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Figure 1. We combine multi-view images and tactile sensing information within a 3D Gaussian Splatting framework for accurate geometry
reconstruction and novel view synthesis of challenging surfaces. On the left, a robotic arm equipped with tactile sensors interacts with
an object to collect contact surface information. On the right, we show results on novel view synthesis and depth reconstruction, using a
five minimal-view setting and tactile input (first row). Touches not only improve surface reconstruction, but also strengthen novel view
synthesis.

Abstract

Touch and vision go hand in hand, mutually enhancing
our ability to understand the world. From a research per-
spective, the problem of mixing touch and vision together
is underexplored and presents interesting challenges. To
this end, we propose Tactile-Informed 3DGS, a novel ap-
proach that incorporates contact data (local depth maps)
with multi-view images to achieve surface reconstruction
and novel view synthesis. Our method optimises 3D Gaus-
sian primitives to accurately model the object’s geometry
at points of contact. By creating a framework that de-
creases the transmittance at touch locations, we achieve a
refined surface reconstruction, ensuring a uniformly smooth
depth map. Touch is particularly useful when considering
non-Lambertian objects, such as shiny or reflective sur-

faces, since contemporary methods tend to fail to recon-
struct specular highlights with fidelity. By combining vi-
sion and tactile sensing, we achieve more accurate geome-
try reconstructions with fewer images than prior methods.
We conduct evaluation on objects with glossy and reflective
surfaces and demonstrate improved reconstruction quality
in both the virtual and real world

1. Introduction

Humans perceive the world through a multitude of
senses, and often, visual perception alone is not sufficient
to fully grasp the intricacy of the world. When only us-
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ing vision, it is possible to misunderstand shapes, materi-
als, or scale of the world and its components. In particu-
lar, current vision-based methods often struggle with non-
Lambertian materials, such as reflective and glossy sur-
faces [19], as well as scenarios where only a limited num-
ber of views are available. These scenarios are common in
real-world settings, such as robotics manipulation, VR/AR,
and 3D modeling, where physical constraints or occlusions
can restrict the number of accessible viewpoints. In con-
trast, tactile sensing provides consistent geometric infor-
mation that complements visual perception, regardless of
light-dependent effects. Thus, tactile data can help to re-
solve visual ambiguities and can support 3D reconstruction
in the context of both limited (5 views) and dense visual
data. While tactile sensing provides valuable geometric in-
formation, it is limited by the fact that it only captures par-
tial information about an object’s surface, because when
grasping an object, the hand rarely touches the entire sur-
face. Given these complementary strengths and limitations,
accurate 3D reconstruction in challenging settings necessi-
tates the seamless integration of sparse observations across
multiple sensing modalities (see Figure 1), which is what
our work aims to achieve.

Current volume rendering techniques like 3D Gaussian
Splatting (3DGS) [12] and NeRF [19] are highly effective
at novel-view synthesis (NVS): the problem of generating
an image from an unseen viewpoint. However, in applica-
tions such as robotic manipulation, VR/AR and 3D mod-
elling, the problem of 3D reconstruction is often equally
or even more important. While volumetric rendering tech-
niques can be directly applied to 3D reconstruction and per-
form well in settings with dense viewpoints and Lamber-
tian surfaces, they can break down in more difficult set-
tings. Depth sensors have been proposed to aid 3D recon-
struction, but they often fail in environments with highly re-
flective surfaces, which create discontinuities in depth mea-
surements [28]. Recent techniques have improved vision-
only 3D reconstruction for non-Lambertian surfaces by
approximating the rendering equation to simulate reflec-
tions [17, 30]. However, these approaches typically require
dense viewpoints and are computationally intensive (24+
hours), making them less suitable for robotic or AR/VR
systems that often rely on sparse views and have strict com-
putational time constraints. Meanwhile, these systems can
provide an alternative solution by leveraging tactile infor-
mation to enhance 3D reconstruction accuracy.

