
Activity Pruning for Efficient Spiking Neural Networks

Tong Bu
Institution for Artificial Intelligence

School of Computer Science
Peking University

putong30@pku.edu.cn

Xinyu Shi
Institution for Artificial Intelligence

School of Computer Science
Peking University

xyshi@pku.edu.cn

Zhaofei Yu ∗

Institution for Artificial Intelligence
School of Computer Science

Peking University
yuzf12@pku.edu.cn

Abstract

While sparse coding plays an important role in promoting the efficiency of biologi-
cal neural systems, it has not been fully utilized by artificial models as the activation
sparsity is not well suited to the current structure of deep networks. Spiking Neural
Networks (SNNs), with their event-driven characteristics, offer a more natural
platform for leveraging activation sparsity. In this work, we specifically target
the reduction of neuronal activity, which directly leads to lower computational
cost and facilitates efficient SNN deployment on Neuromorphic hardware. We
begin by analyzing the limitations of existing activity regularization methods and
identifying critical challenges in training sparse SNNs. To address these issues, we
propose a modified neuron model, AT-LIF, coupled with a threshold adaptation
technique that stabilizes training and effectively suppresses spike activity. Through
extensive experiments on multiple datasets, we demonstrate that our approach
achieves significant reductions in average firing rates and synaptic operations
without sacrificing much accuracy. Furthermore, we show that our method com-
plements weight-based pruning techniques and successfully trains an SNN with
only 0.06 average firing rate and 2.22M parameters on ImageNet, highlighting its
potential for building highly efficient and scalable SNN models. Code is available
at https://github.com/putshua/Activity-Pruning-SNN.

1 Introduction

The human brain is remarkably energy-efficient, yet capable of performing a wide range of complex
tasks, such as reasoning and planning. One of the key factors behind this efficiency lies in the behavior
of the neurons. As a general strategy of the neural representation in the neural system [Yoshida and
Ohki, 2020], the flexibility of sparse coding enables neurons to operate in a highly energy-efficient
manner. For example, despite the large population of neurons in specific areas of the brain tasked
with particular functions, only a subset of the neuron populations will be engaged simultaneously.
Experimental evidence shows that sparse representation of visual sensory information in the primary
visual cortex enhances the selectivity and sparseness of individual neurons, thereby improving the
computational efficiency of the visual system [Vinje and Gallant, 2000].

∗Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Pruning Weights Pruning ActivityPruning Neurons

Pruning Methods Spike Activity PruningSNN
ANN

Regularization

Adaptive
Threshold

AT-LIF

Reduce activity and SOPs

Figure 1: The left figure illustrates three pruning techniques for deep models. While all methods
generally reduce model complexity, activity-based pruning is particularly effective for SNNs. The
Right part shows the basic idea of our method, where the adaptive neurons (AT-LIF) are applied to
regularize the threshold, so as to reduce the firing rate while stabilizing the training process.

A similar principle can be applied to artificial computational models through activation-based pruning,
which seeks to moderate neuron activations to mirror the efficiency in sparse neural coding and gain
efficiency in terms of time and energy consumption. However, activation pruning has not emerged
as a mainstream approach for reducing network complexity compared to more impactful pruning
methods that target network weights or structure [Kurtz et al., 2020], since the modest unstructured
sparsity induced in activation maps seldom translates into meaningful efficiency gains with artificial
neural networks on modern hardware. In contemporary architectures, the primary computational
workload is carried out via matrix multiplications, where lowering a few activation values does not
significantly cut down on computation time or resource usage.

Unlike traditional architectures, activity-based pruning offers a promising approach for brain-inspired
models [Li et al., 2024], such as spiking neural networks (SNNs). SNNs are a well-established type
of neural network that emulate the behavior of biological neurons and are increasingly recognized
as a more efficient alternative to conventional computational models [Maass, 1997]. One important
characteristic of the spiking neural networks is that it encodes information through discrete binary
spikes. Therefore, the reduction of the neural activity in SNNs will directly lead to the sparsification
of the output spike vector and the reduction of the firing rate, leading to potential computational
efficiency. It is possible to create a highly sparse network in which only a few neurons will be engaged
in one round of the computation with spike activity pruning, thus directly reducing the number of
operations of the model. Thanks to the rapid recent advancements of neuromorphic hardware [Pei
et al., 2019, DeBole et al., 2019, Davies et al., 2018, Nieves and Goodman, 2021, Fang et al., 2020,
Zenke and Neftci, 2021, Yao et al., 2024], such sparse property can be effectively leveraged by specific
neuromorphic hardware to work in an efficient and energy-saving manner, making these networks
ideal for deployment in resource-constrained environments. Even on traditional architectures such as
GPUs and deep learning accelerators, it is possible that such models can still benefit from activation
sparsity to achieve memory savings and inference speedup. This approach enables the creation of
models that are capable of performing complex tasks with minimal energy consumption, leading to
more brain-like AI systems in terms of efficiency.

In this paper, we investigate an activity pruning technique aimed at suppressing the spike output. Our
approach explores the capabilities of a novel neuron model in solving the learning dilemma in sparse
models and stabilize the training process. We also introduce a threshold adaptation mechanism to
effectively reduce neural activity. Our contributions can be summarized as:

• We specifically target the reduction of neuronal spike activity in SNNs, which directly lowers
computational cost and serves as a unique advantage for efficient computation. To achieve
this goal, we analyze the limitations of existing activity regularization methods and identify
critical challenges associated with training sparse SNN models.

• We propose a novel neuron model, AT-LIF, designed to stabilize the training of sparse
spiking networks while effectively suppressing spike activity. It incorporates a current-based
output and an adaptive threshold mechanism, which help alleviate the gradient vanishing
problem and resolve optimization conflicts.

• Extensive experiments demonstrate that our method significantly reduces spike activity and
synaptic operations while maintaining performance comparable to the baseline methods.
We further combine our proposed method with weight pruning strategies to illustrate its
potential for achieving highly sparse SNNs.

