
Published as a conference paper at ICLR 2025

INTERPRETING AND STEERING PROTEIN LANGUAGE
MODELS THROUGH SPARSE AUTOENCODERS

Edith N. Villegas Garcia & Alessio Ansuini
Data Engineering Laboratory
Area Science Park
Padriciano, TS 34149, Italy
{edith.villegas,alessio.ansuini}@areasciencepark.it

ABSTRACT

The rapid advancements in transformer-based language models have revolution-
ized natural language processing, yet understanding the internal mechanisms of
these models remains a significant challenge. This paper explores the application
of sparse autoencoders (SAE) to interpret the internal representations of protein
language models, specifically focusing on the ESM-2 8M parameter model. By
performing a statistical analysis on each latent component’s relevance to distinct
protein annotations, we identify potential interpretations linked to various protein
characteristics, including transmembrane regions, binding sites, and specialized
motifs. We then leverage these insights to guide sequence generation, shortlist-
ing the relevant latent components that can steer the model toward desired targets
such as zinc finger domains. This work contributes to the emerging field of mech-
anistic interpretability in biological sequence models, offering new perspectives
on model steering for sequence design.

1 INTRODUCTION

Since the introduction of the transformer architecture (Vaswani, 2017), the capabilities of neural
networks to model and generate natural language have increased dramatically. Yet, due to their
black-box nature, we still lack a clear understanding of how these models achieve such capabilities
(Rai et al., 2024). Recently, the mechanistic interpretability approach has been proposed, where
researchers try to reverse engineer neural networks in a way similar to reverse engineering computer
programs (Olah, 2022; Rai et al., 2024). This involves understanding which features the network is
learning from our input data, and then how it performs operations with this set of features.

It has been observed that neural networks tend to encode high-level features as linear directions in
their representation space—such as the gender direction in word embeddings (Park et al., 2023).
Additionally, these models can store more facts and features than their parameter counts would
suggest, a phenomenon known as superposition (Elhage et al., 2022). This phenomenon represents
a core problem for interpretability: as a single neuron activation can be polysemantic and represent
multiple features simultaneously.

Recently, sparse autoencoders (SAEs) have been proposed as a method to disentangle internal rep-
resentations in language models, extracting features from superposition in an unsupervised manner
(Templeton et al., 2024; Bricken et al., 2023; Cunningham et al., 2023). Notably, these features
appear to be actionable: artificially activating them during inference can steer a model’s output
(Templeton et al., 2024; Makelov, 2024). Such methods have been successfully applied to language
(Templeton et al., 2024; Cunningham et al., 2023; Gao et al., 2024), as well as vision and mul-
timodal models (Gorton, 2024; Surkov et al., 2024), but biological and protein sequence models
remain relatively unexplored (Simon & Zou, 2024; ?).

Protein language models have been shown to encode structural, functional, and evolutionary infor-
mation in their internal representations (Rives et al., 2019; Lin et al., 2023; Hayes et al., 2024).
Interpretability methods for these models could reveal biological mechanisms, and support model
debugging and editing for safety considerations. Additionally, model steering can be incorporated
into sequence design pipelines.

1

Published as a conference paper at ICLR 2025

The main contributions of this paper are:

• A trained sparse autoencoder (SAE) for the ESM-2 8M parameter model, along with potential
interpretations of its latent components (sections 2.2, 3.1 and 3.3).

• A methodology for generating protein sequences by intervening on specific latents, demonstrating
successful steering towards non-trivial features, such as zinc finger domains (section 3.4).

• A heuristic for selecting the model layer from which to extract representations using an intrinsic
dimension estimator (section 3.2).

2 BACKGROUND

2.1 PROTEIN LANGUAGE MODELS

Many advancements in Natural Language Processing have been successfully applied to biological
sequence modeling. Transformer-based neural networks can be trained on protein sequences using
the Masked Language Modeling (MLM) task, where each amino acid is treated as a token that can
be randomly masked. The model learns to predict the masked tokens by minimizing the following
loss function (Rives et al., 2019):

LMLM = Ex∼XEM

∑
i∈M

−log p(xi|x/M) (1)

where x is a protein sequence, M is a set of masked indices and p(xi|x/M) is the probability as-
signed to the ground truth amino acid xi given its sequence context.

