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Abstract
Prompt learning is a cutting-edge parameter-
efficient fine-tuning technique for pre-trained
vision-language models (VLMs). Instead of learn-
ing a single text prompt, recent works have re-
vealed that learning diverse text prompts can ef-
fectively boost the performances on downstream
tasks, as the diverse prompted text features can
comprehensively depict the visual concepts from
different perspectives. However, diverse prompt
learning demands enormous computational re-
sources. This efficiency issue still remains un-
explored. To achieve efficient and diverse prompt
learning, this paper proposes a novel Surro-
gate Prompt Learning (SurPL) framework. In-
stead of learning diverse text prompts, SurPL di-
rectly generates the desired prompted text fea-
tures via a lightweight Surrogate Feature Gen-
erator (SFG), thereby avoiding the complex gra-
dient computation procedure of conventional di-
verse prompt learning. Concretely, based on a
basic prompted text feature, SFG can directly
and efficiently generate diverse prompted fea-
tures according to different pre-defined condi-
tional signals. Extensive experiments indicate
the effectiveness of the surrogate prompted text
features, and show compelling performances
and efficiency of SurPL on various benchmarks.
Code is available at https://github.com/
llcllc1997/SurPL.

1. Introduction
Recently, vision-language models (VLMs) (Radford et al.,
2021; Jia et al., 2021; Yao et al., 2021; Zhai et al., 2022)
have shown great capability in open-world visual under-
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Figure 1. Illustration of different prompt learning frameworks. (a):
conventional single prompt learning. (b): diverse prompt learning,
e.g., instance-dependent prompt learning and fine-grained prompt
learning, etc. (c) our proposed Surrogate Prompt Learning.

standing. How to effectively and efficiently leverage these
large-scale pre-trained models for downstream tasks has
garnered significant attention in research. In this context,
prompt learning (Zhou et al., 2022c;b; Chen et al., 2023;
Khattak et al., 2023a;b; Roy & Etemad, 2024; Yao et al.,
2024; Lafon et al., 2024; Zhang et al., 2024a) comes to the
fore as an emerging parameter-efficient fine-tuning (PEFT)
technique, and has achieved compelling transferring perfor-
mances for pre-trained VLMs.

Given a downstream task, prompt learning targets to learn
a few extra prompt tokens at the text input position, so that
the prompted text feature can obtain the task-specific knowl-
edge, and provide more accurate descriptions of the visual
concepts in the downstream tasks. While previous methods
mainly focus on learning one single text prompt, recent ap-
proaches start to learn diverse text prompts and achieve sig-
nificant improvements. These diverse prompted text features
constitute more comprehensive descriptions of the visual
concepts in downstream tasks from different perspectives.
For example, instance-dependent prompt learning (Zhou
et al., 2022b) learns a unique visual-guided text prompt for
each visual example; fine-grained prompt learning (Chen
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et al., 2023; Wang et al., 2023; Lafon et al., 2024) learns
several text prompts to align with different local-based vi-
sual features, etc. We collectively denote these methods as
diverse prompt learning.

However, diverse prompt learning demands enormous
computational resources. Although prompt learning is
parameter-efficient, optimizing the prompt tokens at the in-
put position still requires back-propagated gradient compu-
tation through the entire text encoder, which causes consid-
erable consumption on GPU memory and optimization du-
ration. Given an M -class visual classification task, learning
a single text prompt needs to process the back-propagated
gradient computation from M prompted text features to the
input, simultaneously (shown in Fig.1 (a)). Nevertheless,
for instance-dependent prompt learning, the optimization
involves gradient computation w.r.t B ×M text features,
where B is the training batch size of the visual samples. For
fine-grained prompt learning, the gradient computation will
increase to Z×M text features, where Z indicates the num-
ber of applied local visual features. As illustrated in Fig.1
(b), these existing diverse prompt learning methods scale up
the computation consumption from O(M) to O(B ×M)
or O(Z ×M), thereby leading to severe efficiency issue.

To breakthrough the dilemma, this paper proposes Surro-
gate Prompt Learning (SurPL). Instead of learning di-
verse text prompts from scratch, SurPL directly generates
their prompted text features via a lightweight Surrogate
Feature Generator (SFG). As shown in Fig.1 (c), SurPL
only learns a single basic prompt. Given the basic prompted
text feature, SFG can efficiently generate diverse text fea-
tures according to different conditional signals. These sig-
nals are inherently flexible and arbitrary. They can be pre-
defined prior knowledge (e.g., semantic information of vi-
sual instances), or can be initialized and learnable tokens
that are supposed to convey specific knowledge (e.g., fine-
grained information). SurPL bypasses the issue of enor-
mous gradient computation inside the text encoder (i.e.,
keeping the computation consumption under O(M)), but
still provides diverse text features that can be exploited to
comprehensively align with visual concepts.

We emphasize that the core idea of this paper is not
designing a new diverse prompt learning method, but
proposing a novel and unified framework that can im-
plement arbitrary diverse prompt learning approaches
under the computation efficiency that is comparable to
single prompt learning approaches. Qualitative and quan-
titative experiments have verified that our generated sur-
rogate features are sufficiently effective to replace those
original prompted features. We further show that by sim-
ply incorporating both instance-dependent and fine-grained
prompt learning concepts into our surrogate prompt learn-
ing framework, SurPL can even surpass the state-of-the-art

performances of existing diverse prompt learning methods,
while maintaining remarkable computation efficiency.

In a nutshell, we present our contributions as follows: 1) We
propose a novel and efficient paradigm for diverse prompt
learning, denoted as Surrogate Prompt Learning (SurPL).
SurPL directly generates the diverse prompted text features
instead of learning diverse text prompts from scratch, ad-
dressing the efficiency issue in existing diverse prompt learn-
ing; 2) To generate diverse text features, we propose a Surro-
gate Feature Generator (SFG). These features are controlled
and generated by flexible and arbitrary conditional signals,
allowing SurPL to adapt and integrate different types of
diverse prompt learning frameworks; 3) Extensive exper-
iments are conducted to indicate the effectiveness of our
generated surrogate text features, and show remarkable per-
formances and efficiency of SurPL on various benchmarks.

2. Related Works
Single prompt learning: Recently, prompt learning has
become a popular parameter-efficient fine-tuning technique
that can rapidly adapt pre-trained VLMs (e.g., CLIP (Rad-
ford et al., 2021), ALIGN (Jia et al., 2021) and LiT (Zhai
et al., 2022)) to various downstream tasks, without tuning
any pre-trained parameters. Pioneer work CoOp (Zhou
et al., 2022c) replaces hand-crafted prompt templates by
a set of learnable prompt tokens at the text input position.
After learning on downstream tasks, these prompt tokens
capture task-specific knowledge and provide more accu-
rate prompted text features to align with task-related visual
concepts, thus exhibiting better performances. Inspired by
CoOp, subsequent approaches dedicate to further improve
VLM’s transfer ability by learning multi-modal prompts
(Khattak et al., 2023a; Xu et al., 2023; Khattak et al., 2023b;
Cho et al., 2023; Wang et al., 2023), generalizable prompts
(Zhu et al., 2023; Yao et al., 2023; Liu et al., 2023; Yao et al.,
2024; Zhang et al., 2024a), meta learning-based prompts
(Li et al., 2023a; Zhao et al., 2024), neural architecture
search-based prompts (Zhang et al., 2024b), etc.

Diverse prompt learning: Different from the above ap-
proaches that only learn prompts to obtain a single prompted
text feature, recent studies have manifested that leverag-
ing diverse prompts can significantly improve the transfer
performances, as their prompted text features can provide
a more comprehensive description of the visual concepts
from different perspectives. CoCoOp (Zhou et al., 2022b)
proposes instance-dependent prompt learning, i.e., learning
dynamic visual-conditional prompt for each visual example.
PLOT (Chen et al., 2023) and ALIGN (Wang et al., 2023)
learn multiple fine-grained text prompts based on the opti-
mal transport strategy. GalLoP (Lafon et al., 2024) targets to
learn both global and local text prompts that can align with
the global and local representation features of the visual
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concepts. Although these diverse prompt learning methods
have achieved remarkable performances, they still demand
enormous computation resources.

