D/S2)×D, (6)

where T and F denote time and frequency dimension.

3.3 UNIFIED MULTIMODAL ENCODER

After transforming the raw input into token embedding space, we leverage a unified transformer
encoder with frozen parameters to encode the token embedding sequences from different modalities.

Pretraining. We utilize ViT (Dosovitskiy et al., 2021a) as the backbone network and pre-train it
on the LAION-2B dataset with contrastive learning, which reinforces the ability for generic token
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encoding. After pretraining, we freeze the parameters of the backbone network. In addition, for text
understanding, we utilize the pretrained text tokenizer of CLIP (Radford et al., 2021) to segment
sentences into subwords and transform subwords into word embeddings.

Modality-Agnostic Learning. Following common practice (Devlin et al., 2019; Dosovitskiy et al.,
2021a), we prepend a learnable token xCLS to the sequence of token embeddings, and the final hidden
state of xCLS token (z0

L) serves as the summary representation of the input sequence, which is usually
utilized for performing recognition. The transformer encoder with a depth of L comprises multiple
stacked multi-head self-attention (MSA) layers and MLP blocks. The input token embeddings are fed
into an MSA layer first, and then an MLP block. The output of (ℓ− 1)-th MLP block serves as the
input of ℓ-th MSA layer. Layer Normalization (LN) is appended before each layer and the residual
connection is applied after each layer. The MLP contains two linear FC layers along with a GELU
non-linear activation. Thus transformer can be formulated as the following:

z0 = [xCLS; Ex1 ; Ex2 ; · · · ; Exn ] +Epos, E ∈ Rn×D, Epos ∈ R(n+1)×D (7)

z′
ℓ = MSA(LN(zℓ−1)) + zℓ−1, ℓ = 1 . . . L (8)

zℓ = MLP(LN(z′
ℓ)) + z′

ℓ, ℓ = 1 . . . L (9)

y = LN(z0
L), (10)

where Ex denotes the token embeddings from proposed tokenizer and n denotes the number of
tokens. We augment patch embeddings and learnable embedding with position embeddings Epos.

3.4 TASK-SPECIFIC HEADS

After the unified feature encoder, the obtained representations are input into the task-specific heads
h(·; θh), which consist mainly of MLPs and vary across modalities and tasks. The overall learning
objective of Meta-Transformer can be summarized as:

ŷ = F(x; θ∗) = h ◦ g ◦ f(x), θ∗ = argmin
θ

L(ŷ, y), (11)

where f(·), g(·), and h(·) denote the function of tokenizer, backbone, and task heads, respectively.

4 EXPERIMENTS

In this section, we perform experiments on each of the 12 modalities (§ 4.1), and we demonstrate
Table 2: Single-Modality Perception. Summary of experimental settings across different modalities.
We report the task, dataset, data scale, loss function, task head, and the ratio of trainable parameters
for each modality.

Modalities Tasks Datasets Data Scale Loss Function Head Ratio
Text Classification GLUE Benchmark 330K Cross Entropy Linear Layers <1%

Image
Classification ImageNet-1K 1.3M Smooth Cross Entropy Linear Layers <1%

Detection MS COCO 118K Focal & IoU Loss Mask RCNN 39.8%
Segmentation ADE-20K 20K Cross Entropy UpperNet 47.6%

Point Cloud
Shape Classification ModelNet-40 9K Smoth Cross Entropy Linear Layers <1%
Scene Segmentation S3DIS 400M Points Cross Entropy Convolution Layers 2.6%
Object Segmentation ShapeNetPart 16K Poly1 FocalLoss Convolution Layers 2.6%

Audio Classification Speech commands v2 105K Cross Entropy Linear Layers 1.3%
Video Action Recognition UCF101 14K Soft Cross Entropy Linear Layers 1.3%
Infrared Classification RegDB 40K Cross Entropy & Center & Triplet Loss Linear Layers <1%
Hyper-spectrum Classification Indian Pine 10K Cross Entropy Linear Layers <1%
X-Ray Classification Chest X-Ray 112K Cross Entropy Linear Layers <1%
IMU Classification Ego4D 193K Cross Entropy Linear Layers <1%
Tabular data Prediction Adult & Bank 32K-45K Binary Cross Entropy Linear Layers <1%
Graph data Prediction PCQM4M-LSC 47M L1 Loss Linear Layers <1%
Time-series Forecasting Exchange, Traffic, etc 5-36K MSE Loss Transformer Decoder 8.5%

the potential of Meta-Transformer for multimodal perception (§ 4.2). Following ViT (Dosovitskiy
et al., 2021a), Meta-Transformer-B16F denotes a base-scale encoder which contains 12 transformer
blocks and 12 attention heads, and the image patch size is 16. And the embedding dimension is 768,
the output dimension of MLP is 3,072. ‘F’ and ‘T’ denote that parameters of the encoder are Frozen
and further Tuned, respectively.

4.1 SINGLE-MODALITY PERCEPTION

we summarize the evaluation experiments as shown in Table 2, more details can be found in
Appendix D.
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Table 3: Experimental results for text understanding on the GLUE benchmark. We compare
existing methods from paraphrasing, sentiment, duplication, inference, and answering tasks.

Method
Pretraining Settings GLUE Benchmark

Modality Data Size SST-2 MRPC QQP MNLI QNLI
Sentiment Paraphrase Duplication Inference Answering

BiLSTM+ELMo+Attn - - - 90.4 84.9 64.8 76.4 79.8
OpenAI GPT (Radford et al., 2018)

Language

Book 0.8B 91.3 82.3 70.3 82.1 87.4
BERTBASE (Devlin et al., 2019) Wiki+Book 3.3B 88.0 88.9 71.2 84.6 90.5
RoBERTaBASE (Liu et al., 2019) 96.0 90.0 84.0 84.0 92.0
ChatGPT Various 4,5000B 92.0 66.0 78.0 89.3 84.0
Meta-Transformer-B16F [ours] Image LAION-2B (Radford et al., 2021) 2B 54.6 81.1 66.0 63.4 56.3
Meta-Transformer-B16T [ours] 81.3 81.8 78.0 70.0 60.3

Table 4: Experimental results for image understanding. We conduct experiments on the Ima-
geNet (Deng et al., 2009), MSCOCO (Lin et al., 2014), and ADE-20K (Zhou et al., 2017) datasets,
where Bold and underline indicate best and second best results.

