
Cramming: Training a Language Model on a Single GPU in One Day

Jonas Geiping 1 Tom Goldstein 1

Abstract
Recent trends in language modeling have focused
on increasing performance through scaling, and
have resulted in an environment where training
language models is out of reach for most re-
searchers and practitioners. While most in the
community are asking how to push the limits of
extreme computation, we ask the opposite ques-
tion: How far can we get with a single GPU in
just one day?

We investigate the downstream performance
achievable with a transformer-based language
model trained completely from scratch with
masked language modeling for a single day on a
single consumer GPU. Aside from re-analyzing
nearly all components of the pretraining pipeline
for this scenario and providing a modified pipeline
with performance close to BERT, we investigate
why scaling down is hard, and which modifica-
tions actually improve performance in this sce-
nario. We provide evidence that even in this
constrained setting, performance closely follows
scaling laws observed in large-compute settings.
Through the lens of scaling laws, we categorize
a range of recent improvements to training and
architecture and discuss their merit and practi-
cal applicability (or lack thereof) for the limited
compute setting.

1. Scaling Up and Scaling Down
Large-scale training of machine learning models with trans-
former architectures has lead to ground-breaking improve-
ments in many sub-fields of natural language processing
including language understanding and natural language gen-
eration (Vaswani et al., 2017; Dosovitskiy et al., 2021; Rad-
ford et al., 2019). The nowadays accepted (but historically
surprising) key behavior of these systems is that they re-
liably scale – they continuously improve in performance

1Dep. of Computer Science, University of Maryland, College
Park. Correspondence to: Jonas Geiping <jgeiping@umd.edu>.

Work presented at the ES-FoMo Workshop at ICML 2023., Hon-
olulu, Hawaii, USA. Copyright 2023 by the author(s).

when the number of model parameters and amount of data
grow. These increases in performance are well-described by
various power laws as studied by Kaplan et al. (2020). This
sets up a dominant paradigm in which scaling is the key to
performance improvement (Sutton, 2019).

Our goal is to turn this trend on its head and investigate how
to best scale down language model training and what trade-
offs emerge when doing so: What downstream performance
can be achieved by a modest researcher when training from
scratch with a single GPU for a single day? The ability to
train a language model to the performance level of BERT
with such modest resources has several interesting implica-
tions. For one, if scaled-down model pretraining is a viable
analogue of large-compute pretraining, then this opens up
a host of further academic investigations that are currently
hard to realize for large-scale models. For example, research
questions about the differences between existing and new
pre-training tasks, tracing model predictions to data points
(Ilyas et al., 2022), security questions such as membership
inference (Carlini et al., 2022) and data poisoning (Geiping
et al., 2021), and a wide range of empirical investigations
into topics such as stability or generalization that arise
during training (Nagarajan & Kolter, 2019; Jiang et al.,
2019). At the same time, we can imagine situations in
which legal requirements make it unclear whether models
trained on public data with uncertain origin are permissible,
and where a practitioner is interested in retraining their
language models using a specialized or trustworthy data
source (Wilka et al., 2017; Gold & Latonero, 2017).

To answer these questions, we consider a challenge we call
“Cramming” – learning a whole language model the day
before the test. Our studies begin by investigating many
facets of the training pipeline to see which modifications
actually improve performance in the scaled-down scenario.
We provide evidence that even in this constrained setting,
performance closely follows scaling laws observed in
large-compute settings (Kaplan et al., 2020). An unsur-
prising consequence of these laws is that scaling down is
hard; while smaller model architectures enable speeding up
gradient computations, overall rates of model improvement
over time remain nearly constant. Nonetheless, we can
find changes to the training recipe that exploit scaling
laws to yield improvements by improving the effective rate
of gradient computations without compromising model

1



Training a Language Model on a Single GPU in One Day.

Table 1. Maximal Throughput available for select training runs of large language models. FLOP Counts for BERT reproductions and
related models. Large-scale LMs included only for reference. rtxa4000 compute estimated. See Appendix G.1 for details.

Group Target Accelerator Time Limit Total exaFLOP
(Devlin et al., 2019) BERT 16 TPU 4 days 680

(Dettmers, 2018) BERT 8 V100 11 days 950
(Narasimhan, 2019) BERT-large 1472 V100 47 min 519
(Raffel et al., 2020) T5-base 16 TPUv3 1 day 170

(Iandola et al., 2020) squeezeBERT 8 Titan RTX 4 days 361
(Narang et al., 2021) T5 variations 16 TPUv3 1.75 days 298

(Tay et al., 2021) T5-small-L16 16 TPUv3 11.2 hours 82
(Izsak et al., 2021) BERT variation 8 V100 1 day 86
(Liu et al., 2019) roBERTa-base 1024 V100 1.25 day 13 824

(Chowdhery et al., 2022) PaLM 6144 TPUv4 50 days 7 299 072
Our Setup 1 BERT variation 1 rtx2080ti 1 day 5
Our Setup 2 BERT variation 1 rtxa4000 1 day 8*
Our Setup 3 BERT variation 1 rtxa6000 1 day 13

size. In the end, we are able to train models that achieve
respectable performance – often close to and sometimes
exceeding BERT on GLUE tasks – on a shoestring budget.

2. Tying our hands behind our back: A setup
with limited compute

Before we start this investigation, we want to outline the
extent of limitations we are interested in. The rules for
cramming are as follows:

• A transformer-based language model of arbitrary size
is trained with masked-language modeling, completely
from scratch.

• Existing pretrained models cannot be included in any
part of the pipeline.

• Any raw text (excluding downstream data) can be in-
cluded for training. This means that one can achieve
speedups by making judicious choices about how and
when to sample data, provided the sampling mecha-
nism does not require a pre-trained model.

• The downloading and pre-processing of raw data is ex-
empted from the total compute budget. Pre-processing
may include CPU-based tokenizer construction, tok-
enization, and filtering, but cannot include represen-
tation learning (e.g. pre-training a word embedding
is not allowed, unless it is counted towards the final
runtime).

• Training proceeds on a single GPU for 24 hours.
• Downstream performance is evaluated on GLUE

(Wang et al., 2018). Downstream finetuning on GLUE
is limited to brief training with only the training data of
the downstream task (we consider 5 epochs or less) and
needs to work with hyperparameters set globally for
all GLUE tasks. Downstream finetuning is excluded
from the total compute budget.

In our implementation, we analyze a setup with a classical
rtx2080ti GPU (released September 2018) and separate
setups with a more modern rtxa4000 or a rtxa6000
GPU, 48GB version (released October 2020). We pair each

unit with 4 CPU cores and 32GB of RAM.

Why these limitations? We are principally interested in
re-investigating the original BERT setup of Devlin et al.
(2019) with limited compute. The optimal architecture of
the transformer is not fixed, as the optimal size and shape
depends on scaling laws (Kaplan et al., 2020). The limita-
tions on usage of existing models rule out distillation from
an existing model (Turc et al., 2019; Jiao et al., 2020; Sun
et al., 2020; Wang et al., 2020b; Kaliamoorthi et al., 2021)
and data filtering based on existing large models (Golchin
et al., 2022), both of which ultimately answer questions
about compression and transfer of already processed infor-
mation. Further, we do not want to limit data to the original
dataset used to train BERT, wanting to allow for possible
improvements through better data curation and quality. The
rtx2080ti GPU is a natural candidate for this experi-
ment, given that it was released before Devlin et al. (2019),
but the more recent rtxa4000 is also interesting, as a
more recent consumer-grade workstation variant. Finally
we also test the rtxa6000, being arguably the (current)
upper limit of a single-user workstation. At the finetuning
stage we want to mimic the original BERT finetuning and
evaluation setup, but provide additional limits to prevent
gains based on tuning of only the downstream procedure, for
example via computationally extensive downstream training
(Bahri et al., 2021a), use of multiple downstream datasets
(for example continued pretraining with MNLI before fine-
tuning other tasks (Izsak et al., 2021)), and extended hyper-
parameter optimization for each GLUE task (Devlin et al.,
2019; Liu et al., 2019; Lan et al., 2019).

3. Investigations
For our experimental evaluation we implement and test
a considerable number of proposed modifications to the
setup of Devlin et al. (2019) for their merits in our limited
compute setting as described in Section 2. We first clarify
the common implementation and initial data setup, and then
investigate architectural, training and dataset improvements.

2



Training a Language Model on a Single GPU in One Day.

3.1. Modifying the Architecture

The most obvious way to efficiently scale down training
is by modifying the model architecture; intuitively, it seems
likely that lower-capacity models will be optimal in the
cramming regime, or that some modification or would
provide significant gains when tailored to this setting. In
this section, we study the relationship between model type
and final efficiency. We find that scaling laws create a strong
barrier to scaling down. Per-token efficiency of training de-
pends strongly on model size, but not on transformer shape.
Furthermore, smaller models learn less efficiently, and this
largely mitigates any throughput gains. Fortunately, the
fact that training efficiency is nearly constant across models
of the same size means that we can boost performance by
finding architecture modifications that speed up gradient
computation while keeping the parameter count nearly
constant. This makes architecture selection fairly straight-
forward as we can make design choices based primarily on
how they affect computation time for a single gradient step.

As such, we keep the overall layout of the model broadly
similar (aside from an increase in depth to 16 layers and a
Pre-normalization setup), and focus on removing compo-
nents such as all linear layer biases, QKV biases and the
head block. We add gated linear units, additional normaliza-
tion layers, and scaled sinusoidal embeddings. We relegate
a detailed discussion of these to the appendix.

3.2. Modifying the Training Setup

We likewise study the impact of training hyper-parameters
on the BERT-base architecture. The original BERT training
recipe understandably results is poor model performance
in the cramming setting, and so we revisit a number of
choices. In brief, we find that the combination of a large
batch size, batch size ramp-up, large learning rate and ag-
gressive learning rate schedules with a model trained with
dropout deactivated, leads to the most throughput during
training, and a model that is effective at downstream tasks.
More details can be found in the appendix.

3.3. Optimizing the Dataset

We found above that scaling laws create a barrier to mak-
ing major gains (beyond computational efficiencies) with
architectural modifications. However, scaling laws do not
preclude us from training on better data. Once we have
exhausted our ability to train on more tokens per second, we
should seek to train on better tokens.

We consider two data based pathways to better down-
scaling. First, we can filter, process, or sort the exist-
ing data in various ways. Second, we can swap our data
source. To this end, we experiment with replacements for
the bookcorpus-wikipedia dataset. We test several

Table 2. Interactions between sorting, deduplication and filtering
strategies from Appendix C.1 for several data sources measured
in GLUE performance. The first row corresponds to the original
BERT data. bw denotes bookcorpus-wikipedia, c4 is C4
(colossal-cleaned-common-crawl) (Raffel et al., 2020), oscar is
the 2019 release of the OSCAR dataset (Suárez et al., 2019). pile
is the subset of The Pile (Gao et al., 2020). pile-N is the subset
drawn only from the natural sources in the Pile. For additional
details see Table 7.

Source Filtered Sorted Dedup. GLUE

bw ✗ ✗ ✗ 78.1
bw ✓ ✗ ✗ 78.7
bw ✓ ✓ ✗ 78.8
c4 ✗ ✗ ✗ 75.9
c4 ✓ ✗ ✗ 79.3
c4 ✓ ✓ ✗ 79.0
oscar ✗ ✗ ✗ 79.1
oscar ✓ ✗ ✗ 79.2
oscar ✓ ✓ ✗ 79.2
oscar ✓ ✓ ✓ 80.1
pile ✗ ✗ ✗ 78.2
pile ✓ ✗ ✗ 79.3
pile ✓ ✓ ✗ 80.1
pile ✓ ✓ ✓ 80.0
pile-N ✗ ✗ ✗ 79.2
pile-N ✓ ✗ ✗ 79.8
pile-N ✓ ✓ ✗ 80.1

subsets of The Pile (Gao et al., 2020). We draw random
subset from all sources, denoted pile and one containing
raw text from only Gutenberg, Books3 and Wikipedia (en),
denoted pile-N. From these Pile datasets we tokenize the
first 4×106 entries to generate enough tokens for our single
pass. Another popular source of data is C4, the colossal,
cleaned version of Common Crawl (Raffel et al., 2020),
from which we stream the first 20× 106 entries. Finally, we
also include the 2019 release of the OSCAR dataset (Suárez
et al., 2019), denoted by oscar. For each data source
we regenerate its own WordPiece tokenizer as described in
Appendix C.1.

Of these four sources, we find the natural split of The Pile
to perform best in terms of downstream GLUE performance
out-of-the-box. However, we can further improve perfor-
mance through additional processing. We evaluate dedupli-
cation as described in Lee et al. (2022) via exact substring
deduplication (of substrings of length 75), but find this not
to reliably help in downstream performance in our case, see
Table 2. We then test filtering for incompressible data. We
use the tokenizer itself to remove all training sequences from
each data source that cannot be compressed well; we simply
set a threshold t, here t = 0.25, and drop all entries from
the dataset where the number of tokens in the entry is larger
than t times the number of raw characters. This removes, for
example, sequences consisting of hard-to-compress HTML.

Finally we experiment with sorting, where we re-order all

3



Training a Language Model on a Single GPU in One Day.

Table 3. Comparison in GLUE-dev performance of baseline BERT to the crammed model. Note that all runs abide by the finetuning
protocol described in Section 2 with fixed hyperparameters for all tasks and an epoch limit of 5. Missing values are NaN. The protocol
of (Izsak et al., 2021) is designed for an 8 GPU server blade, and is crammed onto a single GPU here. T denotes the number of tokens
ingested during training in billions. The MNLI column shows evaluation results for both matched and mismatched sets. The GLUE
column depicts the full average over the same tasks as in Devlin et al. (2019).

T(109) MNLI SST-2 STSB RTE QNLI QQP MRPC CoLA GLUE

BERT-base (Fully trained) - 83.3/83.5 92.0 86.7 58.8 90.6 87.8 89.3 56.9 81.0
BERT-base (No Pretraining) 0 34.1/34.1 79.9 17.8 47.3 50.0 68.6 77.9 0.0 45.5

Trained for 1 day on a 2080ti:
BERT (orig. run, stopped early) 3.4 64.7/64.6 78.8 18.8 50.4 57.2 75.1 74.7 8.7 54.8
BERT (Izsak et al., 2021) 1.2 74.9/75.7 - - 52.3 84.6 84.4 82.2 33.5 69.7
crammed BERT 4.3 82.5/82.8 91.6 86.2 56.7 89.1 87.1 88.3 48.3 79.2

Trained for 1 day on an A4000:
BERT (orig. run, stopped early) 3.8 66.1/66.1 78.2 18.1 50.5 58.1 75.1 73.5 8.7 54.9
BERT (Izsak et al., 2021) 1.4 58.9/59.9 - - - - - 81.4 32.9 58.3
crammed BERT 4.5 82.7/83.1 91.5 86.4 56.5 88.8 86.9 88.2 48.6 79.2

Trained for 1 day on an A6000:
BERT (orig. run, stopped early) 7.3 64.4/63.9 79.3 20.8 49.8 58.3 75.1 74.2 7.7 54.8
BERT (Izsak et al., 2021) 2.5 76.7/76.9 87.4 78.7 50.9 85.9 84.5 81.8 39.8 73.6
crammed BERT 8.7 84.0/84.4 92.3 87.0 57.4 90.0 87.7 89.0 51.8 80.4

tokenized sequences by some metric. We find the optimal
metric to be sentence length and we sort so that sequences
containing short sentences come first. This is empirically
beneficial over e.g. sorting all sequences by their average
(unigram) token prevalence.