3. Proposed Method
3.1. Overview

This paper proposes Surrogate Prompt Learning (SurPL) to
achieve efficient and diverse prompt learning. Instead of
directly learning diverse text prompts from scratch, SurPL
alternatively generates their prompted text features. As
shown in Fig.2, SurPL introduces a novel Surrogate Feature
Generator (SFG), which can generate diverse text features
based on the obtained basic text feature according to differ-
ent conditional signals. These signals are inherently flexible
and arbitrary, enabling SurPL to incorporate any type of
diverse prompt learning framework.

In this work, we focus on two primary types of diverse
prompt learning methods: instance-dependent and fine-
grained prompt learning. Similar to existing single prompt
learning approaches, SurPL only optimizes a few text
prompt tokens to obtain a basic prompted text feature. Using
this basic text feature and various pre-defined conditional
signals, SurPL efficiently generates instance-dependent and
fine-grained text features via SFG, which are supposed to be
obtained by learning diverse text prompts. These generated
text features, combined with the global-invariant text fea-
ture, provide more comprehensive descriptions of the visual
concepts from different perspectives, thereby significantly
boosting the adaptation ability of VLMs.

3.2. Preliminaries

Contrastive Language-Image Pre-training (CLIP).
CLIP (Radford et al., 2021) has shown great potential
on zero-shot image classification. CLIP consists of
a visual-encoder V = {V k}Kk=1 and a text encoder
T = {T k}Kk=1, where K denotes the depth of the encoder
layers. Given anM -class task, the text inputs t = {tm}Mm=1

are formed by the combination of the classnames (text
labels) and the hand-crafted prompt, e.g., ’a photo of a
[classname]’. The output text features can be obtained as
w = T (t) = {wm}Mm=1., where wm denotes the feature
corresponds to m-th class. Given the visual feature of
an image x: f̂ = V(x), the prediction probability of x
belonging to m-th class can be expressed as:

p(m|x) = exp(cos(f̂ ,wm)/τ)∑M
j=1 exp(cos(f̂ ,wj)/τ)

, (1)

where cos(·, ·) denotes the cosine similarity and τ is a tem-
perature parameter learned by CLIP.

Context Optimization (CoOp). CoOp (Zhou et al., 2022c)

replaces the hand-crafted prompts by several learnable
prompt tokens s = {sl}Ll=1 ∈ RL×d at the text input po-
sition, where L and d indicates the prompt token length
and token dimension. Therefore, the text input of m-th
class can be formed as tm = [s, cm], where cm is the m-th
classname. Given a visual sample x and the ground-truth
label ym of the downstream task, CoOp optimizes prompt
token parameters s via cross-entropy loss LCE between the
prediction probability and label (CLIP parameters are fixed):

LCE(s) = −
∑
m

ym log p(m|x),

where p(m|x) = exp(cos(f̂ ,wm)/τ)∑M
j=1 exp(cos(f̂ ,wj)/τ)

,

(2)

Dense Visual-Text Prompt (DVLP). DVLP is a stronger
baseline that has been widely-used in recent researches
(Khattak et al., 2023a;b; Zhang et al., 2024a). DVLP ex-
ploits multi-modal dense prompt tokens at each encoder
layer. DVLP consists of text prompts s = {sk}Kk=1 and
visual prompts u = {uk}Kk=1, where K denotes the depth
of prompts. The computation procedure of the k-th layer of
DVLP can be expressed as:

{
[sk+1, cj

k+1]
M

j=1 = T k
(
[sk, cj

k]
M

j=1

)
,

[xk+1,uk+1] = V k
(
[xk,uk]]

)
.

(3)

The output of sk and uk are then substituted by the newly
involved prompt tokens sk+1 and uk+1, and reformed as
the input for the next k + 1-th layer.

3.3. Surrogate Feature Generator

As shown in Fig.2, the proposed Surrogate Feature Gener-
ator (SFG) is intrinsically a cross-attention module. The
”query” is the basic prompted text feature while the ”key”
and ”value” are the pre-defined conditional signals. Differ-
ent from standard cross-attention modules, we decrease the
hidden layer dimension of the MLP (Multi-Layer Percep-
tron), and keep SFG still parameter-efficient.

We denotew = {wm}Mm=1 ∈ RM×d as the basic prompted
text feature obtained from the text encoder, where M and
d indicate the number of classes and the feature dimension.
Generally,w can be obtained by any single prompt learning
method. In this paper, we utilize DVLP as the baseline. The
conditional signal α ∈ Rd is flexible and arbitrary, which
can be any pre-defined prior knowledge (e.g., semantic in-
formation of visual instances), or initialized and learnable
tokens that are supposed to convey specific knowledge (e.g.,
fine-grained information). The generated surrogate text fea-
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Figure 2. Pipeline of our proposed Surrogate Prompt Learning (SurPL). In this work, we mainly generate two types of diverse prompted
text features: instance-dependent features and fine-grained features. Notably, ”ID” and ”FG” denote ”instance-dependent” and
”fine-grained” in the figure, respectively.

ture h ∈ RM×d corresponding to α can be derived as:

h = θSFG(w,α) =MLP

(
softmax

(
wα>√
dk

)
α

)
,

(4)
where θSFG represents the parameters of SFG. For simplifi-
cation, we omit the necessary feature projection (Proj) and
layer norm (LN ) operations in Eq.4, and provide detailed
computation procedures in the appendix.

SFG uses conditional signals as guidance, so the generated
text feature obtains specific knowledge related to the given
signal. Leveraging diverse condition signals can generate
diverse text features that comprehensively align with visual
concepts in downstream tasks from different perspectives.
This operation avoids learning diverse prompts from scratch,
hence addressing the efficiency problem in existing diverse
prompt learning methods. In the following, we provide
the concrete implementations of instance-dependent and
fine-grained surrogate prompt learning.

3.4. Instance-dependent Surrogate Prompt Learning

Instance-dependent (ID) prompt learning targets to embed
visual information into text prompts, so that the prompted
text features can dynamically adapt according to the input
visual instances. Given a of visual instancesX = {xb}Bb=1

(B denotes the batch size), instance-dependent prompt
learning involves B× computation cost of gradient back-
propagation in the text encoder compared to single text
prompt learning methods. This implementation drastically
decreases the optimization efficiency, especially when using
a sufficiently large batch size.

To address this issue, we generate the instance-dependent

prompted text features via SFG. Concretely, for each visual
instance xb, we directly adopt the output visual feature f̂b =
V(xb) as the instance-dependent conditional signal αID

b .
The surrogate instance-dependent (ID) text feature hID

b ∈
RM×d can thus be expressed as: hID

b = θSFG(w,α
ID
b ). hID

b

encapsulates specific knowledge w.r.t xb, thereby providing
more accurate description to the visual instance. Finally, the
corresponding instance-dependent optimization loss LID

CE

is computed as:

LID
CE =

1

B

B∑
b=1

(
−
∑
m

ym log pID
b (m|xb)

)
,

where pID
b (m|xb) =

exp(cos(f̂ b,h
ID
b,m)/τ)∑M

j=1 exp(cos(f̂ b,h
ID
b,j)/τ)

.

(5)

3.5. Fine-Grained Surrogate Prompt Learning

The output of a visual example from the pre-trained VLM
visual encoder is actually constituted by a basic (global)
visual feature f̂ ∈ Rd and N fine-grained (local) visual
features f = {fn}N−1n=0 ∈ RN×d. While traditional works
typically utilize f̂ as the representation of visual concepts,
recent approaches start to fully exploit effective fine-grained
visual features embedded in f , and learn additional fine-
grained (FG) text prompts to align with them. Suppose
the number of newly involved prompts is Z. Fine-grained
prompt learning increases the computation cost of gradient
back-propagation in the text encoder by Z times compared
to single text prompt learning methods.

Since fine-grained information does not require prior knowl-
edge, we simply pre-define the fine-grained (FG) condi-
tional signals as learnable parameters: αFG ∈ RZ×d. αFG
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can automatically capture fine-grained cues during the op-
timization procedure. The surrogate fine-grained (FG) text
features hFG = {hFG

z }Zz=1 ∈ RZ×M×d can be expressed as:
hFG = θSFG(w,α

FG).