Method Classification Object Detection Semantic Segmentation
Res #Params #FLOPs Acc (%) #Params #FLOPs AP (%) #Params #FLOPs mIoU (%)

PVT-L (Wang et al., 2021b) 2242 61.4M 9.8G 81.7 81.0M - 42.9 65.1M 79.6G 44.8
Swin-L‡ (Liu et al., 2021b) 3842 197M 104G 87.3 253M 1382G 51.8 234M 2468G 52.1
CoAtNet-4‡ (Dai et al., 2021) 3842 275M 190G 87.9 - - - - - -
DeiT III-L‡ (Touvron et al., 2022) 3842 304M 191G 87.7 - - - 353.6M 2231G 51.5
SwinV2-L/24‡ (Liu et al., 2022b) 3842 197M 115G 87.6 - - 58.8 - - 55.9
RepLKNet-31L‡ (Ding et al., 2022) 3842 172M 96G 86.6 229M 1321G 53.9 207M 2404G 52.4
HorNet-L‡ (Rao et al., 2022) 3842 202M 102G 87.7 259M 1358G 56.0 232M 2473G 54.1
ConvNeXt-L‡ (Liu et al., 2022d) 3842 198M 101G 87.5 255M 1354G 53.5 235M 2458G 53.2
InternImage-L‡ (Wang et al., 2022b) 3842 223M 108G 87.7 277M 1399G 54.9 256M 2526G 53.9
InternImage-XL‡ (Wang et al., 2022b) 3842 335M 163G 88.0 387M 1782G 55.3 368M 3142G 55.0

Meta-Transformer-B16F [ours]
2242 86.6M 17.5G 69.3∗ 143M 1126G 31.7 164M 135G 33.4
2242 86.6M 17.5G 79.3†

Meta-Transformer-L14F [ours]
3362 191.1M 190.6G 75.3∗ 364M 2143G 43.5 314M 683G 41.2
3362 191.1M 190.6G 83.1†

Meta-Transformer-B16T [ours] 2242 86.6M 17.5G 85.4 143M 1126G 46.4 164M 135G 48.3
Meta-Transformer-L14T [ours] 3362 191.1M 190.6G 88.1 364M 2143G 56.3 314M 683G 55.0

∗: zero-shot classification †: linear probing for classification ‡: models pre-trained on ImageNet-22K

Results on Natural Language Understanding Table 3 illustrates the experimental results on
the GLUE benchmark for text understanding tasks, Meta-Transformer-B16T exhibits improved
performance, with 81.3% in sentiment, 81.8% in paraphrase, 78.0% in duplication, 70.0% in inference,
and 60.3% in answering tasks.

Results on Image Understanding As shown in Table 4, Meta-Transformer exhibits outstand-
ing performance on image understanding tasks. It delivers great performances in classification
with Meta-Transformer-B16T and Meta-Transformer-L14T achieving 85.4% and 88.1% accuracy,
respectively. When it comes to object detection and semantic segmentation, Meta-Transformer-L14T
has a similar performance to InternImage-XL‡ (Wang et al., 2022b) in semantic segmentation, but
outperforms it in object detection.

Results on Infrared, Hyperspectral, and X-Ray data. Table 5a shows that Meta-Transformer-B16F
delivers competitive results with a Rank-1 accuracy of 73.50% and an mAP of 65.19%.

In addition, Table 5b presents the performance of Meta-Transformer on the Indian Pine dataset for
hyperspectral image recognition. Meta-Transformer stands out for its significantly fewer trainable
parameters (only 0.17M) compared to other methods. This reveals a promising development direc-
tion of applying the Meta-Transformer to remote sensing, environmental monitoring, and mineral
exploration. For X-Ray images, in Table 9, we can observe that Meta-Transformer can achieve a
competitive performance of 94.1% accuracy.

Table 5: Experimental results for infrared and hyperspectral data understanding. We conduct
experiments on classification tasks over the RegDB and Indian Pine datasets. We report Rank-1
(R@1), mean Average Precision (mAP), Overall Accuracy (OA), Average Accuracy (AA), and the
number of trainable parameters (Params).

Method R@1 (%) mAP (%) Params
AGW (Ye et al., 2020) [TPAMI’21] 70.49 65.90 25M
SMCL (Wei et al., 2021) [ICCV’21] 83.05 78.57 40M
MSCLNet (Zhang et al., 2022) [ECCV’22] 83.86 78.31 50M
Meta-Transformer-B16F 73.50 65.19 1.8M

(a) Infrared data understading

Method OA (%) AA (%) Params
ViT (Dosovitskiy et al., 2021a) [ICLR’21] 71.86 78.97 85.2M
SpectralFormer (Hong et al., 2021) [TGRS’21] (Pixel) 78.55 84.68 85.2M
SpectralFormer (Hong et al., 2021) [TGRS’21] (Patch) 81.76 87.81 85.2M

Meta-Transformer-B16F 67.62 78.09 0.17M

(b) Hyperspectral data understanding

Results on 3D Point Cloud Understanding Table 6 showcases the experimen-
tal results for point cloud understanding, comparing the performance of Meta-
Transformer with other state-of-the-art methods on the ModelNet-40 (Wu et al.,
2015), S3DIS (Armeni et al., 2016), and ShapeNetPart (Yi et al., 2016) datasets.
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Table 6: Experimental results for point cloud understanding. We conduct experiments on the
ModelNet-40 (Wu et al., 2015), S3DIS (Armeni et al., 2016), and ShapeNetPart (Yi et al., 2016)
datasets.