Overall, wins from post-processing in this manner are no-
ticeable, leading in aggregate to an improvements of 2%
over the original dataset and we choose The Pile with both
filtering and sorting as our new dataset going forward.

4. Finetuning Performance on GLUE
Finally, we systematically evaluate performance on the
GLUE benchmark of Wang et al. (2018), minus WNLI
as in Devlin et al. (2019). We note that we only use MNLI
(m) during the previous sections and do not tune hyperpa-
rameters based on the full GLUE scores. We finetune both
the pretrained BERT-base checkpoint and our models un-
der the same constraints laid out in Section 2, namely that
downstream hyperparameters have to be fixed over all down-
stream tasks and train for 5 epochs or less. For BERT-base,
we finetune all datasets for 5 epochs with a batch size of
32 and learning rate of 2× 10−5. For the crammed models,
we find that this is not optimal and minor improvements
can be gained from a batch size of 16 and learning rate of
4× 10−5 with cosine decay (this change does not improve
the pretrained BERT checkpoint).

Table 3 and Table 4 describe the performance of this setup
on the GLUE downstream tasks (as median over 5 down-
stream trials). There we compare the original BERT-base
checkpoint, a reproduction of the BERT pretraining settings
stopped after our budget limit is reached, the setup described
in (Izsak et al., 2021), and the modified recipe, trained for

a single day for each GPU setup. The performance of the
crammed model recipe is surprisingly decent, especially
for the larger datasets of MNLI, QQP, QNLI and SST-2,
where downstream finetuning can smooth out the remaining
differences between the full BERT model and the crammed
variants. Further, we find substantial gains over both a naive
BERT training with limited budget, and over the recipe de-
scribed in Izsak et al. (2021). For Izsak et al. (2021), the
described recipe was originally designed for a full 8 GPU
server blade, and squeezing the BERT-large model therein
onto the smaller GPUs in this experiment is responsible for
most of the performance degradation and instability of this
recipe in our scenario.

5. Conclusions
We discuss what performance a transformer-based language
model can achieve when crammed into a setting with
very limited compute, finding that several strands of
modification lead to decent downstream performance on
GLUE. Overall though, cramming language models is
hard, as we empirically find many implications of Kaplan
et al. (2020) to still hold in this regime, e.g. improvements
through larger models are nearly evened out by their slower
speed, and different architecture types and transformer
shapes have limited impact.

We hope that this work can provide a baseline for
explorations of the question of cramming we formalize
in Section 2 and cast an additional light on a number
of improvements and tricks proposed for transformer
architectures in recent years. We do not believe that results
in this work represent the limit that is achievable within the
cramming compute budget, and hope for further research
and developments in this direction.

4



Training a Language Model on a Single GPU in One Day.

References
Anil, R., Gupta, V., Koren, T., Regan, K., and Singer, Y.

Scalable Second Order Optimization for Deep Learning.
arXiv:2002.09018 [cs, math, stat], March 2021. URL
http://arxiv.org/abs/2002.09018.

Araabi, A. and Monz, C. Optimizing Transformer for Low-
Resource Neural Machine Translation. In Proceedings of
the 28th International Conference on Computational Lin-
guistics, pp. 3429–3435, Barcelona, Spain (Online), De-
cember 2020. International Committee on Computational
Linguistics. doi: 10.18653/v1/2020.coling-main.304.
URL https://aclanthology.org/2020.co
ling-main.304.

Artetxe, M., Du, J., Goyal, N., Zettlemoyer, L., and Stoy-
anov, V. On the Role of Bidirectionality in Language
Model Pre-Training. arxiv:2205.11726[cs], May 2022.
doi: 10.48550/arXiv.2205.11726. URL http:
//arxiv.org/abs/2205.11726.

Baevski, A. and Auli, M. Adaptive Input Representations for
Neural Language Modeling. In International Conference
on Learning Representations, September 2018. URL
https://openreview.net/forum?id=ByxZ
X20qFQ.

Bahri, D., Mobahi, H., and Tay, Y. Sharpness-Aware
Minimization Improves Language Model Generaliza-
tion. arXiv:2110.08529 [cs], October 2021a. URL
http://arxiv.org/abs/2110.08529.

Bahri, Y., Dyer, E., Kaplan, J., Lee, J., and Sharma, U. Ex-
plaining Neural Scaling Laws. arxiv:2102.06701[cond-
mat, stat], February 2021b. doi: 10.48550/arXiv.2102.06
701. URL http://arxiv.org/abs/2102.067
01.

Bajaj, P., Xiong, C., Ke, G., Liu, X., He, D., Tiwary, S.,
Liu, T.-Y., Bennett, P., Song, X., and Gao, J. METRO:
Efficient Denoising Pretraining of Large Scale Autoen-
coding Language Models with Model Generated Sig-
nals. arXiv:2204.06644 [cs], April 2022. URL http:
//arxiv.org/abs/2204.06644.

Bandy, J. and Vincent, N. Addressing ”Documentation
Debt” in Machine Learning: A Retrospective Datasheet
for BookCorpus. NeurIPS 2021 Track Datasets and
Benchmarks, November 2021. URL https://open
review.net/forum?id=Qd_eU1wvJeu.

Bansal, Y., Ghorbani, B., Garg, A., Zhang, B., Krikun, M.,
Cherry, C., Neyshabur, B., and Firat, O. Data Scaling
Laws in NMT: The Effect of Noise and Architecture.
arXiv:2202.01994 [cs], February 2022. URL https:
//arxiv.org/abs/2202.01994v1.

Bao, H., Dong, L., Wei, F., Wang, W., Yang, N., Liu, X.,
Wang, Y., Piao, S., Gao, J., Zhou, M., and Hon, H.-W.
UniLMv2: Pseudo-Masked Language Models for Unified
Language Model Pre-Training. arXiv:2002.12804 [cs],
February 2020. URL http://arxiv.org/abs/20
02.12804.

Beltagy, I., Peters, M. E., and Cohan, A. Longformer: The
Long-Document Transformer. arXiv:2004.05150 [cs],
December 2020. URL http://arxiv.org/abs/
2004.05150.

Bender, E. M. The #BenderRule: On Naming the Languages
We Study and Why It Matters, September 2019. URL
https://thegradient.pub/the-benderrul
e-on-naming-the-languages-we-study-a
nd-why-it-matters/.

Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao,
L., Golding, L., He, H., Leahy, C., McDonell, K., Phang,
J., Pieler, M., Prashanth, U. S., Purohit, S., Reynolds,
L., Tow, J., Wang, B., and Weinbach, S. GPT-NeoX-
20B: An Open-Source Autoregressive Language Model.
arXiv:2204.06745 [cs], April 2022. URL http://ar
xiv.org/abs/2204.06745.

Bollapragada, R., Byrd, R., and Nocedal, J. Adaptive Sam-
pling Strategies for Stochastic Optimization. SIAM Jour-
nal on Optimization, 28(4):3312–3343, January 2018a.
ISSN 1052-6234. doi: 10.1137/17M1154679. URL
https://epubs.siam.org/doi/abs/10.11
37/17M1154679.

Bollapragada, R., Mudigere, D., Nocedal, J., Shi, H.-J. M.,
and Tang, P. T. P. A Progressive Batching L-BFGS
Method for Machine Learning. May 2018b. URL
http://arxiv.org/abs/1802.05374.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
Models are Few-Shot Learners. In 34th Conference on
Neural Information Processing Systems (NeurIPS 2020),
December 2020. URL https://papers.nips.cc
/paper/2020/hash/1457c0d6bfcb4967418
bfb8ac142f64a-Abstract.html.

Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., and
Tramèr, F. Membership Inference Attacks From First
Principles. In 2022 IEEE Symposium on Security and
Privacy (SP), pp. 1897–1914, May 2022. doi: 10.1109/
SP46214.2022.9833649.

5

http://arxiv.org/abs/2002.09018
https://aclanthology.org/2020.coling-main.304
https://aclanthology.org/2020.coling-main.304
http://arxiv.org/abs/2205.11726
http://arxiv.org/abs/2205.11726
https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
http://arxiv.org/abs/2110.08529
http://arxiv.org/abs/2102.06701
http://arxiv.org/abs/2102.06701
http://arxiv.org/abs/2204.06644
http://arxiv.org/abs/2204.06644
https://openreview.net/forum?id=Qd_eU1wvJeu
https://openreview.net/forum?id=Qd_eU1wvJeu
https://arxiv.org/abs/2202.01994v1
https://arxiv.org/abs/2202.01994v1
http://arxiv.org/abs/2002.12804
http://arxiv.org/abs/2002.12804
http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2004.05150
https://thegradient.pub/the-benderrule-on-naming-the-languages-we-study-and-why-it-matters/
https://thegradient.pub/the-benderrule-on-naming-the-languages-we-study-and-why-it-matters/
https://thegradient.pub/the-benderrule-on-naming-the-languages-we-study-and-why-it-matters/
http://arxiv.org/abs/2204.06745
http://arxiv.org/abs/2204.06745
https://epubs.siam.org/doi/abs/10.1137/17M1154679
https://epubs.siam.org/doi/abs/10.1137/17M1154679
http://arxiv.org/abs/1802.05374
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html


Training a Language Model on a Single GPU in One Day.

Chelombiev, I., Justus, D., Orr, D., Dietrich, A., Gress-
mann, F., Koliousis, A., and Luschi, C. GroupBERT: En-
hanced Transformer Architecture with Efficient Grouped
Structures. arxiv:2106.05822 [cs], June 2021. URL
https://arxiv.org/abs/2106.05822v1.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari,
G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S.,
Dev, S., Michalewski, H., Garcia, X., Misra, V., Robin-
son, K., Fedus, L., Zhou, D., Ippolito, D., Luan, D.,
Lim, H., Zoph, B., Spiridonov, A., Sepassi, R., Do-
han, D., Agrawal, S., Omernick, M., Dai, A. M., Pil-
lai, T. S., Pellat, M., Lewkowycz, A., Moreira, E.,
Child, R., Polozov, O., Lee, K., Zhou, Z., Wang, X.,
Saeta, B., Diaz, M., Firat, O., Catasta, M., Wei, J.,
Meier-Hellstern, K., Eck, D., Dean, J., Petrov, S., and
Fiedel, N. PaLM: Scaling Language Modeling with
Pathways. arXiv:2204.02311 [cs], April 2022. URL
http://arxiv.org/abs/2204.02311.

Chung, H. W., Fevry, T., Tsai, H., Johnson, M., and Ruder,
S. Rethinking Embedding Coupling in Pre-trained Lan-
guage Models. In International Conference on Learn-
ing Representations, September 2020. URL https:
//openreview.net/forum?id=xpFFI_NtgpW.

Clark, A., de las Casas, D., Guy, A., Mensch, A., Paganini,
M., Hoffmann, J., Damoc, B., Hechtman, B., Cai, T.,
Borgeaud, S., van den Driessche, G., Rutherford, E., Hen-
nigan, T., Johnson, M., Millican, K., Cassirer, A., Jones,
C., Buchatskaya, E., Budden, D., Sifre, L., Osindero, S.,
Vinyals, O., Rae, J., Elsen, E., Kavukcuoglu, K., and Si-
monyan, K. Unified Scaling Laws for Routed Language
Models. arXiv:2202.01169 [cs], February 2022. URL
http://arxiv.org/abs/2202.01169.

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D.
ELECTRA: Pre-training Text Encoders as Discriminators
Rather Than Generators. In International Conference
on Learning Representations, September 2019. URL
https://openreview.net/forum?id=r1xM
H1BtvB.

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. Pre-
Training Transformers as Energy-Based Cloze Models.
arXiv:2012.08561 [cs], December 2020. URL http:
//arxiv.org/abs/2012.08561.

Dai, Z., Lai, G., Yang, Y., and Le, Q. Funnel-Transformer:
Filtering out Sequential Redundancy for Efficient Lan-
guage Processing. In Advances in Neural Information

Processing Systems, volume 33, pp. 4271–4282. Curran
Associates, Inc., 2020. URL https://papers.nip
s.cc/paper/2020/hash/2cd2915e6954690
4e4e5d4a2ac9e1652-Abstract.html.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C.
FlashAttention: Fast and Memory-Efficient Exact At-
tention with IO-Awareness. arxiv:2205.14135[cs], May
2022. doi: 10.48550/arXiv.2205.14135. URL
http://arxiv.org/abs/2205.14135.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. Lan-
guage Modeling with Gated Convolutional Networks. In
Proceedings of the 34th International Conference on Ma-
chine Learning, pp. 933–941. PMLR, July 2017. URL
https://proceedings.mlr.press/v70/da
uphin17a.html.

Dayma, B., Patil, S., Cuenca, P., Saifullah, K., Abraham,
T., Lê Khác, P., Melas, L., and Ghosh, R. DALL·E Mini,
July 2021. URL https://github.com/borisda
yma/dalle-mini.

De, S., Yadav, A., Jacobs, D., and Goldstein, T. Big Batch
SGD: Automated Inference using Adaptive Batch Sizes.
arxiv:1610.05792[cs, math, stat], April 2017. URL ht
tp://arxiv.org/abs/1610.05792.

Dehghani, M., Tay, Y., Arnab, A., Beyer, L., and Vaswani, A.
The Efficiency Misnomer. In International Conference
on Learning Representations, September 2021. URL
https://openreview.net/forum?id=iulE
MLYh1uR.

Dettmers, T. TPUs vs GPUs for Transformers (BERT),
October 2018. URL https://timdettmers.com/
2018/10/17/tpus-vs-gpus-for-transform
ers-bert/.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. arXiv:1810.04805 [cs], May 2019.
URL http://arxiv.org/abs/1810.04805.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An
Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. arXiv:2010.11929 [cs], June 2021.
URL http://arxiv.org/abs/2010.11929.

Fusco, F., Pascual, D., and Staar, P. pNLP-Mixer:
An Efficient all-MLP Architecture for Language.
arxiv:2202.04350 [cs], February 2022. URL https:
//arxiv.org/abs/2202.04350v1.