Following GalLoP (Lafon et al., 2024), we excavate ef-
fective fine-grained visual features from f by measuring
the similarity between f and hFG. Refer to recent works
(Sun et al., 2022; Zhou et al., 2022a; Lafon et al., 2024),
f ∈ RN×d is obtained by forwarding them through the last
visual encoder block, where the self-attention operation is
removed and a linear projection layer is added at the end.
Concretely, for the z-th fine-grained text feature hFG

z , we se-
lect the top z×η visual features with the highest similarities
to hFG

z as the representative fine-grained visual information.
Here η is a constant factor, which enables the selected fine-
grained visual features different and multi-scaled for each
hFG
z . The corresponding similarity between hFG

z and f of
the m-th class is given by average similarities of the top
z × η regions:

sim(hFG
z,m,f) =

1

z × η

N∑
n=1

1top-zη(n) · cos(hFG
z,m,fn),

where 1top-zη(n) =

{
1, if rankn(cos(hFG

z,m,fn)) ≤ zη,
0, otherwise.

(6)
Finally, we compute the fine-grained loss LFG

CE as:

LFG
CE =

1

Z

Z∑
z=1

(
−
∑
m

ym log pFG
z (m|x)

)
,

where pFG
z (m|x) =

exp(sim(hFG
z,m,f)/τ)∑M

j=1 exp(sim(hFG
z,j ,f))/τ)

.

(7)

3.6. Optimization and Inference

As shown in Fig.2, besides the generated surrogate features
hID and hFG, we also learn a global-invariant (GI) text fea-
ture wGI based on w, which can provide the general and
global text description. The global-invariant loss can be
expressed as:

LGI
CE = LCE + Linvariant

= LCE + λ1|wGI −wzs|+ λ2|f̂ − f̂
zs
|,

(8)

where LCE indicates the cross-entropy loss calculated be-
tween wGI and f̂ according to Eq.2, wzs and f̂

zs
denote

the text and visual features obtained from zero-shot text
and visual encoders without prompts, λ1 and λ2 are the
coefficients. During the optimization phase, the optimiz-
ing parameters φ include the dense text prompts s, dense
visual prompts u, the Surrogate Feature Generator θSFG,
fine-grained conditional signals αFG and the linear projec-
tion layer θProj to obtain f . The entire loss is summed by:

Lφ={s,u,θSFG,αFG,θProj} = L
GI
CE + LID

CE + LFG
CE . (9)

During the inference phase, the final prediction probability
of x belonging to the m-th class is derived as:

p(m|x) =
(
pGI(m|x) + pID(m|x) + 1

Z

Z∑
z=1

pFG
z (m|x)

)
/3,

(10)
where pGI(m|x) indicates the prediction probability be-
tween wGI and f̂ .

Generalization ability of SurPL: Recent studies begin to
explore the generalization ability of the learned prompts,
and evaluate their performances on unseen tasks. To this
end, we further propose a generalizable version of SurPL,
denoted as SurPL-G. As many previous studies (Keskar
et al., 2016; Dziugaite & Roy, 2017; Jiang et al., 2019) have
manifested that flat loss landscape leads to better generaliza-
tion ability, SurPL-G leverages Sharpness-aware Minimiza-
tion (SAM) (Foret et al., 2021) to optimize the parameters
φ = {s,u,θSFG,α

FG,θProj}:

LSAMφ = Lφ+ε̂ = Lφ+ρ ∇Lφ
‖∇Lφ‖

, (11)

where Lφ is computed according to Eq.9 and ρ is the pertur-
bation radius. This implementation encourages the neigh-
boring parameters of φ: (φ+ ε) to have uniformly low loss
values, thereby promoting a flatter loss landscape and en-
hancing the generalization ability of SurPL-G. We provide
the detailed algorithms of SurPL and SurPL-G in appendix.

4. Experiments
Dataset. To evaluate the effectiveness of SurPL, this paper
exploits 15 public available visual classification datasets
as downstream tasks, including ImageNet (Deng et al.,
2009), Caltech101 (Fei-Fei et al., 2004), OxfordPets (Parkhi
et al., 2012), StanfordCars (Krause et al., 2013), Flowers102
(Nilsback & Zisserman, 2008), Food101 (Bossard et al.,
2014), FGVCAircraft (Maji et al., 2013), SUN397 (Xiao
et al., 2010), DTD (Cimpoi et al., 2014), EuroSAT (Helber
et al., 2019), UCF101 (Soomro et al., 2012), ImageNetV2
(Recht et al., 2019), ImageNet-Sketch (Wang et al., 2019),
ImageNet-A (Hendrycks et al., 2021b) and ImageNet-R
(Hendrycks et al., 2021a). These datasets constitute a com-
prehensive benchmark.

Implementation details. We adopt Dense Visual-
Language Prompt (DVLP) as the baseline model. We mainly
evaluate our proposed method on 4 types of experiment
settings: SurPL on few-shot learning, SurPL-G on base-to-
novel generalization, cross-domain and cross-dataset gener-
alization. Most of the implementation details are followed
by PSRC (Khattak et al., 2023b). For SurPL and SurPL-G,
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Table 1. Efficiency comparison between SurPL and existing di-
verse prompt learning methods, including CoCoOp(Zhou et al.,
2022b), PLOT++(Chen et al., 2023), ALIGN(Wang et al., 2023)
and GalLoP(Lafon et al., 2024). ’OOM” indicates that GPU Out
of Memory on 4× RTX3090 GPUs.

Methods Memory Training Testing Acc

E
ur

oS
A

T CoCoOp 7.79G 0min42s 1min17s 73.32
PLOT++ 13.02G 0min53s 0min38s 92.00
ALIGN 14.00G 0min41s 1min40s 90.77
GalLoP 4.69G 0min28s 0min24s 90.10
SurPL 5.60G 0min22s 0min22s 93.92

A
ir

cr
af

t CoCoOp OOM - - 31.21
PLOT++ 20.50G 8mini21s 0min21s 46.74
ALIGN 23.37G 31min23s 4min43s 49.99
GalLoP 18.77G 5min52s 0min23s 58.30
SurPL 7.37G 2min36s 0min12s 60.51

Im
ag

eN
et CoCoOp OOM - - 70.83

PLOT++ OOM - - 72.60
ALIGN OOM - - 72.45
GalLoP OOM - - 75.10
SurPL 23.80G 8min03s 6min21s 74.65

Table 2. Efficiency comparison between SurPL and existing single
prompt learning methods, including MaPLe(Khattak et al., 2023a),
PSRC(Khattak et al., 2023b) and our baseline model DVLP.

Methods Memory Training Testing Acc

E
ur

oS
A

T MaPLe 5.14G 0min15s 0min12s 92.33
PSRC 5.80G 0min17s 0min13s 92.43
DVLP 5.60G 0min21s 0min21s 92.58
SurPL 5.60G 0min22s 0min22s 93.92

A
ir

cr
af

t MaPLe 6.90G 1min31s 0min10s 48.40
PSRC 7.65G 1min43s 0min10s 50.83
DVLP 7.33G 2min29s 0min12s 52.88
SurPL 7.37G 2min36s 0min12s 60.51

Im
ag

eN
et MaPLe 22.68G 5min53s 4min22s 72.33

PSRC 23.10G 6min14s 4min31s 73.17
DVLP 23.30G 7min44s 5min48s 72.62
SurPL 23.80G 8min03s 6min21s 74.65

we utilize batch sizeB = 4 for base-to-novel generalization,
and batch size B = 32 for other three settings. Similar to
GalLoP (Lafon et al., 2024), the number of fine-grained text
features and multi-scale constant factor are set as Z = 4
and η = 10. All experiments are conducted on a single RTX
3090 GPU. All results are obtained with CLIP ViT-B/16
backbone and 16-shot visual samples unless specified. More
detailed implementations are given in appendix.

4.1. Efficiency Analysis of SurPL

As shown in Tab.1, we compare the computation-efficiency
between SurPL and existing diverse prompt learning meth-
ods, under three datasets that have different scales: EuroSAT
(10 classes), FGVCAircraft (100 classes) and ImageNet
(1000 classes). We set the batch size B = 32 as default and
report the results of GPU memory, training time (1 epoch for
ImageNet and 10 epochs for the other two datasets), testing

Table 3. Ablation study of SurPL on few-shot setting and SurPL-G
on base-to-novel (B2N) setting. ’GI’, ’ID’ and ’FG” denote lever-
aging wGI, hID and hFG to describe the visual concepts, respec-
tively. Averaged results on 11 datasets are reported here. Complete
experiment results for individual datasets are given in appendix.
’HM” denotes the harmonic mean between base and novel results.

