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Abstract

The conventional approach in differential privacy (DP) literature formulates the
privacy-utility tradeoff with a “privacy-first” perspective: for a predetermined level
of privacy, a certain utility is achievable. However, practitioners often operate under
a “utility-first” paradigm, prioritizing a desired level of utility and then determining
the corresponding privacy cost.
Wu et al. [2019] initiated a formal study of this “utility-first” perspective by intro-
ducing ex-post DP. They demonstrated that by adding correlated Laplace noise and
progressively reducing it on demand, a sequence of increasingly accurate estimates
of a private parameter can be generated, with the privacy cost attributed only to the
least noisy iterate released. This led to a Laplace mechanism variant that achieves
a specified utility with minimal privacy loss. However, their work, and similar
findings by Whitehouse et al. [2022], are primarily limited to simple mechanisms
based on Laplace or Gaussian noise.
In this paper, we significantly generalize these results. In particular, we extend
the work of Wu et al. [2019] and Liu and Talwar [2019] to support any sequence
of private estimators, incurring at most a doubling of the original privacy budget.
Furthermore, we demonstrate that hyperparameter tuning for these estimators,
including the selection of an optimal privacy budget, can be performed without
additional privacy cost. Finally, we extend our results to ex-post Rényi DP, further
broadening the applicability of utility-first privacy mechanisms.

1 Introduction

Many applications of machine learning and statistics involve computation on sensitive data, necessitat-
ing privacy-preserving techniques. In recent years, differential privacy (DP) [Dwork et al., 2016] has
become one of the most rigorous formalization of privacy, with many practical applications [Abadi
et al., 2016, Yu et al., 2024, Mehta et al., 2023, Tang et al., 2025, US Census Bureau, 2023, Hod and
Canetti, 2025, Wilson et al., 2020]. Recall that an algorithm is DP if the output distributions on two
neighboring inputs are close, where the closeness is determined by the privacy budget1 ε:
Definition 1 (Pure Differentially Privacy, [Dwork et al., 2016]). For ε ≥ 0, a mechanismM with
input from D and output from O is ε-differentially private (or simply, ε-DP) iff Pr[M(D) = o] ≤
eε Pr[M(D′) = o], for all o ∈ O and neighboring datasets D,D′ ∈ D. 2

1Our work also applies to approximate-DP with δ parameter; see Section 2 for the definition.
2We also assume for simplicity that O is finite; it is simple to extend the results to the infinite case.
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For reasons that will become clear soon, we refer to the classic DP definition above as ex-ante DP.

Utility-First DP Mechanisms. One of the main challenges in deploying DP is to ensure that
the output remains useful. In particular, real-world deployments are often constrained by utility
requirements. For example, in ML training, one may wish to ensure that the model accuracy meets a
certain threshold. Similarly, in statistical applications, one may wish to guarantee that the relative
error of the estimated population is small (e.g., [Ghazi et al., 2022]). Such desiderata may not be
compatible with the ex-ante DP (Definition 1) since it a priori specifies a fixed privacy budget ε.
This motivated Wu et al. [2019] to propose the notion of ex-post DP, where the privacy budget ε can
depend on the output of the mechanism, as formalized below.
Definition 2 (Ex-post (Pure-) DP, [Wu et al., 2019]). For a function ε̃ : O → R≥0, a mechanismM
with input from D and output from O is ex-post ε̃-DP iff Pr[M(D) = o] ≤ eε̃(o) Pr[M(D′) = o],
for all o ∈ O and neighboring datasets D,D′ ∈ D.

Observe that any ex-post ε̃-DP mechanism is ex-ante ε-DP where ε = maxo∈O ε̃(o). Furthermore,
ex-post DP can also be used as a privacy filter to guarantee ex-ante DP [Rogers et al., 2023, Lebensold
et al., 2024]. Roughly speaking, given a total privacy budget ε for ex-ante DP, we run multiple ex-post
algorithms where we subtract the realized privacy budget ε̃(o) from ε until the latter is exhausted.

Thus, the main question in ex-post DP becomes: What is the smallest privacy budget needed to
produce an output that passes the desired utility bar? As pointed out in [Wu et al., 2019], a simple
algorithm here is the “doubling” method where we start from a small privacy budget, run the “base”
(ex-ante DP) algorithm with this budget, and continue until we find an acceptable output3. While
simple, this doubling method can result in the privacy budget as large as four times4 the optimal
budget. Although there has been no improvement to this for general mechanisms, Wu et al. [2019]
and later Whitehouse et al. [2022], building on an earlier work by Koufogiannis et al. [2016], gave an
elegant improvement for the simple Laplace and Gaussian mechanisms that allows for a finer control
of privacy budget increment than doubling and also just pays for the final privacy budget, instead
of the total privacy budget (via composition). Alas, their method does not apply to more complex
mechanisms, such as the seminal DP-SGD algorithm [Abadi et al., 2016] that is ubiquitous in private
ML applications.

Hyperparameter Tuning with DP. A related challenge in private ML deployments is hyperpa-
rameter tuning. A naive solution here is to run any standard hyperparameter tuning algorithm and
compute the total budget via composition theorems. However, this results in a prohibitive blow-up
in the privacy budget, depending on the number of times the base algorithm is invoked. Liu and
Talwar [2019] devised a simple algorithm but with a surprising guarantee. Their algorithm performs
hyperparameter tuning on any ex-ante ε-DP by running it possibly multiple times (based on a carefully
chosen distribution) and outputting the best found parameter. Even though the algorithm may be
run many times, they show that the privacy budget incurred is only 3ε. Furthermore, they show
that, any “weakly useful” ex-ante DP hyperparameter tuning algorithm must incur privacy budget at
least (roughly) 2ε. A follow-up work by Papernot and Steinke [2022] closed this gap by giving an
algorithm with privacy budget arbitrarily close to 2ε, and further generalized this to work with Rényi
DP [Mironov, 2017]. Although the task of optimizing the privacy budget in ex-post DP framework
seems similar to hyperparameter tuning where ε is a parameter, none of the aforementioned works
[Liu and Talwar, 2019, Papernot and Steinke, 2022] applies to this setting since they require the base
mechanism to have a fixed value of ε in the ex-ante DP framework.

1.1 Our Contributions

In this work, we present the first hyperparameter tuning algorithm with ex-post DP guarantees. Our
algorithm can take in multiple base mechanismsM1, . . . ,Md whereMi is ex-ante εi-DP. It then
runs these mechanisms (possibly multiple times, based on carefully crafted distributions) and select
the “best” output. The ex-post DP guarantee is that, if the output comes from the base mechanism
Mi, then the privacy budget spent is only (roughly) 2εi. We consider this counterintuitive and highly
surprising given that other base mechanismsMj with higher budget (i.e., εj > εi) might be run en

3Checking whether an output passes a utility bar must also be done with DP.
4A factor of two due to having to apply the composition theorem to sums up all the budget, and another factor

of two from the potential misalignment between the doubling exponential grid and the optimal budget.

2



route and their output considered as part of the selection, nevertheless, our algorithm does not have to
pay for this higher privacy budget εj! We are unaware of a similar phenomenon in DP.

While our algorithm (which works for multiple mechanisms with different εi’s) is a significant
generalization of those of Liu and Talwar [2019], Papernot and Steinke [2022] (which only work
for a single mechanism in the ex-ante setting), our privacy analysis is arguably simpler than theirs.
In particular, the proof of our main privacy theorem (Theorem 8) draws inspiration from that of the
Sparse Vector Technique [Dwork et al., 2009] and is elementary. We hope that the resulting simplicity
will help further elucidate the underlining principles behind DP hyperparameter tuning. We note
that our hyperparameter tuning is well suited for the task of optimizing the privacy budget given the
privacy bar in ex-ante DP, since we can set the “score” in the selection step to be based on the privacy
budget and whether the privacy bar is passed.