In that context, our key contributions are 1) to incorpo-
rate tactile sensing in a 3D Gaussian Splatting framework
and 2) to show that this tactile information improves ob-
ject reconstruction in settings where there is uncertainty
about the object surface, such as the few-view setting, or
where the surface is non-Lambertian. In that setting, we
propose Tactile-Informed 3DGS, a novel multimodal in-

teraction approach that integrates tactile sensing and vi-
sion within 3D Gaussian Splatting for challenging object
reconstruction. This method operates by regularising the
3D transmittance of Gaussians around the touch locations,
which directly guides the optimisation procedure with pre-
cise, direct information regarding object geometry. Ac-
knowledging the sparse nature of tactile observations, we
further refine our method by introducing an unsupervised
regularisation term to smooth the predicted camera depth
maps. We evaluate our method on object-centric datasets
containing glossy and reflective surfaces, namely Shiny
Blender [30] and Glossy Synthetic [17] datasets. We also
propose a real-world dataset of a highly shiny object (metal-
lic toaster) from which we capture a multiview set of images
as well as real robot touches. Our experiments show that
multimodal sensing delivers geometry reconstruction that
is as good as, if not better than, advanced techniques like
NeRO [17], which incorporate light scattering, all while
being significantly faster. By introducing touch as an ad-
ditional sensing modality, our method increases robustness
and mitigates performance degradation when working with
fewer viewpoints.

2. Literature Review

2.1. Tactile sensing for 3D object reconstruction

Tactile sensing for object reconstruction is an emerging re-
search field that integrates techniques from computer vi-
sion, graphics, and robotics with high-resolution, optical-
based tactile sensors [13, 14, 33]. These sensors, which
capture local depth maps or marker-based images, can be
leveraged to collect contact information and advance con-
trol [32] and 3D shape reconstruction through direct object
interactions.

Recently we have seen the introduction of datasets that
incorporate touch, such as ObjectFolder [6]. However, these
datasets often fall short in providing a comprehensive so-
lution for 3D reconstruction of challenging objects. Ob-
jectFolder, for instance, lacks multiview images and non-
Lambertian objects, limiting its applicability in real-world
scenarios where reflective and glossy surfaces are common.
Similarly, while Suresh et al. [26] introduced a dataset com-
bining both depth cameras and tactile data, it does not offer
multi-view data. To address these limitations, we create a
dataset that integrates multiple views of a metallic object
with corresponding tactile data.

Various approaches have been proposed to integrate tac-
tile information in 3D reconstruction, each employing dif-
ferent representation techniques. Wang et al. [31, 33] pro-
posed to utilise tactile exploration for object reconstruction
through voxel-based representations. This method, while
innovative, has limitations in capturing fine details and scal-
ing to complex objects. These challenges are addressed by



our use of a continuous 3D representation. In a different
approach, Smith et al. [23, 24] decoupled vision and tac-
tile sensing processes, employing a Convolutional Neural
Network (CNN) to map tactile readings into local contact
surface representations. However, their experiments pri-
marily utilised synthetic data of objects with simpler ma-
terial properties (single color and Lambertian surfaces) and
lacked support for novel view synthesis, which our tech-
nique inherently supports. Similarly, methods porposed to
reconstruct objects shapes using touch signals [3, 22] tend
to generate valuable object surfaces, but do not perform
novel-view synthesis. For a comprehensive review of 3D
representations coupled with tactile sensing refer to [9].

2.2. Novel-view synthesis on reflective surfaces

Novel-view synthesis from sparse observations is a key area
of research within the domain of computer graphics, 3D
computer vision, and robotics. Methods based on Neural
Radiance Fields (NeRF) are extremely successful at syn-
thesizing photorealistic images by modeling the volumet-
ric density and color of light rays within a scene with a
Multi-Layer Perceptron [1, 19–21]. 3D Gaussian Splatting
(3DGS) [12] has been proposed as an alternative to NeRF.
Instead of modelling the radiance field implicitly through a
neural network, it is modelled explicitly by a large set of
3D Gaussians. This has the benefit of a simpler explicit
model that offers faster training and rendering than even
highly optimized NeRF implementations [20]. In this work
we propose to extend the 3DGS framework to reason about
non-Lambertian surfaces and touch data.

The application of volumetric rendering equations
causes difficulties for both NeRFs and 3DGS in accurately
representing specular and glossy surfaces. This is because
it is challenging to interpolate the outgoing radiance across
different viewpoints as it tends to vary significantly around
specular highlights [30]. Ref-NeRF [30], which was pro-
posed to address this limitation by replacing NeRF’s view-
dependent radiance parameterisation with a representation
of reflected radiance, struggled with indirect lights from
nearby light emitters. NeRFReN [7] models reflections by
fitting an additional radiance field for the reflected world
beyond the mirror, but only supports reflections on planar
surfaces only. These limitations highlight the challenges
faced by methods that rely uniquely on the vision sensing
modality.