DVLP GI GI+ID GI+FG GI+ID+FG

Few-shot 82.92 83.70 83.96 84.99 85.12

B2N
Base 79.61 81.84 84.77 85.52 86.37
Novel 71.63 74.68 76.19 75.50 76.32
HM 75.41 78.09 80.25 80.20 81.03

time and few-shot learning accuracy. Compared to these
diverse prompt learning methods, SurPL significantly re-
duces computational consumption in terms of GPU memory,
training time, and testing time, while even simultaneously
improving accuracy. These results indicate that SurPL has
achieved our primary goal: improving the computation effi-
ciency for diverse prompt learning.

Notably, for large-scale datasets such as ImageNet, we ob-
serve that existing diverse prompt learning approaches re-
quire extremely enormous GPU memory. We also notice
that the efficiency issue cannot be fully solved by parallel
multiple GPUs, since all prompted text features should al-
ways be repeatedly computed on each GPU. As we estimate,
these methods require at least 80 − 100G memory for to-
tal, and each GPU should afford 40 − 50G memory. In
contrast, SurPL can conduct experiments on ImageNet with
a single 24G RTX 3090 GPU, which significantly improves
the computation efficiency.

Furthermore, we compare SurPL with recently proposed
single prompt learning methods. As shown in Tab.2, SurPL
achieves significant improvements on accuracy, with only a
slight increase in training and testing time. Notably, we find
that the GPU memory consumption remains comparable to
these single prompt learning methods, which highlights the
computation efficiency of our proposed SurPL.

4.2. Ablation Study

SurPL learns three kinds of text features: global-invariant
(GI) text featurewGI, the surrogate instance-dependent (ID)
text feature hID and the surrogate fine-grained (FG) text
feature hFG. These text features jointly provide a compre-
hensive description of the visual concept, thereby achieving
compelling performance improvements over the baseline
DVLP. We conduct ablation study to verify the effective-
ness of wGI, hID and hFG under both few-shot learning and
base-to-novel generalization settings.

As shown in Tab.3, each of the applied text features (wGI,
hID and hFG) consistently improves the performance under
both experiment settings. These results verify that learning
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Table 4. Few-shot learning performance comparison between our proposed SurPL and existing single prompt learning (CoOp(Zhou et al.,
2022c), MaPLe(Khattak et al., 2023a), DAPT(Cho et al., 2023), PSRC(Khattak et al., 2023b) and LLaMP(Zheng et al., 2024)) and diverse
prompt learning (CoCoOp(Zhou et al., 2022b), PLOT++(Chen et al., 2023), ALIGN(Wang et al., 2023) and GalLoP(Lafon et al., 2024))
approaches. The bold numbers and underlined numbers denote the best and second-best results, respectively.

Methods ImageNet Caltech101 Pets Cars Flowers Food101 Aircraft Sun397 DTD EuroSAT UCF101 AVG

Si
ng

le

CoOp 71.87 95.57 91.87 83.07 97.07 84.20 43.40 74.67 69.87 84.93 82.23 79.89
MaPLe 72.33 96.00 92.83 83.57 97.00 85.33 48.40 75.53 71.33 92.33 85.03 81.79
DAPT 72.20 95.82 92.27 83.03 97.06 86.55 46.37 75.99 71.38 92.65 84.53 81.62
PSRC 73.17 96.07 93.67 83.83 97.60 87.50 50.83 77.23 72.73 92.43 86.47 82.87

LLaMP 73.49 97.08 94.21 86.07 98.06 87.62 56.07 77.02 74.17 91.31 86.84 83.81

D
iv

er
se CoCoOp 70.83 95.16 93.34 71.57 87.84 87.25 31.21 72.15 63.04 73.32 78.14 74.90

PLOT++ 72.60 96.04 93.59 84.55 97.56 87.11 46.74 76.03 71.43 92.00 85.34 82.09
ALIGN 72.45 96.00 94.17 86.75 96.57 86.90 49.99 76.57 71.40 90.77 85.69 82.48
GalLoP 75.10 96.70 94.10 89.20 98.80 86.50 58.30 77.20 75.50 90.10 86.90 84.40

SurPL 74.65 96.92 94.22 89.00 98.84 87.63 60.51 77.67 74.75 93.92 88.18 85.12

Table 5. Base-to-novel generalization performance comparison be-
tween our proposed SurPL-G and existing generalizable prompt
learning approaches. For fair comparisons, we only list existing
inductive methods in the table, without considering the transduc-
tive approaches that leverage extra models (e.g., stronger VLMs
or LLMs) or data to improve the generalization ability. Averaged
results on 11 datasets are reported here. Complete experiment
results for individual datasets are given in appendix.

Base Novel HM

CLIP (Radford et al., 2021) 68.21 73.36 70.69
CoOp (Zhou et al., 2022c) 82.68 64.15 72.25

CoCoOp (Zhou et al., 2022b) 82.56 64.66 72.52
ProGrad (Zhu et al., 2023) 82.48 69.12 75.21
KgCoOp (Yao et al., 2023) 81.94 72.52 76.94

MaPLe (Khattak et al., 2023a) 82.28 75.14 78.55
PSRC (Khattak et al., 2023b) 84.24 75.68 79.73
ALIGN (Wang et al., 2023) 83.39 75.51 79.25

TCP (Yao et al., 2024) 84.13 75.36 79.51
DePT (Zhang et al., 2024a) 85.18 76.17 80.42

SurPL-G 86.37 76.32 81.03

diverse text features from different perspectives can signif-
icantly benefit the VLM’s adaptation ability. Specifically,
we observe that the surrogate instance-dependent feature
hID and fine-grained feature hFG drastically boost VLM’s
generalization (base-to-novel results) and discriminative
(few-shot results) ability, respectively. This observation
manifests that different generated surrogate text features en-
hance VLM’s ability from different perspectives, which also
indicates that 1) the generated surrogate text features are suf-
ficiently effective to replace the original diverse prompted
text features; 2) our proposed Surrogate Feature Genera-
tor is flexible enough to simultaneously generate different
diverse prompted text features efficiently.

4.3. State-of-the-art Comparison

Few-shot learning. As shown in Tab.4, SurPL achieves
remarkable few-shot learning performances. Compared

to existing single and diverse prompt learning approaches,
SurPL obtains the best average results over 11 datasets. By
jointly exploiting different kinds of text features, we surpris-
ingly observe that SurPL even surpasses the state-of-the-art
fine-grained-based method GalLoP (Lafon et al., 2024) by
0.72%, while significantly improving the computation effi-
ciency. Beyond the average results, SurPL also achieves the
best performances on 7 out of 11 datasets and ranks within
the top-2 on all datasets. Notably, for datasets such as
FGVCAircraft, EuroSAT and UCF101, SurPL demonstrates
substantial improvements over state-of-the-art results, with
gains of 2.21%, 1.27% and 1.28%, respectively. The results
in Tab.4 clearly show the superiority of SurPL, and verify
that the surrogate text features can effectively substitute for
original diverse prompted features.

Base-to-novel Generalization. Tab.5 compares the gen-
eralization ability of SurPL-G with existing generalizable
prompt learning methods under the base-to-novel gener-
alization setting. We observe that SurPL-G achieves the
highest average results over 11 datasets for both base and
novel classes, thereby improving the generalization trade-off
results (Harmonic Mean, HM) by 0.61% over the state-of-
the-art approach DePT (Zhang et al., 2024a). Specifically,
SurPL-G also achieves the best performances on 9 out of 11
datasets. For datasets such as FGVCAircraft, EuroSAT and
UCF101, SurPL-G demonstrates substantial improvements
over state-of-the-art results, with gains of 1.46%, 2.60%
and 1.28%, respectively. The above detailed results are pro-
vided in the appendix. The results in Tab.5 indicate that by
simply incorporating the SAM optimization strategy with
SurPL, SurPL-G exhibits compelling generalization ability.

Cross-dataset Generalization. We further explore the gen-
eralization ability of SurPL-G under the cross-dataset set-
ting, where prompts are learned on ImageNet (source do-
main) and evaluated on 10 other datasets (target domain).
As shown in Tab.6, SurPL-G achieves the best performances
on both source and target domains compared to existing
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Table 6. Cross-dataset generalization performance comparison. Models are learned on ImageNet (source domain) and evaluated on 10
other datasets (target domains). Averaged results of the 10 datasets are reported.