Training on the Masked Language Modeling (MLM) task forces the network to learn dependencies
between masked amino acids and their sequence context while simultaneously capturing various
biological features present in the data. Embeddings extracted from these models have been shown
to encode information about secondary structure, tertiary contacts (residue-residue interactions),
function, remote evolutionary relationships, and factors relevant to predicting mutational effects
(Rives et al., 2019; Elnaggar et al., 2021; Meier et al., 2021; Lin et al., 2023; Hayes et al., 2024).
On the other hand, the attention mechanism appears to prioritize binding sites, with attention maps
capturing information about residue-residue interactions. (Vig et al., 2020).

2.2 SPARSE AUTOENCODERS

The sparse autoencoders used for interpretability are simple, single-layer models trained on the ac-
tivations of a larger language model. To disentangle network features, the hidden layer is made
significantly larger than the original embeddings, creating an overcomplete basis. A sparsity con-
straint is then applied to ensure that only a few latent neurons are active at a time, making the SAE’s
hidden representation far more interpretable than standard language model components (Templeton
et al., 2024; Bricken et al., 2023; Cunningham et al., 2023).

2.2.1 ARCHITECTURE

The autoencoder is composed of an encoding and a decoding function, given by:

z = fenc(x) = ReLU(Wenc(x− bdec) + benc) (2)

x̌ = fdec(z) = (Wdec · z + bdec) (3)

Here fenc is the encoder, that takes an embedded amino acid token x ∈ IRd from a given layer in
the model and returns a latent z ∈ IRn

≥0 with a hidden dimension n that is m times bigger that of the
original vector (expansion factor). The decoder fdec approximately reconstructs x given z, through
the decoding matrix Wdec ∈ IRn×d and the bias weight bdec ∈ IRd.

The loss function used for the training is a combination of the reconstruction error of the autoencoder
LMSE plus a sparsity constraint LL1 :

2

Published as a conference paper at ICLR 2025

L(x) = LMSE + LL1
=

∑
d

(xd − x̌d)
2 + λ

∑
n

zn (4)

While training, we renormalize the Wdec matrix to have unit norm after each backward pass. This is
necessary to prevent that autoencoder latents become arbitrarily small and satisfy the L1 constraint
without actually being sparse.

3 METHODS

3.1 TRAINING DETAILS

We use the ESM-2 family of models (Lin et al., 2023) as our base, extracting activations from the fi-
nal output of the transformer block. We train on approximately 15k non-redundant protein sequences
from SCOPe 2.08 (Fox et al., 2014). Further details on the architecture, training procedures, and
hyperparameter selection can be found in section A.2 of the appendix.

3.2 LAYER SELECTION

We adopt a principled strategy to select the layer from which we extract representations for the
sparse autoencoder. The initial intuition, in line with earlier studies (Templeton et al., 2024; Gao
et al., 2024), is to choose a mid-to-late layer, where the model is assumed to have developed ab-
stract features but is not yet focused on the output reconstruction task. However, unlike these prior
works, we move beyond mere intuition by incorporating a quantitative measure based on intrinsic
dimension.

Specifically, we compute the intrinsic dimension of each layer’s representations using the estimator
proposed by (Facco et al., 2017), and then identify where this value plateaus. Previous research has
shown that layers corresponding to local minima or plateaus in intrinsic dimension are where abstract
information is most clearly encoded (Valeriani et al., 2024). Selecting a layer within this plateau
increases the likelihood of capturing meaningful representations, providing a stronger foundation
for interpretability and model steering.

3.3 INTERPRETING AUTOENCODER LATENTS

We extract protein annotations from the UniProt database (uni, 2025) and convert them into binary
labels for each amino acid in the sequence. We then compute the precision π and recall ρ of each
latent component k in detecting a given feature ϕ.

Let A be the set of all amino acids and Aϕ+ the set of amino acids that have been annotated with the
feature ϕ. Considering a latent k to be active (k+) for a given amino acid when its value zk exceeds
a certain threshold τz , we have:

π = P (ϕ+|k+) =
∣∣{a ∈ Aϕ+ : zk > τz

}∣∣
|{a ∈ A : zk > τz}|

(5)

ρ = P (k+|ϕ+) =

∣∣{a ∈ Aϕ+ : zk > τz
}∣∣∣∣Aϕ+

∣∣ (6)

This gives us a value of precision and recall for each pair of k, ϕ. We consider a latent component to
be associated with a specific feature if its precision or recall exceed a predefined threshold that we
set to 0.80.