Method Pre-train ModelNet-40 S3DIS Area-5 ShapeNetPart
mAcc (%) OA (%) Params mIoU (%) mAcc (%) Params mIoUI (%) mIoUC (%) Params

PointNet [CVPR’17] (Qi et al., 2017b) N/A 86.0 89.2 3.5M 41.1 49.0 3.6M 83.7 80.4 3.6M
PointNet++ [NeurIPS’17] (Qi et al., 2017a) N/A - 91.9 1.5M 53.5 - 1.0M 85.1 81.9 1.0
PointCNN [NeurIPS’18] (Li et al., 2018) N/A 88.1 92.5 0.6M 57.3 - 0.6M
DGCNN [TOG’19] (Wang et al., 2019) N/A 90.2 92.9 1.8M 52.5 - 1.3M 85.2 82.3 1.3
Point Transformer [ICCV’21] (Zhao et al., 2021) N/A 90.6 93.7 7.8M 70.4 - 7.8M 86.6 83.7 7.8
PointNeXt [NeurIPS’22](Qian et al., 2022a) N/A 90.8 93.2 1.4M 67.3 73.9 3.8M 86.7 84.4 1.0
Point-MLP [ICLR’22] (Ma et al., 2022) N/A 90.9 93.6 0.68M - - - 86.1 84.6 -
PointMixer [ECCV’22] (Choe et al., 2022) N/A 91.4 93.6 3.6M 71.4 77.4 6.5M - - -
Point-BERT [CVPR’22] (Yu et al., 2022) 3D - 93.2 21.1M 60.8 69.9 21.1M 85.6 84.1 21.1M
Point-MAE [ECCV’22] (Pang et al., 2022) 3D - 93.8 21.1M - - - 86.1 84.2 21.1M
P2P [NeurIPS’22] (Wang et al., 2022d) 2D - 93.1 1.2M - - - 86.5 84.1 -
Meta-Transformer-B16F [ours] 2D 90.5 93.6 0.6M 72.3 83.5 2.3M 87.0 85.2 2.3M

Table 7: Audio understanding with Meta-Transformer. We
conduct experiments on the Speech Commands V2 dataset and
report the accuracy and numbers of trainable and all parameters.

Method Pre-train Acc (%) A-Params Params
AST (Gong et al., 2021) (Supervised) N/A 92.6 86.9M 86.9M
AST (Gong et al., 2021) (Supervised) AudioSet-20K 96.2 86.9M 86.9M
AST (Gong et al., 2021) (Supervised) ImageNet+KD 98.1 86.9M 86.9M
SSAST (Gong et al., 2022) (Self-Supervised) AudioSet-2M 97.8 89.3M 89.3M
SSAST (Gong et al., 2022) (Self-Supervised) Librispeech 97.8 89.3M 89.3M
SSAST (Gong et al., 2022) (Self-Supervised) Joint Pretraining 98.0 89.3M 89.3M

Meta-Transformer-B16F [ours] 2D 78.3 86.6M 1.1M
Meta-Transformer-B16T [ours] 2D 97.0 86.6M 86.3M

Meta-Transformer demonstrates re-
markable advantages in point cloud
understanding tasks, offering com-
petitive performance with fewer
trainable parameters compared to
other state-of-the-art methods.

Results on Audio Recognition
Table 7 shows the performance of
Meta-Transformer in the audio un-

derstanding. Compared to AST (Gong et al., 2021) and SSAST (Gong et al., 2022) on accuracy, with
frozen parameters, Meta-Transformer-B16F achieves an accuracy of 78.3%.

Results on Video Recognition Table 8a presents the performance comparison of the Meta-
Transformer and existing advanced methods on the UCF101 dataset for video understanding. Meta-
Transformer stands out for its significantly reduced trainable parameter count, suggesting the potential
benefit of unified multi-modal learning and less architectural complexity.

Table 8: Experimental results for video and tabular data understanding.

Method Modality UCF101 Params
OPN (Lee et al., 2017) V 59.6 -
SimCLR (Feichtenhofer et al., 2021) V 88.9 86.9M
VideoMAE V1 (Tong et al., 2022) V 96.1 86.9M
VideoMAE V2 (Wang et al., 2023) V 99.6 86.9M

ViT (Dosovitskiy et al., 2021a) (from scratch) V 51.4 86.9M
Meta-Transformer-B16F V 46.6 1.1M

(a) Video understanding

Method Adult Bank Marketing
Accuracy (%) Accuracy (%) F1

LightGBM 87.8 - 0.39
Tabmlp 87.2 - 0.39
Tabnet 87.0 - 0.31
Tabtransformer 87.1 93.4 0.42
Meta-Transformer-B16F 85.9 90.1 0.41

(b) Tabular data understanding

Table 9: X-ray recognition on Chest X-Ray dataset.
Method Accuracy (%) Params
ViT (Dosovitskiy et al., 2021a) 96.3 86.9M
SEViT (Almalik et al., 2022) 94.6 85.8M

Meta-Transformer-B16F 94.1 0.75M

Results on Time-series Forecasting
From Table 10, 1) with most of the model
parameters being fixed, our method can
still outperform existing methods includ-
ing Pyraformer (Liu et al., 2021a), In-
former (Zhou et al., 2021), LogTrans (Li
et al., 2019), and Reformer (Kitaev et al.,

2020). 2) With only 19K trainable parameters, Meta-Transformer can still outperform Informer (Zhou
et al., 2021). Therefore, Meta-Transformers pretrained on perception tasks can also be applied to
time-series forecasting tasks, which is inspiring for this area.