CoOp CoCoOp ProGrad KgCoOp PLOT MaPLe PSRC DePT TCP SurPL-G

Source 71.51 71.02 72.24 70.66 71.60 70.72 71.27 71.60 71.40 73.33
Target (average) 63.88 65.74 62.66 65.51 64.34 66.30 65.81 66.02 66.29 66.61

Table 7. Cross-domain generalization performance comparison.
V2, Sketch, A and R indicate the ImageNetV2, ImageNet-Sketch,
ImageNet-A and ImageNet-R datasets, respectively.

Source Target

ImageNet V2 Sketch A R AVG

CoOp 71.51 64.44 47.61 49.53 74.98 59.14
CoCoOp 71.02 64.07 48.75 50.63 76.18 59.91
ProGrad 72.24 64.27 48.10 49.72 75.84 59.48
KgCoOp 70.66 64.10 48.97 50.69 76.70 60.12
MaPLe 70.72 64.07 49.15 50.90 76.98 60.28
DAPT 72.20 64.93 48.30 48.74 75.75 59.43
PSRC 71.27 64.35 49.55 50.90 77.80 60.65
TCP 71.20 64.60 49.50 51.20 76.73 60.51

SurPL-G 73.33 66.59 50.45 50.00 78.45 61.37

z=1 z=2

z=3 z=4

z=1 z=2

z=3 z=4

A photo of a
Bengal cat

Figure 3. Visualization results of the attention heat maps of differ-
ent surrogate fine-grained text features hFG = {hFG

z }Zz=1.

methods. This comparison indicates that SurPL-G exhibits
a remarkable generalization trade-off.

Cross-domain Generalization. We also investigate the
generalization ability of SurPL-G under the cross-domain
setting, where prompts are learned on ImageNet (source
domain) and evaluated on 4 ImageNet-based domain-shifted
datasets (target domain). The results illustrated in Tab.7
indicate that SurPL-G reaches significant improvements on
both source and target domains over the state-of-the-arts.

4.4. In-depth Analysis of Surrogate Features

Effectiveness of the surrogate fine-grained text features
hFG. As shown in Fig.3, we visualize the attention heat map
of different features {hFG

z }Zz=1 on a visual concept. The
results manifest that 1) our surrogate fine-grained features
accurately capture the important information of the visual
concept; 2) our surrogate fine-grained features provide a
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Figure 4. Comparison of normalized feature cosine similarity be-
tween cos(f̂ ,wGI) and cos(f̂ ,hID) across different classes on the
UCF101 dataset.

multi-scale description of the visual concept from coarse
to fine. These evidences highlight the high quality of our
surrogate text features, further validating the effectiveness
of the proposed SurPL.

Effectiveness of the surrogate instance-dependent text
features hID. To explore the effectiveness of hID, we com-
pute the normalized cosine similarity between hID and the
basic visual feature f̂ , denoted as cos(f̂ ,hID). Specifi-
cally, we randomly sample 10 classes from a dataset and
report the average similarity across all visual samples within
each class. We also perform the same operation between f̂
and the global-invariant text feature wGI: cos(f̂ ,wGI). As
shown in Fig.4, the comparison results highlight that the sur-
rogate instance-dependent text feature hID provides signifi-
cantly better alignments with the visual concepts, indicating
that hID effectively captures instance-level knowledge via
the proposed Surrogate Feature Generator.

5. Conclusion
This paper proposes a novel Surrogate Prompt Learning
(SurPL) framework to enable efficient and diverse prompt
learning for vision-language models. Instead of learning
diverse text prompts from scratch, SurPL directly gener-
ates their prompted text features via a lightweight Surro-
gate Feature Generator, achieving remarkable adaptation
performances while maintaining efficiency comparable to
single-prompt learning methods. By configuring appropri-
ate conditional signals, SurPL is adaptable and integrable
to implement different diverse prompt learning ideas based
on any single prompt learning approach. We hope this work
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can bring some inspiration to the related fields.

Limitations and future works. 1) The Surrogate Feature
Generator (SFG) introduced in this paper is inherently a
cross-attention module, which is relatively outdated and
inevitably increases the parameter sizes. We aim to design
more performant and efficient variants in the future. 2) This
paper mainly incorporates existing diverse prompt learning
frameworks to SurPL. We will further explore effective
information that can boost vision-language alignment from
new perspectives.
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A. Detailed Implementations of Surrogate Feature Generator (SFG)
The parameters of Surrogate Feature Generator θSFG include three input projection layers θin1, θin2, θin3, one output
projection layer θout and two fully connected layers θfc1, θfc2. Given the basic prompted text featurew and the conditional
signal α, the input Query, Key and Value Matrix of the cross attention can be obtained by: Q = LN(w) · θin1,

K = LN(α) · θin2,
V = LN(α) · θin3,

(12)

where LN is the layer norm operation. Then, the cross attention result Attn can be derived as:

Attn = w +

(
softmax

(
QK>√
dk

)
· V
)
· θout. (13)

θin1,θin2,θin3,θout ∈ Rd×d, where d denotes the feature dimension. Finally, the surrogate feature h is obtained by
passing the attention results through a two-layer MLP:

h = Attn+ReLU
(
LN(Attn) · θfc1

)
· θfc2, (14)

where θfc1 ∈ Rd×dmid and θfc2 ∈ Rdmid×d. To keep SFG parameter-efficient, we set dmid = d/2.

Notably, although our proposed SurPL significantly boosts the computation-efficiency, the SFG module inevitably involves
extra learnable parameters. Therefore, apart from the mainly concerned computation-efficiency problem, we also discuss the
parameter-efficiency of SurPL here. Tab.8 illustrates the parameter size comparison between SurPL and existing methods.
We find the total parameter size of SurPL remains acceptable. In fact, it is even smaller than some other prompt learning
approaches e.g., MaPLe (Khattak et al., 2023a) and ALIGN (Wang et al., 2023).

Table 8. Parameter size comparison between SurPL and existing methods (CoCoOp(Zhou et al., 2022b), PLOT++(Chen et al., 2023),
ALIGN(Wang et al., 2023), MaPLe(Khattak et al., 2023a), PSRC(Khattak et al., 2023b), GalLoP(Lafon et al., 2024)).

Method CoCoOp PLOT++ ALIGN MaPLe PSRC GalLoP DVLP (baseline) SurPL

Params 0.035M 0.014M 3.582M 3.556M 0.046M 0.606M 0.061M 1.641M

B. Computation Complexity Analysis of SurPL
Here, we provide a formal analysis of computational complexity of our proposed method SurPL.

Notations. loss L, classnames c = {cm}Mm=1, Text encoder parameter: T = {T k}Kk=1, SFG parameter: θSFG, Text prompts
parameter: s = {sk}Kk=1, Encoder layer depth: K, the parameter size of SFG is much smaller than that of text encoder:
θSFG << T .

Derivation. Optimizing the text prompt s1 at the text encoder input position requires computing the gradient through the
entire model. For each single surrogate output text feature, the back-propagation computation of SurPL can be written as:

∂L
∂s1

=
∂L

∂θSFG(TK([sK , ckm]);αj)
· ∂θSFG(T

K([sK , ckm]);αj)

∂TK([sK , cKm])︸ ︷︷ ︸
SFG

· ∂TK([sK , cKm])

∂TK−1([sK−1, cK−1m ])
· · · ∂T

1([s1, c1m])

∂s1︸ ︷︷ ︸
Text Encoder

. (15)

This gradient computation can be conceptually divided into two parts, which correspond to the text encoder and SFG,
respectively. We denote the computational complexity for each output text feature as OT and OSFG.

As shown in Fig.1 (c), SurPL simultaneously involves M text features back-propagation w.r.t text encoder, which equals to
the complexity in single prompt learning: O(M) =M · OT . For SFG, (B+Z)M text features are involved in computation.
The overall complexity of SurPL can thus be expressed as:

OSurPL =M · OT + (B + Z)M · OSFG (16)

Since θSFG << T , it follows that OSFG << OT . Therefore, the second term is negligible, and we can approximate:
OSurPL ≈M · OT = O(M).