Within the family of methods that approximate the vol-
ume rendering equation [10, 17], perhaps the canonical ex-
ample is NeRO [17], which proposes to model direct and
indirect illumination separately using the split-sum approx-
imation [11]. By directly approximating indirect specular
lighting, NeRO achieves improved geometry reconstruc-
tion. The performance of NeRO in material retrieval and
surface reconstruction is impressive and ranks as state-of-

the-art among NeRF-based techniques, which justifies its
selection as a baseline for our evaluation. However, as we
show in this work, NeRO tends to generate unconvincing
results when it does not have access to an extensive dataset
of views (see experiments section). In contrast, Gaussian-
Shader [10] integrates a simplified shading function into 3D
Gaussians, primarily for novel view synthesis. It derives
depth directly from Gaussian positions, unlike our volume
rendering approach. This fundamental variation in depth
calculation, essential for obtaining the 3D geometry of ob-
jects, makes GaussianShader’s 3D point clouds not directly
comparable with our approach and other benchmarks, re-
sulting in GaussianShader’s poor performance on standard
geometry reconstruction metrics.

A contemporaneous work, Touch-GS [27], was released
in the same month as our study. While this work does inte-
grate visual and touch information in the context of 3DGS,
it is otherwise very different. In particular, this work uses
dense views and extensive tactile data covering the entire
object surface, which significantly differs from our setting
that operates effectively with minimal views and sparse
touch data.

3. Preliminaries
3.1. 3D Gaussian Splatting

3D Gaussian Splatting [12] is an explicit radiance field tech-
nique for modeling 3D scenes as a large set of 3D Gaus-
sians. Specifically, a scene is parameterised as a set of
N anisotropic 3D Gaussians, each defined by a mean vec-
tor µ ∈ R3, a covariance matrix Σ ∈ R3×3, an opacity
α ∈ R1, and a view-dependent color vector c ∈ Rm en-
coded as spherical harmonics. These parameters are opti-
mised during the training process through backpropagation.
The influence of a Gaussian on a point x ∈ R3 is deter-
mined by:

f(x;Σ,µ) = exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (1)

During the optimisation process, the scene is rendered to a
2D plane by calculating each Gaussian’s projected covari-
ance Σ′ ∈ R2×2 and position µ′ ∈ R2, following:

Σ′ = JWΣWTJT , (2)

where W is the projective transformation and J is the Ja-
cobian of the affine transformation. The covariance matrix
Σ, along with other parameters, is optimised to ensure a
positive semi-definite matrix through decomposition:

Σ = RSSTRT . (3)

where S is a scaling matrix and R is a rotation matrix.
The 2D mean vector µ′ results from perspective projection



Proj(µ|E,K), with E and K being the camera’s extrinsic
and intrinsic matrices. Consequently, the pixel color I(p) in
the image space is computed by summing the contributions
of all Gaussians, and accounting for their color, opacity, and
influence:

I(p) =
N∑
i=1

f(p;µ′
i,Σ

′
i) αi ci

i−1∏
j=1

(1− f(p;µ′
j ,Σ

′
j) αj).

(4)
Similarly, the depth is computed as:

D(p) =
N∑
i=1

f(p;µ′
i,Σ

′
i) αi di

i−1∏
j=1

(1− f(p;µ′
j ,Σ

′
j) αj),

(5)
where di is the depth of the i-th Gaussian obtained by pro-
jecting µi onto the image frame.

The optimisation process starts by initialising the
3D Gaussians using Structure-from-Motion (SfM) point
clouds. It then proceeds to optimise the learnable pa-
rameters by minimising the photometric loss between pre-
dicted and ground truth images. During the entire proce-
dure, Gaussians are adaptively densified or pruned based on
heuristics on their opacity and mean gradient changes.

4. Methodology
This section outlines our approach to reconstructing 3D
objects by integrating visual and tactile data through 3D
Gaussian Splatting. Our methodology follows two primary
stages. The first stage involves the generation of initial point
clouds from local depth maps, while the second step con-
sists of optimising and regularising a Gaussian representa-
tion to accurately model the object’s surface.

