
TAMI: Taming Heterogeneity in Temporal
Interactions for Temporal Graph Link Prediction

Zhongyi Yu1, Jianqiu Wu1, Zhenghao Wu2, Shuhan Zhong3,
Weifeng Su1,5, Chul-Ho Lee4, Weipeng Zhuo1,5∗

1Beijing Normal-Hong Kong Baptist University, 2University College Dublin
3The Hong Kong University of Science and Technology, 4Texas State University

5Guangdong Provincial / Zhuhai Key Laboratory of IRADS, China
{zhongyiyu,jianqiuwu,wfsu,weipengzhuo}@bnbu.edu.cn,

zhenghao.wu@ucdconnect.ie, szhongaj@cse.ust.hk, chulho.lee@txstate.edu

Abstract

Temporal graph link prediction aims to predict future interactions between nodes
in a graph based on their historical interactions, which are encoded in node embed-
dings. We observe that heterogeneity naturally appears in temporal interactions,
e.g., a few node pairs can make most interaction events, and interaction events
happen at varying intervals. This leads to the problems of ineffective temporal
information encoding and forgetting of past interactions for a pair of nodes that
interact intermittently for their link prediction. Existing methods, however, do
not consider such heterogeneity in their learning process, and thus their learned
temporal node embeddings are less effective, especially when predicting the links
for infrequently interacting node pairs. To cope with the heterogeneity, we propose
a novel framework called TAMI, which contains two effective components, namely
log time encoding function (LTE) and link history aggregation (LHA). LTE better
encodes the temporal information through transforming interaction intervals into
more balanced ones, and LHA prevents the historical interactions for each target
node pair from being forgotten. State-of-the-art temporal graph neural networks can
be seamlessly and readily integrated into TAMI to improve their effectiveness. Ex-
periment results on 13 classic datasets and three newest temporal graph benchmark
(TGB) datasets show that TAMI consistently improves the link prediction perfor-
mance of the underlying models in both transductive and inductive settings. Our
code is available at https://github.com/Alleinx/TAMI_temporal_graph.

1 Introduction

Temporal link prediction is a fundamental task that forecasts future interactions between two nodes on
continuous-time temporal graphs (CTTGs). This is important in a variety of real-world scenarios with
dynamic graph topologies changing over time, such as social networks [24, 1], user-item interaction
systems [13, 41, 38, 40], traffic networks [35, 32, 37], and physical systems [23, 20]. The temporal
link prediction task involves two major steps. The first step is to compute the temporal embedding of
each node by aggregating information from its own historical interactions with neighboring nodes.
For each target node pair for link prediction, the second step is to take their embeddings into a link
predictor (typically an MLP) to estimate the probability of having a link between them.

Heterogeneity arises in temporal interactions. For example, the number of interactions for each
node pair varies substantially. The time between two consecutive interaction events can also be

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Alleinx/TAMI_temporal_graph

quite different. To see this, in Figure 1, we plot the distribution of interaction intervals between
any pair of nodes on the UCI dataset, showing that it follows a power-law distribution. In other
words, most interactions are frequent ones, while the infrequent ones (very large interaction intervals)
still exist with a non-negligible probability. We also compute and report the Fisher’s skewness in
Figure 1, indicating that the distribution is positively skewed or right-skewed. Here the skewness Γ
of a random variable X is defined as Γ = E

[
(X − µ)3/σ3

]
, where µ and σ denote the mean and

standard deviation of X , respectively.

The heterogeneity in temporal interactions poses two primary challenges to existing methods for
temporal link prediction [34, 7, 39]. First, they use sinusoidal functions as their time encoding
functions to encode the temporal difference between the target time τ and each interaction time ti.
We observe that the frequency parameters of the time encoding functions are harder to learn when the
distribution of the temporal difference is highly skewed, which is the common case as seen from the
distribution of interaction intervals. Second, they learn the embedding of each node based only on its
recent interaction events. While the embedding encodes timely information, it can be predominantly
influenced by a few neighbors having frequent interactions. As a result, the temporal link prediction
can be inaccurate for a target node pair having infrequent interactions over time. For example, it is
natural to predict that a couple would eat hamburgers if it is one of their recent favorites (frequent
interactions). However, it makes more sense to predict that turkey will be on the table (infrequent
interactions) if Thanksgiving is coming.

101 103 105 107

Interaction Intervals (log scale). Unit: second

10 3

10 2

10 1

100

Pr
ob

ab
ilit

y
(lo

g
sc

al
e)

Skewness: 5.197

Dataset: UCI

106 107

10 3
10 2
10 1

Figure 1: The interaction intervals between any
pair of nodes on the UCI dataset follow a power-
law distribution and have a high (positive) skew-
ness value, meaning that the intervals are highly
right-skewed.

To address the above challenges, we propose TAMI,
a novel framework that tames the heterogeneity in
temporal interactions to improve the performance
of temporal link prediction. TAMI mainly contains
two novel components, namely log time encoding
function (LTE) and link history aggregation (LHA).
We propose to use a logarithmic transformation in
LTE to rescale the temporal difference before it is
taken into the time encoding function, so that the
frequency parameters of the time encoding func-
tion can be easier (or quicker) to learn. In addition,
we develop LHA to preserve the information of the
most recent k interactions for each target node pair
for link prediction, regardless of their interaction
frequency. In other words, the historical interac-
tions of each node pair are explicitly used for their
link prediction, no matter when they happened.

Our key contributions can be summarized as fol-
lows:

• First study on the heterogeneity in temporal interactions. To the best of our knowledge, this
is the first work to identify the presence of heterogeneity in temporal interactions of CTTGs and
investigate its impact on the performance of temporal link prediction.

• TAMI: a novel framework to cope with the heterogeneity in temporal interactions. We propose
TAMI, which effectively handles the heterogeneity in temporal interactions. TAMI contains two
novel modules, namely LTE and LHA. LTE rescales the temporal differences using a logarithmic
transformation while LHA is specifically designed to preserve historical interactions for each target
node pair for link prediction. Existing temporal graph neural networks can be seamlessly and
readily integrated into TAMI.

• Extensive evaluation on open datasets. We validate the effectiveness of TAMI on 13 classic
temporal graph datasets covering different fields with comprehensive temporal scales as well as
three newest ones from temporal graph benchmark (TGB). Results show that TAMI consistently
and substantially improves the link prediction accuracy and training efficiency of the underlying
graph neural networks, with up to 87.05% improvement in link prediction accuracy and 76.7%
reduction in total training time.