2

2 Background

2.1 Related works

Network pruning is a well-established technique for artificial neural networks, with various approaches
designed to reduce model complexity and improve efficiency. These pruning methods can typically
be categorized into three types: unstructured weight pruning [Han et al., 2015, Zhu and Gupta, 2018,
Kusupati et al., 2020], structured weight pruning [Wen et al., 2016, Mao et al., 2017, Anwar et al.,
2017], and structured neuron pruning [Yu et al., 2018, Zhuang et al., 2020]. Similar exploration
has been conducted with SNNs, where specific supervised learning algorithms are applied to prune
weights or neurons [Wu et al., 2019, Yin et al., 2021]. Most distinguishing SNN pruning methods are
inspired by biological principles, aiming to replicate the brain’s efficient learning scheme to obtain
sparse connected deep SNNs [Bellec et al., 2018, Chen et al., 2021, 2022, Shen et al., 2023]. The
others draw inspiration from existing deep learning techniques and focus on jointly sparsifying the
connections and neurons, introducing a complete pruning framework on deep SNNs [Deng et al.,
2021, Shi et al., 2024]. Notably, while various pruning methods have been proposed for spiking
neural networks Yin et al. [2021], Wu et al. [2019], Zhou et al. [2024], most focus on weight or
neuron pruning rather than developing activity-based pruning approaches in depth. The majority
of the existing pruning methods rely on adding regularization terms to constrain the firing rate of
individual neurons [Deng et al., 2021, Yan et al., 2022], or regularizing the activation value in artificial
neural networks before converting it into SNN [Neil et al., 2016]. In fact, direct regularization of
spike activity actually conflicts with the optimization goal, leading to a trade-off in performance and
sparsity, as these methods are either limited to shallow networks or fail to effectively train highly
sparse models [Narduzzi et al., 2022, Sakemi et al., 2023].

While pruning techniques are essential for training efficient SNNs, they cannot be separated from
the underlying learning process. Specialized optimization techniques are required to ensure both
efficient learning of the target function and eliminating as much redundant structure as possible. Most
researches that focus on the pruning of SNNs adopts the supervise-learning-based approaches [Bohte
et al., 2000], or more specifically, the RNN-like backpropagation-through-time (BPTT) algorithm [Wu
et al., 2018]. In this method, the surrogate gradient approximation is proposed to smooth the non-
differentiable firing function in the neuron [Lee et al., 2016, Shrestha and Orchard, 2018, Fang et al.,
2021a, Neftci et al., 2019, Zenke and Vogels, 2021, Stewart and Neftci, 2022]. Some researches also
adopted the event-driven backpropagation that is able to maintain the sparsity of the gradient [Fang
et al., 2021b, Kim and Panda, 2020, Zheng et al., 2021, Lee et al., 2020, Deng et al., 2022, Mostafa,
2017, Bohte et al., 2000, Zhu et al., 2022, Zhang et al., 2021]. Another commonly used SNN training
methods are ANN-SNN conversion approaches [Cao et al., 2015], which map the weights of a
pre-trained ANN into an rate-coding SNN [Diehl et al., 2015, Sengupta et al., 2019, Han et al., 2020,
Deng and Gu, 2021, Ding et al., 2021, Bu et al., 2022, Meng et al., 2022]. ANN-SNN conversion
is the most practical training method to train SNNs on large-scale datasets since converted SNNs
always have outstanding performance [Kim et al., 2020, Hao et al., 2023b,a].

2.2 Neuron model

In this paper, we use the widely adopted Leaky-Integrate-and-Fire model for SNNs [Izhikevich, 2004,
Gerstner et al., 2014]. The discretized dynamics of membrane potential can be summarized by

xi[t] = wijsj [t] + bi, (1)
mi[t] = τui[t− 1] + xi[t], (2)
si[t] = H(mi[t]− θi), (3)
ui[t] = (1−H(mi[t]− θi)) ·mi[t], (4)

where j and i indicate the two adjacent neurons and wij and bi represent the weight and bias of the
connection from neuron j to neuron i. At arbitrary time-step t, the current input of neuron i is xi[t]
(Eq. 1). mi[t] and ui[t] represent the value of the membrane potential before and after neuronal firing.
H(·) is the Heaviside step function. The neuron will emit a spike, denoting by the 0-1 scaler si[t]
when the membrane potential mi[t] reaches the firing threshold θi. τ is the leaky parameter and if
we explicitly set τ to 1, the neuron will degenerate to the non-leaky IF model. We demonstrate the
hard-reset function in Eq. 4 that reduce the neuron membrane potential to the resting potential 0.

3

2.3 Spike activity pruning in SNNs

A general method for learning sparse activated models with activation regularization involves modify-
ing the loss function with a penalty term that promotes sparsity in the network’s activations. There
are various techniques to implement such regularization over neuron activation, including applying
L1/L2 regularization over the average spike rate per neuron [Neil et al., 2016, Yan et al., 2022, Deng
et al., 2021], or using other regularizers [Narduzzi et al., 2022]. With the constraint of minimizing
the spike activity, the general loss function of such activity-based pruning methods consists of both
learning objectives for the specific task and the regularization term over the spike activity, which is

Ltotal =
1

M

M∑
k=1

(
Ltask (f(xk),yk)) + λs

N∑
i=1

∥si(xk)∥p

)
. (5)

We use Ltask (term in the left) and Lreg (term in the right) denotes the task-specific loss and activation
regularization loss, respectively. M represents the number of training samples and N are total neuron
numbers. xk,yk denotes the k-th data-label sample from the training dataset. f(·) is the function that
represents the input-output mapping of the model. The regularization term is λs

∑N
i=1 ∥si(xk)∥p is

the summation of the p-norm of the current output spike vector with the penalty coefficient parameter
λs, where vector si(xk) represents the output spike pattern of neuron i across all time-steps when
the model receives xk as input. Many existing activity-based pruning methods for spiking neural
networks can be considered as specific instances of this general framework, as they apply similar
principles to add regularization based on their activity levels. However, using only the activation
regularization technique cannot achieve a highly sparse model. While activation regularization can
directly promote sparsity by adding constraints on parameters, this approach often leads to a trade-off
between efficiency and accuracy. As the penalty term increases or the model becomes sparser,
performance degradation becomes more severe, limiting its practical effectiveness.