4.1. Gaussian initialisation and optimisation

The optimisation process starts with the extraction of a
pointcloud from COLMAP, where each point’s position and
associated color serve as the initial mean and color at-
tributes for a first set of Gaussians Gc. The view-dependent
color is encoded using spherical-harmonics, which are es-
sential in modeling the specular and glossy highlights. This
initial point cloud is combined with a further set of points Pt
collected with an optical tactile sensor, on which a second
set of Gaussians Gt is initialised on tactile data. Details on
the collection of the tactile data are reported in the Supple-
mentary material. Specifically, each point in Pt serves as the
mean for one of the Gaussians in Gt, while their color and
scale attributes are initialised randomly. A uniform opac-
ity value is assigned across all Gaussians in both Gt and Gc.
Both sets of Gaussians can be cloned, split, and removed ac-
cording to the heuristics outlined by Kerbl et al. [12]. The
newly generated Gaussians that result from this process are
assigned to the same set of their originals.

The optimisation of these Gaussians involves minimis-
ing the photometric loss between predicted and ground truth
RGB image. This loss is further regularised by the edge-
aware smoothness loss described in 4.2.2. In addition to the
photometric and edge-aware smoothness loss, Gaussians Gt
are regularised by the 3D transmittance loss, which we dis-
cuss in Section 4.2.1.

4.2. Regularisation

4.2.1 3D transmittance

The transmittance quantifies the degree to which light pen-
etrates through a medium. Given N Gaussians and a point
p ∈ R3, where p belongs to the touch surface, we define
the average 3D transmittance at p as:

T̂ (p) =
1

N

N∑
j=1

(1− f(p;µj ,Σj) αj), (6)

where µi ∈ R3 and Σi ∈ R3 are the mean and covariance
of the unprojected 3D Gaussians. To manage the computa-
tional load and prioritise the optimisation of the Gaussians
around the touch locations, we limit the number of Gaus-
sians considered per point to those with the highest spatial
influence on p. Moreover, we incorporate a distance-based
filtering criterion designed to exclude Gaussians beyond a
certain threshold distance from p. This is because, in the
process of selecting Gaussians based on their spatial impact,
it is possible to include Gaussians that are positioned at con-
siderable distances from the target point. Given that the
Gaussian rasteriser subdivides the frustum into discrete tiles
and calculates a point’s transmittance solely from Gaussians
within the same tile, distant Gaussians — even those with
potential impact — would not account for the final trans-
mittance at p. We define our loss LT as the average over all
the p ∈ Pt points collected on the object surfaces:

LT = − 1

P

P∑
i=1

T̂ (pi) (7)

Minimising the average transmittance around the touch lo-
cation effectively brings the Gaussians closer to the touched
surfaces and increases their opacity, thereby implicitly forc-
ing them to model the real underlying surface.

4.2.2 Edge-Aware Smoothness with Proximity-Based
Masking

Given the sparsity of touch readings, we leverage an edge-
aware smoothness loss LS [8] to refine the surface recon-
struction. This loss leverages the intuition that depth dis-
continuities often align with intensity changes in RGB im-
ages:



Figure 2. Proximity-Based Mask’s impact on the gradients computed by the edge-aware smoothness loss. Left: points collected on the
object’s surface alongside the derived proximity mask. Centre: averaged horizontal and vertical gradients as determined by the smoothness
loss, where lighter shades correspond to higher gradients. Right: integration of the smoothness loss with the proximity mask using two
distinct approaches: (a) implementation of a distance-based Gaussian decay within the proximity mask, and (b) masking based on a discrete
threshold from the contact surface.

LS =
1

N

∑
i,j

(
|∂xDi,j |e−β|∂xIi,j | + |∂yDi,j |e−β|∂yIi,j |

)
(8)

where D is the rasterised depth map and I is the ground
truth image for a given view. The horizontal and vertical
gradients are calculated by applying convolution operations
with 5x5 Sobel kernels [29]. In contrast to the smaller ker-
nel size commonly adopted by edge detectors, our filters
capture more contextual information, reducing instability
around specular highlights. While the edge-aware smooth-
ness loss positively contributes to the refinement of surface
reconstruction, its integration with the transmittance loss
presents challenges. Specifically, the smoothness loss con-
flicts with the transmittance loss near touch locations —
areas where we prioritise accurate contact surface recon-
struction. Since LS operates globally, it may suppress lo-
calised depth variations by reducing opacity, counteracting
the transmittance loss.