2

,

Link History
Aggregation

(LHA)
Link Predictor

Popular Temporal
Neighbor Aggregator

(e.g. DyGFormer)

: Frequent interaction

Temporal Graph

Log Time Encoding

 Function (LTE)

Time encoding vector

Temporal node embeddings:

 Interaction history between
 nodes

: Link to predict at time

Figure 2: The TAMI framework.

2 Related Work

Time Encoding Functions in Link Prediction. Most prior methods [34, 7, 39, 31, 42, 29, 22, 6] use
a common approach for time encoding, which is based on either periodic time encoding functions
introduced in [33] or their simplified ones. To predict the existence of a link between two nodes
at the target time, the temporal difference between the target time and the time of each historical
interaction needs to be calculated. The time differences are then mapped to time encoding vectors
using a periodic function such as sinusoidal function. However, this time encoding pipeline overlooks
the effect of the skewness in the time differences. We observe that it takes longer than needed to train
a model, and it can also degrade the performance of link prediction, especially when predicting the
links for infrequently interacting node pairs. In this work, we propose LTE to effectively alleviate
the skewness in the time differences via a simple yet effective logarithmic transformation, leading to
better training efficiency and improved link prediction accuracy.

Temporal Neighborhood Aggregation in Link Prediction. In learning temporal node embeddings
using information aggregation, there are typically two types of temporal graph neural networks
(TGNNs), which are random walk-based TGNNs and temporal neighbor-based TGNNs. Random
walk-based TGNNs [31, 10, 14] first generate multiple causal, anonymous walks for each node
and then aggregate information from these walks to obtain the final node embeddings. Since
frequent interactions predominantly appear as edges in the graph, it may be less likely to sample
infrequent interactions in each walk. In addition, temporal neighbor-based (or graph convolution-
based) TGNNs [27, 13, 22, 44, 3, 17, 34, 29, 7, 39, 25, 30, 15, 43, 16, 4] compute temporal node
embeddings by aggregating node or edge features from the temporal neighbors of each target node.
For example, recurrent networks or temporal point processes [27] are leveraged in [13, 3, 27] to store
the states of historical interactions. DyGFormer [39] computes node embeddings by aggregating an
extensive number of single-hop temporal neighbors using an attention mechanism. GraphMixer [7]
proposes to use MLP-Mixer [26] and neighbor mean-pooling to compute node embeddings. However,
these methods mainly rely on the recent interactions of a node to compute its embedding, which are
again dominated by frequent interactions with a limited number of its neighbors. Thus, they can be
less effective in predicting the links for infrequently interacting node pairs. In contrast, we propose
LHA to effectively address this problem by explicitly capturing the historical interactions between
each target node pair for link prediction in the modeling process.

3 TAMI Design

3.1 Problem Definition

A CTTG over a time interval [0, T] is characterized by GT = (VT , ET), which is a sequence of
chronologically ordered interaction events between nodes up to time T (inclusive), where VT is the
set of nodes and ET is the set of temporal edges up to T . Here, a temporal edge etuv ∈ ET between
two nodes u∈VT and v∈VT represents an interaction event between u and v at time t<T . Note
that multiple edges can exist between two nodes in the temporal graph.

Given two target nodes u and v, the target time τ , and all historical interaction events in the graph
up to τ (exclusive) that are characterized by G<τ , our task is to predict how likely nodes u and v
will interact with each other at time τ , as illustrated in Figure 2. In other words, it is to estimate the
probability puv of having a link between u and v at time τ . To tackle this problem, there are two
common major steps involved in most TGNNs [34, 7, 39, 42, 19]. First, they compute the temporal

3

101 103 105 107

Temporal Differences: t (log scale)

10 5

10 4

10 3

10 2

10 1

Pr
ob

ab
ilit

y
(lo

g
sc

al
e)

Skewness: 2.385
106 107

10 3

(a) The distribution of temporal difference ∆t on the
UCI dataset is highly right-skewed.

0.25 (0.25,1.88] (1.88,13.91] >13.91
Interaction Interval. Unit: days

0.92

0.94

0.96

0.98

1.00

Av
er

ag
e

Pr
ec

isi
on

Ours: LTE
Baseline: Original TE

(b) LTE effectively mitigates the skewness and im-
proves the model (GraphMixer [7]) performance.

Figure 3: (a) Distribution of temporal difference ∆t and (b) model performance on the UCI dataset.

embeddings of nodes u and v by aggregating information from their recent neighbors who have
recently had interactions with them. Second, the learned embeddings are then fed into a link predictor,
e.g., an MLP with a sigmoid activation function, to estimate the probability puv .

3.2 LTE: Log Time Encoding Function

In most TGNNs [34, 7, 39, 14, 4], each historical interaction at time t < τ (or its corresponding
temporal edge in G<τ) is associated with a time encoding vector z(t), which is given by

z(t) = cos(∆t× ω), (1)

with ∆t = τ−t, and learnable frequency parameters ω={α−(i−1)/β}dT
i=1, where dT is the dimension

of the time encoding vector, and the values of α and β are initialized as α = β =
√
dT . This time

encoding function first maps ∆t to a monotonically decreasing vector ∆t× ω such that the values
are within (0,∆t] and then projects them to [−1, 1] using the cosine function. For the sake of clarity,
we refer to this type of time encoding as original TE.

We observe that a given node can interact with various other nodes at different frequencies. Thus,
their interaction intervals can vary significantly. As shown in Figure 1, the interaction intervals
between nodes are highly right-skewed on the UCI dataset. Such right skewness also appears in the
distribution of temporal differences ∆t, as can be seen from Figure 3a. TGNNs trained on these
skewed inputs using original TE learn better on the interactions that frequently appear but struggle
with the ones that seldom occur. As a result, they are ineffective when making a link prediction for a
pair of nodes that interact rarely or whose interaction intervals are long, as shown in Figure 3b, where
we group testing node pairs for link prediction according to their average interaction intervals and
report the average prediction accuracy for each group of node pairs.

To address this challenge, we propose LTE, a simple yet effective time encoding function, which
rescales the value of ∆t via a logarithmic transformation so that it follows a more balanced distribution.
With LTE, a large variance in ∆t no longer leads to a large discrepancy, making it easier to learn the
frequency parameters ω. The time encoding function in LTE is formally defined as

zl(t) = cos(∆tl × ω), with ∆tl = ln(1 + ∆t). (2)

To see how the logarithmic transformation mitigates the skewness in the distribution, we consider ∆t
to follow a Pareto distribution, which is a power-law distribution. We have the following:

Proposition 1. Suppose ∆t follows a Pareto distribution with the shape parameter α > 3,
whose skewness is always greater than 2. LTE reduces the skewness to 2.

The proof is provided in Appendix A.