6

https://arxiv.org/abs/2106.05822v1
http://arxiv.org/abs/2204.02311
https://openreview.net/forum?id=xpFFI_NtgpW
https://openreview.net/forum?id=xpFFI_NtgpW
http://arxiv.org/abs/2202.01169
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
http://arxiv.org/abs/2012.08561
http://arxiv.org/abs/2012.08561
https://papers.nips.cc/paper/2020/hash/2cd2915e69546904e4e5d4a2ac9e1652-Abstract.html
https://papers.nips.cc/paper/2020/hash/2cd2915e69546904e4e5d4a2ac9e1652-Abstract.html
https://papers.nips.cc/paper/2020/hash/2cd2915e69546904e4e5d4a2ac9e1652-Abstract.html
http://arxiv.org/abs/2205.14135
https://proceedings.mlr.press/v70/dauphin17a.html
https://proceedings.mlr.press/v70/dauphin17a.html
https://github.com/borisdayma/dalle-mini
https://github.com/borisdayma/dalle-mini
http://arxiv.org/abs/1610.05792
http://arxiv.org/abs/1610.05792
https://openreview.net/forum?id=iulEMLYh1uR
https://openreview.net/forum?id=iulEMLYh1uR
https://timdettmers.com/2018/10/17/tpus-vs-gpus-for-transformers-bert/
https://timdettmers.com/2018/10/17/tpus-vs-gpus-for-transformers-bert/
https://timdettmers.com/2018/10/17/tpus-vs-gpus-for-transformers-bert/
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2202.04350v1
https://arxiv.org/abs/2202.04350v1


Training a Language Model on a Single GPU in One Day.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
Presser, S., and Leahy, C. The Pile: An 800GB Dataset of
Diverse Text for Language Modeling. arXiv:2101.00027
[cs], December 2020. URL http://arxiv.org/ab
s/2101.00027.

Geiping, J., Fowl, L. H., Huang, W. R., Czaja, W., Taylor,
G., Moeller, M., and Goldstein, T. Witches’ Brew: In-
dustrial Scale Data Poisoning via Gradient Matching. In
International Conference on Learning Representations,
April 2021. URL https://openreview.net/f
orum?id=01olnfLIbD.

Golchin, S., Surdeanu, M., Tavabi, N., and Kiapour, A.
A Compact Pretraining Approach for Neural Language
Models. arxiv:2208.12367[cs], August 2022. doi: 10.4
8550/arXiv.2208.12367. URL http://arxiv.org/
abs/2208.12367.

Gold, Z. and Latonero, M. Robots Welcome: Ethical and
Legal Considerations for Web Crawling and Scraping.
Washington Journal of Law, Technology & Arts, 13(3):
275–312, 2017. URL https://heinonline.org
/HOL/P?h=hein.journals/washjolta13&i
=283.

Gu, X., Liu, L., Yu, H., Li, J., Chen, C., and Han, J. On
the Transformer Growth for Progressive BERT Train-
ing. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 5174–
5180, Online, June 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.406.
URL https://aclanthology.org/2021.na
acl-main.406.

He, P., Gao, J., and Chen, W. DeBERTaV3:
Improving DeBERTa using ELECTRA-Style Pre-
Training with Gradient-Disentangled Embedding Shar-
ing. arXiv:2111.09543 [cs], December 2021. URL
http://arxiv.org/abs/2111.09543.

Hernandez, D., Brown, T., Conerly, T., DasSarma, N.,
Drain, D., El-Showk, S., Elhage, N., Hatfield-Dodds,
Z., Henighan, T., Hume, T., Johnston, S., Mann, B., Olah,
C., Olsson, C., Amodei, D., Joseph, N., Kaplan, J., and
McCandlish, S. Scaling Laws and Interpretability of
Learning from Repeated Data. arxiv:2205.10487[cs],
May 2022. URL http://arxiv.org/abs/2205
.10487.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., Hennigan, T., Noland, E., Millican,
K., van den Driessche, G., Damoc, B., Guy, A., Osindero,
S., Simonyan, K., Elsen, E., Rae, J. W., Vinyals, O., and

Sifre, L. Training Compute-Optimal Large Language
Models. arXiv:2203.15556 [cs], March 2022. URL
http://arxiv.org/abs/2203.15556.

Hooker, S. The hardware lottery. Communications of the
ACM, 64(12):58–65, November 2021. ISSN 0001-0782.
doi: 10.1145/3467017. URL https://doi.org/10
.1145/3467017.

Hou, L., Pang, R. Y., Zhou, T., Wu, Y., Song, X., Song,
X., and Zhou, D. Token Dropping for Efficient BERT
Pretraining. arXiv:2203.13240 [cs], March 2022. URL
http://arxiv.org/abs/2203.13240.

Hua, W., Dai, Z., Liu, H., and Le, Q. Transformer Qual-
ity in Linear Time. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, pp. 9099–9117.
PMLR, June 2022. URL https://proceedings.
mlr.press/v162/hua22a.html.

Hui, L. and Belkin, M. Evaluation of Neural Architectures
Trained with Square Loss vs Cross-Entropy in Classifica-
tion Tasks. arXiv:2006.07322 [cs, stat], October 2021.
URL http://arxiv.org/abs/2006.07322.

Iandola, F. N., Shaw, A. E., Krishna, R., and Keutzer, K. W.
SqueezeBERT: What can computer vision teach NLP
about efficient neural networks? arXiv:2006.11316 [cs],
June 2020. URL http://arxiv.org/abs/2006
.11316.

Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., and Madry,
A. Datamodels: Predicting Predictions from Training
Data. arxiv:2202.00622[cs, stat], February 2022. doi:
10.48550/arXiv.2202.00622. URL http://arxiv.
org/abs/2202.00622.

Izsak, P., Berchansky, M., and Levy, O. How to Train BERT
with an Academic Budget. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language
Processing, pp. 10644–10652, Online and Punta Cana,
Dominican Republic, November 2021. Association for
Computational Linguistics. doi: 10.18653/v1/2021.emn
lp-main.831. URL https://aclanthology.org
/2021.emnlp-main.831.

Javaheripi, M., Shah, S., Mukherjee, S., Religa, T. L.,
Mendes, C. C. T., de Rosa, G. H., Bubeck, S., Koushanfar,
F., and Dey, D. LiteTransformerSearch: Training-free
On-device Search for Efficient Autoregressive Language
Models. arXiv:2203.02094 [cs], March 2022. URL
http://arxiv.org/abs/2203.02094.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and
Bengio, S. Fantastic Generalization Measures and Where
to Find Them. arXiv:1912.02178 [cs, stat], December
2019. URL http://arxiv.org/abs/1912.021
78.

7

http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://openreview.net/forum?id=01olnfLIbD
https://openreview.net/forum?id=01olnfLIbD
http://arxiv.org/abs/2208.12367
http://arxiv.org/abs/2208.12367
https://heinonline.org/HOL/P?h=hein.journals/washjolta13&i=283
https://heinonline.org/HOL/P?h=hein.journals/washjolta13&i=283
https://heinonline.org/HOL/P?h=hein.journals/washjolta13&i=283
https://aclanthology.org/2021.naacl-main.406
https://aclanthology.org/2021.naacl-main.406
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2205.10487
http://arxiv.org/abs/2205.10487
http://arxiv.org/abs/2203.15556
https://doi.org/10.1145/3467017
https://doi.org/10.1145/3467017
http://arxiv.org/abs/2203.13240
https://proceedings.mlr.press/v162/hua22a.html
https://proceedings.mlr.press/v162/hua22a.html
http://arxiv.org/abs/2006.07322
http://arxiv.org/abs/2006.11316
http://arxiv.org/abs/2006.11316
http://arxiv.org/abs/2202.00622
http://arxiv.org/abs/2202.00622
https://aclanthology.org/2021.emnlp-main.831
https://aclanthology.org/2021.emnlp-main.831
http://arxiv.org/abs/2203.02094
http://arxiv.org/abs/1912.02178
http://arxiv.org/abs/1912.02178


Training a Language Model on a Single GPU in One Day.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L.,
Wang, F., and Liu, Q. TinyBERT: Distilling BERT for
Natural Language Understanding. arXiv:1909.10351 [cs],
October 2020. URL http://arxiv.org/abs/19
09.10351.

Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer,
L., and Levy, O. SpanBERT: Improving Pre-training
by Representing and Predicting Spans. Transactions of
the Association for Computational Linguistics, 8:64–77,
2020. doi: 10.1162/tacl a 00300. URL https://ac
lanthology.org/2020.tacl-1.5.

Kaliamoorthi, P., Siddhant, A., Li, E., and Johnson, M.
Distilling Large Language Models into Tiny and Effective
Students using pQRNN. arxiv: 2101.08890 [cs], January
2021. URL https://arxiv.org/abs/2101.0
8890v1.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling Laws for Neural Language Models.
arxiv:2001.08361[cs, stat], January 2020. doi: 10.48550
/arXiv.2001.08361. URL http://arxiv.org/ab
s/2001.08361.

Ke, G., He, D., and Liu, T.-Y. Rethinking Positional En-
coding in Language Pre-training. In International Con-
ference on Learning Representations, September 2020.
URL https://openreview.net/forum?id=
09-528y2Fgf.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization. In International Conference on Learning
Representations (ICLR), San Diego, May 2015. URL
http://arxiv.org/abs/1412.6980.

Komatsuzaki, A. One Epoch Is All You Need.
arXiv:1906.06669 [cs, stat], June 2019. URL http:
//arxiv.org/abs/1906.06669.

Kudo, T. Subword Regularization: Improving Neural Net-
work Translation Models with Multiple Subword Can-
didates. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 66–75, Melbourne, Aus-
tralia, July 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/P18-1007. URL https:
//aclanthology.org/P18-1007.

Kudo, T. and Richardson, J. SentencePiece: A simple and
language independent subword tokenizer and detokenizer
for Neural Text Processing. In EMNLP (Demonstration),
July 2019. URL https://openreview.net/for
um?id=S1EyQGf_bH.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma,
P., and Soricut, R. ALBERT: A Lite BERT for Self-
supervised Learning of Language Representations. In
International Conference on Learning Representations,
September 2019. URL https://openreview.net
/forum?id=H1eA7AEtvS.

Laurençon, H., Saulnier, L., Wang, T., Akiki, C., del Moral,
A. V., Scao, T. L., Von Werra, L., Mou, C., Ponferrada,
E. G., Nguyen, H., Frohberg, J., Šaško, M., Lhoest, Q.,
McMillan-Major, A., Dupont, G., Biderman, S., Rogers,
A., allal, L. B., De Toni, F., Pistilli, G., Nguyen, O.,
Nikpoor, S., Masoud, M., Colombo, P., de la Rosa, J.,
Villegas, P., Thrush, T., Longpre, S., Nagel, S., Weber,
L., Muñoz, M., Zhu, J., Van Strien, D., Alyafeai, Z.,
Almubarak, K., Vu, M. C., Gonzalez-Dios, I., Soroa, A.,
Lo, K., Dey, M., Suarez, P. O., Gokaslan, A., Bose, S.,
Adelani, D., Phan, L., Tran, H., Yu, I., Pai, S., Chim, J.,
Lepercq, V., Ilic, S., Mitchell, M., Luccioni, S. A., and
Jernite, Y. The BigScience ROOTS Corpus: A 1.6TB
Composite Multilingual Dataset. arxiv:2303.03915[cs],
March 2023. doi: 10.48550/arXiv.2303.03915. URL
http://arxiv.org/abs/2303.03915.

Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D.,
Callison-Burch, C., and Carlini, N. Deduplicating Train-
ing Data Makes Language Models Better. In Proceedings
of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 8424–
8445, Dublin, Ireland, May 2022. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2022.acl-long.577.
URL https://aclanthology.org/2022.ac
l-long.577.

Lee-Thorp, J., Ainslie, J., Eckstein, I., and Ontanon,
S. FNet: Mixing Tokens with Fourier Transforms.
arxiv:2105.03824 [cs], May 2021. URL https://
arxiv.org/abs/2105.03824v3.

Lei, T., Tian, R., Bastings, J., and Parikh, A. P. Sim-
ple Recurrence Improves Masked Language Models.
arxiv:2205.11588[cs], May 2022. URL http://arxi
v.org/abs/2205.11588.

Li, C., Zhang, M., and He, Y. Curriculum Learning: A
Regularization Method for Efficient and Stable Billion-
Scale GPT Model Pre-Training. arXiv:2108.06084 [cs],
February 2022. URL http://arxiv.org/abs/21
08.06084.

Liu, F., Shakeri, S., Yu, H., and Li, J. EncT5:
Fine-tuning T5 Encoder for Non-autoregressive Tasks.
arxiv:2110.08426[cs], October 2021a. doi: 10.48550/a
rXiv.2110.08426. URL http://arxiv.org/abs/
2110.08426.

8

http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.10351
https://aclanthology.org/2020.tacl-1.5
https://aclanthology.org/2020.tacl-1.5
https://arxiv.org/abs/2101.08890v1
https://arxiv.org/abs/2101.08890v1
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=09-528y2Fgf
https://openreview.net/forum?id=09-528y2Fgf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1906.06669
http://arxiv.org/abs/1906.06669
https://aclanthology.org/P18-1007
https://aclanthology.org/P18-1007
https://openreview.net/forum?id=S1EyQGf_bH
https://openreview.net/forum?id=S1EyQGf_bH
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
http://arxiv.org/abs/2303.03915
https://aclanthology.org/2022.acl-long.577
https://aclanthology.org/2022.acl-long.577
https://arxiv.org/abs/2105.03824v3
https://arxiv.org/abs/2105.03824v3
http://arxiv.org/abs/2205.11588
http://arxiv.org/abs/2205.11588
http://arxiv.org/abs/2108.06084
http://arxiv.org/abs/2108.06084
http://arxiv.org/abs/2110.08426
http://arxiv.org/abs/2110.08426


Training a Language Model on a Single GPU in One Day.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and
Han, J. On the Variance of the Adaptive Learning Rate
and Beyond. In International Conference on Learning
Representations, March 2020a. URL https://open
review.net/forum?id=rkgz2aEKDr.

Liu, L., Liu, X., Gao, J., Chen, W., and Han, J. Understand-
ing the Difficulty of Training Transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 5747–5763,
Online, November 2020b. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.463.
URL https://aclanthology.org/2020.em
nlp-main.463.

Liu, L., Liu, J., and Han, J. Multi-head or Single-head?
An Empirical Comparison for Transformer Training.
arxiv:2106.09650[cs], June 2021b. doi: 10.48550/a
rXiv.2106.09650. URL http://arxiv.org/abs/
2106.09650.

Liu, X., Su, J., and Huang, F. Tuformer: Data-driven
Design of Transformers for Improved Generalization
or Efficiency. In International Conference on Learn-
ing Representations, September 2021c. URL https:
//openreview.net/forum?id=V0A5g83gdQ_.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv:1907.11692 [cs], July 2019. URL
http://arxiv.org/abs/1907.11692.

Liu, Z., Wang, Y., Kasai, J., Hajishirzi, H., and Smith, N. A.
Probing Across Time: What Does RoBERTa Know and
When? In Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 820–842, Punta Cana,
Dominican Republic, November 2021d. Association for
Computational Linguistics. doi: 10.18653/v1/2021.fin
dings-emnlp.71. URL https://aclanthology.o
rg/2021.findings-emnlp.71.

Loshchilov, I. and Hutter, F. Decoupled Weight Decay
Regularization. arXiv:1711.05101 [cs, math], November
2017. URL http://arxiv.org/abs/1711.051
01.

Merity, S. Single Headed Attention RNN: Stop Thinking
With Your Head. arXiv:1911.11423 [cs], November 2019.
URL http://arxiv.org/abs/1911.11423.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed Precision Training. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum
?id=r1gs9JgRZ.