To address this, we introduce a Proximity-Based Mask-
ing strategy, which modulates LS based on distance to touch
points. The creation of a proximity-based mask is achieved
by calculating the 2D Euclidean distance transform [5] be-
tween every pixel in the rasterised depth map and its near-
est projected 3D point. Then, a Gaussian decay is applied
based on the calculated distance, producing the actual prox-
imity mask. Finally, the edge-aware smoothness loss, which
aims to align the gradients of the predicted depth map with
those of the corresponding RGB image, is modulated by
the inverse of this proximity mask, effectively diminishing
the loss’s influence in areas close to the contact surfaces
and preserving edge details as the distance from touch lo-
cations increases. This integration balances local accuracy
and global refinement: the transmittance loss ensures pre-
cise contact surfaces, while the edge-aware smoothness im-
proves reconstruction in underexplored regions without in-

terfering near touch constraints.

5. Results

5.1. Datasets & Evaluation

We train and evaluate our method on two object-centric
datasets containing glossy and reflective surface: Shiny
Blender [30] and Glossy Reflective [17]. The Shiny
Blender [30] dataset consists of 6 objects characterised by
non-Lambertian materials. For each object, the dataset pro-
vides 100 training images and 200 test images all accompa-
nied by camera poses. The ball object was excluded in our
evaluation due to the absence of ground truth depth maps,
which makes the assessment of the reconstructed geometry
infeasible. Although ground truth depth maps and normal
maps are available, our model relies solely on RGB images
and local depth maps collected on the object surface by sim-
ulating a touch sensor, and we never leverage ground truth
depth maps for supervision.

The Glossy Synthetic [17] dataset consist of 8 objects,
each represented by 128 images at a resolution of 800x800.
The dataset is divided into 32 images for training and 96
images for testing. This dataset ranges from objects with
large smooth surfaces displaying specular effects (e.g. Bell,
Cat) to those with complex geometries (e.g. Angel, Luyu).

The evaluation metric employed to asses geometry re-
construction is the Chamfer Distance (CD) [25], which
measures the similarity between predicted and ground truth
point clouds. The Glossy Synthetic dataset provides the
ground truth point cloud for CD calculation. For the Shiny
Blender dataset, we created ground truth point clouds for
CD calculation by projecting the ground truth depth maps
in the three-dimensional space. This method ensures that
we only consider areas visible to the camera, thereby ac-
counting for occlusions and ensuring a fair comparison. The
decision against using point clouds sampled directly from



Glossy Synthetic [17]

Method 100 views 5 views

CD(↓) SSIM(↑) CD(↓) SSIM(↑)

NeRO 0.0042 0.904 0.0586 0.779
3DGS 0.0075 0.933 0.0111 0.822

Ours[5 grasps] 0.0034 0.933 0.0026 0.828

Table 1. Average Chamfer Distance (CD) and SSIM on the Glossy
Synthetic dataset [17]. Our method excels at recovering object
geometry from glossy surfaces, outperforming baselines in both
the 100-view and 5-view scenarios.

the ground truth meshes is aimed at avoiding discrepan-
cies caused by occluded regions which are not comparable
across different methods. For the predicted point clouds, we
apply the method adopted on the Glossy Synthetic dataset.
In addition, we provide a qualitative comparison between
standard 3DGS and our proposed method on a dataset col-
lected in the real-world (Sect. 5.4).

5.2. Glossy Synthetic

Full-views: Table 1 benchmarks our method against 3D
Gaussian Splatting (3DGS) and NeRO. We chose these
methods as they represent the state-of-the-art in terms of ge-
ometry reconstruction for challenging objects. Our method
uses 5 grasps per object, whereas a grasp consists of “five”
fingers touching the object, resulting in a total of 25 tac-
tile readings. The results are reported for both the settings
where all methods have full access to the 100 training views,
and when they only have access to a minimal subset of 5
views. This section focuses on the 100-views scenario. To
obtain the results of 3D Gaussian Splatting we trained us-
ing the official 3DGS implementation, while for NeRO we
directly report the available results from [17] and values
provided by the original authors. To compute the CD for
3D Gaussian Splatting-related methods, the predicted point
cloud is derived from projecting rasterised depth maps to
3D, using the 96 test cameras. This results in an average of
500K points per object.