Table 10: Time-series Forecasting with Meta-Transformer. Following TimesNet, we report the
number of trainable parameters and average performances from 4 different prediction lengths, which
is {96, 192, 336, 720}.

Models Meta-Transformer
TimesNet ETSformer FEDformer Stationary Autoformer Pyraformer Informer LogTrans Reformer

(Wu et al., 2022a) (Woo et al., 2022) [(Zhou et al., 2022b)] (Liu et al., 2022a) (Wu et al., 2021) (Liu et al., 2021a) (Zhou et al., 2021) (Li et al., 2019) (Kitaev et al., 2020)
[Ours] [ICLR’23] [Arxiv’22] [ICML’22] [NeurIPS’22] [NeurIPS’21] [ICLR’21] [AAAI’21] [NeurIPS’19] [ICLR’20]

Metric MSE MAE Param MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.994 0.797 19K 0.458 0.450 0.542 0.510 0.440 0.460 0.570 0.537 0.496 0.487 0.827 0.703 1.040 0.795 1.072 0.837 1.029 0.805

Traffic 0.694 0.372 2.0M 0.620 0.336 0.621 0.396 0.610 0.376 0.624 0.340 0.628 0.379 0.878 0.469 0.764 0.416 0.705 0.395 0.741 0.422

Weather 0.797 0.640 51K 0.259 0.287 0.271 0.334 0.309 0.360 0.288 0.314 0.338 0.382 0.946 0.717 0.634 0.548 0.696 0.602 0.803 0.656

Exchange 1.430 0.961 22K 0.416 0.443 0.410 0.427 0.519 0.500 0.461 0.454 0.613 0.539 1.913 1.159 1.550 0.998 1.402 0.968 1.280 0.932
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Table 11: Graph data understanding with Meta-
Transformer. We conduct experiments on the
PCQM4M-LSC dataset.

Method Param. train MAE validate MAE
GCN 2.0M 0.1318 0.1691
GIN 3.8M 0.1203 0.1537

GCN-VN 4.9M 0.1225 0.1485
GIN-VN 6.7M 0.1150 0.1395

GINE-VN 13.2M 0.1248 0.1430
DeeperGCN-VN 25.5M 0.1059 0.1398

Graph Transformer 0.6M 0.0944 0.1400
Graph Transformer-Wide 83.2M 0.0955 0.1408

GraphormerSMALL 12.5M 0.0778 0.1264
Graphormer 47.1M 0.0582 0.1234

Meta-Transformer-B16F 1.1M 0.8034 0.8863

Results on Tabular Data Understanding.
Table 8b provides the comparison betweendif-
ferent methods for tabular data understanding.
Meta-Transformer-B16F achieves a competitive
accuracy on Adult Census but performs better
than others on Bank Marketing dataset.

Results on Graph and IMU Data Under-
standing. In Table 11, Meta-Transformer-B16F
delivers the train and validation MAE scores
of 0.8034 and 0.8863, which reveals the lim-
ited ability for structural data learning. Be-
sides, following ImageBind (Girdhar et al.,
2023), we conduct classification on the Ego4D

dataset (Grauman et al., 2022), with input data, Meta-Transformer delivers an accuracy of 73.9%.

4.2 MULTI-MODALITY PERCEPTION

In addition to single-modality perception tasks, we also evaluate Meta-Transformer on multimodal
tasks. Without any specific network design for cross-modal fusion, we simply concatenate multimodal
embeddings and feed them to Meta-Transformer. Compared with existing methods, our method
delivers outstanding performance on text-image, audio-visual, and text-3D cross-modal benchmarks.
Table 12: Multimodal Learning with Meta-Transformer. We conduct experiments on Text-Image,
Audio-Image, and Text-3D perception tasks.

Method Venue Modality Dataset Performance (%)
Text Retrieval

CLIP-L14 ICML’ 21 & COCO R@1 58.4
FLIP-L14 CVPR’ 23 & COCO R@1 60.2
Meta-Transformer-L14 Ours & COCO R@1 61.9 ↑ 1.7

Image Retrieval
CLIP-L14 ICML’ 21 & COCO R@1 37.8
FLIP-L14 CVPR’ 23 & COCO R@1 44.2
Meta-Transformer-L14 Ours & COCO R@1 46.7 ↑ 2.5

Referring Segmentation
AVSS (ResNet-50) ECCV’ 22 & AVSS mIoU 20.18
AVSS (PVT-V2) ECCV’ 22 & AVSS mIoU 29.77
Meta Transformer-B16 Ours & AVSS mIoU 31.33 ↑ 1.56

3D Visual Grounding
EDA CVPR’ 23 & ScanRefer AP@Unique 85.76
Meta Transformer-B16 Ours & ScanRefer AP@Unique 86.46 ↑ 0.70

In Table 12, we compare Meta-Transformer with existing methods on multimodal tasks. 1) Less
parameters: with a shared encoder only, for text-image retrieval, Meta-Transformer outperforms
FLIP (Li et al., 2023) by +1.7% for text retrieval and +2.5% for image retrieval on the COCO dataset.
2) Faster Convergence: for audio-visual segmentation, with only 4 training epochs, Meta-Transformer
could outperform previous best trained with 30 epochs by +1.56% mIoU. 3) Better Performance:
for 3D visual grounding, Meta-Transformer also outperforms EDA (Wu et al., 2022b) by +0.7%.
Therefore, we think that Meta-Transformer demonstrates a more efficient and concise framework for
multimodal understanding task.