3 Method

3.1 Learning dilemma of better performance and sparser spikes

The trade-off between the model performance and activation sparsity in artificial neural networks
has been widely recognized as a challenge [Li et al., 2023, Georgiadis, 2019, Kurtz et al., 2020]. In
SNNs, this issue is even more severe due to the sparser activations and inaccurate gradient estimation
when using a surrogate gradient. Here we summarize two key challenges that significantly hinder
the learning process in the joint optimization of task-specific loss and regularization loss. These two
issues impede the effective optimization, limiting both the efficiency and performance of the model.

Conflicts on optimization target The first issue that hinders the learning process is the dilemma
between learning more sparse spike activations and learning non-zero representations from the input
data, as the optimization objectives of Ltask and Lreg are inherently contradictory. Let us assume
that in the i-th neuron, when the model receives the k-th data sample xk from the training dataset, ŷi

is the optimal output feature representation for neuron i that we attempt to learn. The regularization
over the spike patterns are L2 norm. Under such assumption, the learning objective can be rewritten
as

Ltotal =
1

M

M∑
k=1

(
N∑
i=1

∥si(xk)− ŷi∥22 + λs

N∑
i=1

∥si(xk)∥22

)
(6)

=
1

M

M∑
k=1

N∑
i=1

(
∥si(xk)− ŷi∥22 + λs∥si(xk)− 0∥22

)
. (7)

The Eq. 7 illustrates a fundamental conflict between the target loss and the regularization term in the
learning process. One the one hand, minimizing the target loss typically encourages the model to
capture intricate patterns in the data and learning non-zero feature representations. The spike-activity
regularization, on the other hand, encourages sparser spike patterns and less spike output. Therefore,
there is an obvious trade-off between effectively learning an inner representation from input data
and reducing spike activity at each layer. The reduction of the spike disrupts the representation
learning at each layer since the regularization term inhibits spike firing. The trade-off between the

4

two objectives makes it challenging to simultaneously optimize for both effective representation
learning and minimal spike activity.

Gradient vanishing problem with sparse activity The other issue that impedes the learning process
of sparse SNNs comes from the learning process when using gradient-based learning. It has been
observed that the gradient vanishing problem may significantly degrade the performance of the SNN
when using Backpropagation-Through-Time (BPTT) [Fang et al., 2021a]. Furthermore, this issue
becomes even more severe and prevalent when activity regularization is applied, as the sparsity of
spike activity will further induce gradient vanishing and prevent the model from convergence. To
illustrate this issue, we first provide a theoretical analysis showing that excessive regularization of the
average firing rate can cause the training process to be trapped at a saddle point.

Theorem 1. We define S = {w|∀l, t sl[t] = 0} as the set of all parameter sets such that the
output spike at arbitrary layers and time-steps is all zero, then the S is a set of saddle points for the
optimization of the total loss Ltotal, which is

∀i
∑
t

si[t] → 0 ⇒ |∂Ltotal

∂wij
| → 0, (8)

∂Ltotal

∂wij
= 0, ∀wij ∈ S (9)

S denotes the set of all parameter sets such that the output spike at an arbitrary layer and time is all
zero. As described in the Eq. 9, we can prove that, in practice, the S is a set of critical points for the
optimization of the total loss Ltotal, since the gradient of the weight vectors with respect to the total
loss ∇wLtotal is all zero and normally it is not the global minima of the total loss. Therefore, any
w ∈ S is a saddle point of the optimization problem, and the gradient will converge to zero when the
spike output is zero. Detailed proof will be provided in the supplementary material.

This theorem identifies a set of saddle points in the loss function, highlighting a critical issue in the
optimization process. When regularizing spike activity, the model might easily fall into the local
minima with extremely sparse activity. In this case, the learning process will stop since the gradient
comes to zero, and the optimization process will be trapped at the saddle point. This phenomenon
emphasizes the need for carefully designed regularization strategies to avoid gradient vanishing and
maintain effective learning dynamics.

3.2 Adaptive threshold LIF neuron

In the previous section, we identify two key issues that hinder the training of the sparse activated
spiking neural networks from two perspectives: the conflict in optimization target and the potential
gradient vanishing problem during optimization. Therefore, in this section, to alleviate the impact of
the learning dilemma, we provide a feasible solution by introducing the Adaptive Threshold Neuron
(AT-LIF), which includes: 1) introducing the adaptation mechanism to the neuron threshold; 2) using
current-based output with 0-θ value instead of 0-1 spike output.

With the adaptation mechanism, the threshold value θi evolves throughout training and adapt to
the spike frequency at each iteration. The threshold thus becomes a learnable parameter during the
training process and plays a role of both controlling the firing frequency of the neurons and the
efficacy of transmitting outputs to the next layer:

oi[t] = θi ·H(mi[t]− θi) = θisi[t], (10)
xi[t] = wijoj [t] + bi. (11)

We use oi[t] ∈ {0, θi} to represent the output of the AT-LIF neuron instead of the si[t] in the common
LIF neuron (Eq. 1, 3), which scales up the neuron output while the average activity is low. Note
that this mechanism does not imply graded output spikes, as the scaling by the threshold value does
not alter the binary nature of the spike outputs. During inference, when the thresholds are fixed,
the scaling can be absorbed into the subsequent layer’s weights, ensuring full compatibility with all
types of neuromorphic hardware. Intuitively, increasing the threshold reduces the firing frequency
while preserving the average output value. Before introducing the detailed adaptive algorithm, we
first demonstrate how threshold adaptation gradually reduces the neuron activity (Fig. 2). In this toy
example, we continually add constant input to the AT-LIF neuron and vanilla LIF neuron and compare