Mindermann, S., Brauner, J., Razzak, M., Sharma, M.,
Kirsch, A., Xu, W., Höltgen, B., Gomez, A. N., Morisot,
A., Farquhar, S., and Gal, Y. Prioritized Training on
Points that are Learnable, Worth Learning, and Not
Yet Learnt. arxiv:2206.07137[cs], June 2022. doi:
10.48550/arXiv.2206.07137. URL http://arxi
v.org/abs/2206.07137.

Mukherjee, S., Awadallah, A. H., and Gao, J. XtremeDis-
tilTransformers: Task Transfer for Task-agnostic Dis-
tillation. arXiv:2106.04563 [cs], June 2021. URL
http://arxiv.org/abs/2106.04563.

Müller, R., Kornblith, S., and Hinton, G. E. When does
label smoothing help? In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://papers.nips.cc/paper
/2019/hash/f1748d6b0fd9d439f71450117
eba2725-Abstract.html.

Nagarajan, V. and Kolter, J. Z. Generalization in Deep
Networks: The Role of Distance from Initialization.
arXiv:1901.01672 [cs, stat], January 2019. URL http:
//arxiv.org/abs/1901.01672.

Narang, S., Chung, H. W., Tay, Y., Fedus, L., Fevry, T.,
Matena, M., Malkan, K., Fiedel, N., Shazeer, N., Lan, Z.,
Zhou, Y., Li, W., Ding, N., Marcus, J., Roberts, A., and
Raffel, C. Do Transformer Modifications Transfer Across
Implementations and Applications? In Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 5758–5773, Online and Punta
Cana, Dominican Republic, November 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.e
mnlp-main.465. URL https://aclanthology.o
rg/2021.emnlp-main.465.

Narasimhan, S. NVIDIA Clocks World’s Fastest BERT
Training Time and Largest Transformer Based Model,
Paving Path For Advanced Conversational AI, August
2019. URL https://developer.nvidia.com
/blog/training-bert-with-gpus/.

Nawrot, P., Tworkowski, S., Tyrolski, M., Kaiser, Ł.,
Wu, Y., Szegedy, C., and Michalewski, H. Hierarchi-
cal Transformers Are More Efficient Language Mod-
els. arxiv:2110.13711[cs], April 2022. URL http:
//arxiv.org/abs/2110.13711.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in PyTorch. In NIPS 2017
Autodiff Workshop, Long Beach, CA, 2017. URL https:
//openreview.net/forum?id=BJJsrmfCZ.

Peng, B. RWKV-LM. Zenodo, August 2021. URL https:
//zenodo.org/record/5196577.

9

https://openreview.net/forum?id=rkgz2aEKDr
https://openreview.net/forum?id=rkgz2aEKDr
https://aclanthology.org/2020.emnlp-main.463
https://aclanthology.org/2020.emnlp-main.463
http://arxiv.org/abs/2106.09650
http://arxiv.org/abs/2106.09650
https://openreview.net/forum?id=V0A5g83gdQ_
https://openreview.net/forum?id=V0A5g83gdQ_
http://arxiv.org/abs/1907.11692
https://aclanthology.org/2021.findings-emnlp.71
https://aclanthology.org/2021.findings-emnlp.71
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1911.11423
https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=r1gs9JgRZ
http://arxiv.org/abs/2206.07137
http://arxiv.org/abs/2206.07137
http://arxiv.org/abs/2106.04563
https://papers.nips.cc/paper/2019/hash/f1748d6b0fd9d439f71450117eba2725-Abstract.html
https://papers.nips.cc/paper/2019/hash/f1748d6b0fd9d439f71450117eba2725-Abstract.html
https://papers.nips.cc/paper/2019/hash/f1748d6b0fd9d439f71450117eba2725-Abstract.html
http://arxiv.org/abs/1901.01672
http://arxiv.org/abs/1901.01672
https://aclanthology.org/2021.emnlp-main.465
https://aclanthology.org/2021.emnlp-main.465
https://developer.nvidia.com/blog/training-bert-with-gpus/
https://developer.nvidia.com/blog/training-bert-with-gpus/
http://arxiv.org/abs/2110.13711
http://arxiv.org/abs/2110.13711
https://openreview.net/forum?id=BJJsrmfCZ
https://openreview.net/forum?id=BJJsrmfCZ
https://zenodo.org/record/5196577
https://zenodo.org/record/5196577


Training a Language Model on a Single GPU in One Day.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcad-
inho, S., Cao, H., Cheng, X., Chung, M., Grella, M.,
GV, K. K., He, X., Hou, H., Kazienko, P., Kocon, J.,
Kong, J., Koptyra, B., Lau, H., Mantri, K. S. I., Mom,
F., Saito, A., Tang, X., Wang, B., Wind, J. S., Woz-
niak, S., Zhang, R., Zhang, Z., Zhao, Q., Zhou, P.,
Zhu, J., and Zhu, R.-J. RWKV: Reinventing RNNs
for the Transformer Era. arxiv:2305.13048[cs], May
2023. doi: 10.48550/arXiv.2305.13048. URL
http://arxiv.org/abs/2305.13048.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language Models are Unsupervised Multi-
task Learners. OpenAI, pp. 24, 2019.

Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J.,
Song, F., Aslanides, J., Henderson, S., Ring, R., Young,
S., Rutherford, E., Hennigan, T., Menick, J., Cassirer,
A., Powell, R., van den Driessche, G., Hendricks, L. A.,
Rauh, M., Huang, P.-S., Glaese, A., Welbl, J., Dathathri,
S., Huang, S., Uesato, J., Mellor, J., Higgins, I., Creswell,
A., McAleese, N., Wu, A., Elsen, E., Jayakumar, S.,
Buchatskaya, E., Budden, D., Sutherland, E., Simonyan,
K., Paganini, M., Sifre, L., Martens, L., Li, X. L., Kun-
coro, A., Nematzadeh, A., Gribovskaya, E., Donato, D.,
Lazaridou, A., Mensch, A., Lespiau, J.-B., Tsimpoukelli,
M., Grigorev, N., Fritz, D., Sottiaux, T., Pajarskas, M.,
Pohlen, T., Gong, Z., Toyama, D., d’Autume, C. d. M.,
Li, Y., Terzi, T., Mikulik, V., Babuschkin, I., Clark, A.,
Casas, D. d. L., Guy, A., Jones, C., Bradbury, J., Johnson,
M., Hechtman, B., Weidinger, L., Gabriel, I., Isaac, W.,
Lockhart, E., Osindero, S., Rimell, L., Dyer, C., Vinyals,
O., Ayoub, K., Stanway, J., Bennett, L., Hassabis, D.,
Kavukcuoglu, K., and Irving, G. Scaling Language
Models: Methods, Analysis & Insights from Training
Gopher. arXiv:2112.11446 [cs], January 2022. URL
http://arxiv.org/abs/2112.11446.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the Limits of Transfer Learning with a Unified Text-to-
Text Transformer. arXiv:1910.10683 [cs, stat], July 2020.
URL http://arxiv.org/abs/1910.10683.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
Speed: System Optimizations Enable Training Deep
Learning Models with Over 100 Billion Parameters. In
Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
KDD ’20, pp. 3505–3506, New York, NY, USA, August
2020. Association for Computing Machinery. ISBN 978-
1-4503-7998-4. doi: 10.1145/3394486.3406703. URL
https://doi.org/10.1145/3394486.3406
703.

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,

Yang, S., Zhang, M., Li, D., and He, Y. {ZeRO-Offload}:
Democratizing {Billion-Scale} Model Training. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pp. 551–564, 2021. ISBN 978-1-939133-23-6. URL
https://www.usenix.org/conference/at
c21/presentation/ren-jie.

Richter, O. and Wattenhofer, R. Normalized Attention With-
out Probability Cage. arXiv:2005.09561 [cs, stat], May
2020. URL http://arxiv.org/abs/2005.095
61.

Roy, A., Anil, R., Lai, G., Lee, B., Zhao, J., Zhang, S., Wang,
S., Zhang, Y., Wu, S., Swavely, R., Tao, Yu, Dao, P., Fifty,
C., Chen, Z., and Wu, Y. N-Grammer: Augmenting
Transformers with latent n-grams. arxiv:2207.06366[cs],
July 2022. doi: 10.48550/arXiv.2207.06366. URL
http://arxiv.org/abs/2207.06366.

Sarofeen, C., Bialecki, P., Jiang, J., Stephano, K., Kozuki,
M., Vaidya, N., and Bekman, S. Introducing nvFuser, a
deep learning compiler for PyTorch, August 2022. URL
https://pytorch.org/blog/introducing
-nvfuser-a-deep-learning-compiler-for
-pytorch/.

Scao, T. L., Wang, T., Hesslow, D., Saulnier, L., Bekman,
S., Bari, M. S., Biderman, S., Elsahar, H., Phang, J.,
Press, O., Raffel, C., Sanh, V., Shen, S., Sutawika, L.,
Tae, J., Yong, Z. X., Launay, J., and Beltagy, I. What
Language Model to Train if You Have One Million GPU
Hours? In Challenges {\&, April 2022. URL https:
//openreview.net/forum?id=rI7BL3fHIZq.

Schwarzschild, A. Easy-To-Hard, October 2021. URL
https://github.com/aks2203/easy-to-h
ard.

Sellam, T., Yadlowsky, S., Tenney, I., Wei, J., Saphra, N.,
D’Amour, A., Linzen, T., Bastings, J., Turc, I. R., Eisen-
stein, J., Das, D., and Pavlick, E. The MultiBERTs: BERT
Reproductions for Robustness Analysis. In International
Conference on Learning Representations, March 2022.
URL https://openreview.net/forum?id=
K0E_F0gFDgA.

Sennrich, R., Haddow, B., and Birch, A. Neural Machine
Translation of Rare Words with Subword Units. In Pro-
ceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 1715–1725, Berlin, Germany, August 2016. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/P1
6-1162. URL https://aclanthology.org/P16
-1162.

Shazeer, N. and Stern, M. Adafactor: Adaptive Learning
Rates with Sublinear Memory Cost. arxiv:1804.04235[cs,

10

http://arxiv.org/abs/2305.13048
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/1910.10683
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
http://arxiv.org/abs/2005.09561
http://arxiv.org/abs/2005.09561
http://arxiv.org/abs/2207.06366
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning-compiler-for-pytorch/
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning-compiler-for-pytorch/
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning-compiler-for-pytorch/
https://openreview.net/forum?id=rI7BL3fHIZq
https://openreview.net/forum?id=rI7BL3fHIZq
https://github.com/aks2203/easy-to-hard
https://github.com/aks2203/easy-to-hard
https://openreview.net/forum?id=K0E_F0gFDgA
https://openreview.net/forum?id=K0E_F0gFDgA
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162


Training a Language Model on a Single GPU in One Day.

stat], April 2018. doi: 10.48550/arXiv.1804.04235. URL
http://arxiv.org/abs/1804.04235.

Shen, S., Walsh, P., Keutzer, K., Dodge, J., Peters, M., and
Beltagy, I. Staged Training for Transformer Language
Models. arXiv:2203.06211 [cs], March 2022. URL
http://arxiv.org/abs/2203.06211.

Shleifer, S., Weston, J., and Ott, M. NormFormer: Im-
proved Transformer Pretraining with Extra Normaliza-
tion. arXiv:2110.09456 [cs], November 2021. URL
http://arxiv.org/abs/2110.09456.

Smith, L. N. and Topin, N. Super-Convergence: Very Fast
Training of Neural Networks Using Large Learning Rates.
arXiv:1708.07120 [cs, stat], May 2018. URL http:
//arxiv.org/abs/1708.07120.

So, D., Mańke, W., Liu, H., Dai, Z., Shazeer, N., and Le,
Q. V. Searching for Efficient Transformers for Language
Modeling. In Advances in Neural Information Processing
Systems, May 2021. URL https://openreview.n
et/forum?id=bzpkxS_JVsI.

Sridhar, S. N., Sarah, A., and Sundaresan, S. TrimBERT:
Tailoring BERT for Trade-offs. arXiv:2202.12411 [cs],
February 2022. URL http://arxiv.org/abs/22
02.12411.

Su, J., Lu, Y., Pan, S., Wen, B., and Liu, Y. RoFormer:
Enhanced Transformer with Rotary Position Embedding.
arxiv:2104.09864 [cs], April 2021. URL https://ar
xiv.org/abs/2104.09864v2.

Suárez, P. J. O., Sagot, B., and Romary, L. Asynchronous
Pipeline for Processing Huge Corpora on Medium to
Low Resource Infrastructures. In 7th Workshop on the
Challenges in the Management of Large Corpora (CMLC-
7). Leibniz-Institut für Deutsche Sprache, July 2019. doi:
10.14618/IDS-PUB-9021. URL https://inria.ha
l.science/hal-02148693.

Sukhbaatar, S., Grave, E., Bojanowski, P., and Joulin,
A. Adaptive Attention Span in Transformers.
arXiv:1905.07799 [cs, stat], August 2019. URL http:
//arxiv.org/abs/1905.07799.

Sun, S., Cheng, Y., Gan, Z., and Liu, J. Patient Knowl-
edge Distillation for BERT Model Compression. In
Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pp. 4323–4332, Hong Kong,
China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19- 1441. URL
https://aclanthology.org/D19-1441.

Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., and Zhou,
D. MobileBERT: A Compact Task-Agnostic BERT for
Resource-Limited Devices. arXiv:2004.02984 [cs], April
2020. URL http://arxiv.org/abs/2004.029
84.

Sutton, R. The Bitter Lesson. Incomplete Ideas (blog), pp.
1, March 2019. URL http://www.incompleteid
eas.net/IncIdeas/BitterLesson.html.

Tan, L. What the bookcorpus?, December 2019. URL
https://gist.github.com/alvations/4d
2278e5a5fbcf2e07f49315c4ec1110.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P., Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
Range Arena: A Benchmark for Efficient Transformers.
arXiv:2011.04006 [cs], November 2020a. URL http:
//arxiv.org/abs/2011.04006.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient
Transformers: A Survey. arXiv:2009.06732 [cs], Septem-
ber 2020b. URL http://arxiv.org/abs/2009
.06732.

Tay, Y., Dehghani, M., Rao, J., Fedus, W., Abnar, S., Chung,
H. W., Narang, S., Yogatama, D., Vaswani, A., and Met-
zler, D. Scale Efficiently: Insights from Pretraining and
Finetuning Transformers. In International Conference
on Learning Representations, September 2021. URL
https://openreview.net/forum?id=f2OY
VDyfIB.

Tay, Y., Dehghani, M., Abnar, S., Chung, H. W., Fedus, W.,
Rao, J., Narang, S., Tran, V. Q., Yogatama, D., and Met-
zler, D. Scaling Laws vs Model Architectures: How does
Inductive Bias Influence Scaling? arxiv:2207.10551[cs],
July 2022a. doi: 10.48550/arXiv.2207.10551. URL
http://arxiv.org/abs/2207.10551.