5 CONCLUSION

In the early stages of artificial intelligence development, pioneers introduced the Multi-Layer
Perceptron (MLP) to address prediction tasks in machine learning. Later, recurrent and convolutional
networks expanded AI capabilities in multimedia data processing, achieving significant success in ex-
tracting representations from texts, images, point clouds, and audio. MLPs have since been integrated
into deep convolutional networks. In this paper, we explore the potential of plain transformers for
unified multimodal learning, highlighting a promising trend toward developing unified multimodal
intelligence with a transformer backbone. To some extent, this paper supports the dominant position
of transformers in next-generation networks. Importantly, CNNs and MLPs are not left behind. They
play essential roles in data tokenization and representation projection. This process exemplifies the
law of succession in neural networks and the ongoing evolution of artificial intelligence.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Unsupervised representation
learning by sorting sequence. In ICCV, 2017.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. Advances in neural information processing systems, 34:9694–9705, 2021.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. In NeurIPS, 2019.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong
Hu, Li Dong, Furu Wei, et al. Oscar: Object-semantics aligned pre-training for vision-language
tasks. In European Conference on Computer Vision, pp. 121–137. Springer, 2020.

Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, and Kaiming He. Scaling language-
image pre-training via masking. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 23390–23400, 2023.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution
on x-transformed points. Advances in neural information processing systems, 31, 2018.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In ICLR, 2021a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Rethinking
the stationarity in time series forecasting. In NeurIPS, 2022a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, pp.
10012–10022, 2021b.

12



Under review as a conference paper at ICLR 2024

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 12009–12019, 2022b.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. arXiv preprint arXiv:2201.03545, 2022c.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In CVPR, 2022d.

Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, and Aniruddha Kembhavi. Unified-
io: A unified model for vision, language, and multi-modal tasks. arXiv preprint arXiv:2206.08916,
2022.

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local
geometry in point cloud: A simple residual mlp framework. ICLR, 2022.

Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time
object recognition. In IROS, 2015.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023, 2016.

Dat Tien Nguyen, Hyung Gil Hong, Ki Wan Kim, and Kang Ryoung Park. Person recognition system
based on a combination of body images from visible light and thermal cameras. Sensors, 17(3):
605, 2017.

Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu, Yonghong Tian, and Li Yuan. Masked
autoencoders for point cloud self-supervised learning. arXiv preprint arXiv:2203.06604, 2022.

Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In NeurIPS, 2017a.

Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In CVPR, 2017b.

Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Hammoud, Mohamed Elhoseiny, and
Bernard Ghanem. Pointnext: Revisiting pointnet++ with improved training and scaling strategies.
In Advances in Neural Information Processing Systems (NeurIPS), 2022a.

Guocheng Qian, Xingdi Zhang, Abdullah Hamdi, and Bernard Ghanem. Pix4point: Image pretrained
transformers for 3d point cloud understanding. arXiv preprint arXiv:2208.12259, 2022b.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021.

Tawsifur Rahman, Amith Khandakar, Muhammad Abdul Kadir, Khandaker Rejaul Islam, Khan-
dakar F Islam, Rashid Mazhar, Tahir Hamid, Mohammad Tariqul Islam, Saad Kashem, Zaid Bin
Mahbub, et al. Reliable tuberculosis detection using chest x-ray with deep learning, segmentation
and visualization. IEEE Access, 8:191586–191601, 2020.

Yongming Rao, Wenliang Zhao, Yansong Tang, Jie Zhou, Ser Nam Lim, and Jiwen Lu. Hornet:
Efficient high-order spatial interactions with recursive gated convolutions. Advances in Neural
Information Processing Systems, 35:10353–10366, 2022.

Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsupervised
pre-training for speech recognition. arXiv preprint arXiv:1904.05862, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

13



Under review as a conference paper at ICLR 2024

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. Vl-bert: Pre-training
of generic visual-linguistic representations. arXiv preprint arXiv:1908.08530, 2019.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated recurrent neural network for
sentiment classification. In Proceedings of the 2015 conference on empirical methods in natural
language processing, pp. 1422–1432, 2015.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette,
and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In ICCV,
2019.

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-
efficient learners for self-supervised video pre-training. arXiv preprint arXiv:2203.12602, 2022.
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Appendix

A SUMMARY

This appendix describes more details of the ICLR 2024 submission, titled Meta-Transformer: A
Unified Framework for Multimodal Learning. The appendix is organized as follows:

• We detail utilizing Meta-Transformer on more modalities. § B.

• Then we further demonstrate the performance and merits of Meta-Transformer in dealing
with multi-modal tasks (involving inputs from more than one modality to perform predic-
tions) in § C.

• In addition, we conduct an ablation study and introduce more details of experiments on text,
image, point cloud, audio, and other 8 modalities in § D.

• Beside these details, we also discuss the limitations of Meta-Transformer in § E.

• Last but not least, we discuss the impact of Meta-Transformer on the machine learning and
computer vision community in § F.

B EXTENSIBILITY ON SINGLE-MODALITY PERCEPTION

In the main body of this paper, we illustrate that Meta-Transformer can simultaneously uncover the
underlying patterns of natural language, 2D images, 3D point clouds, and audio spectrograms with the
same network architecture and network parameters. Furthermore, we explore its ability in perceiving
other modalities, like video recognition, infrared, X-Ray, and hyperspectral image recognition. In
specific, we conduct experiments on UCF101 (Soomro et al., 2012) (video), RegDB (Nguyen et al.,
2017) (infrared images), Chest X-Ray (Rahman et al., 2020), and Indian Pine (hyperspectral
images) datasets.

B.1 VIDEO RECOGNITION

For video recognition, we follow VideoMAE (Tong et al., 2022) to modify the tokenizer by replacing
the 2D embedding layer with a 3D embedding layer to simultaneously encode the spatial-temporal
information from input frames. After tokenization, by leveraging the modality-shared encoder and
task-specific heads, Meta-Transformer is able to extract high-level semantic features from videos and
achieve favorable performance in the action recognition task of the UCF101 dataset.