5

0 10 20 30 40 50 60 70 80
Time (ms)

0

10

20

30

40
Membrane Voltage m[t]

Threshold θt
Average Output

0 10 20 30 40 50 60 70 80
Time (ms)

0

10

20

30

40
Membrane Voltage m[t]

Threshold Value θt
Average Output

Figure 2: Left: Behavior of the vanilla LIF neuron; Right: Behavior of the AT-LIF neuron. In both
figures, the black curve represents the change of the membrane potential, while the green curve
represents the threshold value and the blue curve represents the average neuronal output over time.

both the output and average firing rate of these two different types of neurons. In the AT-LIF model,
the threshold will increase slightly after each output spike, while the threshold of the vanilla LIF will
remain constant. Such adaptation of the threshold helps reduce the firing rate while preventing a drop
of the average output of the neuron. These results demonstrate the potential of the AT-LIF model
to suppress output spiking activity while preserving stable output dynamics and faithful neuronal
representation of input information.

3.3 Threshold adaptation for sparse activity

In practice, we incorporate the threshold adaptation mechanism into the Backpropagation-Through-
Time (BPTT) algorithm [Wu et al., 2018] by treating the threshold at each layer as a learnable
parameter during training. In order to constrain the spike activity, we regularize the threshold value
to minimize the neuron firing rate. To constrain spike activity, we regularize the threshold values
by minimizing the firing rate at each layer. Specifically, the thresholds are optimized to minimize
both the task-specific loss and the activity regularization loss (argminθ Ltotal), while the synaptic
weights are updated solely to minimize the task-specific target loss. Based on this formulation, we
derive the threshold update rule at each update iteration in Eq. 12.

∆θi = η

(
∂Ltask

∂θi
+ λθ

T∑
t=1

si[t]
∂oi[t]

∂θi

)
, (12)

where T is the inference time-steps for the SNN model and η is the learning rate during the training
process. ∂si[t]

∂θi
can be estimated by the surrogate function. To distinguish from the regularization-

based method over average spike activity, we use λθ to represent the coefficient parameter of the
threshold adaptation. In practice, we consider each θi as a learnable parameter that is involved in
the training process, while also manually regularize its value at each iteration according to Eq. 12.
We also demonstrate the forward/backward information flow for AT-LIF neuron in right part of the
Fig 3. The full derivation and pseudo-code of the overall algorithm are provided in the supplementary
material.

As for the surrogate function, we consider the triangle-shaped function as surrogate of the Heaviside
function [Esser et al., 2016] to estimate the derivative of the firing function of the AT-LIF neuron
(Eq. 13). To prevent gradient explosion, the upper bound of the surrogate function is set to 1 while
the design principle of the triangle-shaped surrogate function is strictly followed. Leveraging this
surrogate, along with the proposed learning framework and adaptation rules for AT-LIF, we are able
to train high-performance spiking neural networks with sparser activation.

∂oi[t]

∂mi[t]
= −∂oi[t]

∂θi
= max

(
1− |mi[t]− θi|

θi
, 0

)
. (13)

3.4 Stabilizing training with AT-LIF neuron

In this section, we demonstrate how the AT-LIF neuron addresses two key challenges that limit the
performance of sparse SNN models. Specifically, the AT-LIF neuron resolves the inherent conflict

6

0

0

1

Area=

Firing Func.
Surrogate Func.

u um
θ

x

o

forward backward

u um

θ

x
θ

fire

resetcharge

regularize o

w w

o o

Figure 3: Left: The surrogate function for AT-LIF neuron. The blue curve represents the firing
function while the green curve represents the surrogate derivative. Right: Illustration of the forward
pass and backward pass of the AT-LIF neuron using the Back-Propagation-Through-Time algorithm.

between competing learning objectives and mitigates the gradient vanishing problem encountered
when training highly sparse networks.

Solving the conflict of optimization target
As discussed in the above section, training sparse spiking neural networks typically involves jointly
optimizing the task objective and the sparsity constraint as θ,w = argminθ,w Ltotal, which leads to
substantial conflict on optimization target. In our method, however, we introduce the AT-LIF neuron,
which outputs a scaled binary signal rather than a standard binary spike.

This scaling mechanism helps maintain a steady average neuron output while simultaneously reducing
the firing rate (as illustrated in Fig 2). This property allows us to decouple the learning process
while also maintaining stable learning process. Specifically, instead of jointly optimize the Ltotal,
we separate the optimization by learning the weight parameters based on the task loss as w =
argminw Ltask while simultaneously regularize the threshold to reduce spike activity as θ =
argminθ Ltotal.

The conflict does not necessarily arise for learning of weight parameters as the model can still
effectively learn from the output representation while we simultaneously maximize the threshold to
promote sparser firing events. Consequently, the inherent conflict between the optimization objectives
can, in principle, be resolved when adaptive threshold neurons are employed. As a result, the network
can effective learning representations while reducing spike counts during the optimization process.

G
ra

di
en

t N
or

m

Layer 1 Layer 2 Layer 3 Layer 4

Epochs

G
ra

di
en

t N
or

m

Layer 5 Layer 6 Layer 7 Layer 8

Activation Regularization AT-LIF

Figure 4: The 2-norm of the gradient value in the first 8 Convolutional layer.