3.4 GENERATING STEERED SEQUENCES

Once a latent corresponding to a specific feature is identified, we can steer the model during in-
ference to increase the likelihood of generating protein sequences that contain that feature. This

3

Published as a conference paper at ICLR 2025

approach, previously demonstrated in natural language models by (Templeton et al., 2024), is out-
lined in figure 1.

We begin with a randomly generated amino acid sequence of fixed length. After a forward pass
through the model and the encoder layer of the SAE, we modify the target latent zk by scaling and
shifting its value to increase its magnitude (equation 7). We then pass the modified value z∗k through
the decoder layer fdec and add back the original reconstruction error of the embedding x before
passing it through the rest of the model (equation 8).

z∗k = a · zk + b (7)

x∗ = fdec(z
∗
k) + xerr (8)

For each position in the sequence, we randomly sample an amino acid according to the probability
distribution predicted by the model under the intervention. We repeat this process starting from the
predicted sequence and perform 100 iterations of inference-prediction to refine the sequence. We
select the sequence at the iteration where the value of the activation zk is maximum.

embed

unembed

attention

MLP

SAE

+

+ ✕N layers

*

logits

MALWMRLLPL

1. insert SAE
in layer N

2. modify value of
the k-th latent

sample
sequence

PLM +
Steering

MALWMRLLPL

logits

random sequence

final sequence
TSGPTTFKQQ

x100

pick highest zk

(A) (B)

Figure 1: Sequence generation procedure. (A) To steer the model outputs, the base Protein Language
Model is modified through the insertion of a sparse autoencoder in the residual stream, at a particular
layer. During inference, the value of one of the latents in the autoencoder is modified. (B) Starting
from a random sequence, we perform inference with the modified and intervened model, and sample
a new sequence from the output logits. We repeat this procedure iteratively a certain number of times
(i.e. 100), and at the end we retain the sequence which gives the highest value for the activation of
the target latent zk.

4 RESULTS

4.1 INTERPRETING LATENTS

For the interpretability analysis, we focus on the autoencoder that provides the best trade-off between
sparsity and reconstruction quality, as described in section A.4.2 of the appendix. We compute recall
and precision for all [k, ϕ] pairs, following the methodology outlined in section 3.3, using three
increasing thresholds of latent activation. This allows us to assess the robustness of the identified
features.

We find 395 putative [k, ϕ] associations, detailed in table 1. Among these, there are latent compo-
nents associated to different binding sites, cellular regions and motifs like zinc fingers. The complete
set of latent - feature associations is available in the supplementary data (see section 5).

4

Published as a conference paper at ICLR 2025

Table 1: Number of latent-feature annotation pairs with a minimum precision/recall of 0.8 for dif-
ferent values of the activation threshold τk

τk # Pairs (Precision > 0.8) # Pairs (Recall > 0.8) Total
0.01 4 262 266
0.10 8 234 242
1.00 133 61 194

Total (unique) 133 262 395

We also identify many potential associations with a lower confidence (lower values of precision or
recall). To get an idea of how many putative association are found for each value of precision/recall
(as well as a combined F1-score) we plot their cumulative distributions in figure 2.

Intuitively, a latent component that perfectly matches an annotation type should exhibit both high
precision and recall, resulting in a high F1-score. However, since the model is trained to optimize
a masked language modeling loss, the features it learns may not directly align with those in the
manually curated dataset. For instance, a latent k might encode a more specific subcategory of a
dataset label ϕ, such as identifying the starting amino acid of a helix rather than the entire helix
structure (as seen by ? on some features). In such cases, the association between k and ϕ would
likely have high precision but low recall.