Finally, we introduce a notion of ex-post Rényi DP and show that hyperparameter tuning with Rényi
DP is also possible (Theorem 10). In addition, we prove a connection between ex-post Rényi DP and
ex-post approximate-DP and construct a privacy filter that allows composing together a sequence
of ex-post Rényi DP mechanism into an ex-ante Rényi DP guarantee (which could allow using this
algorithm in practical systems that want to provide ex-ante guarantees). Our technique, which applies
to any mechanism including the aforementioned DP-SGD, is far more general than those in [Wu
et al., 2019, Whitehouse et al., 2022], which only applies to Laplace or Gaussian mechanisms. To
demonstrate this, we provide experiments that empirically show that our algorithm outperforms those
in [Wu et al., 2019, Whitehouse et al., 2022] for linear regression (using the conversion from ex-post
Rényi DP to ex-post approximate-DP).

2 Preliminaries

Let D be a set of datasets. We write D ∼ D′ as a shorthand for a pair of neighboring input datasets
(in D). Let O be any set; for simplicity, we assume that O is discrete. We say that a functionM
mapping D ∈ D to a distribution over O is a mechanism with input from D and output from O.

Ex-Ante DP. While we have defined (ex-ante) pure-DP in Definition 1, it will be useful to recall
other variants of DP. We start with approximate-DP, which allows an additional additive error δ in the
difference in the two probabilities, as defined below. When δ = 0, this coincides with Definition 1.
Definition 3 (Differential Privacy, [Dwork et al., 2016]). For ε, δ ≥ 0, a mechanism M with
input from D and output from O is ex-ante (ε, δ)-differentially private (or simply, (ε, δ)-DP) iff
Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ, for all S ⊆ O and all D ∼ D′.

Modern private learning is largely based on DP-SGD [Abadi et al., 2016].The privacy analysis of
such a mechanism, which involves both subsampling and composition, is often done through Rényi
DP [Mironov, 2017], which we recall here.

Let α > 1, and P and Q be two distributions on O. Let Dα (P ∥ Q) denote the Rényi divergence of
P from Q, i.e., Dα (P ∥ Q) = 1

α−1 log
∑

o∈O(P (o))α(Q(o))1−α.
Definition 4 (Rényi DP, [Mironov, 2017]). For α > 1, ε ≥ 0, a mechanismM with input from D
and output fromO is ex-ante (α, ε)-Rényi DP (or simply, (α, ε)-RDP) iff Dα (M(D) ∥M(D′)) ≤ ε
for all D ∼ D′.

Ex-Post DP. We also need approximate and Rényi variants of ex-post DP. We start with the former
since it is defined in the literature before this paper.
Definition 5 (Ex-post DP, [Wu et al., 2019]). For a function ε̃ : O → R≥0 and δ > 0, a mechanism
M with input from D and output from O is ex-post (ε̃, δ)-DP iff for all S ⊆ O and all D ∼ D′,∑

o∈S

Pr[M(D) = o] ≤
∑
o∈S

eε̃(o) Pr[M(D′) = o] + δ.

Again, when δ = 0, this coincides with Definition 2. Next, we introduce ex-post Rényi DP.
Definition 6 (Ex-post RDP). For a function ε : O → R≥0 and α > 1, a mechanismM with input
from D and output from O is ex-post (α, ε)-RDP iff for all D ∼ D′,∑

o∈O

(Pr[M(D) = o])α

(eε(o) · Pr[M(D′) = o])α−1
≤ 1.

3



We note that if ε̃ is a constant function, ex-ante and ex-post are equivalent for all DP notions stated.

In the case of ex-ante DP, it is known that ex-ante pure-DP is a stronger notion than ex-ante RDP,
which in turn is stronger than ex-ante approximate-DP [Mironov, 2017]. We can show here that a
similar result holds for their ex-post variants, as stated below. The proof, which follows its ex-ante
counterpart, is deferred to the Supplementary Material.
Lemma 7. Let ε̃ : O → R≥0 be a function and α > 1, δ ∈ [0, 1] be constants.

• IfM is ex-post ε̃-DP, thenM is ex-post (α, ε̃)-RDP.
• IfM is ex-post (α, ε̃)-RDP, thenM is ex-post (ε̃′, δ)-DP, where ε̃′(o) = ε̃(o) + log 1/δ

α−1 .

DP Selection Problem. The main focus of our paper is on the DP selection problem, which can be
defined as follows. There are d mechanismsM1, . . . ,Md : D → O whereMi is ex-ante DP (or
ex-ante RDP). Following [Papernot and Steinke, 2022], we assume that O is a totally ordered set.
The goal is to, after runningM1, . . . ,Md possibly multiple times, output (o, i) where i ∈ [d] and
o ∈ O is an output from one of the runs ofMi. Occasionally, we also allow an output ⊥ to indicate
that no good output was found.

A classic application of DP selection is in DP hyperparameter tuning of ML mechanisms. Here, each
Mi can represent the mechanism with different configuration of parameters (including the privacy
budgets) and the outputMi(D) is the private ML model together with the accuracy score on the test
set.5 Our setting also generalizes the widely-used exponential mechanism in which caseMi can be
thought of as outputting the DP score of the ith candidate [McSherry and Talwar, 2007].

Probability Notation. For a distribution P , let supp(P) denote its support. For i ∈ supp(P),
let P(i) denote the probability mass (resp., density) at i. For a subset I , let P(I) =

∑
i∈I P(i)

(resp.,
∫
I
P(i)di). Let Ber(p) denote the Bernoulli distribution with parameter p, i.e., the distribution

on {0, 1} such that the probability of 1 equals p. Let Geomp denote the geometric distribution
with failure probability p ∈ [0, 1], i.e., the distribution on Z≥0 such that Geomp(k) = (1 − p)pk.
Throughout this work, we will use the following property of the Geometric distribution in our proofs:

Geomp(u) ≤ pu−v ·Geomp(v) ∀u, v ∈ Z such that u ≤ v. (1)

Note that the above inequality is in fact an equality for u ≥ 0.

Finally, let Expλ denote the exponential distribution with parameter λ > 0, i.e., the distribution on
R>0 such that Expλ(x) = λe−λx.

3 Ex-Post Hyperparameter Tuning

In this section we present a new algorithm for hyperparameter tuning with ex-post DP guarantees
(Algorithm 1). The main idea is random dropping, where we only include an output from eachMi

to the candidate set S with a certain probability. While this bears some similarity with the random
stopping technique of Liu and Talwar [2019], our main innovation is the use of correlated randomness
k that is sampled at the beginning of the algorithm and determines the dropping probabilities of all
the mechanisms. This idea is inspired by the Sparse Vector Technique (SVT) [Dwork et al., 2009], in
which a threshold is noised at the beginning of the algorithm. Indeed, the high-level structure of our
proof follows that of SVT: we couple k with k + 1 in the two neighboring datasets, and bound the
ratio of the output probabilities in the two cases. This is formalized in the proofs below. Furthermore,
in Appendix A, we describe SVT (specifically, the AboveThreshold algorithm) and its connections to
our method in more detail.

For convenience, we extend the order on O to (O × [d]) ∪ {⊥}, where ⊥ is the minimum element,
and elements in O × [d] are ordered lexicographically.

3.1 Pure-DP

Our privacy guarantee for pure-DP for Algorithm 1 is stated below. It says that, if the final output is
fromMi, then the privacy budget we pay is only 2εi + ε′, where ε′ is a parameter of the distribution

5If the test set is considered sensitive, then we can add noise to achieve DP with respect to the test set.

4



Algorithm 1 Hyperparameter Tuning Mechanism with Random Dropping.

Parameters: Distribution E , MechanismsMi : D → O and budget parameters εi for i ∈ [d]
Input: Dataset D.
S ← {⊥}
Sample k ∼ E
for i = 1, . . . , d do

Sample yi ∼ Ber(e−εi·k) {random drop}
if yi = 1 then

o←Mi(Di)
S ← S ∪ {(o, i)}

return maximum element in S {as per the total order on (O × [d]) ∪ {⊥}}

E = Geome−ε′ . This ε′ can be arbitrarily small, although setting it too small results in a larger drop
probability. The latter can be mitigated by repeating each mechanismMi multiple times in the input,
which allows us to set that the desired expected number of times that each mechanism is run.