Alleviating the gradient vanishing problem
On the other hand, the gradient vanishing problem will be alleviated since the gradient will no longer
necessarily approach zero as the threshold value increases. One possible theoretical explanation is
that the saddle point assumption (Theorem 1) no longer holds true as we continually increase the
threshold rather than directly constrain the spike activity. We further empirically demonstrate this
phenomenon by comparing the change of the gradient value with respect to the training iterations in
different activity pruning methods before and after the adoption of the AT-LIF neuron. We trained
multiple SNN models using AT-LIF neuron with threshold adaptation and vanilla LIF neuron with
activation regularization on CIFAR-10 dataset with ResNet-20 structure and selected two models

7

with similar average firing rates after training for fair comparison. Here the model using AT-LIF
achieved 91.06% accuracy and 0.043 average firing rate, while the model using vanilla LIF only
achieved 88.31% accuracy and a larger average firing rate of 0.044. We demonstrate the comparison
of the gradient values of the two models at each training iteration (Fig. 4). The green curve represents
the normalized gradient 2-norm value of the weight vector in the corresponding convolution layer
in the model with vanilla LIF and activation regularization, while the blue curve represents that of
the model adopting AT-LIF neuron. Here the blue curve is always above the green curve and in
most layers, the gradient value of the model using activation regularization is much closer to zero
while the gradient value in the model with AT-LIF neuron still maintains consistency across layers.
This indicates that using AT-LIF can effectively mitigate the gradient vanishing problem. Moreover,
this is also confirmed by the fact that the final training results of the AT-LIF model achieve better
performance while achieving similar sparsity.

4 Experiments

4.1 General experimental setting

We provide the general hyper-parameters and the neuron parameter setting in here and the supple-
mentary material for better reproducibility. Following the previous study [Chen et al., 2022, Shi
et al., 2024], we select a similar architecture for evaluation, including 6 Conv, 2FC (CIFAR-10),
SEW-ResNet18(ImageNet, ImageNet-100), and VGGSNN(DVS-CIFAR10). We also utilize the
standard ResNet-20 for the CIFAR dataset [He et al., 2016].

To demonstrate the effectiveness of the pruning method, we will use the following metrics in the
below table, including classification accuracy (Acc.), average firing rate (Avg. FR), total parameters
(Params) and total synaptic operation numbers (SOPs). The definition for the average firing rate
r =

∑M
k=1

∑N
i=1

∑T
t=1 si(xk)[t], where xk are data samples from the test set and si(xk)[t] is the

spike value in each neuron at each time-step with given input xk. The synaptic operation (SOP)
quantifies the total number of computational events in spiking neural networks, corresponding to
the number of times a spike is transmitted across a synapse [Hu et al., 2018, Fang et al., 2021a].
Additionally, we report the number of parameters left after applying weight-based pruning.

4.2 Compare with existing methods

Dataset Arch. Method T λs λθ Acc.(%) Avg FR. SOPs(M)

CIFAR-10

ResNet-20 Vanilla 8 0 0 92.89 0.236 256.69
ResNet-20 AR 8 0.01 0 91.31 0.060 57.26
ResNet-20 AR 8 0.02 0 88.31 0.044 41.86
ResNet-20 AT-LIF 8 0 1e-3 92.05 0.053 61.70
ResNet-20 AT-LIF 8 0 2e-3 91.06 0.043 48.85
ResNet-20 AT-LIF 8 0 5e-3 88.31 0.033 39.33
ResNet-20 AT-LIF 8 0.01 1e-3 90.70 0.025 29.23

ImageNet-100

SEW-ResNet18 Vanilla 4 0 0 83.44 0.138 1276.42
SEW-ResNet18 AR 4 0.01 0 82.94 0.083 840.90
SEW-ResNet18 AR 4 0.05 0 82.26 0.043 469.00
SEW-ResNet18 AT-LIF 4 0.01 1e-4 82.40 0.038 463.65
SEW-ResNet18 AT-LIF 4 0.02 2e-4 81.12 0.025 328.34

DVS-CIFAR10

VGGSNN Vanilla 10 0 0 82.70 0.080 1066.40
VGGSNN AR 10 0.005 0 81.30 0.055 673.06
VGGSNN AT-LIF 10 0 5e-4 82.20 0.043 626.57
VGGSNN AT-LIF 10 0.001 5e-4 82.10 0.039 587.68

Table 1: Comparison of AT-LIF and direct activation-regularization-based methods on CIFAR-10,
ImageNet-100, and DVS-CIFAR10 datasets.

In this section, we compare our proposed model with other existing SNN pruning approaches to
evaluate its performance and highlight its advantages. Here we will present two tables for fair

8

comparison. The first table compares our pruning method with existing activity regularization
approaches, all of which focus only on reducing spike activity or average firing rate. The second table
reports results under the setting of unconstrained structural pruning, where activity-based pruning
is combined with connection-level or neuron-level pruning methods. Specifically, we integrate our
method with the weight pruning approach STDS [Chen et al., 2022] to demonstrate its potential to
learn highly efficient SNNs.

Spike activity pruning
Since existing activity regularization methods primarily focus on penalizing spike activity, we adopt
L1 spike regularization as a representative regularization-based approach for comparison. Tab. 1
presents a comprehensive evaluation of our proposed AT-LIF model (AT-LIF) against two baselines:
the vanilla model (Vanilla) and vanilla model trained with spike activity regularization (AR), across
three benchmark datasets: CIFAR-10, ImageNet-100, and DVS-CIFAR10. The columns "λs" and
"λθ" are the regularization coefficients for the spike activity term (Eq. 7) and the coefficient for the
threshold adaptation mechanism, respectively. The column T refers to the simulation timestep for
SNN.