Similarly, a high recall but low precision may indicate that the model has learned a more coarse-
grained feature than those defined in the dataset. This is evident in cases such as latent k = 610,
which activates across various types of zinc fingers, and latent k = 555, which responds to alpha-
keto acids. To prevent selecting latents with high recall due to trivial reasons – such as activating
indiscriminately on all amino acids – we also assess the proportion of times a latent is active on
amino acids lacking a given label, denoted as P (k+|ϕ−), before confirming an association. In
section A.4.3, we present examples of the distributions of P (k+|ϕ+) and P (k+|ϕ−) for a zinc
finger region.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Minimum Precision

10
0

10
1

10
2

10
3

N
um

be
r o

f L
at

en
ts

(A) - Precision Distribution

k

0.01
0.1
1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Minimum Recall

10
2

(B) - Recall Distribution

k

0.01
0.1
1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Minimum F1 Score

10
0

10
1

(C) - F1 Score Distribution

k

0.01
0.1
1.0

Figure 2: Distribution of the number of latent SAE components that detect a feature with a mini-
mum value of precision, recall and F1-score. Setting a higher value for the activation threshold τk
significantly increases the precision with which latents detect features, but it decreases the recall.

4.2 SEQUENCE GENERATION

We test the sequence generation procedure with shortlisted latents with a clear association to
the zinc finger region annotations (high recall in this specific case). We probe different val-
ues of sequence length ([22, 27, 30, 35, 40, 60]), of the scaling a ([2, 5, 10, 20, 30]) and shift b
([0.1, 1, 10, 50, 100, 200]), for a total of 180 combinations, obtaining one sequence for each.

Using an online tool for automatic annotation of zinc finger regions (Sathyaseelan et al., 2023), we
look for known zinc finger motifs and Pfam family matches in our generated sequences. We find
24 matching regions (out of 180 sequences) when we simultaneously intervene on the two most
prominent latents (highest recall) displaying a zinc finger association. In contrast, intervening on

5

Published as a conference paper at ICLR 2025

Figure 3: Examples of generated sequences subsequently folded with ESMFold (Lin et al., 2023).
The sequences were generated while intervening on the model by increasing the value of latent
components associated to the zinc finger motif. With the intervention, the model has a tendency to
generate pairs of beta sheets in the vicinity of a helix, as in a typical zinc finger structure.

the most prominent latent produces only 3 matches, while generating sequences from the baseline
model or intervening on a random latent or a random pair of latents produces no matches in any case.
Among the matched sequences, the highest percent similarity was 48%, with an average sequence
similarity of 31%, indicating a good level of diversity among the generated sequences.

While this sequence generation pipeline requires parameter fine-tuning to improve the success rate,
the process can be automated by introducing appropriate heuristics to search the parameter space
efficiently. To the best of our knowledge, this is the first application of steering with sparse autoen-
coder features to generate complex protein sequences, extending beyond trivial features like specific
amino acids or simple amino acid repeats.

5 DISCUSSION AND CONCLUSIONS

In this study, we demonstrate the potential of sparse autoencoders (SAEs) for interpreting and ma-
nipulating the internal representations of protein language models. By training a SAE on the ESM-2
8M parameter model, we identified and interpreted latent features associated with various protein
annotations, including transmembrane regions, binding sites, and zinc finger motifs.

We have also demonstrated, for the first time, that these latent components can be leveraged to steer
the model towards generating protein sequences with non-trivial structural features, like zinc finger
motifs. The results highlight the utility of SAEs in disentangling the complex, polysemantic repre-
sentations within protein language models, paving the way for more interpretable and controllable
sequence generation. This approach not only deepens our understanding of how these models encode
biological features but also opens up new possibilities for protein design and engineering. Future
work could extend these methods to larger models and a wider range of protein features, further
bridging the gap between interpretability and practical applications in computational biology.

CODE & DATA AVAILABILITY

The weights for the trained sparse autoencoder model are available from huggingface at:
https://huggingface.co/evillegasgarcia/sae esm2 6 l3. The code is available from github at:
https://github.com/edithvillegas/plm-sae. Supplementary data is available from zenodo at
https://doi.org/10.5281/zenodo.14837817

ACKNOWLEDGMENTS AND DISCLOSURE OF FUNDING

A.A. was supported by the project “Supporto alla diagnosi di malattie rare tramite l’intelligenza
artificiale”- CUP: F53C22001770002, and by the European Union – NextGenerationEU within the
project PNRR ”PRP@CERIC” IR0000028 - Mission 4 Component 2 Investment 3.1 Action 3.1.1.
E.N.V.G. was supported by the project PON “BIO Open Lab (BOL) - Rafforzamento del capitale
umano”—CUP: J72F20000940007. We acknowledge the computational resources provided by the
ORFEO supercomputing platform at AREA Science Park.