In practice, ∆t may not strictly follow a Pareto distribution. Nonetheless, LTE can still effectively
mitigate its skewness, thereby improving the performance of the underlying model. As shown in
Figure 3b, LTE improves the model performance by reducing the skewness of ∆t on the UCI dataset
from 2.385 to −1.14. Please refer to Table 11 in Appendix B.5 for the values of skewness with and
without LTE on different datasets.

4

Once the time encoding vector is obtained, the next step in TAMI is to compute the temporal node
embeddings. For this purpose, any existing TGNN [27, 13, 22, 34, 29, 7, 39, 31] can be adopted.
In temporal neighbor-based methods [39, 7, 34, 13, 22], the temporal embedding hu∈Rd of node
u is generally computed based on the m most recent interactions of u with its temporal neighbors.
Specifically, let Nu be the set of the m recent neighbors of u, xj be the initial embedding of node j,
and xuj be the initial embedding of temporal edge euj , and zl(tj) be the time encoding vector for
the interaction event with j at time tj . Then, the embedding hu is obtained as follows:

hu = AGGREGATE ({[xj ;xuj ; zl(tj)]}j∈Nu) , (3)

where AGGREGATE(·) is an aggregation function and [;] is the concatenation operation. Similarly,
random-walk based methods [31, 10] obtain the embedding hu by aggregating the information from
nodes that appear in random walks starting from u. Both classes of methods can be readily integrated
into TAMI, as shall be demonstrated in Section 4.5.

3.3 LHA: Link History Aggregation

As mentioned above, it is common practice that the temporal embedding of a node u is based only on
its most recent m interactions or the recent ones that appear in random walks from u. However, this
can be problematic for predicting a link between two nodes u and v, especially when they do not
appear in their mutual nearest neighbors. In that case, their historical interactions are forgotten in
updating their temporal embeddings, thereby degrading the link prediction accuracy. See Figure 4 for
an illustration. We empirically observe that this is indeed the case, as shown in Figure 5. There is
a non-negligible (possibly significant) portion of node pairs that could have forgotten their mutual
interaction history for temporal link prediction, and their link prediction accuracy is the worst.

: Temporal Link

Frequent
Interaction

Forgotten Interaction

Link to predict at

, : Node : Most recent interactions : Link to predict at

Figure 4: When predicting the future link between
u and v at t1, their historical interaction at t5 is no
longer retained in their latest node embeddings.

To resolve this problem, we propose a novel
light-weight module called link history aggre-
gation (LHA). Its core idea is to preserve the
most recent k interactions for a target node pair
and leverage this historical information, along
with their temporal node embeddings, to pre-
dict a link between the target node pair. Let
et1uv, e

t2
uv, . . . , e

tk
uv denote the most recent k in-

teractions between nodes u and v that happen
at times t1, t2, . . . , tk before time τ , respec-
tively, where tk < tk−1 < · · · < t1 < τ .
The i-th historical interaction etiuv is associated
with a dr-dimensional historical edge embed-
ding rtiuv ∈ Rdr , which encodes the informa-
tion of the interaction. We use Muv(τ) =
{rt1uv, rt2uv, ..., rtkuv} to indicate the historical
edge embeddings of the most recent k interactions before time τ . Then, the edge embedding
vector rτuv for link prediction at time τ is defined as a weighted sum of the current node embeddings
and the previous edge embedding as:

rτuv = γ × cuv + (1− γ)× rt1uv, (4)

where cuv = MLP([hu ; hv]) ∈ Rdr encodes the current states of nodes u and v, with hu and hv

being the temporal node embeddings of nodes u and v, respectively, and rt1uv is the most recent edge
embedding in Muv(τ). Here the hyperparameter γ ∈ [0, 1] controls the ‘forgetting’ rate of historical
interactions. For example, if γ = 1, the entire interaction history is discarded in computing rτuv. To
bootstrap the link prediction between u and v which do not have interaction history, i.e. Muv(τ) = ∅,
we set rt1uv = 0.

To predict a link between nodes u and v at time τ as the last step of TAMI, we first aggregate all the
historical link embeddings in Muv(τ) into a single vector huv , which summarizes the most recent k
interaction histories between u and v. This can be written as

huv = AGGREGATE (rt1uv, r
t2
uv, ..., r

tk
uv) ∈ Rdr , (5)

where AGGREGATE(·) denotes an aggregation function. While various options can be considered
(such as sum, mean, or attention), we employ the most-recent aggregator. It utilizes the edge

5

Exclusive Isolated Mutual
0

20
40
60
80

Dataset: EN

Exclusive Isolated Mutual
0

20

40
50

Dataset: LA

Exclusive Isolated Mutual
0

20
40
60
80

Dataset: UC

Exclusive Isolated Mutual
0

20
40
60
80

Dataset: UV

Exclusive Isolated Mutual

0.90

0.95 +LHA
GraphMixer

Exclusive Isolated Mutual
0.80

0.85
+LHA
GraphMixer

Exclusive Isolated Mutual

0.90

0.95

1.00

+LHA
GraphMixer

Exclusive Isolated Mutual

0.76

0.78 +LHA
GraphMixer

Pe
rc

en
t

Pr
ec

isi
on

Figure 5: The performance of GraphMixer and its improvement with LHA. “Exclusive” means that
neither of two nodes appears in the other’s m recent interactions. “Isolated” indicates that only one
node appears in the other’s m recent interactions. “Mutual” means that both nodes appear.

embedding of the most recent historical interaction to update huv , i.e., huv = rt1uv. Finally, the link
probability puv is computed using an MLP with the sigmoid activation function, i.e.,

puv = MLP
(
[hu ; hv ; huv]

)
. (6)

Whenever an interaction between nodes u and v occurs, their corresponding history set Muv(·)
needs to be updated. Suppose u and v are connected at time τ . A new edge embedding vector rτuv,
computed using Equation (4), is added to Muv(τ) for the next link prediction. If the original size of
Muv(τ) is equal to k, we first remove the oldest historical edge embedding from Muv(τ) and then
insert rτuv . In other words, we keep the most recent k interactions only.

Remarks. As shown in Figure 5 and shall be demonstrated in the subsequent section, LHA improves
the performance of the underlying TGNN, with up to 25.33% improvement in link prediction accuracy.
LHA also has high efficiency in terms of GPU memory usage. Note that huv is the only additional
embedding used in computing the link probability puv, and we use the most-recent aggregator to
obtain huv = rt1uv . Also, the historical edge embedding rt1uv is updated based on its previous one, as in
Equation (4). Thus, letting N be the number of target node pairs for prediction in the dataset, the total
space complexity of LHA is O(Ndr), where dr is the dimension of each historical edge embedding.
Since mini-batch computation can be employed, it is unnecessary to load the edge embeddings for all
target node pairs in GPU memory. Instead, they can be stored in CPU’s system memory and loaded
dynamically as required. Therefore, the additional GPU memory overhead introduced by LHA is
O(bdr), where b denotes the mini-batch size, and b ≪ N . Furthermore, with a slight increase in
complexity, LHA also speeds up the convergence of the underlying model in training, with up to
76.7% reduction in total training time, as shall be demonstrated shortly.