Tay, Y., Dehghani, M., Tran, V. Q., Garcia, X., Bahri,
D., Schuster, T., Zheng, H. S., Houlsby, N., and
Metzler, D. Unifying Language Learning Paradigms.
arxiv:2205.05131[cs], May 2022b. URL http://ar
xiv.org/abs/2205.05131.

Treviso, M., Ji, T., Lee, J.-U., van Aken, B., Cao, Q., Ciosici,
M. R., Hassid, M., Heafield, K., Hooker, S., Martins,
P. H., Martins, A. F. T., Milder, P., Raffel, C., Simpson,
E., Slonim, N., Balasubramanian, N., Derczynski, L., and
Schwartz, R. Efficient Methods for Natural Language
Processing: A Survey. arxiv:2209.00099[cs], August
2022. URL http://arxiv.org/abs/2209.000
99.

Turc, I., Chang, M.-W., Lee, K., and Toutanova, K. Well-
Read Students Learn Better: On the Importance of

11

http://arxiv.org/abs/1804.04235
http://arxiv.org/abs/2203.06211
http://arxiv.org/abs/2110.09456
http://arxiv.org/abs/1708.07120
http://arxiv.org/abs/1708.07120
https://openreview.net/forum?id=bzpkxS_JVsI
https://openreview.net/forum?id=bzpkxS_JVsI
http://arxiv.org/abs/2202.12411
http://arxiv.org/abs/2202.12411
https://arxiv.org/abs/2104.09864v2
https://arxiv.org/abs/2104.09864v2
https://inria.hal.science/hal-02148693
https://inria.hal.science/hal-02148693
http://arxiv.org/abs/1905.07799
http://arxiv.org/abs/1905.07799
https://aclanthology.org/D19-1441
http://arxiv.org/abs/2004.02984
http://arxiv.org/abs/2004.02984
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://gist.github.com/alvations/4d2278e5a5fbcf2e07f49315c4ec1110
https://gist.github.com/alvations/4d2278e5a5fbcf2e07f49315c4ec1110
http://arxiv.org/abs/2011.04006
http://arxiv.org/abs/2011.04006
http://arxiv.org/abs/2009.06732
http://arxiv.org/abs/2009.06732
https://openreview.net/forum?id=f2OYVDyfIB
https://openreview.net/forum?id=f2OYVDyfIB
http://arxiv.org/abs/2207.10551
http://arxiv.org/abs/2205.05131
http://arxiv.org/abs/2205.05131
http://arxiv.org/abs/2209.00099
http://arxiv.org/abs/2209.00099


Training a Language Model on a Single GPU in One Day.

Pre-training Compact Models. arXiv:1908.08962 [cs],
September 2019. URL http://arxiv.org/abs/
1908.08962.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
Is All You Need. arXiv:1706.03762 [cs], December 2017.
URL http://arxiv.org/abs/1706.03762.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE: A Multi-Task Benchmark and
Analysis Platform for Natural Language Understanding.
In International Conference on Learning Representations,
September 2018. URL https://openreview.net
/forum?id=rJ4km2R5t7.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A.,
Michael, J., Hill, F., Levy, O., and Bowman, S. Su-
perGLUE: A Stickier Benchmark for General-Purpose
Language Understanding Systems. In Advances in Neural
Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.ne
urips.cc/paper/2019/hash/4496bf24afe
7fab6f046bf4923da8de6-Abstract.html.

Wang, S. and Kanwar, P. BFloat16: The secret to high
performance on Cloud TPUs, August 2019. URL https:
//cloud.google.com/blog/products/ai-m
achine-learning/bfloat16-the-secret-t
o-high-performance-on-cloud-tpus/.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma,
H. Linformer: Self-Attention with Linear Complexity.
arxiv:2006.04768v3 [cs], June 2020a. URL https:
//arxiv.org/abs/2006.04768v3.

Wang, T., Roberts, A., Hesslow, D., Scao, T. L.,
Chung, H. W., Beltagy, I., Launay, J., and Raffel,
C. What Language Model Architecture and Pretrain-
ing Objective Work Best for Zero-Shot Generalization?
arXiv:2204.05832 [cs, stat], April 2022. URL http:
//arxiv.org/abs/2204.05832.

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., and
Zhou, M. MiniLM: Deep Self-Attention Distillation
for Task-Agnostic Compression of Pre-Trained Trans-
formers. arXiv:2002.10957 [cs], April 2020b. URL
http://arxiv.org/abs/2002.10957.

Warstadt, A., Singh, A., and Bowman, S. R. Neural Network
Acceptability Judgments. arxiv:1805.12471[cs], October
2019. doi: 10.48550/arXiv.1805.12471. URL http:
//arxiv.org/abs/1805.12471.

Wettig, A., Gao, T., Zhong, Z., and Chen, D. Should
You Mask 15% in Masked Language Modeling? arxiv:
2202.08005 [cs], February 2022. URL https://ar
xiv.org/abs/2202.08005v1.

Wies, N., Levine, Y., Jannai, D., and Shashua, A. Which
transformer architecture fits my data? A vocabulary bot-
tleneck in self-attention. In Proceedings of the 38th In-
ternational Conference on Machine Learning, pp. 11170–
11181. PMLR, July 2021. URL https://proceedi
ngs.mlr.press/v139/wies21a.html.

Wilka, R., Landy, R., and McKinney, S. A. How Machines
Learn: Where Do Companies Get Data for Machine
Learning and What Licenses Do They Need. Washington
Journal of Law, Technology & Arts, 13(3):217–244, 2017.
URL https://heinonline.org/HOL/P?h=h
ein.journals/washjolta13&i=226.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser,
Ł., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens,
K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J.,
Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes,
M., and Dean, J. Google’s Neural Machine Translation
System: Bridging the Gap between Human and Machine
Translation. arxiv:1609.08144[cs], October 2016. URL
http://arxiv.org/abs/1609.08144.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing,
C., Zhang, H., Lan, Y., Wang, L., and Liu, T.-Y. On
Layer Normalization in the Transformer Architecture.
arXiv:2002.04745 [cs, stat], June 2020. URL http:
//arxiv.org/abs/2002.04745.

Yadav, A. Making L-BFGS Work with Industrial-Strength
Nets. In BMVC 2020, pp. 13, 2020.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli,
S., Song, X., Demmel, J., Keutzer, K., and Hsieh, C.-J.
Large Batch Optimization for Deep Learning: Training
BERT in 76 minutes. In International Conference on
Learning Representations, September 2019. URL http
s://openreview.net/forum?id=Syx4wnEt
vH.

Zhang, B. and Sennrich, R. Root Mean Square Layer Nor-
malization. arXiv:1910.07467 [cs, stat], October 2019.
URL http://arxiv.org/abs/1910.07467.

Zhu, C., Ni, R., Xu, Z., Kong, K., Huang, W. R., and Gold-
stein, T. GradInit: Learning to Initialize Neural Networks
for Stable and Efficient Training. arxiv:2102.08098[cs],
November 2021. doi: 10.48550/arXiv.2102.08098. URL
http://arxiv.org/abs/2102.08098.

12

http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus/
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus/
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus/
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus/
https://arxiv.org/abs/2006.04768v3
https://arxiv.org/abs/2006.04768v3
http://arxiv.org/abs/2204.05832
http://arxiv.org/abs/2204.05832
http://arxiv.org/abs/2002.10957
http://arxiv.org/abs/1805.12471
http://arxiv.org/abs/1805.12471
https://arxiv.org/abs/2202.08005v1
https://arxiv.org/abs/2202.08005v1
https://proceedings.mlr.press/v139/wies21a.html
https://proceedings.mlr.press/v139/wies21a.html
https://heinonline.org/HOL/P?h=hein.journals/washjolta13&i=226
https://heinonline.org/HOL/P?h=hein.journals/washjolta13&i=226
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/2002.04745
http://arxiv.org/abs/2002.04745
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Syx4wnEtvH
http://arxiv.org/abs/1910.07467
http://arxiv.org/abs/2102.08098


Training a Language Model on a Single GPU in One Day.

Appendix Table of Contents
1. Appendix A: Related Work

2. Appendix B: Broader Impact

3. Appendix C: Additional Evaluations

4. Appendix D: Negative Results

5. Appendix E: Limitations

6. Appendix G: Additional Results

A. Related Work on Efficient Transformers
How long does it take to train BERT? In general, this question is hard to answer, due to wildly varying hardware and
software setups and differing measures of efficiency (Dehghani et al., 2021). An upper bound on the compute of a training
run can be established by finding the total number of (low-precision) floating point operations available over the wallclock
budget of the run. This peak of total FLOPs in a given time interval is generally not reached in actual compute, even for highly
optimized models (Chowdhery et al., 2022), but represents the paid budget required to realize a training run. We summarize
budgets for a few select training runs in Table 1. After the original training run for BERT on TPUs, initial reactions estimated
up to 11 days of compute for comparable results on GPUs (Dettmers, 2018). However, sustained improvements, especially in
software, have reduced the upper limit significantly (You et al., 2019; Narasimhan, 2019). Yet, recipes and implementations
generally require entire server nodes (for GPUs) or TPU slices and target larger BERT architectures.

Other work discussing improvements to BERT targets compute settings closer to the original BERT, for example Squeeze-
BERT (Iandola et al., 2020) employs 8 Titan RTX cards for four days. Sellam et al. (2022) note that the original BERT
training run is an outlier and doubling its training time more reliably reproduces the original results.

Our central point of comparison for BERT training with limited resources is the work of Izsak et al. (2021) who also attempt
the goal of training BERT within 24 hours with overall similar limitations, but use a full server node with 8 V100 GPUs.
Izsak et al. (2021) choose a BERTLARGE architecture variant and train with sequence length of 128, including a range of
tweaks such as modified learning rates schedules, large batch sizes, sparse prediction and packed sequences. We re-evaluate
this setup as a key baseline setting for our own compute budget (which is about 15x smaller).

Studies of Efficient Transformers. Recent years have seen a flurry of research working to improve and modify the
transformer architecture proposed in Vaswani et al. (2017) and we refer to Treviso et al. (2022) for a recent categorization
and review of research in this area. Several meta-studies have investigated proposed improvements and modifications:
Narang et al. (2021) evaluate a large range of architectural modifications applied to the T5 model pipeline of Raffel et al.
(2020) on tasks in both language understanding and translation. The encoder-decoder structure of T5 is closer in spirit
to the original transformer setup, but is understood to behave similarly to BERT when using the encoder component (Liu
et al., 2021a). Evaluating modifications with 1.75 days of compute on TPU slices they find that most improvements do
not reliably materialize gains in final accuracy. Tay et al. (2021) work in the same setting and evaluate the optimal shape of
T5 derived architectures and its relative effects on downstream performance as models are scaled. Further exploration of the
scaling behavior of various architectural improvements in Tay et al. (2022a) find that only few modifications outperform the
original architecture of Vaswani et al. (2017) at all scales, especially when evaluating downstream accuracy. The meta-study
investigating improvements in preparation for extreme-scale training in Scao et al. (2022) focuses on minor modifications
to layout, positional embeddings and data sources for autoregressive models, and other extremely-large scale training runs
have so far been similarly conservative in their settings (Brown et al., 2020; Black et al., 2022; Rae et al., 2022).

In general, these evaluations target larger compute settings than we intend to use and therefore we are concerned with
whether improvements (often from academic sources and proposed with evaluations on small scales) translate to larger
scales. In this work, we set aside the question of (up)scaling and focus only on limited compute.

Scaling Laws. The difficulty in finding tangible improvements is echoed in the scaling laws of Kaplan et al. (2020). Over
a wide range of transformer model shapes, Kaplan et al. (2020) find that only model size (as number of parameters in
non-embedding layers) strongly predicts performance. Further, for a fixed compute budget, an optimal model size can be
derived, but performance is only mildly connected to model size - larger models process less data per unit of compute, but

13



Training a Language Model on a Single GPU in One Day.

improve faster by almost the same margin. While the precise coefficients of these scaling laws continue to be iterated on
(Hoffmann et al., 2022) and adapted (Bansal et al., 2022; Clark et al., 2022; Bahri et al., 2021b), their overall logic appears
hard to escape, even if power laws fit observations somewhat less well on small scales.

B. Broader Impact
Overall, we hope that this type of inquiry can aid in the democratization of machine learning. Whereas the current paradigm
for most users of models like BERT is to download the existing checkpoint, and tune it for their own purposes, they
might now be able to train their own model. The reduced reliance on public checkpoints trained with semi-unknown data
distributions is beneficial both for reasons of data provenance, as well as for reasons of model security.

On the other hand, we only provide evidence in this work that these crammed models are similarly useful on existing
classical downstream tasks, such as GLUE and superGLUE. It is unclear whether other properties that have been extensively
studied in the literature for the existing public BERT checkpoint, such as robustness, out-of-distribution generalization,
fairness or inherent biases, carry over to the crammed model. More research is needed here to find out whether there are
inopportune trade-offs arising from the modified training procedure.

C. Additional Evaluations
C.1. Implementation Details

We implement everything in PyTorch (Paszke et al., 2017) and to limit our gains from the ”software lottery” (Hooker, 2021)
we do not use specialized implementations, which would further bias results towards well-established components. We keep
everything on the implementation level of the PyTorch framework, allowing only automated operator fusion (Sarofeen et al.,
2022) via compilation that can be applied equally to all components. After choosing a final architecture variant, we then
re-enable specialized optimizations, such as efficient kernels (Dao et al., 2022). We run all experiments and ablation studies
with automated mixed precision (Micikevicius et al., 2018).

Initial Data Setup We start our investigation with a close analogue to the original raw text sources of Devlin et al. (2019),
using a recent dump of the English Wikipedia (20220301.en) and English bookcorpus, noting the commentary of
Tan (2019); Bandy & Vincent (2021). We force all text into lower-case, strip accents and non-ascii characters and create an
English tokenizer from scratch based only on this data. We choose WordPiece with a vocabulary size of 215 = 32768 (Wu
et al., 2016). We pack tokenized data into randomized sequences of length 128 and separate unrelated fragments by <sep>.
The shorter sequence length is sufficient for the downstream applications that we are targeting and simplifies attention
computations. Packing data into full sequences limits us to simpler sequence losses, but uses the available compute optimally
Liu et al. (2019); Izsak et al. (2021). For the targeted compute settings, this sequence length results in micro-batch sizes of
64 to 96 for most variations of the base BERT architecture on the gtx2080ti, which we will accumulate into larger batch
sizes. With our limited compute budget, this produces enough samples to run single-epoch training (Komatsuzaki, 2019;
Hernandez et al., 2022) where no data point is revisited.

C.2. Modifying the Architecture

The most obvious way to efficiently scale down training is by modifying the model architecture; intuitively, it seems likely
that lower-capacity models will be optimal in the cramming regime, or that some modification or would provide significant
gains when tailored to this setting. In this section, we study the relationship between model type and final efficiency. We find
that scaling laws create a strong barrier to scaling down. Per-token efficiency of training depends strongly on model size,
but not on transformer shape. Furthermore, smaller models learn less efficiently, and this largely mitigates any throughput
gains. Fortunately, the fact that training efficiency is nearly constant across models of the same size means that we can boost
performance by finding architecture modifications that speed up gradient computation while keeping the parameter count
nearly constant. This makes architecture selection fairly straightforward as we can make design choices based primarily
on how they affect computation time for a single gradient step.