Dataset. The UCF101 (Soomro et al., 2012) dataset is a common-used benchmark dataset for
action recognition tasks. It is an extended version of UCF50 and contains 13,320 video clips of
101 categories. These 101 categories can be divided into 5 groups: Body motion, Human-human
interactions, Human-object interactions, Playing musical instruments and Sports. All the input frames
are with a resolution of 320×240 and a fixed frame rate of 25 FPS, collected from YouTube.

B.2 INFRARED IMAGE RECOGNITION

Infrared and hyperspectral image recognition poses unique challenges due to their specific char-
acteristics. For infrared images, the Meta-Transformer framework could be adapted to capture
thermal information by encoding temperature values alongside visual features, where the tokenizer
for infrared images is the same as common RGB images.

Dataset. The RegDB (Nguyen et al., 2017) dataset focuses on evaluating the performance of
infrared recognition algorithms in unconstrained and realistic scenarios. It includes variations in pose,
expression, illumination, and occlusion. We conduct experiments on the RegDB dataset to evaluate
the performance of Meta-Transformer on infrared recognition.
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B.3 HYPERSPECTRAL IMAGE RECOGNITION

Similarly, for hyperspectral images, we expect that Meta-Transformer can also handle the high-
dimensional spectral information by representing each spectral band in token embeddings. Compared
with dealing with RGB images, the only modification is that we employ the new linear projection
layer to replace the existing 2D convolution layer.

Dataset. The Indian Pine dataset is widely used in remote sensing and hyperspectral image analysis.
It consists of 145× 145 pixels with 145 spectral bands, which are captured in Indiana.

B.4 X-RAY IMAGE RECOGNITION

In addition, we explore the potential of the Meta-Transformer in medical image analysis. We
leverage the tokenizer for RGB images here to encode raw medical images. Specifically, we conduct
experiments regarding X-ray image analysis on the Chest X-Ray (Rahman et al., 2020) dataset. It
is a collection of medical images commonly used for the analysis and diagnosis of various thoracic
conditions. It comprises 7,000 X-ray images of the chest. The dataset is annotated with labels
indicating the presence or absence of abnormalities such as lung diseases, fractures, and heart
conditions.

C EXTENSIBILITY ON MULTI-MODALITY PERCEPTION

Since the modalities of text, image, point cloud, and audio are all involved in this paper, we did not
conduct comprehensive multi-modal experiments as common practice such as Flamingo (Alayrac
et al., 2022), OFA (Wang et al., 2022a), or BEiT-3 (Wang et al., 2022c). Instead, we conduct multi-
modal experiments on a new and challenging task of Audio-Visual Segmentation (Zhou et al., 2022a),
which is mainly focused on building an intelligent listener to align with fundamental visual tasks.

C.1 AUDIO-VISUAL SEGMENTATION

Audio-visual segmentation (Zhou et al., 2022a) refers to the task of segmenting objects from
different audio sources within a referring image. It aims to develop algorithms that analyze both
audio and visual signals simultaneously to identify and delineate distinct sources or events. It finds
applications in fields like video conferencing, surveillance, multimedia analysis, and augmented
reality.

We conduct experiments on the AVSS (Zhou et al., 2022a) dataset, which is recently released in
the field of audio-visual research. It provides a comprehensive collection of audio and visual data
captured in real-world scenarios. The dataset includes synchronized audio and visual recordings,
featuring various events of human actions and natural sounds. In contrast to introducing multi-
modal fusion modules as existing methods, Meta-Transformer directly concatenates visual and audio
embeddings after Data-to-Sequence tokenization. After extracting representation, we employ a simple
global average pooling layer to obtain the final representations of two modalities. Table 13 illustrates

Table 13: Audio-Visual Segmentation with Meta-Transformer. We conduct experiments on the
AVSS (Zhou et al., 2022a) dataset, we report mIou (%) and F-score.

Method mIou (%) F-score Params

AVSS (Zhou et al., 2022a) (ResNet-50) 20.18 0.252 8̃0M
AVSS (Zhou et al., 2022a) (ASPP) 28.94 - 1̃80M
AVSS (Zhou et al., 2022a) (PVT-v2) 29.77 0.352 1̃80M

Meta-Transformer 31.33 0.387 86.5M

the performance of Meta-Transformer and existing methods on the AVSS dataset for audio-visual
segmentation. The evaluation metrics reported in this task are mIou and F-score. In comparison,
Meta-Transformer outperforms all other methods with the highest mIou of 31.33% and the highest

18



Under review as a conference paper at ICLR 2024

F-score of 0.387. It also stands out for its significantly lower parameter count, with only 86.5 million
parameters compared to the approximate 80M to 180M parameters of other methods.

Meta-Transformer offers several advantages over other methods in the field.

• Unified architecture. It relieves modality-specific encoders and reduces computation by
leveraging a unified encode to process both audio and images, resulting in a more efficient
and streamlined process.

• Faster convergence. Thanks to the unified architecture for processing both audio and
images, the encoder can deeply align the two modalities instead of only at the output end,
which leads to faster convergence. Meta-Transformer only needs 4 training epochs to reach
31.33% of mIou.

• Superior performance. Meta-Transformer achieves a significant improvement of 10%
compared to other methods of a similar parameter scale.

• Efficiency. Despite its enhanced performance, Meta-Transformer achieves this with much
fewer parameters, requiring only 1/3 of the parameter amount, which makes forward and
backward progress ease.

In summary, the benefits of employing the Meta-Transformer to deal with multi-modal tasks are
appealing due to computational efficiency, rapid convergence, improved performance, and parameter
efficiency. It reveals the significantly promising direction to apply Meta-Transformer to more multi-
modal tasks.

D EXPERIMENTAL DETAILS

Text understanding. For text understanding evaluation, we employ the General Language Under-
standing Evaluation (GLUE) benchmark (Wang et al., 2018) which incorporates several different
datasets, covering a wide range of natural language understanding tasks.