4 Experiments

4.1 Experimental Settings

We conduct experiments on 13 classic open datasets [21]: Can. Parl. (CP), Contact (CO), Enron
(EN), Flights (FL), Lastfm (LA), Mooc (MO), Reddit (RE), Social Evo (SE), Uci (UC), UN Trade
(UT), UN Vote (UV), US Legis (US), and Wikipedia (WK). These datasets cover various domains
and their details are provided in Section B.1. We integrate two state-of-the-art TGNNs, namely
GraphMixer [7] and DyGFormer [39], into our TAMI framework. More specifically, we use their
temporal neighbor aggregation function in the Temporal Neighbor Aggregator module of TAMI.
We compare the performance with their vanilla counterparts, as well as seven other state-of-the-
art TGNNs for CTTGs, including JODIE [13], DyRep [27], TGAT [34], TGN [22], CAWN [31],
Edgebank [21], and TCL [29]. Descriptions of the baselines are provided in Section B.2.

We evaluate the link prediction performance of TGNNs under two settings: (1) the transductive setting
where future links are predicted between nodes observed during training, and (2) the inductive setting
where predictions are made for nodes unseen during training. Following [21, 39], we chronologically
split each dataset into 70%/15%/15% for training/validation/testing, and adopt the average precision
(AP) score as the evaluation metric. We present the implementation details in Section B.3 and
baseline configurations in Section B.4. Unless otherwise specified, we below present the major
results for the transductive setting only and report additional results for the transductive and inductive
settings in Section C and Section D, respectively. For the generation of negative links, we follow

6

Table 1: AP for transductive link prediction under three different negative sampling strategies (NSS).
Imp. (%) denotes the percentage of improvement. The first and the second best performers are marked
in bold and underlined, respectively. Standard deviations over five runs are reported in Table 21.

NSS Methods CP CO EN FL LA MO RE SE UC UT UV US WK

rnd

JODIE 69.26 95.31 84.77 95.60 70.85 80.23 98.31 89.89 89.43 64.94 63.91 75.05 96.50
DyRep 66.54 95.98 82.38 95.29 71.92 81.97 98.22 88.87 65.14 63.21 62.81 75.34 94.86
TGAT 70.73 96.28 71.12 94.03 73.42 85.84 98.52 93.16 79.63 61.47 52.21 68.52 96.94
TGN 70.88 96.89 86.53 97.95 77.07 89.15 98.63 93.57 92.34 65.03 65.72 75.99 98.45

CAWN 69.82 90.26 89.56 98.51 86.99 80.15 99.11 84.96 95.18 65.39 52.84 70.58 98.76
EdgeBank 64.55 92.58 83.53 89.35 79.29 57.97 94.86 74.95 76.20 60.41 58.49 58.39 90.37

TCL 68.67 92.44 79.70 91.23 67.27 82.38 97.53 93.13 89.57 62.21 51.90 69.59 96.47
GraphMixer 75.90 91.94 82.26 90.98 75.56 82.83 97.33 93.34 93.38 62.61 52.20 71.55 97.23
DyGFormer 97.91 98.31 92.46 98.92 93.01 87.66 99.22 94.66 95.66 65.07 55.88 70.44 99.02

with TAMI

GraphMixer 78.38 95.26 90.97 96.75 88.13 83.53 98.84 93.41 96.20 62.98 57.74 71.57 98.89
Imp. (%) 3.27% 3.61% 10.59% 6.34% 16.64% 0.85% 1.56% 0.07% 3.02% 0.59% 10.61% 0.03% 1.71%

DyGFormer 98.67 98.70 92.66 98.94 94.03 88.49 99.29 94.74 96.72 66.39 56.02 71.40 99.25
Imp. (%) 0.78% 0.40% 0.22% 0.02% 1.10% 0.95% 0.07% 0.08% 1.11% 2.03% 0.25% 1.36% 0.23%

hist

GraphMixer 74.34 93.29 77.98 71.47 72.47 77.77 78.44 94.93 84.11 57.05 51.20 81.65 90.90
DyGFormer 97.00 97.57 75.63 66.59 81.57 85.85 81.57 97.38 82.17 64.41 60.84 85.30 82.23

with TAMI

GraphMixer 78.81 93.30 81.68 73.01 80.23 83.61 82.56 96.80 87.69 69.74 70.90 84.56 90.97
Imp. (%) 6.01% 0.01% 4.74% 2.15% 10.71% 7.51% 5.25% 1.97% 4.26% 22.24% 38.48% 3.56% 0.08%

DyGFormer 98.96 97.72 81.02 67.77 83.40 86.26 85.18 97.56 85.89 65.16 81.72 86.10 82.38
Imp. (%) 2.02% 0.15% 7.13% 1.77% 2.24% 0.48% 4.43% 0.18% 4.53% 1.16% 34.32% 0.94% 0.18%

ind

GraphMixer 69.48 90.87 75.01 74.87 68.12 74.26 85.26 94.72 80.10 60.15 51.60 79.63 88.59
DyGFormer 95.44 94.75 77.41 70.92 73.97 81.24 91.11 97.68 72.25 55.79 51.91 81.25 78.29

with TAMI

GraphMixer 70.94 96.12 88.95 93.64 91.06 79.82 96.19 96.09 84.12 87.73 79.53 83.31 93.89
Imp. (%) 2.10% 5.78% 18.58% 25.07% 33.68% 7.49% 12.82% 1.45% 5.02% 45.85% 54.13% 4.62% 5.98%

DyGFormer 97.25 98.47 86.23 75.55 74.03 92.39 94.37 97.76 80.13 68.01 78.19 81.31 78.96
Imp. (%) 1.90% 3.93% 11.39% 6.53% 0.08% 13.72% 3.58% 0.08% 10.91% 21.90% 50.63% 0.07% 0.86%

the negative sampling strategies in [21], where random negative sampling is used for training and
random, historical, and inductive negative samplings are applied during evaluation, with random
negative sampling as the default choice.