6

https://huggingface.co/evillegasgarcia/sae_esm2_6_l3
https://github.com/edithvillegas/plm-sae
https://doi.org/10.5281/zenodo.14837817

Published as a conference paper at ICLR 2025

REFERENCES

Uniprot: the universal protein knowledgebase in 2025. Nucleic Acids Research, 53(D1):D609–
D617, 2025.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity: Decompos-
ing language models with dictionary learning, 2023. https://transformer-circuits.
pub/2023/monosemantic-features/index.html [Accessed: 2024].

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of super-
position. Transformer Circuits Thread, 2022. https://transformer-circuits.pub/
2022/toy_model/index.html.

Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones,
Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, et al. Prottrans: Toward un-
derstanding the language of life through self-supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 44(10):7112–7127, 2021.

Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic dimen-
sion of datasets by a minimal neighborhood information. Scientific reports, 7(1):12140, 2017.

Naomi K Fox, Steven E Brenner, and John-Marc Chandonia. Scope: Structural classification of
proteins—extended, integrating scop and astral data and classification of new structures. Nucleic
acids research, 42(D1):D304–D309, 2014.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Liv Gorton. The missing curve detectors of inceptionv1: Applying sparse autoencoders to incep-
tionv1 early vision. arXiv preprint arXiv:2406.03662, 2024.

Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years
of evolution with a language model. bioRxiv, pp. 2024–07, 2024.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

Aleksandar Makelov. Sparse autoencoders match supervised features for model steering on the ioi
task. In ICML 2024 Workshop on Mechanistic Interpretability, 2024.

Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alex Rives. Language
models enable zero-shot prediction of the effects of mutations on protein function. Advances in
neural information processing systems, 34:29287–29303, 2021.

Chris Olah. Mechanistic interpretability, variables, and the importance of interpretable bases, 2022.
https://transformer-circuits.pub/2022/mech-interp-essay/index.
html.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. arXiv preprint arXiv:2311.03658, 2023.

Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and Ziyu Yao. A practical review of mecha-
nistic interpretability for transformer-based language models. arXiv preprint arXiv:2407.02646,
2024.

7

https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/mech-interp-essay/index.html
https://transformer-circuits.pub/2022/mech-interp-essay/index.html

Published as a conference paper at ICLR 2025

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and function
emerge from scaling unsupervised learning to 250 million protein sequences. PNAS, 2019. doi:
10.1101/622803. URL https://www.biorxiv.org/content/10.1101/622803v4.

Chakkarai Sathyaseelan, L Ponoop Prasad Patro, and Thenmalarchelvi Rathinavelan. Sequence
patterns and hmm profiles to predict proteome wide zinc finger motifs. Pattern Recognition, 135:
109134, 2023.

Elana Simon and James Zou. Interplm: Discovering interpretable features in protein language mod-
els via sparse autoencoders. bioRxiv, pp. 2024–11, 2024.

Viacheslav Surkov, Chris Wendler, Mikhail Terekhov, Justin Deschenaux, Robert West, and Caglar
Gulcehre. Unpacking sdxl turbo: Interpreting text-to-image models with sparse autoencoders.
arXiv preprint arXiv:2410.22366, 2024.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, et al. Scaling monosemanticity: Extracting
interpretable features from claude 3 sonnet, 2024. https://transformer-circuits.
pub/2024/scaling-monosemanticity/ [Accessed: 2024].

Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and Al-
berto Cazzaniga. The geometry of hidden representations of large transformer models. Advances
in Neural Information Processing Systems, 36, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Jesse Vig, Ali Madani, Lav R Varshney, Caiming Xiong, Richard Socher, and Nazneen Fatema Ra-
jani. Bertology meets biology: Interpreting attention in protein language models. arXiv preprint
arXiv:2006.15222, 2020.

A APPENDIX

A.1 BACKGROUND

A.1.1 PROTEIN LANGUAGE MODELS

Many advancements in Natural Language Processing have been successfully applied to biological
sequence modeling. Transformer-based neural networks can be trained on protein sequences using
the Masked Language Modeling (MLM) task, where each amino acid is treated as a token that can
be randomly masked. The model learns to predict the masked tokens by minimizing the following
loss function (Rives et al., 2019):

LMLM = Ex∼XEM

∑
i∈M

−log p(xi|x/M) (9)

where x is a protein sequence, M is a set of masking indices, and p(xi|x/M) is the probability
assigned to the ground truth amino acid xi given its sequence context.