12



Surrogate Prompt Learning: Towards Efficient and Diverse Prompt Learning for Vision-Language Models

Table 9. Performance comparison between SurPL and SurPL-G under the base-to-novel generalization experiment setting.
AVG ImageNet Caltech101

Base Novel HM Base Novel HM Base Novel HM

SurPL 86.35 71.77 78.39 78.78 68.25 73.14 98.84 94.76 96.76
SurPL-G 86.37 76.32 81.03 78.74 70.49 74.39 98.77 95.16 96.93

OxfordPets StanfordCars Flowers102
Base Novel HM Base Novel HM Base Novel HM

SurPL 95.96 96.92 96.44 85.05 68.95 76.16 98.77 70.19 82.06
SurPL-G 96.37 97.41 96.89 83.57 72.77 77.80 98.90 72.88 83.92

Food101 FGVCAircraft SUN397
Base Novel HM Base Novel HM Base Novel HM

SurPL 90.27 89.97 90.12 49.52 12.96 20.54 83.19 76.55 79.73
SurPL-G 90.92 91.81 91.36 49.20 36.93 42.19 83.43 78.96 81.13

DTD EuroSAT UCF101
Base Novel HM Base Novel HM Base Novel HM

SurPL 85.26 55.84 67.48 95.19 77.28 85.31 89.06 77.84 83.07
SurPL-G 86.07 62.04 72.11 94.63 81.33 87.48 89.44 79.74 84.31

C. SurPL-G: Generalizable version of SurPL by Sharpness-aware Minimization
Recent prompt learning works start to explore the generalization ability of the learned prompts. However, we observe that
SurPL exhibits relatively poor generalization performances on unseen tasks. SurPL learns diverse text features to describe
visual concepts from different perspectives. While these learned features, especially the surrogate fine-grained features,
significantly improve the VLM’s discrimination ability, they are also prone to overfitting when trained with Empirical Risk
Minimization (ERM), i.e., cross-entropy loss.

To address the above issue, we further propose a generalizable version of SurPL by exploiting sharpness-aware minimization
(SAM) optimization strategy (Foret et al., 2021), denoted as SurPL-G. Given the theoretical background that flatter loss
landscape yields better model generalization ability, SurPL-G further penalizes the loss sharpness by forcing the neighboring
parameters of φ: (φ+ ε) to have the uniformly low loss values, and the corresponding SAM-based optimization loss can be
interpreted by:

min
φ
LSAMφ ,where LSAMφ , max

||ε||p≤ρ
Lφ+ε, (17)

where the neighborhood region is controlled by the perturbation radius ρ. Eq.17 can be explicitly solved by approximately
finding the neighboring parameter (φ+ ε̂) that has the maximum loss value using first-order Taylor expansion:

ε̂ = argmax
||ε||p≤ρ

Lφ+ε ≈ argmax
||ε||p≤ρ

Lφ + ε>∇Lφ = ρ
∇Lφ
‖∇Lφ‖

. (18)

Taking ε̂ back to Eq.17, we finally obtain the optimization loss for SurPL-G as shown in Eq.11.

We conduct the comparison experiment between SurPL (optimized via ERM) and SurPL-G (optimized via SAM) under
the base-to-novel generalization setting. The results demonstrated in Tab.9 indicate that utilizing the SAM optimization
strategy can significantly improve the performances on novel classes. This implementation directly endows SurPL with
generalization capabilities without requiring any other modifications.

D. Algorithms of SurPL and SurPL-G
We provide the pseudo-code of SurPL and SurPL-G in Algorithm.1, which demonstrates the comprehensive and detailed
optimization and inference procedures.

E. Implementation Details of Experiments
Datasets. This paper adopts 15 public available visual classification datasets as downstream tasks, including ImageNet
(Deng et al., 2009), Caltech101 (Fei-Fei et al., 2004), OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013),
Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al., 2013), EuroSAT
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Algorithm 1 The optimization and inference procedures of SurPL and SurPL-G.
Input: Pre-trained VLM with visual-encoder V and text encoder T , training visual sample: (xtrain, y), testing visual

example xtest, class names c = {cm}Mm=1, text prompt s, visual prompts u, Surrogate Feature Generator θSFG,
fine-grained conditional signals αFG, linear projection layer θProj, training epochs E , perturbation radius ρ.

1 Initialize the learnable parameters: φ = {s,u,θSFG,α
FG,θProj}

2 while Optimization phase do
3 for i = 1, 2, , ..., E do
4 Obtain the basic prompted text feature for each class: wm = T ([s, cm])

5 Obtain basic and fine-grained visual features: f̂ ,f = V([xtrain,u];θProj)

6 Obtain the global-invariant text feature: wGI
m = wm

7 Obtain the instance-dependent conditional signal αID = f̂

8 Generate the surrogate instance-dependent text feature hID: hID
b = θSFG(w,α

ID
b )

9 Generate the surrogate fine-grained text features hFG: hFG = θSFG(w,α
FG)

10 Calculate LGI
CE , LID

CE and LFG
CE via Eq.8, Eq.5 and Eq.7, respectively

11 if SurPL then
12 Optimize φ = {s,u,θSFG,α

FG,θProj} via Eq.9
13 if SurPL-G then
14 Optimize φ = {s,u,θSFG,α

FG,θProj} via Eq.11
15 end

Output: The optimized parameters of φ = {s,u,θSFG,α
FG,θProj}

16 end
17 while Inference phase do
18 Repeat step 4− 9 on xtest
19 Calculate pGI(m|xtest), pID(m|xtest) and pFG

z (m|xtest) via Eq.1, Eq.5 and Eq.7, respectively
20 Calculate the classification probabality p(m|xtest) via Eq.10

Output: The classification probabality p(m|xtest).
21 end

(Helber et al., 2019), SUN397 (Xiao et al., 2010), DTD (Cimpoi et al., 2014), UCF101 (Soomro et al., 2012), ImageNetV2
(Recht et al., 2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b) and ImageNet-R
(Hendrycks et al., 2021a). These datasets constitute a comprehensive benchmark, which includes classifications of generic
objects, scenes, actions, satellites, textures and fine-grained categories. Detailed statistics of the datasets are given in Tab.10.

Experimental Settings. We evaluate the effectiveness of the proposed prompt learning method under four experimental
settings:

• Few-shot learning: we optimize the parameters of SurPL on few-shot training examples of the downstream task, and
evaluate the optimized SurPL by classifying testing data that stem from the same classes.

• Base-to-novel generalization: we split each downstream task into disjoint base and novel classes. The parameters of
SurPL are optimized with few-shot training samples of base classes, and evaluated on testing data from novel classes.

• Cross-domain generalization: we optimize the parameters of SurPL on few-shot training examples of ImageNet, and
evaluate the optimized SurPL on four domain-shifted datasets: ImageNetV2, ImageNet-Sketch, ImageNet-A and
ImageNet-R. Notably, these datasets share the same classnames.

• Cross-dataset generalization: we optimize the parameters of SurPL on few-shot training examples of ImageNet, and
evaluate the optimized SurPL on other ten datasets: Caltech101, OxfordPets, StanfordCars, Flowers102, Food101,
FGVCAircraft, SUN397, DTD, EuroSAT, UCF101.