4.2 Main Results

Performance under different negative sampling strategies. As shown in Table 1, TAMI substan-
tially improves the performance of the integrated models under all three negative sampling strategies.
In particular, for the random negative sampling strategy (rnd), the performance of both GraphMixer
and DyGFormer improves on all 13 datasets, with improvement up to 16.64%. This is because LTE
balances the skewness in temporal differences during the time encoding process, especially for nodes
that interact rarely or whose interaction intervals are long, while LHA prevents historical interactions
between the target node pair from being forgotten in predicting their future links, improving the link
prediction accuracy. In addition, we show in Section D.1 that TAMI remains effective in the inductive
setting, consistently improving the performance of the integrated models. These results validate the
effectiveness and versatility of the proposed TAMI framework.

Table 2: Test mean reciprocal rank (MRR) scores
on TGB datasets. TGB leaderboard is publicly
available.

Datasets DyGFormer w/ TAMI Imp (%)

tgbl-wiki 0.798 (rank 1) 0.815 (rank 1) 2.13%

tgbl-review 0.224 (rank 6) 0.419 (rank 2) 87.05%

tgbl-coin 0.752 (rank 2) 0.794 (rank 1) 5.59%

We also present the results of TAMI under the
historical (hist) and the inductive (ind) negative
sampling strategies in Table 1. As shown in Ta-
ble 1, TAMI consistently improves TGNNs under
both negative sampling strategies, achieving im-
provements of up to 38.48% and 54.13% for the
historical and inductive negative sampling strate-
gies, respectively. This is because LHA maintains
the interaction histories of node pairs as the test
stage progresses, allowing the underlying models
to better capture historical interaction patterns under historical sampling and inductive sampling,
more accurately predicting future connections. Please refer to Table 12 for full results.

7

https://tgb.complexdatalab.com/docs/leader_linkprop/
https://tgb.complexdatalab.com/docs/leader_linkprop/

Table 3: AP for transductive link prediction.

Methods CP CO EN FL LA MO RE SE UC UT UV US WK

GraphMixer 75.90 91.94 82.26 90.98 75.56 82.83 97.33 93.34 93.38 62.61 52.20 71.55 97.23
w/ LTE 78.07 92.22 82.76 90.99 75.21 83.09 97.35 92.64 94.98 62.65 52.21 70.88 97.28

Imp. (%) 2.86% 0.30% 0.61% 0.01% -0.46% 0.31% 0.02% -0.75% 1.71% 0.06% 0.02% -0.94% 0.05%

w/ LHA 75.93 95.15 89.88 96.72 88.15 83.36 98.81 93.71 94.90 62.83 57.57 71.61 98.85
Imp. (%) 0.04% 3.49% 9.26% 6.31% 16.66% 0.64% 1.52% 0.40% 1.63% 0.35% 10.30% 0.08% 1.67%

w/ TAMI 78.38 95.26 90.97 96.75 88.13 83.53 98.84 93.41 96.20 62.98 57.74 71.57 98.89
Imp. (%) 3.27% 3.61% 10.59% 6.34% 16.64% 0.85% 1.55% 0.07% 3.02% 0.59% 10.61% 0.03% 1.71%

DyGFormer 97.91 98.31 92.46 98.92 93.01 87.66 99.22 94.66 95.66 65.07 55.88 70.44 99.02
w/ LTE 98.73 98.36 92.61 98.93 93.92 88.59 99.27 94.74 96.68 67.24 56.37 70.98 99.23

Imp. (%) 0.84% 0.05% 0.16% 0.02% 0.98% 1.06% 0.06% 0.08% 1.06% 3.34% 0.88% 0.77% 0.21%

w/ LHA 97.57 98.65 92.59 98.92 93.44 87.55 99.23 94.72 96.00 64.53 55.99 71.23 99.07
Imp. (%) -0.35% 0.34% 0.14% 0.00% 0.47% -0.13% 0.02% 0.07% 0.36% -0.83% 0.20% 1.12% 0.05%

w/ TAMI 98.67 98.70 92.66 98.94 94.03 88.49 99.29 94.74 96.72 66.39 56.02 71.40 99.25
Imp. (%) 0.78% 0.40% 0.22% 0.03% 1.10% 0.95% 0.07% 0.08% 1.11% 2.03% 0.25% 1.36% 0.23%

Performance on three datasets from temporal graph benchmark (TGB). We further evaluate
TAMI on the tgbl-wiki, tgbl-review, and tgbl-coin datasets from TGB [9]. As shown in Table 2,
incorporating DyGFormer into the proposed TAMI framework significantly improves its performance,
making it the top-performing model on the tgbl-wiki and tgbl-coin datasets, and the second-best
model on the tgbl-review dataset. This is because LTE is robust to different levels of skewness in
datasets (see Section C.3) and LHA improves prediction accuracy whenever the interaction history
between the target node pair are informative in predicting their future link. Detailed dataset statistics
and experimental settings are provided in Section E.

4.3 Ablation Study

We conduct experiments to examine the effectiveness of the proposed LTE and LHA modules. Table 3
presents the test performance of TAMI and its two variants: w/ LTE, where we replace the original
TE in TGNNs with the proposed LTE and keep the rest unchanged; w/ LHA, where we integrate the
LHA module into TGNNs and keep the rest unchanged. As shown from the results, both LTE and
LHA improve the underlying TGNN performance when integrated individually. The performance
further boosts when they are combined together. This indicates that our designed LTE and LHA
are highly effective and versatile across datasets with various domains and temporal scales. We
demonstrate in Section D.2 that LTE and LHA are also effective in the inductive setting, consistently
enhancing the performance of integrated TGNNs.

4.4 Robustness to the Increase of Negative Links

Table 4: AP of methods under various numbers of nega-
tive links during testing. NEG=50 indicates that each
positive link is evaluated against 50 negative links in the
AP computation.

Method EN LA UC UV Method EN LA UC UV
NEG = 1

GraphMixer 82.26 75.56 93.38 52.20 DyGFormer 92.46 93.01 95.66 55.88
w/ TAMI 90.97 88.13 96.20 57.74 w/ TAMI 92.66 94.03 96.72 56.02
Imp (%) 10.59% 16.64% 3.02% 10.61% Imp (%) 0.22% 1.10% 1.11% 0.25%
NEG = 5

GraphMixer 53.42 47.06 82.05 18.17 DyGFormer 75.81 77.77 88.77 20.86
w/ TAMI 70.36 65.05 88.40 21.62 w/ TAMI 76.37 80.58 90.76 20.97
Imp (%) 31.72% 38.24% 7.73% 18.99% Imp (%) 0.74% 3.61% 2.24% 0.55%
NEG = 25

GraphMixer 22.77 23.77 63.54 4.36 DyGFormer 45.15 51.58 78.96 5.13
w/ TAMI 36.57 34.97 73.26 5.32 w/ TAMI 46.39 56.61 81.74 5.28
Imp (%) 60.61% 47.12% 15.30% 22.04% Imp (%) 2.74% 9.74% 3.52% 2.92%
NEG = 50