Scaling laws are a roadblock to quick wins. A large corpus of research in recent years has developed architectural
improvements to speed up the original transformer. Yet, many of these methods have not been found to improve training,
see for example meta-studies for T5 architectures in Narang et al. (2021); Tay et al. (2022a). But, in the low compute setting
where data throughput is of utmost importance, maybe this is the way forward? Scaling laws hold strongly in the limit as

14



Training a Language Model on a Single GPU in One Day.

9
10M

2 3 4 5 6 7 8 9
100M

2 3 4 5 6 7 8 9
1B

2 3 4 5 6 7

2

3

4

5

6

7

8
9

10
11 Architecture

Bert-Base
Funnel
6 Layers
8 Layers
16 Layers
24 Layers
DeepNarrow (24 L)
Thin (H=512)
Wide(H=1024)
Embedding E=128
24 Heads
6 Heads
3 Heads
1 Head
FFN every 2L
FFN every 4L

Total Tokens Ingested

M
LM

 L
os

s

2B 2.5B 3B 3.5B 4B 4.5B 5B 5.5B 6B 6.5B 7B

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Total Tokens Ingested

M
LM

 L
os

s

Figure 1. Various Transformer architectures and shapes, showing MLM loss versus number of tokens ingested. Left: Global view. Right:
Zoom onto 10e8 or more tokens. All models trained with the same budget. We see that improvements through architectural reshaping are
minimal; while there are some fluctuations in loss early in training, the rates of loss decay during most of training differ by a multiplicative
constant (horizontal shift due to logarithmic horizontal axis) that depends strongly on the model size and not model shape.

resources grow. However, these laws also hold reliably in the low-resource regime. We extensively test recently published
architecture variations, but find that none can escape the conclusion of Kaplan et al. (2020) that model shape does not
significantly affect performance.

We exemplify the effect of scaling laws for many transformer variants from the literature in Figure 1, where we train each
architecture variant with optimized training hyperparameters as described below in Section 3.2. We apply these architecture
variants to a shared baseline model that incorporates Pre-Normalization and rotary embedding. Figure 1 visualizes the
progress of masked-language modeling (MLM) loss versus the number of tokens ingested in total and all architectures run
with the same time budget.

We observe that varying the transformer shape has only minimal impact on the final loss after 24 hours. Models with more
parameters learn more efficiently, as their MLM loss decreases faster on a per-gradient basis. However, smaller architectures
make up for their slower learning efficiency by higher throughput, and thus process more tokens over the limited budget.
Figure 1 shows that different architectures are unpredictable throughout an initial stage of training (the first 1B tokens), after
which the per-token efficiencies differ by only a multiplicative constant (a horizontal shift due to the log axis). This constant
depends almost entirely on the model size, not model shape, so that all choices reach a MLM loss around 1.9 at the end of
training. As in Kaplan et al. (2020) we observe an optimal model size for this compute budget (at a budget of around 4B
tokens), but gains from model size optimization are small at this compute scale.

Exploiting the scaling law. The scaling laws seem to bar us from making large gains via major changes to the transformer
size and shape, as per-token performance is tightly coupled to model size. While this principle closes one door for scaling
down efficiently, it opens another; Because per-gradient efficiency remains nearly constant for all models of the same size,
we can exploit scaling laws by searching for architectural choices that speed up computation while keeping model size
roughly constant.

A number of obvious optimizations fall into this category, and we describe them below, in addition to several other tweaks
that provide marginal but worthwhile/free gains. We note that, for each modification, we tabulate gains in MLM loss and
downstream accuracy in separation in the appendix, and focus on aggregate changes in the main body.

Attention Block: We disable all QKV biases (Dayma et al., 2021). This exploits the scaling law by removing a layer of
computation, making the forward and backward pass somewhat faster, while keeping the model size nearly constant. We
find that we could decrease gradient costs by reducing the number of attention heads (Merity, 2019; Araabi & Monz, 2020;
Liu et al., 2021b; Javaheripi et al., 2022), as this parallelizes better on the GPU and provides a slight performance boost. Yet,
reducing the amount of heads also decreases finetuning performance, so we ultimately keep all 12 heads. We further keep
the original multi-head self-attention mechanism.

Feedforward Block: We find empirical gains from disabling all linear layer biases (Dayma et al., 2021). Just as for the
attention layers, this leverages the scaling law by accelerating gradient computation without noticeable impacts on model
size. As a result, we get higher throughput without compromising the rate at which the model improves. We keep the

15



Training a Language Model on a Single GPU in One Day.

0 50k 100k 150k 200k

2

3

4

5

6

7
8
9

10
11 Schedule

Triangular
One-Cycle
Linear with Warmup
Cosine Decay with Warmup
Constant with Warmup/Cooldown
InvSqrt with Cooldown

Microbatch Steps

M
LM

 L
os

s

140k 160k 180k 200k 220k 240k

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

Microbatch Steps
M

LM
 L

os
s

0 50k 100k 150k 200k

0

0.0002

0.0004

0.0006

0.0008

0.001

Microbatch Steps

St
ep

 S
iz

e

Figure 2. Learning Rate Schedules, for optimal peak step size for each scheduler. Although globally many schedule result in similar
behavior, we see in the zoom in the middle, that differences do exist. The right side shows the scheduled step sizes. Triangular- and
trapezoidal one-cycle schedules have better end-time behavior, possibly due to the quick annealing and overall greater progress.

original feedforward block largely unchanged.We do see small improvements from re-ordering the block into a gated linear
unit (Dauphin et al., 2017). In contrast to other work, e.g. (Black et al., 2022), we do not increase the number of parameters
in the FFN block to compensate for the halving of the hidden dimensionality due to gating.

Embedding: We implement scaled sinusoidal positional embeddings as in Hua et al. (2022), finding incremental benefits
over learned or unscaled sinusoidal embeddings. We include normalization at the end of the embedding block.

Layer Structure: As observed in many studies, we find that pre-normalization with Layer Norms is beneficial over post
Layer Norms (Baevski & Auli, 2018; Xiong et al., 2020). We note that the key effect of pre-normalization is to stabilize
training and enable larger learning rates and reduced warmup, pre-normalization by itself has no effect on performance.
Further, we find minimal gains by increasing the number of layers to 16.

Head Block: We find that we can remove the nonlinear head without ill effect. We can further drop the decoder bias
(Radford et al., 2019) and gain in memory using sparse token prediction (Liu et al., 2019; Izsak et al., 2021). We add a final
Layer Norm to stabilize training further.

C.3. Modifying the Training Setup

We study the impact of training hyper-parameters on the BERT-base architecture. The original BERT training recipe
understandably results is poor model performance in the cramming setting, and so we revisit a number of choices.

Objective: We train with only masked language modeling on fully packed blocks of tokens with a masking rate of 25% and
the original setup of Devlin et al. (2019) where 10% of all masks are filled with random words and 10% unchanged. We
find the increased masking rate provides benefits at almost no extra cost, as the original 15% results in inopportune tensor
shapes, whereas 25% of micro-batch size and sequence length neatly falls on the next power of 2.

Choice of Optimizer: We keep Adam (Kingma & Ba, 2015) as the optimizer of choice, with weight decay of 0.01 as
described in (Loshchilov & Hutter, 2017) (i.e. “AdamW”), β1 = 0.9, β2 = 0.98 and ε = 10−12. To stabilize training at no
extra cost, we include gradient clipping at 0.5.

Learning Rate Schedule and Peak: Following the advice of Izsak et al. (2021), we re-scale the learning rate schedule so
that it is tied to our budget and the learning rate decays as the budget reduces to zero. Interestingly, we observe in Figure 2
that while globally a large number of learning rate shapes lead to similar reductions in loss, we find that we can make some
gains through the choice of schedule. We find that a simple one-cycle learning schedules (Smith & Topin, 2018), with a
peak learning rate of 10−3 lead to minimal pretraining loss within our budget, with the optimum being a triangular shape
(denoted “triangular” in Figure 2) that mimics a long warmup period with a quick decay.

Batch Size Schedule: A particularity of our setting is that, due to being limited to a single GPU, the micro-batch size
that finds its way onto this GPU (96 for most experiments) is several times smaller than the optimal batch size. We find that

16



Training a Language Model on a Single GPU in One Day.

6 7 8 9
1000

2 3 4 5 6 7 8

1.935

1.94

1.945

1.95

1.955

1.96

0.812

0.8125

0.813

0.8135

0.814

0.8145

0.815

0.8155

0.816

0.8165
MLM Loss
MNLI Accuracy (m)

Final Batch Size
M

LM
 L

os
s

M
N

LI
 A

cc
ur

ac
y

Figure 3. Optimal batch sizes for pretraining and downstream performance (measured on MNLI) are different.

5 10k 2 5 100k

0.78

0.785

0.79

0.795

0.8

0.805

0.81

0.815

0.72

0.73

0.74

0.75

0.76

0.77

MNLI Accuracy
GLUE Score

Vocabulary Size

M
N

LI
 A

cc
ur

ac
y

G
LU

E 
Sc

or
e

Figure 4. Vocabulary Size versus GLUE Score and MNLI Accuracy for models trained in the cramming regime on
bookcorpus-wikipedia data.

the optimal batch size in this setting is around 2048 for minimal pretraining loss, but around 8192 for maximal downstream
performance, see Figure 3. We accumulate gradients and only perform an update every 85 forward/backward passes. For
the larger A4000 and A6000 cards, this corresponds to micro-batch sizes of 128 and 512 for the same batch size of 8192,
which we again accumulate.

Fortunately, we can find small speedups by using an aggressive batch size schedule; we increase the number of averaged
micro-batches linearly over the course of training, reaching the full batch size of 8192 after 60% of training. This results in
more progress earlier in training, and leads to a small benefit to performance.

Dropping Dropout The original BERT model of Devlin et al. (2019) includes dropout as in Vaswani et al. (2017), which
prevents overfitting when training data is small relative to total compute budget. While it can be helpful as a regularizer,
dropout effectively reduces the number of gradient updates seen by each parameter, as updates do not occur when the
associated feature is dropped. At the same time, update runtime is not strongly effected by the presence of dropout, and so
dropout results in a net reduction in updates per second. In the cramming setting, training data is large compared to compute.
Overfitting is not possible due to the single epoch schedule, and we disable dropout during pretraining (Brown et al., 2020) to
maximize the number of parameter updates. We re-enable dropout during downstream fine-tuning with a dropout value of 0.1.

C.4. Optimizing the Dataset

We found above that scaling laws create a barrier to making major gains (beyond computational efficiencies) with architectural
modifications. However, scaling laws do not preclude us from training on better data. Once we have exhausted our ability to
train on more tokens per second, we should seek to train on better tokens.

We consider two data based pathways to better down-scaling. First, we can filter, process, or sort the existing data

17



Training a Language Model on a Single GPU in One Day.

in various ways. Second, we can swap our data source. To this end, we experiment with replacements for the
bookcorpus-wikipedia dataset. We test several subsets of The Pile (Gao et al., 2020). We draw random sub-
set from all sources, denoted pile and one containing raw text from only Gutenberg, Books3 and Wikipedia (en), denoted
pile-N. From these Pile datasets we tokenize the first 4 × 106 entries to generate enough tokens for our single pass.
Another popular source of data is C4, the colossal, cleaned version of Common Crawl (Raffel et al., 2020), from which
we stream the first 20× 106 entries. Finally, we also include the 2019 release of the OSCAR dataset (Suárez et al., 2019),
denoted by oscar. For each data source we regenerate its own WordPiece tokenizer as described in Appendix C.1.

Of these four sources, we find the natural split of The Pile to perform best in terms of downstream GLUE performance
out-of-the-box. However, we can further improve performance through additional processing. We evaluate deduplication as
described in Lee et al. (2022) via exact substring deduplication (of substrings of length 75), but find this not to reliably help
in downstream performance in our case, see Table 2. We then test filtering for incompressible data. We use the tokenizer
itself to remove all training sequences from each data source that cannot be compressed well; we simply set a threshold t,
here t = 0.25, and drop all entries from the dataset where the number of tokens in the entry is larger than t times the number
of raw characters. This removes, for example, sequences consisting of hard-to-compress HTML.

Finally we experiment with sorting, where we re-order all tokenized sequences by some metric. We find the optimal metric
to be sentence length and we sort so that sequences containing short sentences come first. This is empirically beneficial over
e.g. sorting all sequences by their average (unigram) token prevalence.

Overall, wins from post-processing in this manner are noticeable, leading in aggregate to an improvements of 2% over the
original dataset and we choose The Pile with both filtering and sorting as our new dataset going forward.

Vocabulary Size We also check whether the original vocabulary size of 30522 described in (Devlin et al., 2019) is optimal
in the crammed regime. A priori, this might not hold: The smaller the vocabulary, the fewer, unique tokens and relationships
between unique tokens have to be learned during training. On the other hand, increasing the vocabulary size compresses data
further (albeit vanishingly after some point), which would allow for more information to be compressed into the fixed number
of tokens that can be ingested during the crammed training run. In Figure 4, we find that for bookcorpus-wikipedia
data, larger vocabulary sizes correlate with larger average GLUE score, although the effect is plateauing for the MNLI task
around the original 32768 vocabulary size. Moving forward, we hence keep this vocabulary size.

C.5. Evaluating the Model Further

Where lie the limitations of the crammed model? The crammed model mostly works, even for smaller datasets, such
as STSB and MRPC. The largest difference is observed on CoLA, the corpus of linguistic acceptability (Warstadt et al.,
2019), see Table 4. This behavior is intriguing and we offer two hypotheses. First, it is conceivable that the chosen
global hyperparameters for finetuning are a bad fit for CoLA in particular. CoLa performance can be brittle with respect
to hyperparameter, with Jiao et al. (2020) training longer only on CoLA or Joshi et al. (2020) training less only on CoLA.
Nevertheless, for BERT, a set of global hyperparameters exists, pointing at a deficiency in the crammed model. As a second
hypothesis, the improvements across GPUs imply that these models need to process more text before they memorize enough
data to do well on CoLA. This would be in contrast to Liu et al. (2021d), who find that CoLA is learned relatively quickly
compared to other downstream tasks when probing intermediate BERT checkpoints. Finally, deficiencies on CoLA in
particular are also common in approaches that distill BERT into smaller architectures (Sun et al., 2019; Turc et al., 2019;
Mukherjee et al., 2021), which might come with limited capacity for linguistic acceptability.

Ablation - Which Changes Really Mattered? In Table 5 we provide an ablation study summarizing all changes discussed
in this work. We group modifications, as in previous sections into the three groups of architecture, training and data and
ablate each group by resetting all modifications to the original BERT recipe. Here, we find that we first have to make

Table 4. GLUE-dev performance of baseline BERT to crammed model. T is the number of tokens ingested during training in billions.
Avg. Score is all scores excluding CoLA, GLUE is the full avg. over the same tasks as in Devlin et al. (2019).