Theorem 8 (Ex-post Pure-DP). Let ε′ > 0 and let eachMi be εi-DP. Define a function ε̃ such that
ε̃(o, i) = 2εi + ε′ and ε̃(⊥) = 0. Then, Algorithm 1 with E = Geome−ε′ is ex-post ε̃-DP.

Proof. Consider neighboring datasets D ∼ D′. Let A,A′ be the output distributions of Algorithm 1
on D,D′, respectively and let Qi,Q′

i be the output distributions ofMi on D,D′, respectively.

First, the probability that Algorithm 1 outputs ⊥ is independent of input dataset and so A(⊥) =

A′(⊥). Next, consider any output (o, i) ∈ O × [d]. For each j ∈ [d] ∖ {i}, let U j
o,i := {o′ ∈ O |

(o′, j) > (o, i)}. SinceMj is εj-DP, it holds that Qj(U
j
o,i) ≥ e−εjQ′

j(U
j
o,i). Similarly, we have

Qi(o) ≤ eεiQ′
i(o). Finally, (1) yields Geome−ε′ (k) ≤ eε

′ ·Geome−ε′ (k + 1). Thus, we have

A(o, i)

=

∞∑
k=0

Geome−ε′ (k) · e−εikQi(o) ·
∏
j ̸=i

(
1− e−εjkQj(U

j
o,i)
)

≤
∞∑
k=0

(
eε

′
·Geome−ε′ (k + 1)

)
· e−εik · (eεiQ′

i(o)) ·
∏
j ̸=i

(
1− e−εjk ·

(
e−εjQ′

j(U
j
o,i)
))

= e2εi+ε′
∞∑
k=0

Geome−ε′ (k + 1) · e−εi(k+1)Q′
i(o) ·

∏
j ̸=i

(
1− e−εj(k+1)Q′

j(U
j
o,i)
)

≤ e2εi+ε′ · A′(o, i)

The state-of-the-art (ex-ante) pure-DP hyperparameter tuning from [Papernot and Steinke, 2022,
Corollary 3] can only take in a single mechanism Q that is ε-DP. To compare this with our mechanism,
consider the case whereM1 = · · · =Md = Q. In this setting, the two mechanisms are equivalent
up to the difference in the distribution of the number of times Q is executed. Figure 1 compares the
standard deviation versus the mean of these two distributions. While our distribution has a larger
variance, we emphasize its several advantages: our proof is completely elementary and our algorithm
is more general as it works for different mechanisms with different εi’s values.

In addition, such a repetition trick allows us to prove a utility lower bound that achieves a “boosting”
effect. To set a stage of the formal statement, note that we will give a relatively weak assumption
that at least one of the mechanismsMi∗ outputs a “good” candidate with a small probability α. The
theorem below states that, by repeating each mechanismMi a certain number of times Ti, we can
ensure that Algorithm 1 outputs a “good” candidate with probability at least 1 − β (where β is a
small number). We formalize this below, where “good” candidates are those that are at least o∗. Note
also that Ti is an upper bound on the number of times the mechanismMi is run.6

6In ML settings, the score itself is computed as a measure of performance on a test set, as a proxy for the
measure of performance on the population distribution. When running more mechanisms, one would need a
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Figure 1: A plot of the standard deviation vs expectation of the number of invocations of a mechanism
by the algorithms from Corollary 3 in [Papernot and Steinke, 2022] for η = ε′/ε and Theorem 8 for
E = Geome−ε′ for ε = 0.1 and ε′ = 0.01.

Theorem 9. Let α, β ∈ (0, 1) and let Ti =

⌈
1
α

(
2
β

)εi/ε′
· ln
(

2
β

)⌉
. Consider Algorithm 1 with

E = Geome−ε′ where, for all i ∈ [d], we repeatMi for Ti times in the input parameter sequence.
If there exists o∗ ∈ O and i∗ ∈ [d] such that Pr[Mi∗(D) ≥ o∗] ≥ α, then Algorithm 1 outputs an
element that is larger than (o∗, 0) with probability at least 1− β.

Proof. If the final output is smaller than (o∗, i∗), then in all runs ofMi∗ , it either has to be dropped
or the output is less than o∗ (or both). For a fixed value of k, this happens with probability at
most (1− e−εi∗ ·k · α)Ti∗ ≤ exp

(
−e−εi∗ ·k · α · Ti∗

)
. Due to our choice of Ti∗ , this is at most β/2

for k ≤ ln (2/β) /ε′. Thus, the probability that the final output is smaller than (o∗, i∗) is at most
β/2 + Pr [k > ln (2/β) /ε′] ≤ β.

Finally, we remark that, even in the ex-ante setting with all ε’s being equal, Liu and Talwar [2019]
showed that the additional factor of 2 in the privacy budget is necessary even under a very weak
assumption on the utility. This gives a strong evidence that our algorithm (in its generic form) requires
such a factor of 2 blow-up as well.

3.2 Rényi DP

In this section, we consider the setting where eachMi satisfies Rényi DP (RDP) instead of pure-DP.
As alluded to earlier, many popular DP machine learning algorithms, including DP-SGD [Abadi
et al., 2016], do not satisfy pure-DP but are amenable to privacy analysis using RDP. By changing the
distribution of E from the Geometric distribution (in the pure-DP case) to the Exponential distribution,
we can show a version of Theorem 8 for RDP.
Theorem 10 (Ex-post RDP). Let ℓ1, . . . , ℓd ≥ 0 and let us assume that eachMi is (α, εi)-RDP with
the output set O × R. Let τi be the expected number of timesMi is executed in Algorithm 1 (note
that it is independent of the dataset); and let τ =

∑d
i=1 τi.

Define a function ε̃ such that ε̃(o, i) = (2 + ℓi)εi + (1 + ℓi)ε
′ +

log(τ+1)+
∑

j ̸=i e
−εj(1+αℓi)

α−1 and

ε̃(⊥) = log(τ+1)
α−1 . Then, Algorithm 1 with E = Expε′ is (α, ε̃)-RDP.

larger test set in order to get good generalization. This is orthogonal to Theorem 9, which in this setting would
refer to o∗ as the performance on the population distribution.
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We defer the proof of Theorem 10 to Appendix B, and provide a high-level overview here.
Recall that in the above proof of Theorem 8 we use the inequality

(
1− e−εjkQj(U

j
o,i)
)
≤(

1− e−εj(k+1)Q′
j(U

j
o,i)
)

which follows from the assumption thatMj is εj-DP. The main challenge
in proving an RDP bound is that such an inequality fails since the assumption thatMj is (α, εj)-RDP
is weaker. To tackle this, we change the coupling: instead of coupling k with k + 1, we couple k
with k + 1 + ℓi. Note that, since we allow ℓi to be non-integer (e.g., a value below one), this step
necessitates the use of the Exponential distribution instead of the Geometric distribution. This new
coupling allows us to instead compare

(
1− e−εjkQj(U

j
o,i)
)

with
(
1− e−εj(k+1+ℓi)Q′

j(U
j
o,i)
)

.
Alas, the former is still not necessarily smaller than the latter. Nevertheless, via a careful argu-
ment, we can bound the ratio of these two quantities. Such a bound then ends up as the last term
log(τ+1)+

∑
j ̸=i e

−εj(1+αℓi)

α−1 in our RDP guarantee in Theorem 10.

We note that, unlike Theorem 8, ε̃(⊥) ̸= 0 in Theorem 10, i.e., we pay a privacy budget even when
we fail to output anything meaningful. Again, this can be mitigated by repeating each mechanism
multiple times in the input to decrease the probability of outputting ⊥ to be arbitrarily small.