GraphMixer 14.09 16.80 54.14 2.25 DyGFormer 31.06 35.64 73.47 2.65
w/ TAMI 23.43 24.66 63.74 2.74 w/ TAMI 32.43 44.76 76.59 2.72
Imp (%) 66.29% 46.76% 17.74% 21.78% Imp (%) 4.41% 25.59% 4.25% 2.64%

In this experiment, we evaluate the robust-
ness of TAMI against an increasing num-
ber of negative links per positive link. A
negative link refers to a pair of nodes that
are not currently connected and are used
as negative samples in the link prediction
process. Ideally, a link prediction model
should assign a higher connection probabil-
ity to positive links and a probability close
to zero to negative links. The more nega-
tive links, the more difficult the task is. In
the default setting, the number of negative
links is set to 1 per positive link. We run the
experiments on four representative datasets
(EN, LA, UC, and UV), and report the re-
sults in Table 4. “NEG=50” denotes that
each positive link is evaluated against 50
negative links when computing its connec-
tion probability.

8

0 20 40
0.84

0.86

0.88

0.90

w/ TAMI
DyGFormer

0 20 40

0.80

0.85

0.90

w/ TAMI
GraphMixer

0 50 100

0.70

0.80

0.90 w/ TAMI
TGAT

Training Epochs
Va

lid
at

io
n

AP

(a) The EN dataset

0 20 40

0.94

0.95

0.96

w/ TAMI
DyGFormer

0 25 50

0.91

0.92

w/ TAMI
GraphMixer

0 20 40

0.85

0.90

0.95

w/ TAMI
TGAT

Training Epochs

Va
lid

at
io

n
AP

(b) The UC dataset

Figure 6: Validation AP vs. training epochs on the (a) EN and (b) UC datasets. TAMI enables
TGNNs to achieve higher validation average precision with fewer training epochs.

As shown in Table 4, integrating GraphMixer and DyGFormer into TAMI consistently enhances
their performance across different numbers of negative links per positive link. Furthermore, the
improvement ratio steadily increases as the number of negative links grows. For example, on
the EN dataset, the improvement ratio for GraphMixer increases from 10.59% to 66.29% as the
number of negative links per positive link increases from 1 to 50. This is because leveraging the
interaction histories stored in LHA between target node pairs helps to avoid predicting negative links
as positive ones. These results suggest that the proposed TAMI framework effectively improves
TGNN performance in scenarios where the ratio of negative links to positive links is high, reflecting
conditions that are more practical for sparse CTTGs.

4.5 Adaptivity to Different TGNN Architectures

Table 5: AP Improvement (Imp.%) of various
TGNNs when integrated into TAMI. The format is of
AP (+Imp.%). Please refer to Table 13 for full results.

Method (w/ TAMI) EN LA UC UV

CAWN 91.23 (+3.21%) 91.02 (+4.64%) 96.69 (+1.81%) 57.49 (+8.72%)
TGAT 91.37 (+25.35%) 91.60 (+24.85%) 96.36 (+21.53%) 60.03 (+12.98%)
TGN 92.34 (+6.03%) 92.83 (+22.58%) 95.36 (+3.80%) 67.80 (+3.22%)

JODIE 90.62 (+6.88%) 87.95 (+25.33%) 92.44 (+3.68%) 65.57 (+3.22%)

We below show the adaptivity of TAMI to
different TGNN architectures. Specifically,
we integrate a random walk-based TGNN,
i.e. CAWN [31], and three temporal
neighbor-based TGNNs, i.e., TGAT [34],
TGN [22], and JODIE [13], into TAMI.
Since JODIE does not utilize the time en-
coding function, we report its performance
with LHA integrated. As shown in Table 5,
TAMI consistently improves their performance, indicating the effectiveness of TAMI for different
TGNN architectures. Additionally, we show in Table 13 that applying LTE and LHA individually
also boosts the performance of the underlying TGNNs.

4.6 Improved Training Efficiency

Method

Metric

Figure 7: DyGFormer integrated with TAMI can compute tempo-
ral node embeddings using significantly fewer historical interac-
tions while achieving better performance.

We observe that TAMI can speed
up the training of underlying
TGNNs. To show this, we plot
the validation AP of TGNNs dur-
ing training in Figure 6. On the
EN and UC datasets, TGNNs
within the TAMI framework
achieve higher validation AP
scores with much fewer train-
ing epochs, compared to their
vanilla counterparts. In other
words, the underlying models
converge faster than their vanilla
versions. These findings sug-
gest that TAMI can speed up the
convergence of TGNNs while
yielding improved validation AP
scores. This is because LTE facil-
itates the learning of frequency
parameters in the time encoding
function by balancing input tem-
poral differences, while LHA enables the underlying model to more effectively capture the patterns
of historical interactions between target node pairs.

9

In addition, we demonstrate that DyGFormer, when integrated into our TAMI framework, can
compute temporal node embeddings using significantly fewer historical interactions while achieving
equal or even better performance. As shown in Figure 7, when integrated into TAMI, DyGFormer
on the UC and EN datasets requires only 2 and 32 historical interactions for attention calculation,
respectively, outperforming the vanilla counterpart that uses 16× and 8× more historical interactions.
The reduced number of historical interactions results in lower GPU memory usage (up to 53.22%).
Moreover, on both datasets, DyGFormer under the TAMI framework converges much faster than the
vanilla version, with fewer training epochs and up to 40.54% reduction in training time per epoch.

5 Conclusion

In this paper, we observed the presence of heterogeneity in temporal interactions of CTTGs and
proposed a novel framework TAMI to address the challenges therein. TAMI has two main modules,
namely LTE and LHA. LTE balances the skewness in the time differences via a simple yet effective
logarithmic transformation, and LHA prevents the historical interactions for each target node pair
from being forgotten. Existing temporal graph neural networks can be seamlessly and readily
integrated into TAMI. Extensive experiments on 13 classic open datasets and three TGB datasets
show that TAMI substantially improves the link prediction accuracy of the underlying models as well
as their training efficiency, in both transductive and inductive settings.

Acknowledgments

We thank the anonymous reviewers for their constructive feedback. This work was supported in part
by the Guangdong Provincial Key Laboratory of IRADS (2022B1212010006), the Guangdong Higher
Education Upgrading Plan (2021-2025), and the Guangdong and Hong Kong Universities “1+1+1”
Joint Research Collaboration Scheme (No. 2025A0505000004 and No. 2025A0505000012). This
work was also supported in part by the National Science Foundation under Grant No. IIS-2209921,
and the International Energy Joint R&D Program of the Korea Institute of Energy Technology
Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry &
Energy, Republic of Korea (No. 20228530050030).