Training on the Masked Language Modeling (MLM) task forces the network to learn dependencies
between masked amino acids and their sequence context while simultaneously capturing various
biological features present in the data. Embeddings extracted from these models have been shown
to encode information about protein secondary structure, tertiary contacts (residue-residue inter-
actions), function, remote evolutionary relationships, and factors relevant to predicting mutational
effects (Rives et al., 2019; Elnaggar et al., 2021; Meier et al., 2021; Lin et al., 2023; Hayes et al.,
2024).

On the other hand, the attention mechanism appears to prioritize binding sites, with attention maps
capturing information about residue-residue interactions. (Vig et al., 2020).

8

https://www.biorxiv.org/content/10.1101/622803v4
https://transformer-circuits.pub/2024/scaling-monosemanticity/
https://transformer-circuits.pub/2024/scaling-monosemanticity/

Published as a conference paper at ICLR 2025

A.2 SPARSE AUTOENCODER TRAINING

A.2.1 SPARSE AUTOENCODER ARCHITECTURE

The autoencoder is composed of an encoding and a decoding function, given by:

z = fenc(x) = ReLU(Wenc(x− bdec) + benc) (10)

x̌ = fdec(z) = (Wdec · z + bdec) (11)

Here fenc is the encoder, that takes an embedded amino acid token x ∈ IRd from a given layer in
the model and returns a latent z ∈ IRn

≥0 with a hidden dimension n that is m times bigger that of the
original vector (expansion factor). The decoder fdec approximately reconstructs x given z, through
the decoding matrix Wdec ∈ IRn×d and the bias weight bdec ∈ IRd.

The loss function used for the training is a combination of the reconstruction error of the autoencoder
LMSE plus a sparsity constraint LL1

:

L(x) = LMSE + LL1
=

∑
d

(xd − x̌d)
2 + λ

∑
n

zn (12)

While training, we renormalize the Wdec matrix to have unit norm after each backward pass. This is
necessary to prevent that autoencoder latents become arbitrarily small and satisfy the L1 constraint
without actually being sparse.

A.2.2 TRAINING DATASET

We train our model using the Astral SCOPe 2.08 dataset, filtered to 40% sequence identity, which
includes approximately 15k highly non-redundant protein sequences (Fox et al., 2014). This dataset
provides a manageable number of tokens, enabling faster iteration over different hyperparameters
while maintaining a diverse range of protein sequences and structural domains. This diversity allows
the autoencoder to learn a broad spectrum of features.

A.2.3 HANDLING OF DEAD LATENTS

We check how frequently each of the latents activates over a subsample of tokens (50 batches of
4096 tokens) at regular intervals during training (every 500 batches). When this frequency is close
to zero (< 10−5), we consider that the latent is “dead” and we re-initialize its weights to “revive” it.

A.2.4 EVALUATION METRICS

To decide which hyperparameters (learning rate, sparsity penalty λ, SAE hidden size n) produce the
best sparse autoencoder, we use the following metrics:

• L0: The average number of non-zero components in the latent vector z for a given amino
acid token. This is our measure of the sparsity level of the autoencoder.

• Number of dead latents: The number of components in the latent space that are never non-
zero over a large number of sample tokens (∼ 105). This is a general metric for sparse
autoencoders quality.

• Cross Entropy (CE) Increase: Difference between the average cross entropy loss of the
original model and the cross entropy loss of the model when we substitute the activations
in a given layer by the corresponding activations reconstructed by the autoencoder. This
indicates how much of the model’s performance the sparse autoencoder fails to reconstruct.

A.2.5 HYPERPARAMETER SELECTION

We perform a hyperparameter sweep with the following values: learning rate (5e−4, 1e−4, 1e−3);
L1 penalty (0.0003, 0.001, 0.005) and dictionary size multiplier (32, 10, 5).

9

Published as a conference paper at ICLR 2025

We use the evaluation metrics detailed in section A.2.4 to decide on the best combination of hyper-
parameters. Specifically, we aim to find a model that balances reconstruction error and sparsity by
focusing on the “elbow” part of the CE increase against L0 plot, where increasing the density of
active latents in the latent space does not significantly reduce the CE increase, indicating an optimal
trade-off.