When the εi’s are different, it might be beneficial to pick ℓi’s to be different as well. On the other hand,
if we only consider the simple setting when ε1 = · · · = εd = ε and we wish to choose ℓ1, . . . , ℓd

to all be equal to ℓ. Then, it is not hard to verify that by setting ℓ = O
(

log d
εα

)
, we can ensure that∑

j∈[d] e
−εj(1+αℓ) ≤ 1. With this setting of parameters and assuming ε′ ≤ O(ε), we thus have the

RDP bound of ε̃ = 2ε+ ε′ +O
(

log d
α

)
. Note that this is similar to the bound from state-of-the-art

(ex-ante) RDP hyperparameter tuning from [Papernot and Steinke, 2022, Theorem 2], which gives an
RDP bound of (2 + η)ε+O

(
log d
λ

)
, where η is the parameter of the negative binomial distribution

(and assuming γ ∈ (0, 1) is a constant and λ̂ = λ, ε̂ = ε).

Alternatively, one may notice that ε̃(o, i) doesn’t depend on ℓj for j ̸= i; hence, for each i it is
possible to choose ℓi as a value minimizing ε̃(o, i).

4 Fully-Adaptive Composition with Ex-Post Rényi DP

Real-life applications of DP mechanism are often highly interactive: i.e., the analyst queries private
data and based on the results of these queries decides what to query next. Moreover, often it is
important to be able to choose further privacy parameters based on previous responses. Following
Rogers et al. [2016], we express this interactivity in a form of a “game” between an adversary A and
some system Fα,ε. In this interaction there is an unknown bit that the adversary wishes to learn; on
each step i the adversary (based on previous responses) chooses two datasets D(0)

i and D
(1)
i , a privacy

loss function ε̃i, and a mechanismMi that is (α, ε̃i)-RDP; the system decides if such request could
be answered; and if the system allows to proceed, the resultMi(D

(b)
i ) is given to the adversary. Our

privacy filter is simple: Start with a total RDP budget ε, subtract from it the ex-post RDP bound after
each request is answered, and only allow the next request to be answered if the remaining budget is at
least the maximum possible ex-post RDP bound of the mechanism. See Algorithm 2 for the details.

Algorithm 2 Privacy filter for ex-post RDP.

Parameters: Order α > 1, privacy budget ε > 0, number of steps n.
Input: Adversary A, private bit b ∈ {0, 1}.

for i from 1 to n do
D

(0)
i , D

(1)
i , ε̃i,Mi ← A(o1, . . . , oi−1)

if
∑i−1

j=1 ε̃j(oj) + supo ε̃i(o) > ε then
return o1, . . . , oi−1

oi ←Mi(D
(b)
i )

return o1, . . . , on

7



Our privacy filter allows us to use ex-post RDP algorithms in interactive manners while ensuring a
final ex-ante RDP bound. This result extends the results of Lécuyer [2021], Feldman and Zrnic [2021]
to allow adversary to issue mechanisms with ex-post guarantees. We note that such a connection
between ex-post DP and ex-ante DP via a privacy filter has been made before, e.g., for pure-DP and
approximate-DP [Rogers et al., 2016, Lebensold et al., 2024], and for specific RDP mechanisms like
Brownian Noise Reduction [Rogers et al., 2023]. We believe our work is the first to generalize this
filter to the full, arbitrary class of ex-post RDP mechanisms, although the proof of our filter follows
simply from the aforementioned previous work. We defer the full proof to Appendix C.

Theorem 11. For any adversary A, α > 1, ε > 0, n ∈ N, Dα

(
IT0(Fα,ε;A) ∥ IT1(Fα,ε;A)

)
≤ ε,

where ITb(Fα,ε;A) is the output of Algorithm 2.

5 Experiments

We present two sets of experiments: In the first, we evaluate the performance of our algorithm on
analytical tasks and in the second, we focus on the performance on a machine learning problem.

5.1 Analytical Problem

Informally the problem is as follows [Rogers et al., 2023]: given a message board, the goal is to
estimate the number of unique users per thread, each with relative error 10%; we want as many
estimates as possible. Here, a user could contribute to any of the threads. We consider two datasets.

Synthetic: The synthetic datasets are generated as follows: N ∈
{8000, 16000, 32000, 64000, 128000} samples are obtained from the power-law distribu-
tion with support on [300] (i.e., the distribution such that for x ∈ [300], the density is proportional
to x0.75 and is 0 otherwise). We assume that each x corresponds to a thread and the number of
samples with this value is the number of users. Hence, we convert these samples into a histogram
of 300 values with their counts.

Reddit: We use the webis/tldr-17 dataset [Völske et al., 2017] that contains authors of posts and
subreddits where the post was posted. The histogram consists of subreddits (i.e., threads) and the
number of unique users who posted in the subreddit.

We consider two types of algorithms: one where a pure-DP guarantee is available and another where
we eventually have an approximate-DP guarantee. However, in both cases, we can check whether
the current estimate ŷ is good (i.e., we expect it to be with less than 10% error) by checking that
|(ŷ + σ)/(ŷ − σ)| ∈ [0.9, 1.1] and |ŷ| ≥ σ, where σ is the standard deviation of the noise used to
obtain the estimate.

For pure-DP, we follow [Rogers et al., 2023] and allow mechanisms to compute each estimate with
privacy budget ε = 0.001 · (

√
2)i for some i, with a total budget of 10. The comparison includes the

doubling mechanism with Laplace noise (the algorithm that attempts one ε after another and pays for
them via composition) [Wu et al., 2019], noise reduction method with Laplace noise from [Wu et al.,
2019], and Algorithm 1 with Laplace mechanism and ε′ = 0.001. The detailed results can be seen
in Table 1. Note that in terms of number of produced answers, our algorithm outperforms all other
solutions and in terms of precision (percentage of outputs that were indeed with 10% relative error) is
similar to the doubling estimator and within reasonable bounds.

For approximate-DP, we allow mechanisms to compute each estimate with privacy budget ε =
0.001 · (

√
2)i for some i, with a total budget of (10, 10−6). We compare the doubling mechanism

with Gaussian noise and zCDP budgeting [Bun and Steinke, 2016], the Brownian Motion algorithm
with zCDP budgeting [Whitehouse et al., 2022], and Algorithm 1 with Gaussian mechanism and RDP
budgeting. The results can be seen in Table 2. In this case, our algorithm underperforms, which is not
too surprising since the Gaussian mechanism with zCDP budgeting is tailored for tasks of this nature.
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Table 2: Comparison between approximate-DP mechanisms on synthetic data; the column ‘Produced
Answers’ contains the average and standard deviation of the number of threads that the algorithm
was able to estimate before the budget got exhausted and the column ‘Precision’ contains the average
and standard deviation of the fraction of threads that were estimated with less than 10% relative
error among the estimated columns. A cell value a ± b means a is the average and b is the standard
deviation. The dataset name SN means synthetic dataset made of N samples.

Dataset

Brownian Motion Doubling Algorithm 1
Mechanism Mechanism w/ Gaussian

Precision Produced Precision Produced Precision Produced
Answers Answers Answers

S8000 0.974 ± 0.03 28.63 ± 0.74 0.969 ± 0.05 17.20 ± 0.57 0.970 ± 0.09 6.694 ± 0.46

S16000 0.973 ± 0.02 50.44 ± 0.89 0.971 ± 0.03 30.75 ± 0.65 0.972 ± 0.05 11.97 ± 0.33

S32000 0.974 ± 0.02 88.58 ± 1.01 0.973 ± 0.02 54.74 ± 0.80 0.971 ± 0.04 20.61 ± 0.51

S64000 0.975 ± 0.01 154.8 ± 1.29 0.974 ± 0.02 96.95 ± 1.01 0.973 ± 0.03 33.84 ± 0.63

S128000 0.977 ± 0.01 269.7 ± 1.50 0.980 ± 0.01 173.6 ± 1.23 0.970 ± 0.03 52.33 ± 1.17

Table 1: Comparison between pure-DP mechanisms; the column ‘Produced Answers’ contains the
average and standard deviation of the number of threads that the algorithm was able to estimate before
the budget got exhausted and the column ‘Precision’ contains the average and standard deviation of
the fraction of threads that were estimated with less than 10% relative error among the estimated
columns. A cell value a ± b means a is the average and b is the standard deviation. The dataset name
SN means synthetic dataset made of N samples.