Implementations. This paper adopts CLIP-ViT-B/16 as the pre-trained VLM for research. DVLP is utilized as the baseline
model. The depth and token-length of both text prompts s and visual prompts u are set to K = 12 and L = 4 by default.
All the prompt tokens are initialized by sampling from a zero-mean Gaussian distribution, except for the first-layer text
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Table 10. Detailed statistics of the evaluated datasets.
Dataset Task Classes Training Size Testing Size

ImageNet Object recognition 1000 1.28M 50000
Caltech101 Object recognition 100 4128 2465
OxfordPets Fine-grained pets recognition 37 2944 3669

StanfordCars Fine-grained car recognition 196 6509 8041
Flowers102 Fine-grained flowers recognition 102 4093 2463

Food101 Fine-grained food recognition 101 50500 30300
FGVCAircraft Fine-grained aircraft recognition 100 3334 3333

SUN397 Scene recognition 397 15880 19850
DTD Texture recognition 47 2820 1692

EuroSAT Satellite image recognition 10 13500 8100
UCF101 Action recognition 101 7639 3783

ImageNet-V2 Robustness of collocation 1000 N/A 10000
ImageNet-Sketch Robustness of sketch domain 1000 N/A 50889

ImageNet-A Robustness of adversarial attack 200 N/A 7500
ImageNet-R Robustness of multi-domains 200 N/A 30000

Table 11. Hyperparameter settings for few-shot learning and base-to-novel generalization experiments under different datasets.
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Few-shot Epochs 20 50 50 200 200 10 150 20 50 150 50

Base-to-novel
Epochs 10 30 10 30 20 10 30 10 10 10 30
ρ 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.05 0.02 0.1
K 12 12 12 12 12 12 12 12 12 3 12

prompt, which is initialized as ’a photo of a’. Similar to GalLoP (Lafon et al., 2024), the number of fine-grained text features
and multi-scale constant factor are set as Z = 4 and η = 10. Similar to PSRC (Khattak et al., 2023b), we set the coefficient
λ1 = 25 and λ2 = 10. The perturbation radius in SurPL-G is set to ρ = 0.1 by default. Both SurPL and SurPL-G are trained
with the SGD optimizer. We initialize the learning rate as 0.0025 with the cosine annealing decay. A warm-up strategy is
applied during the first training epoch, where the learning rate is fixed at 0.00001. All the experiments are conducted on a
single RTX3090 GPU, and results are reported under 16-shot training unless specified. Each result is averaged over three
random seeds for a fair comparison.

For the few-shot learning experiment, we set the batch size to B = 32 and the number of training epochs to 50 by default.
However, we further find that large-scale datasets (e.g., ImageNet and SUN397) benefit from fewer epochs, while datasets
containing specific knowledge (e.g., FGVCAircraft, StanfordCars and EuroSAT) perform better with more training epochs.
For the base-to-novel generalization experiment, we set the batch size to B = 4 and slightly adjust the perturbation radius ρ
for very individual datasets. For cross-dataset and cross-domain generalization experiments, we use a batch size of B = 32
and set the perturbation radius to ρ = 0.2. A summary of hyperparameter adjustments is provided in Tab.11.

F. Adaptability of SurPL on Different Single Prompt Learning Approaches
As mentioned before, SurPL is adaptable and integrable to implement different diverse prompt learning ideas based on any
single prompt learning approach. To this end, we further explore the adaptability of SurPL by implemented our Surrogate
Prompt Learning (SurPL) framework on different single prompt learning approaches.

Specifically, we apply CoOp (Zhou et al., 2022c), MaPLe (Khattak et al., 2023a) and PSRC (Khattak et al., 2023b) as
baseline models, and incorporates our surrogate instance-dependent and fine-grained text features into each approach.
We strictly follow their implementation details. The comparison results are presented in Tab.12. By introducing the
idea of SurPL into these approaches, we observe significant performance improvements for CoOp, MaPLe and PSRC,
achieving average gains of 3.10%, 2.36% and 1.24%, respectively. This comparison further demonstrates the effectiveness
and adaptability of our proposed SurPL.
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Table 12. Performance comparison between w/o and w/ SurPL on different single prompt learning approaches.

ImageNet Caltech101 Pets Cars Flowers Food101 Aircraft Sun397 DTD EuroSAT UCF101 AVG

CoOp 71.87 95.57 91.87 83.07 97.07 84.20 43.40 74.67 69.87 84.93 82.23 79.89
+SurPL 73.87 96.56 93.63 87.03 98.24 86.29 52.41 77.10 73.88 87.96 85.90 82.99

∆ +2.00 +0.99 +1.76 +3.96 +1.17 +2.09 +9.01 +2.43 +4.01 +3.03 +3.67 +3.10

MaPLe 72.33 96.00 92.83 83.57 97.00 85.33 48.40 75.53 71.33 92.33 85.03 81.79
+SurPL 73.98 96.67 93.71 87.79 98.37 86.38 55.76 77.45 74.33 93.49 87.76 84.15

∆ +1.65 +0.67 +0.88 +4.22 +1.37 +1.05 +7.36 +1.92 +3.00 +1.16 +2.73 +2.36

PSRC 73.17 96.07 93.67 83.83 97.60 87.50 50.83 77.23 72.73 92.43 86.47 82.87
+SurPL 74.95 96.96 94.25 86.99 98.27 87.42 53.04 78.22 75.02 92.37 87.66 84.10

∆ +1.78 +0.89 +0.58 +3.16 +0.67 -0.08 +2.21 +0.99 +2.29 -0.06 +1.19 +1.24

Table 13. Performance comparison with other PEFT methods.

Method ImageNet Caltech101 Pets Cars Flowers Food101 Aircraft Sun397 DTD EuroSAT UCF101 AVG

CLIP-Adapter 71.60 94.57 92.03 80.90 97.00 86.83 42.67 75.30 71.17 81.87 84.53 79.86
Tip-Adapter 73.10 95.79 92.70 83.09 96.18 87.24 45.59 74.99 72.05 87.46 84.50 81.15

TaskRes 73.00 95.80 92.40 83.50 97.50 86.90 44.90 76.10 71.50 82.70 84.00 80.75
CLIPFit 71.53 96.13 93.50 82.43 96.37 87.37 45.47 75.67 71.57 90.13 83.83 81.27

CLIP-LoRA 73.60 96.40 92.40 86.30 98.00 84.20 54.70 76.10 72.00 92.10 86.70 82.95

SurPL 74.65 96.92 94.22 89.00 98.84 87.63 60.51 77.67 74.75 93.92 88.18 85.12

G. Comparison with Other PEFT Methods
Apart from prompt learning, we also compare SurPL with other parameter-efficient fine-tuning (PEFT) methods including
adapter (CLIP-adapter (Gao et al., 2024), Tip-Adapter (Zhang et al., 2022) and TaskRes (Yu et al., 2023)), BitFit (CLIPFit
(Li et al., 2024)) and LoRA (CLIP-LoRA (Zanella & Ben Ayed, 2024)) based approaches in Tab.13. The results indicate
that SurPL also outperforms them by a significant margin.

Adapter-based methods utilize lightweight networks to adapt the text and visual features output by the VLM’s encoders.
While our proposed Surrogate Feature Generator (SFG) and adapter both adapt the output text features, we clarify the
different purposes and motivations between them. SFG aims to generate novel text features based on the output text feature,
which enables the description of visual concepts from different perspectives. Adapter mainly targets to simply self-enhance
the discriminative ability of the output text feature.

H. Additional Experiment Results
• Performance comparison under different number of few-shot learning (Tab.14).

• Complete ablation study results of each individual datasets under few-shot learning setting (Tab.15).

• Complete ablation study results of each individual datasets under base-to-novel generalization setting (Tab.16).

• Complete experiment results of each individual datasets under base-to-novel generalization setting (Tab.17).

• Complete experiment results of each individual datasets under cross-dataset generalization setting (Tab.18).

• Additional visualization results of the heat maps (Fig.5).
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Table 14. Performance comparison under different number of few-shot learning.

2-shot 4-shot 8-shot 16-shot

CoOp (Zhou et al., 2022c) 70.65 74.02 76.98 79.89
CoCoOp (Zhou et al., 2022b) 67.65 71.21 72.96 74.90
MaPLe (Khattak et al., 2023a) 72.58 72.58 78.89 81.79

PLOT (Chen et al., 2023) 74.00 76.90 79.60 82.10
PSRC (Khattak et al., 2023b) 75.29 78.35 80.69 82.87
ALIGN (Wang et al., 2023) 73.56 76.85 79.58 82.48
GalLoP (Lafon et al., 2024) 76.40 79.10 82.20 84.50

SurPL 75.39 79.24 82.52 85.12

Table 15. Complete ablation study results of each individual datasets under few-shot learning setting.

ImageNet Caltech101 Pets Cars Flowers Food101 Aircraft Sun397 DTD EuroSAT UCF101 AVG

DVLP 72.62 96.24 93.14 85.75 97.84 87.30 52.88 76.15 71.96 92.58 85.64 82.92
GI 73.27 96.16 93.90 86.67 98.10 87.34 55.25 76.88 73.37 93.01 86.70 83.70

GI+ID 73.46 96.47 93.25 86.88 98.34 87.43 55.46 77.07 74.23 93.67 87.32 83.96
GI+FG 74.47 96.77 94.22 89.46 98.78 87.29 60.88 77.29 74.64 93.85 87.20 84.99

GI+ID+FG 74.65 96.92 94.22 89.00 98.84 87.63 60.51 77.67 74.75 93.92 88.18 85.12

Table 16. Complete ablation study results of each individual datasets under base-to-novel generalization setting.