Across all tasks, the AT-LIF neuron demonstrates a strong capability to reduce spike activity and
computational cost while maintaining high classification accuracy compared with regularization-
based methods. On CIFAR-10, AT-LIF achieves a similar accuracy to the unpruned Vanilla model,
while reducing the average firing rate by approximately 89.4% and lowering SOPs by nearly 88.6%.
Compared to activation regularization, AT-LIF achieves lower SOPs and firing rates while maintaining
higher accuracy. Similar trends are observed on the ImageNet-100 dataset, where AT-LIF maintains
competitive accuracy with 1% accuracy loss while significantly reducing SOPs and average firing rate.
If sacrificing 2.3% more accuracy is acceptable, the reduction of average firing rate on the AT-LIF
model will be more than 5.5 times. On the event-based DVS-CIFAR10 dataset, AT-LIF again achieves
efficient spike suppression with substantial reductions in SOPs (up to 45% fewer than Vanilla) and
firing rates, while preserving accuracy. These results collectively highlight the effectiveness of AT-LIF
in achieving sparse, energy-efficient SNNs without sacrificing much performance, outperforming
conventional activity regularization techniques.

Dataset Arch. Pruning Method Acc.(%) Avg FR. Param(M) SOPs(M)

CIFAR-10

6 Conv, 2 FC Conn STDS
90.71 0.072 0.12 45.48
89.40 0.059 0.07 28.38

6 Conv, 2 FC Neu;Conn Unstru.
91.74 0.051 9.48 15.15
90.76 0.049 6.93 8.49

6 Conv, 2 FC Act;Conn AT-LIF
90.72 0.024 0.19 30.11
90.20 0.020 0.09 16.88

ImageNet
SEW-ResNet18 Conn STDS 58.90 0.189 1.84 461.26
SEW-ResNet18 Neu;Conn Unstru. 59.23 0.106 4.38 271.98
SEW-ResNet18 Act;Conn AT-LIF 59.61 0.063 2.22 310.53

Table 2: Comparison of the composite AT-LIF method with existing SNN pruning frameworks.

Pruning both activity and weights
We also integrate our method with the STDS [Chen et al., 2022] to achieve the pruning of both weights
and neuron activity. STDS operates by reparameterizing the weights and progressively eliminating
those with small absolute values during training, leading to a sparse connectivity pattern. Our
integration is straightforward: we replace the standard LIF neurons with AT-LIF neurons throughout
the network, and apply threshold adaptation as described in our method. Meanwhile, the STDS
pruning algorithm is used to train the synaptic weights and induce weight sparsity. This combination
allows us to simultaneously achieve both activity sparsity and weight sparsity. We compare the
composite approach with reproduced implementations of existing SNN pruning frameworks, including
unstructured weight pruning (STDS) and unstructured weight and neuron pruning (Unstru.) [Shi
et al., 2024]. We compare the above methods in accuracy, average firing rate, parameter numbers and
total SOPs. The final results are demonstrated in Tab. 2.

On CIFAR-10, the composite AT-LIF method achieves comparable accuracy to both STDS and Un-
stru., while significantly reducing the average firing rate. Notably, AT-LIF achieves the lowest average
firing rate at 0.020 and reduces SOPs to 16.88M, representing a substantial gain in computational

9

efficiency. On ImageNet, AT-LIF again achieves the lowest firing rate (0.063) and a favorable balance
between accuracy and efficiency, with SOPs reduced compared to STDS (461.26M) and close to
those achieved by the unstructured method (271.98M). Overall, the results highlight the strength of
AT-LIF in achieving efficient sparse SNNs with low energy cost, while maintaining performance
across datasets and architectures. Compared with the Unstru. that aims to reduce SOPs and STDS that
aims to reduce parameters, although our method is not optimal in every individual metric, it strikes an
effective balance between spike sparsity and weight sparsity, achieving the best performance across
these two key indicators. This highlights the flexibility and effectiveness of the proposed AT-LIF
model in enabling both activity and weight sparsity when combined with weight pruning techniques.

4.3 Ablation study

An ablation study was conducted to evaluate the impact of specific components of the AT-LIF neuron
model on the overall performance of the SNNs. We systematically remove or alter the two components
as mentioned in Sec. 3.2 and therefore evaluate their individual contributions. The Tab. 3 demonstrates

CurO. Adap. λθ Acc.(%) Avg. FR SOPs(M)
× × 0.0 92.89 0.236 256.69
✓ × 0.0 93.32 0.237 258.95
× ✓ 1e-3 50.99 0.110 126.13
✓ ✓ 1e-3 92.05 0.054 61.70

Table 3: Ablation study for AT-LIF neuron on CIFAR-10 dataset.

the model performance and efficiency under different neuron configurations. Here column "CurO."
represents whether the neuron has 0-1 output or 0-θ output while column "Adap." indicates whether
the threshold adaptation mechanism is enabled. The model without the current-based output feature
fails to converge when combined with the adaptation mechanism, indicating that the resulting sparse
spike output hinders effective model learning. Models that applied the adaptive threshold exhibit a
significant efficiency advantage over the one with the vanilla LIF neuron, with a notable reduction in
overall computational cost. The model with AT-LIF neuron achieves the most outstanding results
across all experiments as it is four times more efficient compared with the baseline model in terms of
spike sparsity and energy cost. Results show that both current-based output and threshold adaptation
are crucial for maintaining an optimal trade-off between minimizing excessive spike activity and
preserving the model’s ability to learn effectively.

5 Conclusion and limitation

In this paper, we propose a novel technique to significantly reduce spike activity in SNNs while
preserving their performance. By effectively suppressing spike events, our method substantially
promotes the sparsity of spike outputs and decreases required synaptic operations. As the proposed
method focuses on reducing spike activity, it is also compatible with weight pruning or other
model compression techniques. The proposed method potentially enables efficient mapping onto
neuromorphic hardware or even on modern GPU architectures.
Limitation While this work introduces the concept of exploiting the sparse spike activity of SNNs,
it still remains at the algorithmic level. The next step may involve exploring practical hardware
implementations and evaluating the effectiveness of the approach in real-world applications.

6 Acknowledgement

This work is funded by National Natural Science Foundation of China (62422601, U24B20140,
and 62088102), Beijing Municipal Science and Technology Program (Z241100004224004) and
Beijing Nova Program (20230484362, 20240484703), and National Key Laboratory for Multimedia
Information Processing.