Dataset

Doubling Noise Reduction Algorithm 1
Mechanism Mechanism w/ Laplace

Precision Produced Precision Produced Precision Produced
Answers Answers Answers

S8000 0.911 ± 0.07 14.77 ± 0.47 0.999 ± 0.02 2.22 ± 1.45 0.912 ± 0.06 20.37 ± 0.52

S16000 0.912 ± 0.06 22.47 ± 0.54 0.999 ± 0.02 4.47 ± 2.22 0.911 ± 0.05 30.63 ± 0.57

S32000 0.910 ± 0.05 33.96 ± 0.56 0.998 ± 0.12 8.12 ± 3.29 0.905 ± 0.04 45.74 ± 0.63

S64000 0.909 ± 0.04 50.90 ± 0.61 0.998 ± 1.72 15.14 ± 5.25 0.911 ± 0.03 68.39 ± 0.73

S128000 0.909 ± 0.03 76.09 ± 0.74 0.997 ± 0.01 27.68 ± 9.15 0.912 ± 0.03 102.1 ± 0.88

Reddit 0.911 ± 0.02 279.7 ± 1.10 0.992 ± 0.01 207.2 ± 42.1 0.922 ± 0.01 327.5 ± 13.9

5.2 Machine Learning

We perform the following experiments related to an ML task.

1. In the first set of experiments we follow the setup from [Wu et al., 2019, Whitehouse et al., 2022]
and train a linear regression model on a dataset of timeseries generated by Twitter usage [The
AMA Team at Laboratoire d’Informatique de Grenoble] (subsampled to 100000 data-points) and
search for a model with at most 0.05 MSE. We compare the following mechanisms.

(a) Brownian motion with the AboveThreshold mechanism using sufficient statistics perturba-
tion [Vu and Slavkovic, 2009], a sequence 0.1, 0.2, . . . 1 of values of ε for Brownian motion,
and 0.01 for AboveThreshold on the MSE of the model.

(b) Algorithm 1 with the DP-SGD [Abadi et al., 2016] mechanism, learning linear models with
ε′ = 0.01, possible values of ε in {0.1, 0.2, . . . 1}, learning rate in {0.01, 0.1, 1}, epochs in
{1, 5, 10}, batch sizes in {32, 64, 128, 256, 512, 1000}, and clipping norms in {0.1, 1, 10}.

(c) Doubling mechanism Wu et al. [2019] running DP-SGD tuned according to Papernot and
Steinke [2022] with identical hyperparameters to those used by Algorithm 1.

2. In the second set, we train a classifier for the MNIST dataset [LeCun et al., 2010] and search for the
minimal ε such that the model has at least 0.6 accuracy. We compare the following mechanisms.
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Table 3: Comparison of the ε values used by the Brownian Motion mechanism, doubling mechanism,
and Algorithm 1 when applied to machine learning tasks. The numbers represent the average ex-post
(ε, 10−6)-DP guarantees over 100 trials.

Dataset Brownian Motion Doubling Mechanism Algorithm 1

Twitter 0.77 0.55 0.28
MNIST 0.62 0.38 0.32
Gisette 0.33 0.54 0.23

(a) Brownian motion with the AboveThreshold mechanism using output perturbation [Vu and
Slavkovic, 2009], a sequence 0.1, 0.2, . . . 1 of values of ε for Brownian motion, and 0.01 for
AboveThreshold on accuracy of the model.

(b) Algorithm 1 with DP-SGD mechanisms learning CNN models (for the architecture see
Basic MNIST Example) with ε′ = 0.01, possible values of ε in {0.1, 0.2, . . . 1}, learning
rate in {0.01, 0.1, 1}, epochs in {1, 5, 10}, batch sizes in {32, 64, 128, 256, 512, 1000}, and
clipping norms in {0.1, 1, 10}.

(c) Doubling mechanism Wu et al. [2019] running DP-SGD tuned according to Papernot and
Steinke [2022] with identical hyperparameters to those used by Algorithm 1.

3. In the third set, we train a classifier for the Gisette [Guyon et al., 2004] dataset and search for the
minimal ε such that the model has at least 0.4 accuracy. We compare the following mechanisms.
(a) Brownian motion with the AboveThreshold mechanism using output perturbation [Vu and

Slavkovic, 2009], a sequence 0.1, 0.2, . . . 1 of values of ε for Brownian motion, and 0.01 for
AboveThreshold on accuracy of the model.

(b) Algorithm 1 with DP-SGD mechanisms learning a linear model with ε′ = 0.01, possible
values of ε in {0.1, 0.2, . . . 1}, learning rate in {0.01, 0.1, 1}, epochs in {1, 5, 10}, batch
sizes in {32, 64, 128, 256, 512, 1000}, and clipping norms in {0.1, 1, 10}.

(c) Doubling mechanism Wu et al. [2019] running DP-SGD tuned according to Papernot and
Steinke [2022] with identical hyperparameters to those used by Algorithm 1.

(In both cases we use Opacus [Yousefpour et al., 2021] for training DP-SGD.)

The results of comparison can be seen in Table 3. Our algorithm significantly outperforms the
previous Brownian motion algorithms and doubling mechanism. This can be explained by the fact
that DP-SGD vastly outperforms the simpler models in these settings [Yu et al., 2020] and the fact
that doubling requires running tuning which (in order to keep the budget small) needs high α. Our
algorithm also consistently outperforms the doubling mechanism. This superior performance can be
attributed to the doubling mechanism’s privacy loss being approximately two times greater than that
of the tuning mechanism which in-turn is about two times greater than the underlying procedure.

6 Conclusion and Open Problems

In this work, we give a simple yet general algorithm for DP hyperparameter tuning that works even
for ex-post DP and RDP. Despite its generality, our experiments show that it achieves significant
advantage over previous algorithms for ML applications. Two immediate questions remain. First,
is it possible to get rid of the ℓ’s in Theorem 10? Second, and somewhat related, is the question
of proving a zCDP version of the result, which would improve the analysis in the case of analytics
workloads since the Gaussian mechanism is typically used in those cases.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction only mentions the statements proven in the paper.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the paper explicitly states the limitations of the results.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: The paper proves all theoretical results.
Guidelines:
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper describes the algorithms and datasets used in the paper; moreover, all the
experiments are using standard algorithms with the sole exception of the main contribution of the
paper since it is a new algorithm.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The dataset used in the paper are standard and the paper has the code in the
supplemental materials.
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Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to repro-
duce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The choice of train-test data splits and optimizers used in the experiments are not
significant for the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, the paper explains the significance of the important experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: all the experiments are performed on a personal laptop within 10 minutes each.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimen-

tal runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms ethic guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: The paper is mostly theoretical without direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
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Justification: The paper doesn’t use LLM as a component of research.
Guidelines:
• The answer NA means that the core method development in this research does not involve

LLMs as any important, original, or non-standard components.
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A Warm-Up: Ex-Post AboveThreshold Mechanisms

Before we present our full ex-post DP Hyperparameter Tuning algorithm, it would be helpful to recall
the Sparse Vector Technique [Dwork et al., 2009]. In particular, our ex-post DP Hyperparameter
Tuning algorithm derives inspiration from the so-called AboveThreshold mechanism.

A.1 Classic AboveThreshold Mechanism

To state the AboveThreshold mechanism, recall that the sensitivity of a functionf : D → Z is defined
as ∆(f) := maxD∼D′ |f(D) − f(D′)|, where the maximum is taken over all neighboring input
datasets D ∼ D′. The setting here is that we are given sensitivity-1 functionsf1, . . . , fd and the goal
is to output the first index i such that fi(D) is at least zero.7 The mechanism works by first sampling
a Geometric noise k to be its noisy threshold; then, for each fi, we add an independent Geometric
noise yi to it and check if it exceeds the threshold. If it does, we output i and terminate. It turns out
that, in addition to i, we can get an estimate of fi (via fi(D)+ yi− k) for free without any additional
privacy cost [Ding et al., 2023]. A full description is given in Algorithm 3.