References
[1] Unai Alvarez-Rodriguez, Federico Battiston, Guilherme Ferraz de Arruda, Yamir Moreno,

Matjaž Perc, and Vito Latora. Evolutionary dynamics of higher-order interactions in social
networks. Nature Human Behaviour, 2021.

[2] Stan Brown. Measures of shape: Skewness and kurtosis, 2011.

[3] Yizhou Chen, Anxiang Zeng, Qingtao Yu, Kerui Zhang, Cao Yuanpeng, Kangle Wu, Guangda
Huzhang, Han Yu, and Zhiming Zhou. Recurrent temporal revision graph networks. Advances
in Neural Information Processing Systems, 2024.

[4] Ke Cheng, Peng Linzhi, Junchen Ye, Leilei Sun, and Bowen Du. Co-neighbor encoding schema:
A light-cost structure encoding method for dynamic link prediction. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2024.

[5] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder–decoder approaches. In Proceedings of SSST-
8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation. Association
for Computational Linguistics, 2014.

[6] Hsing-Huan Chung, Shravan S Chaudhari, Xing Han, Yoav Wald, Suchi Saria, and Joydeep
Ghosh. Between linear and sinusoidal: Rethinking the time encoder in dynamic graph learning.
Transactions on Machine Learning Research, 2025.

[7] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
In The Eleventh International Conference on Learning Representations, 2023.

10

[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in Neural Information Processing Systems, 2017.

[9] Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele
Rossi, Jure Leskovec, Michael M. Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany.
Temporal graph benchmark for machine learning on temporal graphs. In Thirty-seventh Confer-
ence on Neural Information Processing Systems Datasets and Benchmarks Track, 2023.

[10] Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation
learning on continuous-time dynamic graphs. Advances in Neural Information Processing
Systems, 2022.

[11] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, 2015.

[12] Stephen Kokoska and Daniel Zwillinger. CRC standard probability and statistics tables and
formulae. Crc Press, 2000.

[13] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019.

[14] Xiaodong Lu, Leilei Sun, Tongyu Zhu, and Weifeng Lv. Improving temporal link prediction via
temporal walk matrix projection. Advances in Neural Information Processing Systems, 2024.

[15] Linhao Luo, Gholamreza Haffari, and Shirui Pan. Graph sequential neural ode process for link
prediction on dynamic and sparse graphs. In Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining, 2023.

[16] Yuhong Luo and Pan Li. Neighborhood-aware scalable temporal network representation learning.
Learning on Graphs Conference, 2022.

[17] Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. Streaming graph neural
networks. In Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2020.

[18] James W Pennebaker. Linguistic inquiry and word count: Liwc 2001, 2001.

[19] Katarina Petrović, Shenyang Huang, Farimah Poursafaei, and Petar Veličković. Temporal graph
rewiring with expander graphs. arXiv preprint, 2024.

[20] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-
based simulation with graph networks. In International Conference on Learning Representations,
2020.

[21] Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better
evaluation for dynamic link prediction. Advances in Neural Information Processing Systems,
2022.

[22] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
Michael Bronstein. Temporal graph networks for deep learning on dynamic graphs. In ICML
2020 Workshop on Graph Representation Learning, 2020.

[23] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter Battaglia. Learning to simulate complex physics with graph networks. In International
Conference on Machine Learning, 2020.

[24] Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, and Jian Tang.
Session-based social recommendation via dynamic graph attention networks. In Proceedings of
the Twelfth ACM International Conference on Web Search and Data Mining, 2019.

[25] Yuxing Tian, Yiyan Qi, and Fan Guo. Freedyg: Frequency enhanced continuous-time dy-
namic graph model for link prediction. In The Twelfth International Conference on Learning
Representations, 2024.

11

[26] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer:
An all-mlp architecture for vision. Advances in Neural Information Processing Systems, 2021.

[27] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In International Conference on Learning Representations,
2019.

[28] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018.

[29] Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song,
Jingren Zhou, and Hongxia Yang. TCL: Transformer-based Dynamic Graph Modelling via
Contrastive Learning. arXiv preprint, 2021.

[30] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang,
Ping Cui, Yupu Yang, Bowen Sun, et al. Apan: Asynchronous propagation attention network
for real-time temporal graph embedding. In Proceedings of the 2021 International Conference
on Management of Data, 2021.

[31] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. In International Conference on
Learning Representations, 2021.

[32] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet
for deep spatial-temporal graph modeling. In International Joint Conference on Artificial
Intelligence, 2019.

[33] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Self-attention
with functional time representation learning. In Advances in Neural Information Processing
Systems, 2019.

[34] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive repre-
sentation learning on temporal graphs. In International Conference on Learning Representations,
2020.

[35] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks:
A deep learning framework for traffic forecasting. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, 2018.

[36] Le Yu. An empirical evaluation of temporal graph benchmark. arXiv preprint, 2023.

[37] Le Yu, Bowen Du, Xiao Hu, Leilei Sun, Liangzhe Han, and Weifeng Lv. Deep spatio-temporal
graph convolutional network for traffic accident prediction. Neurocomputing, 2021.

[38] Le Yu, Zihang Liu, Leilei Sun, Bowen Du, Chuanren Liu, and Weifeng Lv. Continuous-time
user preference modelling for temporal sets prediction. IEEE Transactions on Knowledge and
Data Engineering, 2023.

[39] Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
architecture and unified library. Advances in Neural Information Processing Systems, 2023.

[40] Le Yu, Guanghui Wu, Leilei Sun, Bowen Du, and Weifeng Lv. Element-guided temporal graph
representation learning for temporal sets prediction. In Proceedings of the ACM Web Conference
2022, 2022.

[41] Mengqi Zhang, Shu Wu, Xueli Yu, Qiang Liu, and Liang Wang. Dynamic graph neural networks
for sequential recommendation. IEEE Transactions on Knowledge and Data Engineering, 2022.

[42] Xiaohui Zhang, Yanbo Wang, Xiyuan Wang, and Muhan Zhang. Efficient neural common
neighbor for temporal graph link prediction. arXiv preprint, 2024.

12

[43] Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic
graph neural networks under spatio-temporal distribution shift. In Advances in Neural Informa-
tion Processing Systems, 2022.