10

References
Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural networks.

ACM Journal on Emerging Technologies in Computing Systems, 2017.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training very sparse
deep networks. In International Conference on Learning Representations, 2018.

Sander M Bohte, Joost N Kok, and Johannes A La Poutré. Spikeprop: backpropagation for networks of spiking
neurons. In European Symposium on Artificial Neural Networks, 2000.

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ANN-SNN conversion
for high-accuracy and ultra-low-latency spiking neural networks. In International Conference on Learning
Representations, 2022.

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for energy-efficient
object recognition. International Journal of Computer Vision, 2015.

Yanqi Chen, Zhaofei Yu, Wei Fang, Tiejun Huang, and Yonghong Tian. Pruning of deep spiking neural networks
through gradient rewiring. In International Joint Conferences on Artificial Intelligence, 2021.

Yanqi Chen, Zhaofei Yu, Wei Fang, Zhengyu Ma, Tiejun Huang, and Yonghong Tian. State transition of
dendritic spines improves learning of sparse spiking neural networks. In International Conference on Machine
Learning, 2022.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday,
Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic manycore processor
with on-chip learning. IEEE Micro, 2018.

Michael V DeBole, Brian Taba, Arnon Amir, Filipp Akopyan, Alexander Andreopoulos, William P Risk, Jeff
Kusnitz, Carlos Ortega Otero, Tapan K Nayak, Rathinakumar Appuswamy, et al. TrueNorth: Accelerating
from zero to 64 million neurons in 10 years. Computer, 2019.

Lei Deng, Yujie Wu, Yifan Hu, Ling Liang, Guoqi Li, Xing Hu, Yufei Ding, Peng Li, and Yuan Xie. Compre-
hensive snn compression using admm optimization and activity regularization. IEEE Transactions on Neural
Networks and Learning Systems, 2021.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking neural
networks. In International Conference on Learning Representations, 2021.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking neural network
via gradient re-weighting. In International Conference on Learning Representations, 2022.

Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer. Fast-
classifying, high-accuracy spiking deep networks through weight and threshold balancing. In International
Joint Conference on Neural Networks, 2015.

Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. Optimal ANN-SNN conversion for fast and
accurate inference in deep spiking neural networks. In International Joint Conference on Artificial Intelligence,
2021.

Steven K. Esser, Paul A. Merolla, John V. Arthur, Andrew S. Cassidy, Rathinakumar Appuswamy, Alexander
Andreopoulos, David J. Berg, Jeffrey L. McKinstry, Timothy Melano, Davis R. Barch, Carmelo di Nolfo,
Pallab Datta, Arnon Amir, Brian Taba, Myron D. Flickner, and Dharmendra S. Modha. Convolutional
networks for fast, energy-efficient neuromorphic computing. National Academy of Sciences, 2016.

Biao Fang, Yuhao Zhang, Rui Yan, and Huajin Tang. Spike trains encoding optimization for spiking neural
networks implementation in fpga. In International Conference on Advanced Computational Intelligence,
2020.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep residual
learning in spiking neural networks. Advances in Neural Information Processing Systems, 2021a.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. Incorporating
learnable membrane time constant to enhance learning of spiking neural networks. In International Conference
on Computer Vision, 2021b.

Georgios Georgiadis. Accelerating convolutional neural networks via activation map compression. In Computer
Vision and Pattern Recognition, 2019.

11

Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From single
neurons to networks and models of cognition. Cambridge University Press, 2014.

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. RMP-SNN: Residual membrane potential neuron for
enabling deeper high-accuracy and low-latency spiking neural network. In Computer Vision and Pattern
Recognition, 2020.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural
network. In Advances in Neural Information Processing Systems, 2015.

Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang, and Zhaofei Yu. Reducing ann-snn conversion error
through residual membrane potential. arXiv preprint arXiv:2302.02091, 2023a.

Zecheng Hao, Jianhao Ding, Tong Bu, Tiejun Huang, and Zhaofei Yu. Bridging the gap between anns and snns
by calibrating offset spikes. In International Conference on Learning Representations, 2023b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Computer Vision and Pattern Recognition, 2016.

Yangfan Hu, Huajin Tang, and Gang Pan. Spiking deep residual networks. IEEE Transactions on Neural
Networks and Learning Systems, 2018.

Eugene M Izhikevich. Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks,
2004.

Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh Yoon. Spiking-YOLO: Spiking neural network for
energy-efficient object detection. In AAAI Conference on Artificial Intelligence, 2020.

Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization for training low-latency deep spiking
neural networks from scratch. Frontiers in Neuroscience, 2020.

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin, William Leiserson,
Sage Moore, Nir Shavit, and Dan Alistarh. Inducing and exploiting activation sparsity for fast inference on
deep neural networks. In International Conference on Machine Learning, 2020.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade, and Ali
Farhadi. Soft threshold weight reparameterization for learnable sparsity. In International Conference on
Machine Learning, 2020.

Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik Roy. Enabling
spike-based backpropagation for training deep neural network architectures. Frontiers in Neuroscience, 2020.

Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using backpropaga-
tion. Frontiers in Neuroscience, 2016.

Guoqi Li, Lei Deng, Huajin Tang, Gang Pan, Yonghong Tian, Kaushik Roy, and Wolfgang Maass. Brain-inspired
computing: A systematic survey and future trends. Proceedings of the IEEE, 2024.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J Reddi, Ke Ye, Felix
Chern, Felix Yu, Ruiqi Guo, et al. The lazy neuron phenomenon: On emergence of activation sparsity in
transformers. In International Conference on Learning Representations, 2023.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models. Neural Networks,
1997.

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J Dally. Exploring the
granularity of sparsity in convolutional neural networks. In Computer Vision and Pattern Recognition
Workshops, 2017.

Qingyan Meng, Shen Yan, Mingqing Xiao, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training much
deeper spiking neural networks with a small number of time-steps. Neural Networks, 2022.