Algorithm 3 AboveThreshold Mechanism

Parameters: Sensitivity-1 functions fi : D → Z and budget parameters εi for i ∈ [d], and additional
privacy budget ε′ > 0.

Input: Dataset D.
Sample k ∼ Geome−ε′ {threshold noise}
for i = 1, . . . , d do

Sample yi ∼ Geome−εi {query noise}
if fi(D) + yi ≥ k then

return (fi(D) + yi − k, i) and terminate
return ⊥

This algorithm generalizes the standard ex-ante DP AboveThreshold mechanism since we allow the
noise for each fi to have different privacy budget parameter εi. Indeed, with this mechanism, we
show that the ex-post privacy budget spent for releasing fi is only 2εi + ε′, as stated below.
Theorem 12 (Ex-post AboveThreshold). Define a function ε̃ such that ε̃(o, i) = 2εi + ε′ for all
o ∈ Z≥0, i ∈ [d] and ε̃(⊥) = ε′. Then, Algorithm 3 is ex-post ε̃-DP.

Our proof closely mirrors the proof for the analogous ex-ante AboveThreshold. Namely, for
neighboring datasets D,D′ and output (o, i), we can couple the Geometric noises such that
k′ = k + 1, y′i = yi + 1 + fi(D)− fi(D

′) and all other noises remain the same. It is not hard to see
that, if the algorithm returns (o, i) on D, it returns (o, i) on D′ as well. Furthermore, due to property
(1) of the Geometric distribution, the probability decreases by at most e2εi+ε′ factor. This idea is
formalized in the proof given below.

Proof of Theorem 12. Consider neighboring datasets D ∼ D′. Let A,A′ be the output distributions
of Algorithm 3 on D,D′, respectively. Below, we write Geomp(< x) as a shorthand for Geomp({x−
1, x− 2, . . . }) =

∑x−1
y=0 Geomp(y).

First, consider any output (o, i). This output happens exactly when yi = o + k − fi(D) and
yj < k − fj(D) for all j < i. Thus, we have

A(o, i) =
∞∑
k=0

Geome−ε′ (k) ·Geome−εi (o+ k − fi(D))

i−1∏
j=1

Geome−εj (< k − fj(D)) (2)

Since ∆(fi) ≤ 1, we have o+ k − fi(D) ≤ o+ k + 1− fi(D
′); applying (1) then yields

Geome−εi (o+ k − fi(D)) ≤ eεi·(1−fi(D
′)+fi(D)) ·Geome−εi (o+ k + 1− fi(D

′))

≤ e2εi ·Geome−εi (o+ k + 1− fi(D
′)), (3)

7We can easily handle non-zero threshold τ by considering fi − τ instead.

19



where the second inequality again uses ∆(fi) ≤ 1.

Furthermore, ∆(fj) ≤ 1 implies Geome−εj (< k − fj(D)) ≤ Geome−εj (< k + 1 − fj(D
′)).

Moreover, (1) implies Geome−ε′ (k) ≤ eε
′ ·Geome−ε′ (k + 1). Plugging these two inequalities and

(3) into (2) yields

A(o, i)

≤
∞∑
k=0

eε
′
·Geome−ε′ (k + 1) · e2εi ·Geome−εi (o+ k + 1− fi(D

′)) ·
i−1∏
j=1

Geome−εj (< k + 1− fj(D
′))

= e2εi+ε′
∞∑
k=0

Geome−ε′ (k + 1) ·Geome−εi (o+ k + 1− fi(D
′)) ·

i−1∏
j=1

Geome−εj (< k + 1− fj(D
′))

≤ e2εi+ε′ · A′(o, i).

Next, consider the output ⊥. This output happens when yj < k − fj(D) for all j ∈ [d]. Thus, we
have

A(⊥) =

∞∑
k=0

Geome−ε′ (k) ·
∏
j∈[d]

Geome−εj (< k − fj(D))

≤
∞∑
k=0

Geome−ε′ (k) ·
∏
j∈[d]

Geome−εj (< k + 1− fj(D
′))

≤
∞∑
k=0

eε
′
·Geome−ε′ (k + 1) ·

∏
j∈[d]

Geome−εj (< k + 1− fj(D
′))

= eε
′

∞∑
k=0

Geome−ε′ (k + 1) ·
∏
j∈[d]

Geome−εj (< k + 1− fj(D
′))

≤ eε
′
· A′(⊥),

where again we use ∆(f) ≤ 1 in the first inequality and (1) in the subsequent inequality.

A.2 Optimized Noise via Monotonicity

Let ⪰ denote any total order on D. We say that a function f is monotone (with respect to ⪰,∼) iff
the following holds: f(D) ≥ f(D′) for all D ∼ D′ such that D ⪰ D′. An example of this is when
∼ denotes an add-remove neighboring notion, i.e., D ∼ D′ iff D results from adding or removing a
user from D′; in this case, we may let ⪰ be based on the size of the dataset, and f is monotone iff
adding a user does not decrease the function value. Such a property holds when f is counting the
number of users satisfying certain criteria, which is an example used in our experiment in Section 5.

For monotone f , the same algorithm (Algorithm 3) yields a better ex-post guarantee, where we do
not need to pay the factor of 2 in front of εi, as stated below. Note that this is similar to a saving seen
in the ex-ante setting Ding et al. [2023].
Theorem 13 (Ex-post Monotone AboveThreshold). Define a function ε̃ such that ε̃(i) = εi + ε′ and
ε̃(⊥) = ε′. If f is monotone, then Algorithm 3 is ex-post ε̃-DP.

The proof proceeds similarly to before except that, in the monotone case, either (i) fi(D′) ≥ fi(D)
in which case the difference y′i − yi is already at most one (instead of two as before), or (ii)
fi(D

′) ≤ fi(D) in which case we can instead couple with k′ = k, y′i = yi + fi(D) − fi(D
′)

resulting in y′i − yi ≤ 1 again.

Proof of Theorem 13. We use similar notations as in the proof of Theorem 12. The case of ⊥ output
is exactly the same as in that proof. For the output (o, i), we consider the following two subcases,
based on whether D′ ⪰ D. First, let us consider the case D′ ⪰ D. In this case, the proof is exactly
the same as before except that, since fi(D

′) ≥ fi(D), in (3), we instead get

Geome−εi (o+ k − fi(D)) ≤ eεi·(1−fi(D
′)+fi(D)) ·Geome−εi (o+ k + 1− fi(D

′))
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≤ eεi ·Geome−εi (o+ k + 1− fi(D
′)).

Following the same line of reasoning as before, we then get A(o, i) ≤ eεi+ε′ · A′(o, i) as desired.

Finally, let us consider the case D ⪰ D′. In this case, since fj(D) ≥ fj(D
′), we have

A(o, i) =
∞∑
k=0

Geome−ε′ (k) ·Geome−εi (o+ k − fi(D))

i−1∏
j=1

Geome−εj (< k − fj(D))

≤
∞∑
k=0

Geome−ε′ (k) ·Geome−εi (o+ k − fi(D))

i−1∏
j=1

Geome−εj (< k − fj(D
′))

Since o+ k − fi(D) ≤ o+ k − fi(D
′), we can apply (1) to arrive at

Geome−εi (o+ k − fi(D)) ≤ eεi·(fi(D)−fi(D
′)) ·Geome−εi (o+ k − fi(D

′))

≤ eεi ·Geome−εi (o+ k − fi(D
′)),

where the second inequality follows from ∆(fi) ≤ 1.