T(109) CoLA Avg. Score GLUE

Bert-Base - 56.5 84.0 80.9
Crammed (2080ti) 4.3 48.3 83.1 79.2
Crammed (A4000) 4.5 48.6 83.0 79.2
Crammed (A6000) 8.7 51.8 84.0 80.4

18



Training a Language Model on a Single GPU in One Day.

Table 5. Ablation study, which improvements were most important? The first group shows an ablation where one component of the final
combination of training, architecture, and data modifications (the crammed BERT model) is replaced by the original setup. Here, we find
that modifications in training and architecture have to co-occur, as returning to the original training setup or architecture each results in
failure. As such we also include a row with minimal training modifications (dropout disabled, cosine decay to zero within budget with
warmup, fixed batch size of 8192) and a row with minimal architecture modifications (Pre-normalization, sparse activations, Layer Norm
ε = 10−6). This ablation is for the A6000 variant, see other results in Table 9.

MNLI SST-2 STSB RTE QNLI QQP MRPC CoLA GLUE

crammed BERT 84.0/84.4 92.3 87.0 57.4 90.0 87.7 89.0 51.8 80.4
+ original data 82.6/83.2 91.7 86.0 55.6 90.1 87.0 85.6 45.4 78.6
+ original train 50.9/49.9 82.2 15.6 49.8 58.6 66.4 73.6 7.5 50.5
+ original arch. -/- - - - - - - - -

+ minimal train mod. 80.8/81.6 90.6 86.6 54.5 88.2 86.6 88.6 44.3 78.0
+ minimal arch. mod. 83.1/83.6 91.6 85.3 57.0 89.9 87.0 85.7 41.8 78.3

minimal modifications in any case, as modifications to architecture, such as PreNorm layer structures also in turn allow
the more aggressive learning rate described in the training setup - without both, training fails when going back to either
the original architecture or results in a model close to random performance when going back to the original training.

Taking this into account, we also include an ablation with minimal training modifications (dropout disabled, cosine decay to
zero within budget with warmup, fixed batch size of 8192) and with minimal architecture modifications (Pre-normalization,
sparse activations, Layer Norm ε = 10−6). Comparing these variants, we ultimately find about two percentage points
gained in average GLUE score through either architectural changes, data changes, or training modifications.

D. Negative Results
This section collects negative results for each paragraph in the main body. The overall paragraph structure follows the main
body directly.

D.1. Implementation Details

We run all experiments and ablation studies with the same setup of automated mixed precision (Micikevicius et al., 2018) for
standard 16- and 32-bit floating point precision over full 32-bit float, scaled 16-bit (Rasley et al., 2020) and pure bfloat16
(Wang & Kanwar, 2019). We find no benefit from offloading (Ren et al., 2021; Rasley et al., 2020) in our setting.

Initial Data Setup The used language is English (Bender, 2019). We found no significant change in performance with BPE
(Sennrich et al., 2016) or SentencePiece with Unigrams (Kudo, 2018; Kudo & Richardson, 2019). Smaller vocabulary sizes
(212, 213, 214) resulted in worse performance, while larger vocabulary sizes (216) we not reliably better. We pack tokenized
data into randomized sequences of length 128 and separate unrelated fragments by <sep>.The performance impact from
dropping this separator was minimal. No impact was observed from including a <cls> token in pretraining.

D.2. Modifying the Architecture

Exploiting the scaling law. We find no improvements when using a funnel-transformer architecture (Dai et al., 2020;
Nawrot et al., 2022), when dropping FFN layers (Sridhar et al., 2022), or when using recurrent layers (Lan et al., 2019),
even when trained with BPTT as in Schwarzschild (2021). Rescaling architectures to be deep-narrow (Tay et al., 2021; Wies
et al., 2021) provides no gains.

Attention Block: We find no benefits from replacements to the softmax operation (Richter & Wattenhofer, 2020). We further
keep the original multi-head self-attention mechanism. A large amount of work has been focused on efficient attention
(Sukhbaatar et al., 2019; Beltagy et al., 2020; Wang et al., 2020a; Liu et al., 2021c) and studies of efficient attention (Tay
et al., 2020a;b). But, because we set the maximal sequence length to 128, attention complexity is less of a concern in our
setting. To verify this, we implement the recently proposed FLASH mechanism (Hua et al., 2022), but find no benefits. We
further experiment with Fourier attention as proposed in Lee-Thorp et al. (2021), but find no improvements. We find rotary
embeddings (Su et al., 2021; Black et al., 2022), to provide small benefits, but these are evened out by the drop in speed, so
we ultimately decide against these.

19



Training a Language Model on a Single GPU in One Day.

Feedforward Block: We keep the original feedforward block largely unchanged, finding no benefits from changing to
another activation than GELU.

Embedding: We see no improvements from decoupling the input and output embeddings (Chung et al., 2020). The
suggestion from Lan et al. (2019) to factorize the input embedding provides no gains in our setting.

Layer Structure: We see no additional benefit from other variants of this modification, such as (Liu et al., 2020b; Shleifer
et al., 2021). Further, replacing Layer Normalization with RMS Normalization provides no gains (Zhang & Sennrich, 2019).

D.3. Modifying the Training Setup

Objective: We see no improvement from masking at larger rates, e.g. at 40% as proposed in (Wettig et al., 2022), see
Appendix. We see no difference enabling or disabling the mentioned 20% rule. We evaluate other functions for the
masked-language objective, such as mean-squared error (Hui & Belkin, 2021) or L1 loss, but find no benefits.

Choice of Optimizer: We find no noticeable change in varying these parameters in reasonable amounts, e.g. ε = 10−6,
β1 = 0.9, β2 = 0.999. We test other first-order adaptive optimizers (Shazeer & Stern, 2018; Liu et al., 2020a) but find no
advantages in our setting. We further find no advantages using higher-order optimizers (Yadav, 2020; Anil et al., 2021), but
note that especially for higher-order optimizers there is a greater amount of variability in implementation.

Batch Size Schedule: We also experiment with automatic and adaptive batching rules (De et al., 2017; Bollapragada et al.,
2018a;b), but find that the best results from these adaptive schedules resemble the fixed linear schedule. For simplicity we
just stick to the simpler linear schedule.

Dropping Dropout Further, we experiment with length curricula (Li et al., 2022) (see appendix) and token dropping (Hou
et al., 2022), but find no gains in our setting.

E. Limitations
In this work, we limited our investigation to transformer-based architectures trained with MLM objectives. However, we
do think that the general task of cramming posed in Section 2 is interesting even when relaxing these constraints. There
have been a number of modifications proposed to the objective in particular (Joshi et al., 2020; Bao et al., 2020; Bajaj et al.,
2022; Tay et al., 2022b). While Artetxe et al. (2022) and Wang et al. (2022) find MLM still to hold up well as a pretraining
objective, other suggestions such as ELECTRA (Clark et al., 2019; 2020; He et al., 2021) could be employed which might
be beneficial for crammed models. Also, the optimal architecture might not be transformer-based (Merity, 2019; Fusco
et al., 2022; Peng, 2021; Peng et al., 2023).

Other Modifications A few recent developments not included in this study are Roy et al. (2022), Shen et al. (2022),
and Mindermann et al. (2022). Modifications further not included in this study are more involved initialization (Zhu et al.,
2021), additional objective modifications (Müller et al., 2019), progressive growth (Gu et al., 2021; Shen et al., 2022),
convolutional variants (Iandola et al., 2020; Chelombiev et al., 2021; So et al., 2021), sequence recurrence (Lei et al., 2022)
and TUPE embeddings (Ke et al., 2020).

Relationship between MLM Loss and Downstream Performance Improvements in pretraining loss do not have to
correspond to improved downstream performance (Tay et al., 2021; Wang et al., 2022). In the presentation of this work,
we have chosen not to make this a focus of our discussion. We show results with improved pretraining loss, e.g. Figure 1
along-side results for downstream performance, e.g. Figure 4, and only comment on the discrepancy between MLM
pretraining loss and downstream GLUE performance in a few locations.

Nevertheless, we have cross-checked most improvements discussed in this work for their utility in downstream applications,
even when only results for pretraining loss are shown. Additional results, showing both pretraining loss and downstream
performance on MNLI can be found in Table 11 for architectural changes and Table 12 for training modifications. For
data modifications, changes in pretraining loss not very meaningless, so we always compare data modifications in terms of
their effect on downstream performance. In Figure 5 we show a scatter plot of downstream versus pretraining performance,
summarizing both tables.

20



Training a Language Model on a Single GPU in One Day.

2 2.5 3

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

Masked Language Modeling Loss

M
LL

I(
m

) A
cc

ur
ac

y

2 2.5 3

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

Masked Language Modeling Loss
M

LL
I(

m
) A

cc
ur

ac
y

Figure 5. Relationship between pretraining loss and downstream performance. Left: for all architecture variations considered (see Table 9
for details). Right: for all training variations considered (see Table 12 for details).

F. SuperGLUE Comparisons
Do these results hold only for the GLUE benchmark? To investigate this question, we also compare against the superGLUE
benchmark (Wang et al., 2019). We evaluate downstream performance on this new set of tasks with the same (global)
hyperparameters used for GLUE, and within the same downstream epoch constraints. Tasks are solved as sequence
classification problems and other tasks that require feature engineering are skipped. We do this for both the original BERT
model and the crammed model, although noting that BERT numbers are accordingly sub-optimal, compared to numbers
achieved after hyperparameter-tuning and feature engineering in Wang et al. (2019). Nevertheless these results show that the
crammed model is similarly performant on new tasks as the original BERT model, when similar effort is applied. Both
models could be used as the starting point for an investigation of a new task.

Table 6. SuperGLUE results for the crammed model (A6000 variant) and the base BERT model from Devlin et al. (2019). Downstream
finetuning for both models uses the same hyperparameters as for GLUE without tuning. These hyperparameters follow the rules laid out
in Section 2 and not the usual, extensive tuning for superGLUE. Tasks are solved as sequence classification problems and other tasks that
require feature engineering are skipped.

AX-b AX-g CB (f1) CB (Acc) COPA MultiRC RTE WiC WSC BoolQ Avg.

Bert-Base (Fully trained) 10.8 50.3 60.8 75.0 49.0 60.5 58.8 64.7 63.5 72.4 56.6
crammed BERT 10.4 50.6 49.3 70.5 51.5 61.5 57.4 61.8 55.3 74.3 54.2

G. Additional Information
Additional results concerning architecture modifications can be found in Table 10 and Table 11. Additional results for
training modifications can be found in Table 12. An extended version of the comparison of different data sources and
processing options, separated into scores for each GLUE task can be found in Table 7. Other, miscellaneous, variations for
data can be found in Table 8.

Not all results remarked on in Appendix D are accompanied by raw results in this appendix, but can be computed using the
provided implementation. Note that baseline settings and implementation details change between tables, making each result
only comparable to other results within the same table.

21



Training a Language Model on a Single GPU in One Day.

Table 7. Variations of data source and data processing. Shown are GLUE scores for all tasks and in aggregate. bw denotes
bookcorpus-wikipedia, c4 is C4 (colossal-cleaned-common-crawl) (Raffel et al., 2020), oscar is the 2019 release of the
OSCAR dataset (Suárez et al., 2019), (https://oscar-project.org/) and owt is the opens-source replication of the open-
webtext corpus (https://huggingface.co/datasets/openwebtext). pile is a random subset of The Pile (Gao et al.,
2020). pile-N is the subset drawn only from the natural sources in the Pile (Gutenberg, books3, wikipedia). roots is a subset of the
English portions of the ROOTS dataset (Laurençon et al., 2023). Filtering denotes a removal of hard-to-tokenize sequences at t = 0.25 as
described in the main body. Sorting denotes sorting by number of sentences per sequence. DD is deduplication as in Lee et al. (2022) with
a substring length of 75. All values are based on runs on A6000 GPUs.

Source Filt. Sort. DD MNLI (m/mm) SST-2 STSB RTE QNLI QQP MRPC CoLA GLUE

bw ✗ ✗ ✗ 82.8/82.9 91.8 85.4 53.8 90.0 86.9 85.3 43.9 78.1
bw ✓ ✗ ✗ 82.9/83.4 91.6 86.0 51.8 90.0 87.2 86.3 49.3 78.7
bw ✓ ✓ ✗ 82.7/83.3 91.7 85.5 52.0 90.2 87.0 87.8 48.6 78.8
c4 ✗ ✗ ✗ 83.8/84.1 92.7 87.0 53.8 90.1 87.6 87.5 16.0 75.9
c4 ✓ ✗ ✗ 84.1/84.7 91.7 86.7 54.9 90.4 87.6 88.6 44.9 79.3
c4 ✓ ✓ ✗ 83.7/84.5 92.3 87.0 54.9 90.1 87.4 88.8 42.3 79.0
oscar ✗ ✗ ✗ 83.9/84.2 92.4 87.3 54.9 89.8 87.8 88.0 43.9 79.1
oscar ✓ ✗ ✗ 83.9/84.3 92.7 87.0 54.5 90.0 87.7 88.5 44.6 79.2
oscar ✓ ✓ ✗ 83.7/84.1 92.5 86.6 56.5 89.9 87.4 89.3 42.5 79.2
oscar ✓ ✓ ✓ 84.0/84.2 92.5 87.2 56.7 89.7 87.5 88.1 50.6 80.1
owt ✗ ✗ ✗ 84.2/84.3 92.8 87.2 54.9 90.2 87.6 88.9 48.2 79.8
owt ✓ ✗ ✗ 84.4/84.7 92.8 86.7 55.6 90.6 87.5 88.7 45.9 79.7
owt ✓ ✓ ✗ 84.3/84.6 92.2 87.4 55.2 90.0 87.4 88.8 46.9 79.6
owt ✓ ✓ ✓ 84.6/84.6 92.3 86.0 55.2 90.5 87.5 87.9 51.0 80.0
pile ✗ ✗ ✗ 83.0/83.1 91.6 85.2 54.9 89.3 87.3 87.5 41.9 78.2
pile ✓ ✗ ✗ 84.1/84.5 92.1 86.1 56.0 90.2 87.7 88.5 44.7 79.3
pile ✓ ✓ ✗ 84.2/84.5 92.5 87.0 53.6 90.0 87.6 89.9 52.1 80.1
pile ✓ ✓ ✓ 83.9/84.5 92.0 87.2 56.3 89.4 87.6 89.4 49.9 80.0
pile-N ✗ ✗ ✗ 83.3/83.5 92.2 84.6 56.3 89.9 87.3 86.2 49.9 79.2
pile-N ✓ ✗ ✗ 83.9/84.3 92.5 85.9 54.5 90.5 87.5 88.2 50.9 79.8
pile-N ✓ ✓ ✗ 83.8/83.9 92.1 86.5 53.4 90.2 87.2 89.1 54.8 80.1
roots ✗ ✗ ✗ 83.8/84.1 92.1 86.3 54.3 90.2 87.5 88.6 34.8 78.0

Table 8. Miscellaneous Variations of the Data Processing setup, using pile data, filtered and sorted, as a baseline. All values are from
runs on RTXA6000 cards.