Hesham Mostafa. Supervised learning based on temporal coding in spiking neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 2017.

Simon Narduzzi, Siavash A Bigdeli, Shih-Chii Liu, and L Andrea Dunbar. Optimizing the consumption of
spiking neural networks with activity regularization. In International Conference on Acoustics, Speech and
Signal Processing, 2022.

12

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking neural networks:
Bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal Processing
Magazine, 2019.

Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Learning to be efficient: Algorithms for training low-latency,
low-compute deep spiking neural networks. In ACM Symposium on Applied Computing, 2016.

Nicolas Perez Nieves and Dan F. M. Goodman. Sparse spiking gradient descent. In Advances in Neural
Information Processing Systems, 2021.

Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe Zou, Zhenzhi
Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip architecture. Nature, 2019.

Yusuke Sakemi, Kakei Yamamoto, Takeo Hosomi, and Kazuyuki Aihara. Sparse-firing regularization methods
for spiking neural networks with time-to-first-spike coding. Scientific Reports, 2023.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking neural
networks: VGG and residual architectures. Frontiers in Neuroscience, 2019.

Jiangrong Shen, Qi Xu, Jian K. Liu, Yueming Wang, Gang Pan, and Huajin Tang. ESL-SNNs: An evolutionary
structure learning strategy for spiking neural networks. In AAAI Conference on Artificial Intelligence, 2023.

Xinyu Shi, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Towards energy efficient spiking neural networks: An
unstructured pruning framework. In International Conference on Learning Representations, 2024.

Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. Advances in Neural
Information Processing Systems, 2018.

Kenneth Michael Stewart and Emre Neftci. Meta-learning spiking neural networks with surrogate gradient
descent. Neuromorphic Computing and Engineering, 2022.

William E Vinje and Jack L Gallant. Sparse coding and decorrelation in primary visual cortex during natural
vision. Science, 287(5456):1273–1276, 2000.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep neural
networks. Advances in Neural Information Processing Systems, 2016.

Doudou Wu, Xianghong Lin, and Pangao Du. An adaptive structure learning algorithm for multi-layer spiking
neural networks. In International Conference on Computational Intelligence and Security. IEEE, 2019.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for training
high-performance spiking neural networks. Frontiers in Neuroscience, 2018.

Yulong Yan, Haoming Chu, Yi Jin, Yuxiang Huan, Zhuo Zou, and Lirong Zheng. Backpropagation with sparsity
regularization for spiking neural network learning. Frontiers in Neuroscience, 2022.

Man Yao, Ole Richter, Guangshe Zhao, Ning Qiao, Yannan Xing, Dingheng Wang, Tianxiang Hu, Wei Fang,
Tugba Demirci, Michele De Marchi, et al. Spike-based dynamic computing with asynchronous sensing-
computing neuromorphic chip. Nature Communications, 2024.

Hang Yin, John Boaz Lee, Xiangnan Kong, Thomas Hartvigsen, and Sihong Xie. Energy-efficient models
for high-dimensional spike train classification using sparse spiking neural networks. In ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, 2021.

Takashi Yoshida and Kenichi Ohki. Natural images are reliably represented by sparse and variable populations
of neurons in visual cortex. Nature communications, 2020.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin,
and Larry S Davis. Nisp: Pruning networks using neuron importance score propagation. In Computer Vision
and Pattern Recognition, 2018.

Friedemann Zenke and Emre O Neftci. Brain-inspired learning on neuromorphic substrates. Proceedings of the
IEEE, 2021.

Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning for instilling
complex function in spiking neural networks. Neural Computation, 2021.

13

Malu Zhang, Jiadong Wang, Jibin Wu, Ammar Belatreche, Burin Amornpaisannon, Zhixuan Zhang, Venkata
Pavan Kumar Miriyala, Hong Qu, Yansong Chua, Trevor E Carlson, et al. Rectified linear postsynaptic
potential function for backpropagation in deep spiking neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 2021.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained larger spiking
neural networks. In AAAI Conference on Artificial Intelligence, 2021.

Zhaokun Zhou, Kaiwei Che, Jun Niu, Man Yao, Guoqi Li, Li Yuan, Guibo Luo, and Yuesheng Zhu. Spatial-
temporal spiking feature pruning in spiking transformer. IEEE Transactions on Cognitive and Developmental
Systems, 2024.

Michael H Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for model
compression. In Advances in Neural Information Processing Systems, 2018.

Yaoyu Zhu, Zhaofei Yu, Wei Fang, Xiaodong Xie, Tiejun Huang, and Timothée Masquelier. Training spiking
neural networks with event-driven backpropagation. In Advances in Neural Information Processing Systems,
2022.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-level structured
pruning using polarization regularizer. In Advances in Neural Information Processing Systems, 2020.

14

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We faithfully list the contribution of the paper in the introduction and also in the abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation of the proposed work in the discussion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: For each theoretical results, the proof can be either found in the main text or supplemen-
tary material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.

15

• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will make sure that the paper contain all the information to reproduce the results and
we will also open-source the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We will provide open access to the code while the data we use are all publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide all the detail in the training and evaluating process in the supplementary
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [No]

Justification: Due to limited computational resources, we report results from a single run. However,
all results are reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The information of computer resources for each experiments can be found in the
supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.

17

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research adheres fully to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal impacts of the
research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

18

https://neurips.cc/public/EthicsGuidelines

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The creators, original owners of assets are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper are well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

19

paperswithcode.com/datasets

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Related works
	Neuron model
	Spike activity pruning in SNNs

	Method
	Learning dilemma of better performance and sparser spikes
	Adaptive threshold LIF neuron
	Threshold adaptation for sparse activity
	Stabilizing training with AT-LIF neuron

	Experiments
	General experimental setting
	Compare with existing methods
	Ablation study

	Conclusion and limitation
	Acknowledgement