Combining the above two inequalities then gives

A(o, i) ≤
∞∑
k=0

Geome−ε′ (k) ·Geome−εi (o+ k − fi(D))

i−1∏
j=1

Geome−εj (< k − fj(D
′))

≤
∞∑
k=0

Geome−ε′ (k) · eεi ·Geome−εi (o+ k − fi(D
′))

i−1∏
j=1

Geome−εj (< k − fj(D
′))

= eεi · A′(o, i)

≤ eεi+ε′ · A′(o, i),

which concludes our proof.

A.3 Generalized AboveThreshold Mechanism via Random Dropping

Next, we present a new generalized algorithm for AboveThreshold with ex-post DP guarantees
(Algorithm 4). We consider the following general setting: We have mechanisms M1, . . . ,Md :
D → O and the goal is to output the first mechanism such that Mi(D) is at least a certain threshold
τ ∈ O. Our main idea is random dropping, where, instead of always comparing Mi(D) with τ ,
we only compare with a certain probability; otherwise, we drop Mi(D) completely. While this
bears some similarity with the random stopping technique of Liu and Talwar [2019], our main
innovation is the use of correlated randomness k that is sampled at the beginning of the algorithm
and determines the dropping probabilities of all the mechanisms. This idea is inspired by the above
analysis of the AboveThreshold mechanism. Indeed, the high-level structure of our proof follows that
of AboveThreshold: we couple k with k + 1 in the two neighboring datasets, and bound the ratio of
the output probabilities in the two cases. This is formalized in the proof below.

Algorithm 4 Generalized AboveThreshold Mechanism with Random Dropping.

Parameters: Distribution E , εi-DP mechanismsMi : D → O, additional privacy budget ε′ > 0,
and threshold τ ∈ O

Input: Dataset D.
Sample k ∼ Geome−ε′

for i = 1, . . . , d do
Sample yi ∼ Ber(e−εi·k) {random drop}
if yi = 1 then

oi ←Mi(Di)
if oi ≥ τ then

return (oi, i)
return ⊥
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Our privacy guarantee for Algorithm 4 is stated below. It says that, if the final output is fromMi,
then the privacy budget we pay is only 2εi + ε′. The value of ε′ can be arbitrarily small, although
setting it too small results in a larger drop probability. The latter can be mitigated by repeating each
mechanismMi multiple times in the input, which allows us to set that the desired expected number
of times that each mechanism is run.
Theorem 14 (Ex-post Generalized AboveThreshold). Define a function ε̃ such that ε̃(o, i) = 2εi+ ε′

and ε̃(⊥) = ε′. Then, Algorithm 4 is ex-post ε̃-DP.

Proof of Theorem 14. Consider neighboring datasets D ∼ D′. Let A,A′ be the output distributions
of Algorithm 1 on D,D′, respectively and let Qi,Q′

i be the output distributions ofMi on D,D′,
respectively. Furthermore, let O≥τ := {o′ ∈ O | o′ ≥ τ}.
Consider any output (o, i) ∈ O × [d]. Note that, if o < τ , then A(o, i) = A′(o, i) = 0. Otherwise, if
o ≥ τ , then the algorithm outputs (o, i) iff yj = 0 or oj < τ for all j < i, and yi = 1 and oi = o.
Thus, we have

A(o, i) =
∞∑
k=0

Geome−ε′ (k) · e−εikQi(o) ·
∏
j<i

(
1− e−εjkQj(O≥τ )

)
.

SinceMj is εj-DP, it holds thatQj(O≥τ ) ≥ e−εjQ′
j(O≥τ ). Similarly, we haveQi(o) ≤ eεi ·Q′

i(o).
Finally, (1) implies that Geome−ε′ (k) ≤ eε

′ ·Geome−ε′ (k+ 1). Plugging these into the above gives

A(o, i) ≤
∞∑
k=0

(
eε

′
·Geome−ε′ (k + 1)

)
· e−εik · (eεiQ′

i(o)) ·
∏
j ̸=i

(
1− e−εjk ·

(
e−εjQ′

j(O≥τ )
))

= e2εi+ε′
∞∑
k=0

Geome−ε′ (k + 1) · e−εi(k+1)Q′
i(o) ·

∏
j ̸=i

(
1− e−εj(k+1)Q′

j(O≥τ )
)

≤ e2εi+ε′ · A′(o, i).

Finally, consider the output ⊥. For the algorithm to output ⊥, we must have yj = 0 or oj < τ for all
j ∈ [d]. Similar to above, we thus have

A(⊥) =
∞∑
k=0

Geome−ε′ (k) ·
∏
j∈[d]

(
1− e−εjkQj(O≥τ )

)
.

≤
∞∑
k=0

(
eε

′
·Geome−ε′ (k + 1)

)
·
∏
j∈[d]

(
1− e−εjk ·

(
e−εjQ′

j(O≥τ )
))

.

= eε
′

∞∑
k=0

Geome−ε′ (k + 1) ·
∏
j∈[d]

(
1− e−εj(k+1)Q′

j(O≥τ )
)

≤ eε
′
· A′(⊥).

Theorem 14 can be viewed as a generalization of Liu and Talwar [2019] who prove a similar statement
for ex-ante DP. Nevertheless, we stress that our mechanism is based on a different technique. As
demonstrated in the next section, our technique is more robust as it generalizes to hyperparameter
tuning (without a known threshold) with a similar privacy guarantee, whereas Liu and Talwar [2019]
have to pay a factor of 3 instead of 2 in that setting.

B Missing proofs for Ex-post Rényi DP

To prove Theorem 10, we start by collecting some useful facts. The first is the following inequality
which is sometimes called the “reverse Hölder’s inequality”; we provide the proof for completeness.
Lemma 15. Let X be a random variable and f, g be any functions on X . Then, for any α > 1, we
have

E[f(X)]αE[g(X)]1−α ≤ E[f(X)αg(X)1−α].
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Proof. By Hölder’s inequality, we have

E[f(X)αg(X)1−α]
1
αE[g(X)]

α−1
α ≥ E[f(X)].

Rearranging this yields the claimed inequality.

Lemma 16. For all ε > 0, α > 1, if a, b ∈ (0, 1) are such that a1−αbα ≤ eε(α−1), then, for all
ℓ > 0,

(1− a)α
(
1− e−ε(1+ℓ)b

)1−α

≤ exp
(
e−ε(1+αℓ)

)
.

Proof. From 1 + x ≤ ex for all x ∈ R, the LHS is at most exp((α− 1)e−ε(1+ℓ)b− αa). It is thus
sufficient to bound (α− 1)e−ε(1+ℓ)b− αa.

To do this, observe that the condition a1−αbα ≤ eε(α−1) implies

a ≥ e−ε · b
α

α−1 . (4)

Thus, we may bound the desired term as follows.

(α− 1)e−ε(1+ℓ)b− αa

(4)
≤ (α− 1)e−ε(1+ℓ)b− α · e−ε · b

α
α−1

= e−ε
(
(α− 1)e−εℓ − αb

1
α−1

)
b

= e−ε

(
α− 1

α

)α−1
((

(α− 1)e−εℓ − αb
1

α−1

)1( α

α− 1
· b

1
α−1

)α−1
)

(⋆)

≤ e−ε

(
α− 1

α

)α−1

(
(α− 1)e−εℓ − αb

1
α−1

)
+ (α− 1) ·

(
α

α−1 · b
1

α−1

)
α

α

= e−ε

(
α− 1

α

)α−1(
(α− 1)e−εℓ

α

)α

= e−ε(1+αℓ)

(
α− 1

α

)2α−1

≤ e−ε(1+αℓ),

where we use the weighted AM–GM inequality for (⋆).

Proof of Theorem 10. We will use the same notations as in the proof of Theorem 8.