The comparison centers on paraphrasing, sentiment, duplication, inference, and answering tasks.
When using frozen parameters pretrained on images, Meta-Transformer-B16F achieves scores of
54.6% in sentiment (SST-2), 81.1% in paraphrase (MRPC), 66.0% in duplication (QQP), 63.4% in
inference (MNLI), and 56.3% in answering (QNLI) tasks.

Image understanding. 1) Classification: we conduct experiments on ImageNet-1K (Deng et al.,
2009) which contains approximately 1.3 million images with 1000 categories. Following common
practices (Wang et al., 2021b; Liu et al., 2021b; 2022c), base-scale models are trained for 300
epochs, while large models are pre-trained on ImageNet-22K (14.2 million images) for 90 epochs
and fine-tuned on ImageNet-1K for another 20 epochs. 2) Object Detection: we conduct experiments
on the MS COCO dataset (Lin et al., 2014) using Mask R-CNN (He et al., 2017) as the detector
and training each model for 12 epochs. 3) Semantic Segmentation: we train the segmentation head
UperNet (Xiao et al., 2018) on ADE20K (Zhou et al., 2017) for 160k iterations, providing a fair
comparison with previous CNN-based and transformer-based backbones.

With the Meta-Transformer-B16F and Meta-Transformer-L14F, achieving 69.3% and 75.3%, respec-
tively. At the same time, when the pretrained parameters are further tuned, Meta-Transformer
can outperform existing advanced methods.On object detection, Meta-Transformer-B16F and
Meta-Transformer-L14F achieve APs of 31.7% and 43.5%, while Meta-Transformer-B16T and
Meta-Transformer-L14T reach 46.4% and 56.3% AP, respectively. In semantic segmentation,
the mIoUs for Meta-Transformer-B16F and Meta-Transformer-L14F are 33.4% and 41.2%, while
Meta-Transformer-B16T and Meta-Transformer-L14T achieve 51.0% and 55.0%, respectively. In
comparison, SwinV2-L/24‡ outperforms the Meta-Transformer in both object detection (58.8% AP)
and semantic segmentation (55.9% mIoU). These results highlight that Meta-Transformer demon-
strates a competitive performance in various image understanding tasks even compared to Swin
Transformer (Liu et al., 2021b) and InternImage.
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Infrared, X-Ray, and Hyperspectral data understanding. We conduct experiments on infrared
image, X-Ray scan, and hyperspectral data recognition with RegDB (Nguyen et al., 2017), Chest
X-Ray (Rahman et al., 2020), and Indian Pine 1 datasets, respectively.

Point cloud understanding. 1) Classification: to assess the performance of Meta-Transformer in
3D object classification, we use the ModelNet-40 (Wu et al., 2015) benchmark, consisting of CAD
models across 40 classes, with 9,843 training samples and 2,468 validation samples. 2) Semantic
segmentation: to evaluate performance in 3D point cloud segmentation, we assess the model on
both S3DIS (Armeni et al., 2016) and ShapeNetPart (Yi et al., 2016) datasets. The S3DIS dataset
encompasses 6 large indoor areas and 13 semantic classes, comprising 271 rooms. The ShapeNetPart
dataset includes 16,880 object models across 16 shape categories.

When pretrained on 2D data, Meta-Transformer-B16F demonstrates competitive performance, achiev-
ing an overall accuracy (OA) of 93.6% on ModelNet-40 with only 0.6M trainable parameters, which
is comparable to the best-performing models. On the S3DIS Area-5 dataset, Meta-Transformer
outperforms other methods with a mean IoU (mIoU) of 72.3% and a mean accuracy (mAcc) of 83.5%,
using 2.3M parameters. Moreover, Meta-Transformer excels in the ShapeNetPart dataset, achieving
the highest scores on both instances mIoU (mIoUI ) and category mIoU (mIoUC) with 87.0% and
85.2%, respectively, using 2.3M parameters.

Audio recognition. For audio recognition, we utilize the Speech Commands V2 (Warden, 2018)
dataset, which consists of 105,829 one-second recordings of 35 common speech commands.
Meta-Transformer-B16T model exhibits a significantly higher accuracy of 97.0% when tuning the
parameters, whereas the AST model only reaches an accuracy of 92.6%. When AST is pre-trained on
ImageNet and supplemented with additional Knowledge Distillation (KD), it achieves an improved
performance of 98.1%, but with a higher number of trainable parameters of 86.9M. SSAST models
display accuracy scores ranging from 97.8% to 98.0% while requiring 89.3M parameters. These re-
sults highlight that the Meta-Transformer performs competitively in the audio domain, demonstrating
its versatility and effectiveness across different fields.

Video recognition. For video understanding, we conduct experiments on the UCF101 (Soomro et al.,
2012) dataset for action recognition, with more details presented in § B.1.

Time-series forecasting. For time-series forecasting, we conduct experiments on ETTh1 (Zhou
et al., 2021), Traffic2, Weather3, and Exchange (Lai et al., 2018) datasets. We use the tokenizer of
Autoformer (Wu et al., 2021).

Graph understanding. We conduct experiments on the PCQM4M-LSC dataset (Hu et al., 2021),
which is a large-scale dataset consisting of 4.4 million organic molecules with up to 23 heavy atoms
with their corresponding quantum-mechanical properties. With the target of predicting molecular
properties using machine learning, it has plenty of applications in drug discovery, and material
science.

Tabular analysis. We conduct experiments on adult and bank marketing from UCI repository 4. We
use the tokenizer of TabTransformer (Huang et al., 2020) to encode raw tabular data.

IMU recognition. To evaluate the ability of Meta-Transformer to understand the inertial motion
systems, we conduct experiments of IMU sensor classification on the Ego4D (Grauman et al., 2022)
dataset.