MNLI (m/mm) SST-2 STSB RTE QNLI QQP MRPC CoLA GLUE Score

Baseline 83.8/84.3 92.3 87.0 55.2 89.8 87.6 88.7 47.3 79.6
65336 tokens in vocab. 83.6/84.1 91.6 87.2 56.0 89.8 87.6 88.9 44.1 79.2
Include [CLS] in pretrain 84.4/84.8 92.3 86.3 54.5 90.5 87.7 86.8 44.5 79.1
SentencePieceBPE 83.4/83.7 91.5 84.8 53.1 89.7 87.5 86.8 47.3 78.6
Sort by num. chunks in seq. 83.9/84.4 92.0 84.7 54.2 90.1 87.7 87.7 43.3 78.7
Sort by unigram prob. 83.2/83.7 91.9 86.2 53.8 88.7 87.6 87.5 44.9 78.6

22

https://oscar-project.org/
https://huggingface.co/datasets/openwebtext


Training a Language Model on a Single GPU in One Day.

0 50k 100k 150k 200k

2

3

4

5

6

7
8
9

10
11 Schedule

Triangular
Linear
Constant
InvSqrt
One-Cycle
Ramp
Cosine Decay
Dive

Microbatch Steps

M
LM

 L
os

s

140k 160k 180k 200k 220k

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

Microbatch Steps
M

LM
 L

os
s

0 50k 100k 150k 200k

0

0.0002

0.0004

0.0006

0.0008

0.001

Microbatch Steps

St
ep

 S
iz

e

Figure 6. Extended version of Figure 2, including additional learning rate schedules.

0 50k 100k 150k 200k

2

3

4

5

6

7
8
9

10
11 Schedule

Triangular
Linear with Warmup
Cosine Decay with Warmup
InvSqrt with Cooldown

Microbatch Steps

M
LM

 L
os

s

140k 160k 180k 200k 220k 240k

1.85

1.9

1.95

2

2.05

2.1

2.15

Microbatch Steps

M
LM

 L
os

s

0 50k 100k 150k 200k

0

0.0002

0.0004

0.0006

0.0008

0.001

Microbatch Steps

St
ep

 S
iz

e

Figure 7. Variant version of Figure 2, including additional learning rate schedules with warmup and cooldown.

G.1. References for Table 1

The maximal floating point operations referenced in Table 1 are based on the following published numbers.

• For TPU specs, according to cloud.google.com/tpu/docs/system-architecture-tpu-vm we find
275 TFLOP/s in bfloat16 precision for the TPUv4 and 123 TFLOP/s for the TPUv3, each per chip.

• The V100 peak performance is given as 125 TFLOP/s in images.nvidia.com/content/volta-archite
cture/pdf/volta-architecture-whitepaper.pdf in ”TFLOPS of mixed precision”. Some NVIDIA
datasheets also reference TFLOP/s with sparsity, which are not applicable in the context of this work.

• The Titan RTX comes out at 130.5 TFLOP/s, in ”Peak FP16 Tensor TFLOPS with FP32 Accumulate” as described in
images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-G
A102-GPU-Architecture-Whitepaper-V1.pdf.

• For the A6000, we find 154.8 ”Peak BF16 Tensor TFLOPS with FP32 Accumulate” also in nvidia.com/content
/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf.

• A4000 performance is actually less clear. Its datasheet at nvidia.com/content/dam/en-zz/Solutions/
gtcs21/rtx-a4000/nvidia-rtx-a4000-datasheet.pdf only describes 153.4 TFLOPS “using the new
sparsity feature” - which is not applicable in our context and does not reflect the card’s actual performance. We estimate
its actual numbers to be 88.45 TFLOP/s, based on it containing 192 tensor cores, compared to 336 for the A6000.

23

cloud.google.com/tpu/docs/system-architecture-tpu-vm
images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
nvidia.com/content/dam/en-zz/Solutions/gtcs21/rtx-a4000/nvidia-rtx-a4000-datasheet.pdf
nvidia.com/content/dam/en-zz/Solutions/gtcs21/rtx-a4000/nvidia-rtx-a4000-datasheet.pdf


Training a Language Model on a Single GPU in One Day.

0 50k 100k 150k 200k

2

3

4

5

6

7
8
9

10
11 Schedule

Triangular
Multi-Cycle
Cosine Annealing
Constant with Warmup/Cooldown
Inverse Cosine with Cooldown
Ramp with Cooldown

Microbatch Steps

M
LM

 L
os

s

140k 160k 180k 200k 220k 240k

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

Microbatch Steps
M

LM
 L

os
s

0 50k 100k 150k 200k

0

0.001

0.002

0.003

0.004

0.005

Microbatch Steps

St
ep

 S
iz

e

Figure 8. Variant version of Figure 2, including periodical learning rate schedules, as well as ”ramping” schedules with cooldown.

4 5 6 7 8 9
1000

2 3 4 5 6 7 8 9
10k

1.92

1.94

1.96

1.98

2

2.02

2.04

Ramp-Up
False
True

Batch Size

M
LM

 L
os

s

4 5 6 7 8 9
1000

2 3 4 5 6 7 8 9
10k

0.8

0.802

0.804

0.806

0.808

0.81

0.812

0.814

0.816

Ramp-Up
False
True

Batch Size

M
N

LI
 A

cc
ur

ac
y

Figure 9. Partial variations of batch sizes with and without linear ramp-up in extension of Figure 3. All experiments run with
the training setup described in Section 3.2 for a day on a single GPU with mixed precision. Batch size is 4036 and dataset is
bookcorpus-wikipedia. Downstream evaluation as described in Section 4. All values for pretraining on an A4000. Note the
discrepancy between optimal pretraining batch size and optimal batch size for evaluation on MNLI when ramp-up is used, but also note
that differences are overall barely significant.

• For the RTX2080ti, the whitepaper at images.nvidia.com/aem-dam/en-zz/Solutions/design-vis
ualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-White
paper.pdf reports 53.8 ”peak FP16 Tensor TFLOPS with FP32 Accumulate” for the reference edition.

All total exaFLOP numbers are then computed based on these TFLOP/s numbers over the training time period described in
each work.

24

images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf


Training a Language Model on a Single GPU in One Day.

Table 9. Extension of Table 5, including results on the other GPU types.
MNLI SST-2 STSB RTE QNLI QQP MRPC CoLA GLUE

Trained for 1 day on a 2080ti
crammed BERT 82.5/82.8 91.6 86.2 56.7 89.1 87.1 88.3 48.3 79.2
+with original data 81.5/82.1 91.2 85.6 53.1 88.5 86.8 87.5 44.7 77.9
+with original train 51.6/50.7 82.5 10.5 52.0 58.7 66.1 72.2 3.8 49.8
+with original arch. 32.7/33.0 50.9 -0.0 50.0 49.5 0.0 81.2 0.0 33.0
+with minimal train mod. 79.2/79.4 89.9 84.5 54.7 85.9 85.5 87.3 41.1 76.4
+with minimal arch. mod. 82.1/82.4 91.1 85.2 55.8 88.5 86.9 87.6 43.8 78.2

Trained for 1 day on an A4000
crammed BERT 82.6/83.2 91.9 86.6 56.7 88.9 87.1 88.9 46.4 79.1
+with original data 81.6/82.1 91.2 85.2 53.1 88.6 86.7 86.9 44.3 77.8
+with original train 50.9/50.0 81.9 17.5 50.5 58.8 64.7 74.2 8.5 50.8
+with original arch. 32.3/32.4 50.9 -4.1 47.3 50.3 0.0 81.2 0.0 32.3
+with minimal train mod. 79.4/79.2 89.3 84.4 55.2 85.5 85.1 87.0 40.8 76.2
+with minimal arch. mod. 81.8/82.5 91.6 84.7 55.8 88.9 86.7 87.8 42.2 78.0

Trained for 1 day on an A6000
crammed BERT 84.0/84.4 92.3 87.0 57.4 90.0 87.7 89.0 51.8 80.4
+ original data 82.6/83.2 91.7 86.0 55.6 90.1 87.0 85.6 45.4 78.6
+ original train 50.9/49.9 82.2 15.6 49.8 58.6 66.4 73.6 7.5 50.5
+ original arch. -/- - - - - - - - -

+ minimal train mod. 80.8/81.6 90.6 86.6 54.5 88.2 86.6 88.6 44.3 78.0
+ minimal arch. mod. 83.1/83.6 91.6 85.3 57.0 89.9 87.0 85.7 41.8 78.3

25



Training a Language Model on a Single GPU in One Day.

Table 10. Additional raw results for experiments considered in the main body. This table contains architecture variants for a prelimary
architecture setup which contained 4 heads in the attention block, 12 layers and included rotary embeddings. First two blocks: Architectural
variants as discussed in Section 3.1 (but for this preliminary variant). Third block: Ablation study of this model. All experiments run
with the training setup described in Section 3.2 for a day on a single GPU with mixed precision. Batch size is 4032 and dataset is
bookcorpus-wikipedia. Downstream evaluation as described in Section 4. All values for pretraining on an A4000.

Name MLM Loss MNLI-m MNLI-mm Tokens/Second

Modified Transformer 1.89 81.02 81.35 50946
DeepNarrow (12 Layers) 1.94 80.90 80.97 78396
DeepNarrow (24 Layers) 1.98 80.78 81.14 41289
E = 128 2.14 76.68 77.62 53267
FFN every 2 blocks 1.93 80.43 80.97 64774
FFN every 3 blocks 1.97 80.44 80.93 71634
FFN every 4 blocks 2.00 80.03 79.67 73319
H = 512 1.93 80.61 80.93 83718
H = 1024 1.95 80.07 80.68 32004
4 Layers 2.00 78.45 79.00 137127
6 Layers 1.93 79.49 79.82 96156
8 Layers 1.89 81.11 81.08 74248
10 Layers 1.89 81.02 81.21 61431
16 Layers 1.92 81.39 82.10 39406
24 Layers 2.01 80.64 80.97 26927
Recurrent (1-12) 2.40 77.46 77.81 52405
Recurrent (2-6) 2.04 80.45 80.73 53148
Recurrent (3-4) 2.00 80.78 81.33 51634
Recurrent (4-3) 1.98 80.95 81.26 51952
BERT-tiny 3.30 56.71 57.21 914694
BERT-mini 2.49 72.22 73.21 429593
BERT-Large (Izsak variant) 2.38 76.93 77.47 13448
Original BERT 7.54 35.45 35.22 41978
With decoder bias 1.89 80.97 81.20 51155
With ε = 10−6 in Layer Norm 1.90 80.49 81.35 51728
Learned Embedding 1.88 80.51 81.03 52601
No Norm after Embedding 1.94 79.65 80.34 52175
No Final Norm 1.89 80.40 80.89 51207
No Skip of Head Transform 1.88 80.49 81.19 51728
No Rotational Embedding 1.88 80.91 81.52 53526
Post-LN 7.54 31.82 31.82 52270
With QKV bias 1.89 80.70 80.88 51112
With bias in Linear Layers 1.89 80.64 81.49 50584
12 Heads 1.88 81.75 81.99 47967

26



Training a Language Model on a Single GPU in One Day.

Table 11. Additional raw results for experiments considered in the main body for the final architecture variant. First two blocks:
Architectural variants as discussed in Section 3.1. Third block: Ablation study of finally adopted model. All experiments run with
the training setup described in Section 3.2 for a day on a single GPU with mixed precision. Batch size is 4096 and dataset is
bookcorpus-wikipedia. Downstream evaluation as described in Section 4. All values for pretraining on an A4000.

Name MLM Loss MNLI MNLI-mm Tokens/Second

Modified Transformer 1.84 81.79 82.14 46431
DeepNarrow (12 Layers) 1.91 80.97 81.30 99717
DeepNarrow (24 Layers) 1.91 81.39 81.61 52558
E = 128 2.04 - - 48468
FFN every 2 blocks 1.84 81.40 81.65 62134
FFN every 3 blocks 1.87 80.90 81.53 70685
FFN every 4 blocks 1.88 81.10 81.42 75163
H = 512 1.87 81.34 82.20 79116
H = 1024 1.94 80.63 80.97 28511
4 Layers 1.94 79.13 79.51 161034
6 Layers 1.87 80.48 80.84 115037
8 Layers 1.84 81.22 81.62 88652
10 Layers 1.82 81.25 82.31 71414
12 Layers 1.85 81.68 82.18 59346
18 Layers 1.90 81.02 81.82 40577
24 Layers 1.97 80.81 81.26 30455
Recurrent (1-12) 2.13 79.23 79.78 62318
Recurrent (2-6) 2.00 80.86 81.24 62677
Recurrent (3-4) 1.94 80.95 81.48 61772
Recurrent (4-3) 1.91 81.43 81.84 61596
BERT-Tiny Variant 3.51 56.10 56.60 1018443
BERT-Mini Variant 2.46 72.30 73.47 523061
BERT-Large Variant 2.12 79.50 79.84 17688
BERT-Large (Izsak variant) 2.37 76.81 77.56 13522
Original BERT 7.53 35.45 35.22 41362
With decoder bias 1.84 81.71 81.91 45996
With ε = 10−6 in Layer Norm 1.83 81.55 82.13 45841
Learned Embedding 1.83 81.31 81.79 46608
No Norm after Embedding 1.89 81.38 81.15 46267
No Final Norm 1.85 80.67 80.87 46598
No Skip of Head Transform 1.83 82.03 82.19 46324
With QKV Bias 1.83 81.89 82.28 46469
With bias in Linear Layers 1.84 81.88 82.16 45629
4 Heads 1.88 81.22 81.77 40551
With Rotary Embedding 1.86 81.16 81.94 42257
Post-LN 7.54 35.21 35.17 46324
Fourier Attention 2.65 68.97 69.06 46634
GELU 1.83 81.94 82.17 47779

27



Training a Language Model on a Single GPU in One Day.

Table 12. Additional raw results for experiments considered in the main body for the final training variant, not otherwise mentioned. Batch
size is 4096 and dataset is bookcorpus-wikipedia. Downstream evaluation as described in Section 4. All values for pretraining on
an A4000.

Name MLM MNLi-m MNLI-mm Tokens/Second

Original training recipe 7.28 60.65 60.31 49264
With Izsak Training recipe 2.06 79.90 80.30 46869
Minimal Modifications 2.03 78.78 79.36 47346
+Larger LR 1.99 80.25 80.50 46524
+One Cycle, +Larger LR 1.84 82.12 82.55 46843
+One Cycle, +Larger LR, +Clipping 1.84 81.79 82.14 46303
Sequence Curriculum (10%,20%,30%,50%,75%) 3.02 70.06 70.77 29359
Sequence Curriculum (+unfolding) 1.87 80.13 80.04 46014
Sequence Curriculum (20%,35%,50%,65%,85%) 1.90 79.86 79.80 45804
Adafactor 1.86 81.36 82.22 45997
Adam (classic WD formulation) 7.44 32.28 32.39 49598
SGD 7.46 59.30 58.02 47678
RADAM 7.50 32.74 32.95 48812
With Dropout activated 1.97 80.95 80.98 45198
With MLM masking 20% 2.06 80.76 81.48 45944
With MLM masking 40% 2.70 81.11 81.30 43467
With MLM masking 60% 3.41 80.62 80.88 40756

28