First, let us rearrange the term we wish to bound;∑
õ∈O×[d]∪{⊥}

(A(õ))α(A′(õ))1−αe(1−α)ε̃(õ)

= (A(⊥))α(A′(⊥))1−αe−(α−1)ε̃(⊥) +
∑

o∈O,i∈[d]

(A(o, i))α(A′(o, i))1−αe−(α−1)ε̃(o,i)

≤ 1

τ + 1
+

∑
o∈O,i∈[d]

(A(o, i))α(A′(o, i))1−αe−(α−1)ε̃(o,i). (5)

We will now bound each term (A(o, i))α(A′(o, i))1−α above. We have

A(o, i) = Ex∼Expε′

e−εi·xQi(o)
∏

j∈[d]∖{i}

(1− e−εj ·xQj(U
j
o,i))


= Qi(o) · Ex∼Expε′

e−εi·x
∏

j∈[d]∖{i}

(1− e−εj ·xQj(U
j
o,i))

 ,
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and

A′(o, i)

= Ex∼Expε′

e−εi·xQ′
i(o)

∏
j∈[d]∖{i}

(1− e−εj ·xQ′
j(U

j
o,i))


=

∫ ∞

0

ε′e−ε′x ·
(
e−εi·xQ′

i(o)
) ∏
j∈[d]∖{i}

(1− e−εj ·xQ′
j(U

j
o,i)) dx

≥
∫ ∞

1+ℓi

ε′e−ε′x ·
(
e−εi·xQ′

i(o)
) ∏
j∈[d]∖{i}

(1− e−εj ·xQ′
j(U

j
o,i)) dx

= e−(1+ℓi)(ε
′+εi)Q′

i(o) ·
∫ ∞

0

ε′e−ε′x · e−εi·x
∏

j∈[d]∖{i}

(1− e−εj(1+ℓi) · e−εj ·xQ′
j(U

j
o,i)) dx

= e−(1+ℓi)(ε
′+εi)Q′

i(o) · Ex∼Expε′

e−εi·x
∏

j∈[d]∖{i}

(1− e−εj(1+ℓi) · e−εj ·xQ′
j(U

j
o,i))

 ,

where the integrals are due to exponential random variables x.

Combining these two inequalities together with Lemma 15, we get that

(A(o, i))α(A′(o, i))1−α

≤ e(α−1)(1+ℓi)(ε
′+εi)(Qi(o))

α(Q′
i(o))

1−α

· Ex∼Expε′

e−εi·x ·
∏

j∈[d]∖{i}

(1− e−εi·xQj(U
j
o,i))

α(1− e−εi(1+ℓi) · e−εi·xQ′
j(U

j
o,i))

1−α

 .

To bound the inner term, first consider a post-processing of mechanism Mj where, after running, we
only output whether the score is greater than si. Since this is a post-processing of Mj , this mechanism
is also (α, εj)-RDP. As such, we have (Qj(U

j
o,i))

1−α(Q′
j(U

j
o,i))

α ≤ eεj(α−1). Thus, we may apply
Lemma 16 to conclude that

(1− e−εi·xQj(U
j
o,i))

α(1− e−εi(1+ℓi) · e−εi·xQ′
j(U

j
o,i))

1−α ≤ exp
(
e−εj(1+αℓi)

)
.

Plugging this into the above, we arrive at

(A(o, i))α(A′(o, i))1−α

≤ e(α−1)(1+ℓ)(ε′+εi)(Qi(o))
α(Q′

i(o))
1−α · exp

 ∑
j∈[d]∖{i}

e−εj(1+αℓi)

Ex∼Expε′

[
e−εi·x

]

= e(α−1)(1+ℓ)(ε′+εi)(Qi(o))
α(Q′

i(o))
1−α · exp

 ∑
j∈[d]∖{i}

e−εj(1+αℓi)

 τi

≤ τi
τ + 1

· e(α−1)(ε̃(o,i)−εi)(Qi(o))
α(Q′

i(o))
1−α,

where in the last inequality we use our choice of ℓi and ε̃(o, i).

Combining with (5), we thus get∑
õ∈O×[d]∪{⊥}

(A(õ))α(A′(õ))1−αe(1−α)ε̃(õ)

≤ 1

τ + 1
+
∑
i∈[d]

∑
o∈O

τi
τ + 1

e−(α−1)εi
(Qi(o))

α

(Q′
i(o))

α−1

=
1

τ + 1
+
∑
i∈[d]

τi
τ + 1

e−(α−1)εi

(∑
o∈O

(Qi(o))
α

(Q′
i(o))

α−1

)
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≤ 1

τ + 1
+
∑
i∈[d]

τi
τ + 1

· e−(α−1)εie(α−1)εi

=
1

τ + 1
+
∑
i∈[d]

τi
τ + 1

= 1.

C Fully-Adaptive Composition with Ex-Post Rényi DP

Proof of Theorem 11. Without loss of generality, we can assume that the adversary is always issuing
queries such that

∑i−1
j=1 ε̃j(oj) + supo ε̃i(oi) ≤ ε for all i ∈ [n]. Let us denote the query issued by

the adversary after seeing o1,. . . , oi−1 as D(0)
o1,...,oi−1 , D(1)

o1,...,oi−1 , ε̃o1,...,oi−1
, andMo1,...,oi−1

. Let
us also denote the distribution ofMo1,...,oi−1

(Db
o1,...,oi−1

) by P
(b)
o1,...,oi−1 . Note that

e(α−1)Dα(IT0(Fα,ε;A) ∥ IT1(Fα,ε;A))

=
∑

o1,o2,...,on

(P (0)(o1)P
(0)
o1 (o2) · · ·P (0)

o1,...,on−1(on))
α

(P (1)(o1)P
(1)
o1 (o2) · · ·P (1)

o1,...,on−1(on))
α−1

=
∑

o1,o2,...,on−1

(P (0)(o1)P
(0)
o1 (o2) · · ·P (0)

o1,...,on−2(on−1))
α

(P (1)(o1)P
(1)
o1 (o2) · · ·P (1)

o1,...,on−2(on−1))α−1

(∑
on

(P
(0)
o1,...,on−1(on))

α

(P
(1)
o1,...,on−1(on))

α−1

)
.

Further, note thatMo1,...,on−1 is (α, ε̃o1,...,on−1)-RDP and hence,

∑
on

(P
(0)
o1,...,on−1(on))

α

(eε̃o1,...,on−1
(on)P

(1)
o1,...,on−1(on))

α−1
≤ 1.

Let L(o1, . . . , ok) =
(P (0)(o1)P

(0)
o1

(o2)···P (0)
o1,...,ok−1

(ok))
α

(eε̃(o1)P (1)(o1)e
ε̃o1 (o2)P

(1)
o1

(o2)···e
ε̃o1,...,ok−1

(ok)
P

(1)
o1,...,ok−1

(ok))α−1
. Then

e(α−1)Dα(IT0(Fα,ε;A) ∥ IT1(Fα,ε;A))

e(α−1)ε

=
1

e(α−1)ε

∑
o1,o2,...,on

(P (0)(o1)P
(0)
o1 (o2) · · ·P (0)

o1,...,on−1(on))
α

(P (1)(o1)P
(1)
o1 (o2) · · ·P (1)

o1,...,on−1(on))
α−1

≤
∑

o1,o2,...,on

(P (0)(o1)P
(0)
o1 (o2) . . . P

(0)
o1,··· ,on−1(on))

α

(eε̃(o1)P (1)(o1)e
ε̃o1 (o2)P

(1)
o1 (o2) · · · eε̃o1,...,on−1

(on)P
(1)
o1,...,on−1(on))

α−1

=
∑

o1,...,on

L(o1, . . . , on)

=
∑

o1,...,on−1

L(o1, . . . , on−1)

(∑
on

(P
(0)
o1,...,on−1(on))

α

(eε̃o1,...,on−1
(on)P

(1)
o1,...,on−1(on))

α−1

)
≤

∑
o1,...,on−1

L(o1, . . . , on−1)

≤
∑

o1,...,on−2

L(o1, . . . , on−2)

∑
on−1

(P
(0)
o1,...,on−2(on−1))

α

(eε̃o1,...,on−2
(on−1)P

(1)
o1,...,on−2(on−1))α−1


...

≤
∑
o1

L(o1) ≤ 1,which implies that Dα

(
IT0(Fα,ε;A) ∥ IT1(Fα,ε;A)

)
≤ ε.
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