AVG ImageNet Caltech101 OxfordPets StanfordCars Flowers102
Base Novel HM Base Novel HM Base Novel HM Base Novel HM Base Novel HM Base Novel HM

DVLP 82.30 74.25 78.06 75.98 71.44 73.64 98.15 95.09 96.60 96.12 97.93 97.02 72.81 75.05 73.91 97.66 74.14 84.29
GI 81.84 74.68 78.09 75.57 71.15 73.29 97.78 94.80 96.27 95.80 97.50 96.64 69.48 76.05 72.62 97.37 77.18 86.11

GI+ID 84.77 76.19 80.25 76.94 71.67 74.21 98.28 95.01 96.62 95.89 97.44 96.66 77.87 75.05 76.43 98.67 74.99 85.22
GI+FG 85.52 75.50 80.20 78.28 69.09 73.40 98.92 94.65 96.74 96.21 97.03 96.62 81.62 72.20 76.62 98.86 72.89 83.91

GI+ID+FG 86.37 76.32 81.03 78.74 70.49 74.39 98.77 95.16 96.93 96.37 97.41 96.89 83.57 72.77 77.80 98.9 72.88 83.92

Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101
Base Novel HM Base Novel HM Base Novel HM Base Novel HM Base Novel HM Base Novel HM

DVLP 90.87 92.10 91.48 42.64 36.49 39.33 79.81 79.49 79.65 83.29 59.50 69.41 81.94 56.94 67.19 85.99 78.55 82.10
GI 90.61 91.97 91.28 41.08 29.63 34.43 79.00 79.76 79.38 82.91 61.64 70.71 84.94 61.26 71.18 85.68 80.51 83.01

GI+ID 90.87 92.06 91.46 47.12 37.29 41.63 81.90 79.85 80.86 84.45 61.55 71.20 91.93 71.83 80.65 88.52 81.32 84.77
GI+FG 90.42 91.09 90.75 45.06 36.43 40.29 82.82 77.76 80.21 86.46 62.60 72.62 93.60 77.14 84.58 88.52 79.65 83.85

GI+ID+FG 90.92 91.81 91.36 49.20 36.93 42.19 83.43 78.96 81.13 86.07 62.04 72.11 94.63 81.33 87.48 89.44 79.74 84.31
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Figure 5. Additional visualization results of the attention heat maps.
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Table 17. Complete experiment results of each individual datasets under base-to-novel generalization setting.

AVG ImageNet Caltech101 OxfordPets StanfordCars Flowers102
Base Novel HM Base Novel HM Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP 68.21 73.36 70.69 72.42 68.13 70.21 97.29 94.10 95.67 89.47 96.81 93.00 63.87 74.97 68.98 69.23 76.74 72.79
CoOp 82.68 64.15 72.25 76.34 65.17 70.31 98.15 93.23 95.63 94.19 96.01 95.09 77.58 65.02 70.75 97.79 63.95 77.33

CoCoOp 82.56 64.66 72.52 76.09 69.73 72.77 97.92 91.78 94.75 93.48 95.77 94.61 77.65 63.00 69.56 97.44 60.97 75.01
ProGrad 82.48 69.12 75.21 76.72 67.80 71.98 98.30 93.96 96.08 94.59 96.98 95.77 77.11 69.89 73.32 96.52 69.86 81.05
KgCoOp 81.94 72.52 76.94 75.89 69.55 72.58 97.72 94.32 95.99 95.16 96.61 95.88 74.16 74.64 74.40 95.85 73.19 83.00
MaPLe 82.28 75.14 78.55 76.66 70.54 73.47 97.74 94.36 96.02 95.43 97.76 96.58 72.94 74.00 73.47 95.92 72.46 82.56
PSRC 84.24 75.68 79.73 77.62 70.55 73.92 98.06 93.85 95.91 95.20 97.31 96.24 78.42 75.26 76.81 98.01 77.07 86.29

ALIGN 83.39 75.51 79.25 76.89 72.15 74.44 98.37 94.70 96.50 95.67 97.93 96.79 77.24 76.38 76.81 97.70 73.30 83.76
TCP 84.13 75.36 79.51 77.27 69.87 73.38 98.23 94.67 96.42 94.67 97.20 95.92 80.80 74.13 77.32 97.73 75.57 85.23
DePT 85.18 76.17 80.42 78.20 70.27 74.02 98.57 94.10 96.28 95.43 97.33 96.37 80.80 75.00 77.79 98.40 77.10 86.46

SurPL-G 86.37 76.32 81.03 78.74 70.49 74.39 98.77 95.16 96.93 96.37 97.41 96.89 83.57 72.77 77.80 98.90 72.88 83.92

Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101
Base Novel HM Base Novel HM Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP 89.42 90.68 90.05 27.55 33.29 30.15 69.40 75.56 72.35 53.36 51.69 52.51 50.19 69.90 58.43 68.10 75.12 71.44
CoOp 88.68 85.31 86.96 39.94 24.62 30.46 80.58 63.90 71.28 79.82 45.17 57.69 91.25 47.26 62.27 85.20 56.05 67.62

CoCoOp 88.11 83.92 85.96 41.80 25.08 31.35 79.38 67.99 73.24 79.94 42.55 55.54 92.14 51.33 65.93 84.25 59.17 69.52
ProGrad 90.11 89.56 89.83 40.30 25.81 31.47 81.11 71.31 75.89 76.85 51.89 61.95 91.09 56.21 69.52 84.59 67.03 74.79
KgCoOp 90.53 91.01 90.77 38.72 29.63 33.57 80.71 76.28 78.43 80.44 56.69 66.51 88.15 60.42 71.70 84.00 75.37 79.45
MaPLe 90.71 92.05 91.38 37.44 35.61 36.50 80.82 78.70 79.75 80.36 59.18 68.16 94.07 73.23 82.35 83.00 78.66 80.77
PSRC 90.66 91.56 91.11 42.86 36.59 39.48 82.54 78.81 80.63 83.53 59.62 69.58 92.85 72.95 81.71 86.94 78.92 82.74

ALIGN 90.77 92.07 91.42 37.56 36.97 37.26 82.47 79.68 81.05 82.13 54.17 65.28 94.03 74.9 83.38 84.43 78.33 81.27
TCP 90.57 91.37 90.97 41.97 34.43 37.83 82.63 78.20 80.35 82.77 58.07 68.25 91.63 74.73 82.32 87.13 80.77 83.83
DePT 90.87 91.57 91.22 45.70 36.73 40.73 83.27 78.97 81.06 84.80 61.20 71.09 93.23 77.90 84.88 87.73 77.70 82.41

SurPL-G 90.92 91.81 91.36 49.20 36.93 42.19 83.43 78.96 81.13 86.07 62.04 72.11 94.63 81.33 87.48 89.44 79.74 84.31

Table 18. Complete experiment results of each individual datasets under cross-dataset generalization setting.

ImageNet Caltech101 Pets Cars Flowers Food101 Aircraft Sun397 DTD EuroSAT UCF101 AVG

CLIP 66.70 93.30 89.10 65.70 70.70 85.90 24.90 62.60 44.30 48.30 67.60 65.24
CoOp 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88

CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
ProGrad 72.24 91.52 89.64 62.39 67.87 85.40 20.16 62.47 39.42 43.46 64.29 62.66
KgCoOp 70.66 93.92 89.83 65.41 70.01 86.36 22.51 66.16 46.35 46.04 68.50 65.51

PLOT 71.60 92.07 90.10 65.70 69.23 86.23 25.00 61.67 38.60 47.83 67.00 64.34
MaPLe 70.72 93.53 90.49 65.57 72.20 86.20 24.74 67.01 46.49 48.06 68.69 66.30
PSRC 71.27 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75 65.81
DePT 71.60 93.80 90.13 66.00 70.93 86.27 24.30 67.23 46.60 45.83 69.10 66.02
TCP 71.40 93.97 91.25 64.69 71.21 86.69 23.45 67.15 44.35 51.45 68.73 66.29

SurPL-G 73.33 93.73 90.16 64.67 70.53 85.52 24.80 67.43 48.54 52.85 67.86 66.61
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