D.1 ABLATION STUDY

we mainly conduct the ablation experiments, which are relevant to the depth of tuning transformer
blocks, and pretraining on tokenizers as shown in Table 14 and Table 15.

1https://github.com/danfenghong/IEEE_TGRS_SpectralFormer/blob/main/
data/IndianPine.mat

2https://pems.dot.ca.gov/
3https://www.bgc-jena.mpg.de/wetter/
4http://archive.ics.uci.edu/ml/
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Models Pretrained Tokenizer Modality Performance (%)
Meta-Transformer-B16 From Scratch Video 54.22
Meta-Transformer-B16 VideoMAE Video 57.11
Meta-Transformer-B16 From Scratch Image 85.42
Meta-Transformer-B16 MAE Image 85.93

Table 14: Ablation study on tokenizer components.

Models Transformer Depth ImageNet-1K (%)
Meta-Transformer-B16 1 42.74
Meta-Transformer-B16 2 58.91
Meta-Transformer-B16 4 75.63
Meta-Transformer-B16 8 83.98
Meta-Transformer-B16 12 85.42

Table 15: Ablation study on fine-tuning transformer blocks.

Our code is built on open-source projects including MMClassification5, MMDetection6, MMsegmen-
tation7, OpenPoints8, Time-Series-Library9, Graphomer 10.

We sincerely thank their great contributions. More implementation details can be found in our source
code.

E LIMITATION

From the perspectives of complexity, methodology, and further application, the limitations of the
Meta-Transformer are summarized as follows:

Complexity: Meta-Transformer requires O(n2 ×D) computation dealing with token embeddings
[E1, · · · ,En]. High memory cost and heavy computation burden make it difficult to scale up.

Methodology: Compared with Axial Attention mechanism in TimeSformer (Bertasius et al., 2021)
and Graphormer (Ying et al., 2021), Meta-Transformer lacks temporal and structural awareness.
This limitation may affect the overall performance of Meta-Transformer in tasks where temporal
and structural modeling plays a critical role, such as video understanding, visual tracking, or social
network prediction.

Application: Meta-Transformer primarily delivers its advantages in multimodal perception. It’s still
unknown about its ability for cross-modal generation. We will work on this in the future.

F FURTHER IMPACT DISCUSSION

F.1 MODALITY-FREE PERCEPTION

We hope that Meta-Transformer can introduce new insight into both multi-modal learning and multi-
modal generation fields. Meta-Transformer enables the usage of a shared encoder to encode diverse
modalities, e.g. natural language, 2D images, 3D point clouds, as well as audio spectrograms., and
project them into a shared representation space. This naturally reduces the modality gap across

5https://github.com/open-mmlab/mmpretrain/tree/mmcls-1.x
6https://github.com/open-mmlab/mmdetection
7https://github.com/open-mmlab/mmsegmentation
8https://github.com/guochengqian/openpoints
9https://github.com/thuml/Time-Series-Library

10https://github.com/microsoft/Graphormer
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modalities and mitigates the burden of cross-modal alignment. In addition, Meta-Transformer
removes the need for paired training data (such as image-text pairs), thus endowing multi-modal
learning with more training flexibility.

F.2 APPLICATION PROSPECTS

We investigate the application of Meta-Transformer on a wide range of modalities including RGB
images, text, point clouds, video understanding, remote sensing (hyper-spectral images), nighttime
surveillance (infrared images), and medical analysis (X-Ray images).

In video understanding, Meta-Transformer reveals the potential of enhancing the analysis and
interpretation of videos by integrating information from text, audio, and image with the shared
encoder. This benefits tasks such as action recognition, event detection, and video summarization.
Meta-Transformer’s capability to handle video-related modalities paves the way for improved video
understanding applications in areas like video surveillance, video indexing, and content-based video
retrieval.

In hyperspectral imaging for remote sensing, Meta-Transformer enables the analysis and under-
standing of hyperspectral data by extracting high-level semantic features. It enhances tasks such as
classification, target detection, and land cover mapping, improving the accuracy and efficiency of
remote sensing applications. The ability to process hyperspectral images using Meta-Transformer
opens doors for advancements in environmental monitoring, agriculture, urban planning, and disaster
management.

In medical applications, particularly X-ray image analysis, Meta-Transformer offers a promising
approach to improving diagnostic accuracy and efficiency with multi-modal information. It can
effectively capture and fuse information from X-ray images, clinical data, and other modalities to
aid in disease detection, anomaly identification, and treatment planning by leveraging its unified
learning framework. Meta-Transformer’s capability to handle multi-modal data enhances the potential
for more accurate and comprehensive medical imaging analysis, leading to better patient care and
outcomes.

For infrared images used in nighttime recognition and surveillance, Meta-Transformer’s ability to
process infrared data helps extract crucial information for object detection, tracking, and recognition
in low-light conditions, which opens an avenue for advancements in nighttime surveillance, security
systems, and autonomous navigation in challenging environments with the cooperation between
infrared cameras with RGB cameras.

F.3 CONCLUSION

In summary, we think that the ability of Meta-Transformer to unify multi-modal learning comes
from that neural network architectures can learn modality-invariant patterns. The architecture of
Meta-Transformer illustrates the advantages of length-variable token embeddings in multi-modal
learning, which provides flexible but unified forms of multi-modal semantics. Then it’s time to
think about designing algorithms to train networks that generalize on unseen modalities. Meanwhile,
it’s also intriguing to design the architecture of a unified multi-modal decoder, which can decode
representations into any form of a specific modality.

Although Meta-Transformer presents a surprising performance and shows a new promising direction
in multi-modal perception, we are not sure whether the proposed architectures are also effective in
generative tasks. And it remains mysterious how to develop modality-invariant generative models.
We hope that this can inspire future research.
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