Our analysis demonstrates that our method significantly
outperforms the leading competitor, 3DGS, in 3D recon-
struction quality (see Table 1). With just five grasps, our
approach achieves a 50% decrease in the average Cham-
fer Distance (CD), resulting in 0.0034 compared to 3DGS’s
0.0075. This performance places our 3DGS-based method
on par with, but in some cases ahead of, current NeRF-
based state-of-the-art methods such as NeRO. Moreover,
radiance field approaches such as NeRO are considerably
more computationally demanding. For reference, while
NeRO requires 25 hours of training [17], our method takes
1 hour on average to reconstruct an object with 5 grasps.
Minimal-views: We explore the performance of the differ-

Shiny Blender[30]
Method CD(↓) SSIM(↑)

3DGS 0.0037 0.948
3DGS + S 0.0028 0.950

3DGS + T[5 grasps] 0.0022 0.948
Ours[5 grasps] 0.0013 0.950

Table 2. Ablation on the full Shiny Blender dataset [30] (100
views). Our method, which considers both tactile data and our pro-
posed smoothness loss, considerably improves the geometry re-
construction, while achieving comparable levels of image fidelity.

ent methods in a “minimal views” regime where models are
provided with only 5 input views (Table 1 right columns).
In this setting we evaluate the same methods considered in
the previous experiment: 3DGS, NeRO and Ours. We used
NeRO’s official implementation to retrain the model. Af-
ter training, we computed the CD for NeRO models as de-
scribed in the original paper and extracted meshes using the
Marching Cubes algorithm [18]. To ensure consistency in
evaluation, we sampled around 500,000 points on the gen-
erated meshes, aligning with the previously detailed evalu-
ation procedure for 3DGS. Figure 3 shows that in this set-
ting the addition of grasps significantly improves the qual-
ity of the reconstructed geometry and multiview rendering.
A comprehensive visualisation with all the objects in the
Glossy Synthetic dataset is included in the Supplementary
materials. Table 1 (right columns) reports quantitative re-
sults and shows how NeRO and 3DGS quality of 3D recon-
struction drops dramatically when trained with few views,
while our method can retain and, for some models, even
improve. In this setting, our method achieves over 4 times
improvement over the second best model in terms of geom-
etry accuracy (0.0026 Ours vs 0.0111 3DGS), clearly show-
ing the effectiveness of our formulation for high quality 3D
reconstruction. The improved reconstruction contributes to
enhanced quality in novel view synthesis, as demonstrated
by the SSIM scores.

5.3. Shiny Blender

We continue the evaluation on the Shiny Blender
dataset [30] where we focus on methods based on 3D Gaus-
sian Splatting. We are interested in exploring the impact
of the different design choices and as such we compare
our method against a baseline defined by vanilla 3DGS, a
method that only uses the edge-aware smoothness regulari-
sation introduced in Section 4.2.2 (3DGS+S), and a method
that only uses 3DGS and tactile information (3DGS + T).

Table 2 reports quantitative results comparing the four
variants of Gaussian Splatting-based methods according to
both the quality of the 3D reconstruction (CD) and of novel
view synthesis (SSIM). Our method does not sacrifice the



Figure 3. Surface reconstruction and novel view synthesis qualitative results using 5 training views on a sample of the Glossy Synthetic
dataset.

3DGSGround 
Truth 

3DGS +
Smoothness Loss

Ours
[5 grasps]

Tactile 
locations

CD: 6.9 CD: 7.9 CD: 3.8

Figure 4. Rasterised depth maps of the Toaster object. Our method
results in a smoother, accurate reconstruction compared to 3DGS
and 3DGS with additional regularisation on the smoothness loss.

quality of the rendering as shown by neutral metrics in terms
of SSIM compared to 3DGS, while it significantly improves
the geometry of the reconstructions as measured by average
CD (1.3 Ours vs 3.7 3DGS). The gap is more pronounced
on models with relatively large shiny surfaces like toaster
and helmet. A qualitative visualisation of the difference in
reconstructions for the toaster object is shown in Figure 4.
The results of 3DGS+S also show how the smoothness loss
is effective to improve the quality of 3D reconstruction, but
it still falls short compared to our full method where con-
straints given by the surfaces reconstructed by the grasps
and the smoothness regularisation act in synergy to further
boost performance. Similarly, while the addition of touches
in 3DGS+T results in better reconstruction quality over the
standalone 3DGS model, the absence of smoothness regu-
larisation limits its ability to refine the reconstruction be-
yond the areas of contact.