A.3 INTERPRETABILITY

A.3.1 FEATURE ANNOTATION DATA

As ground truth features for the interpretability analysis, we use the following protein annotations
from Uniprot version 2024 1 :

• Transmembrane region

• Topological domain

• Binding site

• Zinc finger region

• Region of interest

• Intramembrane region

• Active site

• Disulfide bond

• Glycosylation site

• Helix

• Turn

• Strand

A.4 ADDITIONAL RESULTS

A.4.1 INTRINSIC DIMENSION ANALYSIS

We estimate the intrinsic dimension across all layers of ESM-2 8M following the methodology of
(Valeriani et al., 2024). The resulting curve, shown in Figure 4, guides our decision to extract
embeddings from layer 3. Larger models in the ESM-2 family exhibit a similar intrinsic dimension
profile across different model sizes, with a more pronounced plateau region of relatively low intrinsic
dimension in the same relative layer position.

0 1 2 3 4 5
Transformer Layer Block

9

10

11

12

13

14

15

16

E
st

im
a
te

d
 I
n
tr

in
si

c
D

im
e
n
si

o
n

Intrinsic Dimension in ESM2-8M

Figure 4: Evolution of the intrinsic dimension estimate through the layers of the ESM-2 8M model.
We highlight the layers in the plateau/final ascent region.

10

Published as a conference paper at ICLR 2025

A.4.2 SPARSE AUTOENCODER SELECTION

We evaluate all versions of the trained autoencoder primarily on two metrics: cross-entropy increase
and sparsity (measured by L0). These two goals are in conflict with each other, so we select what we
think is a good compromise at the bend of the Pareto frontier (figure 5). The selected autoencoder
has an average L0 per amino acid of 18, and a cross-entropy increase of 0.10, with a hidden size that
is 10 times larger than the original hidden size of the ESM-2 model. The number of dead latents
in this SAE is 573. Decreasing the cross-entropy even more would entail a significant increase in
activation density, which we want to avoid.

0 50 100 150 200 250 300 350
L0 - Sparsity

10 1

100

C
ro

ss
-E

n
tr

o
p
y

In
cr

e
a
se

Sparse Autoencoder Evaluation

Figure 5: Cross-entropy increase vs sparsity trade-off for all the vanilla sparse autoencoders trained
on layer 3 embeddings from ESM-2 8M. The selected autoencoder is indicated by a dashed circle.

A.4.3 INTERPRETING LATENTS - ACTIVATION PLOTS

0 500 1000 1500 2000 2500 3000
Latent Component

0.0

0.2

0.4

0.6

0.8

1.0

 P
(k

+
|

+
) -

 re
ca

ll

(A)

z

0.01
0.10
1.00

0 500 1000 1500 2000 2500 3000
Latent Component

0.0

0.2

0.4

0.6

0.8

1.0

P(
k

+
|

)

(B)

z

0.01
0.10
1.00

0 500 1000 1500 2000 2500 3000
Latent Component

0.2

0.0

0.2

0.4

0.6

0.8

P(
k

+
|

+
)

P(
k

+
|

)

(C)

z

0.01
0.10
1.00

Zinc Finger Region - C2H2 type

Figure 6: (A) P (k+|ϕ+) - Percentage of tokens for which each latent component is active when
there is a C2H2 zinc finger type label, (B) P (k+|ϕ−) - percentage when there is no C2H2 zinc finger
label, and (C) difference between these two values for three different activation thresholds τk. From
the last plot, we see that there is a latent component that is prominently associated with the C2H2
zinc finger label.

11

	Introduction
	Background
	Protein Language Models
	Sparse Autoencoders
	Architecture

	Methods
	Training Details
	Layer Selection
	Interpreting Autoencoder Latents
	Generating steered sequences

	Results
	Interpreting Latents
	Sequence Generation

	Discussion and conclusions
	Appendix
	Background
	Protein Language Models

	Sparse Autoencoder Training
	Sparse Autoencoder Architecture
	Training Dataset
	Handling of dead latents
	Evaluation Metrics
	Hyperparameter selection

	Interpretability
	Feature Annotation Data

	Additional Results
	Intrinsic Dimension Analysis
	Sparse Autoencoder selection
	Interpreting Latents - Activation Plots