Method Toaster Car Coffee Helmet Teapot Avg.

3DGS 0.53 0.69 0.64 0.61 0.79 0.65
3DGS + S 0.53 0.70 0.60 0.67 0.79 0.66

Ours[5 grasps] 0.60 0.74 0.64 0.70 0.79 0.70

Table 3. Comparison of 3D reconstruction methods on the full
Shiny Blender dataset (100 views). We report the Area Under the
Curve (AUC) for prediction accuracy at increasing distance thresh-
olds between predicted and ground truth point clouds.

We observed that the Chamfer Distance sometimes leads
to inconsistencies between quantitative results and visual
quality, as it may overlook structural discrepancies such as
gaps and holes in the predicted point cloud. This occurs be-
cause CD considers only the minimum distance from each
point in the predicted point cloud to the nearest point in the
ground truth, and vice versa. To address this limitation, we
implemented a Point Cloud Coverage metric as the com-
pleteness of the predicted point cloud relative to the ground
truth. It involves verifying the presence of at least one pre-
dicted point within progressively increasing radii around
each ground truth point and plotting these results to form a
coverage curve (Figure 5). A comprehensive analysis across
all tested objects is shown in the Supplementary material.
In Table 3 we report the area under the curve (AUC) which
quantify the overall accuracy of the reconstruction, whereas
higher values indicating more comprehensive coverage of
the ground truth geometry. Our results indicate that com-



Figure 5. Point Cloud Coverage curves for the Toaster object.
Combining tactile and visual data leads to higher accuracy at lower
distance thresholds.

Figure 6. Qualitative reconstructions in the real-world. High-
lighted areas show that the introduction of touches leads to
smoother and more accurate surface reconstruction. SSIM on the
generated views in this figure: 0.78 (3DGS) vs. 0.82 (Ours) –
higher is better.

bining visual with contact data achieves higher accuracy at
lower radius thresholds and therefore a better reconstruction
quality.

5.4. Real world experiment

In addition to the experiments in simulated environments,
we conduct a qualitative comparison on real world recon-
struction. We employed a robotic hand (Allegro Hand)
equipped with four tactile sensors and an in-hand camera to
acquire multiple views and grasps of a real object, aiming to
reconstruct its geometry using both a standard 3D Gaussian
Splatting model (3DGS) and our novel approach. Specifi-

cally, we collected 25 views and 20 tactile readings to cap-
ture the object’s geometry. The qualitative results presented
here (see Figure 6) are part of an evaluation to demonstrate
the improvements our method offers in real-world geomet-
ric reconstruction of challenging surfaces. Due to the un-
availability of ground truth geometry, the calculation of the
Chamfer Distance is not feasibile. For clearer visualisation
and to emphasise the quality of object reconstruction, we
presented cropped images and 3D Gaussian representations
focused on the object, though training utilised the original,
uncropped images.

Our results highlight regions where our approach pro-
duces smoother surfaces or eliminates holes as well as gen-
erating more accurate novel view synthesis. These findings
align with outcomes from simulated experiments, indicat-
ing that the inclusion of local depth maps obtained from
tactile sensors improves reconstruction quality. For more
information on the data collection procedure employed in
this experiment, please refer to the supplementary material.

6. Limitations and Conclusion

This work introduces a novel approach for incorporating
touch sensing with vision. We believe to be the first to
have explored the problem of reconstruction and novel view
synthesis of an object that is both seen and touched. We
presented convincing results both qualitatively and quan-
titatively on two complex datasets, and we showed that
our method outperforms baselines, especially when a set of
minimal views of the object are used.

Despite these promising results, there are some limita-
tions that highlight areas for future research. The current
methodology employs random touch sampling to collect
contact surfaces for scene reconstruction. This strategy may
not always be efficient and could be extended by an adap-
tive sampling method, which can select sampling locations
to complement visual data. Future work could focus on in-
vestigating how multimodal interaction can further improve
reconstruction of transparent objects within the scene. We
believe incorporating ideas like surface modelling and sur-
face normals can also improve upon our results.
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