[44] Hongkuan Zhou, Da Zheng, Xiang Song, George Karypis, and Viktor Prasanna. DistTGL:
Distributed Memory-Based Temporal Graph Neural Network Training. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis,
2023.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This is the first study to identify the presence of heterogeneity in temporal
interactions of CTTGs and investigate its impact on link prediction performance. We propose
a novel framework TAMI to handle the heterogeneity in temporal interactions, and existing
graph neural networks can be seamlessly integrated into our TAMI framework. The claims
in the paper are supported by related work discussion in Section 2, experiments in Section 4,
and mathematical derivations in Section A. Please also refer to the additional experiments in
the Appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section C.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

14

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the mathematical steps and justification of Proposition 1 in
Section A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of our experimental setup in Section B.3,
Section B.4, and Section E. We also include our code in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

15

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Dataset sources are provided in Section B.1 and Section E. Our code is
provided in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe dataset splits in Section 4.1, hyperparameter settings in Sec-
tion B.4, and detailed implementations in Section B.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean and standard deviation of results on all our experiments,
over 5 repeated runs. We state these details explicitly in the result tables. Due to the limited
space, standard deviations of the results in the main text tables are provided in Section F.

Guidelines:

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Computational resources are described in Section B.3. We provided a detailed
space complexity discussion at the end of Section 3.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our proposed framework is widely applicable to science and engineering
applications and does not have any conflict with the NeurIPS code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]

17

https://neurips.cc/public/EthicsGuidelines

Justification: The proposed method can be applied to a wide variety of science and engi-
neering applications. There is no clear path to a negative societal impact from our work.
Guidelines:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not include data or models with a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All benchmarks used in the paper are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

18

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Code has been submitted with the paper and includes clear documentation for
running the experiments.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

19

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Technical Appendix and Supplementary Material

In the Appendix, we provide additional supplementary material to the main paper. The structure is as
follows:

1. Section A outlines the proof of Proposition 1.
2. Section B outlines the experimental settings in detail.
3. Section C presents additional results for link prediction in the transductive setting.
4. Section D shows the results in the inductive setting.
5. Section E outlines the experimental settings on TGB datasets.
6. Section F presents the standard deviations of the results in the main text tables.

A Proof of Proposition 1

Suppose ∆t follows a Pareto distribution with the shape parameter α > 3, whose skewness is always
greater than 2. Note that if the shape parameter is 0 < α ≤ 2, the variance is infinite, so the skewness
is undefined. Also, if the shape parameter is 2 < α ≤ 3, its third moment is infinite. Thus, we focus
on the case of α > 3. Then, for any value of α > 3, we show that LTE always reduces the skewness
of ∆t to 2.

Proof. Let T be a random variable that represents the temporal difference ∆t and follows a Pareto
distribution. Then, T + 1 also follows a (shifted) Pareto distribution. Letting X = T + 1, we can
write the probability density function (PDF) of X as

fX(x) =
αxα

min

xα+1
, x ≥ xmin,

where α > 3 is the shape parameter, and xmin > 1 is the scale parameter.

First, we show that the skewness Γ of X is always greater than 2. We write the skewness Γ of X as a
function of α, i.e.,

Γ = g(α) =
2(1 + α)

α− 3

√
1− 2

α
(7)

It is then straightforward to see that g(α) is monotonically decreasing, with g(α) → 2 as α → ∞.
To show that g(α) is monotonically decreasing, we can show that ln g(α) exists and ln g(α) is
monotonically decreasing. We first take the natural logarithm on both sides of (7) and differentiate
ln g(α) with respect to α. We can then show that g′(α)

g(α) < 0. In addition, we can easily see from (7)
that g(α) → 2 as α → ∞. Therefore, the skewness Γ of X is always greater than 2.

Next, for any value of α > 3, we show that LTE always reduces the skewness Γ to 2. Recall that LTE
transforms X via a logarithmic function Y =ln(X). By using the change-of-variables formula for
probability distributions, we can obtain the PDF of Y as follows:

fY (y) = fX(x) ·
∣∣∣∣dxdy

∣∣∣∣ = αxα
mine

−αy.

Letting µ = ln(xmin) > 0, we have

fY (y) = αe−α(y−µ), y ≥ µ,

which is a shifted exponential distribution with the rate parameter α > 3. Since the skewness of a
(shifted) exponential distribution is 2 regardless of the value of the rate parameter α, LTE always
reduces the skewness to 2.

B Experimental Settings

B.1 Descriptions of Datasets

We use 13 datasets collected by [21] in our experiments.

21

1. Can. Parl. (CP) is a dynamic political network that captures the interactions among
Canadian Members of Parliament (MPs) from 2006 to 2019. Each node represents an MP
from an electoral district, and an edge is established when two MPs cast a “yes” vote on the
same bill. The weight of each edge reflects the annual frequency with which one MP votes
“yes” alongside another.

2. Contact (CO) describes how the physical proximity evolves among about 700 university
students over a month. Each student has a unique ID and edges between students denote that
they are within close proximity to each other. Each edge is assigned a weight that reflects
the physical proximity between students.

3. Enron (EN) is an email correspondence dataset that records the emails exchanged among
employees of the ENRON energy company over three years.

4. Flights (FL) is a dynamic flight network illustrating the development of air traffic during
the COVID-19 pandemic. Nodes represent airports and the tracked flights are denoted as
edges. The edge weights reflect the number of flights between two airports in a day.

5. LastFM (LA) records the interaction between users and songs. Users and songs are nodes
and edges between them represent a user-listens-to-song relation. The dataset contains no
attributes.

6. Mooc (MO) is a dataset that captures students’ interactions with online course materi-
als. Each edge represents a student accessing a content unit and is associated with a
4-dimensional feature vector.

7. Reddit (RE) comprises user posts submitted to subreddits over one month. Users and
subreddits are nodes, while timestamped posting requests form the edges. Edge features are
LIWC-feature vectors [18] of edit texts.

8. Social Evo. (SE) is a mobile phone proximity network that tracks the daily interactions of an
undergraduate dormitory over eight months. Each edge is associated with a 2-dimensional
feature vector.

9. UCI (UC) is an unattributed online communication network among university students.
Nodes are university students and edges are messages posted by students.

10. UN Trade (UT) is a food and agriculture trading graph between 181 nations for more than
30 years. The edge weights indicate the total sum of normalized agriculture import or export
values between two countries.

11. UN Vote (UV) captures roll-call voting behavior in the United Nations General Assembly.
Each time two nations vote a “yes” on the same item, the edge weight between them is
incremented by one.

12. US Legis. (US) is a senate co-sponsorship graph that captures the social dynamics among
US legislators. The edge weights specify the number of times two congresspersons have
co-sponsored a bill in a given Congress.

13. Wikipedia (WK) records the edits on Wikipedia pages over a month. Editors and Wiki
pages are modeled as nodes, and posting requests are timestamped edges. Edge features are
172-dimensional LIWC feature vectors [18].

We present the dataset statistics in Table 6, where “#N&E Feat” refers to the dimensions of node
and raw edge features. Table 7 summarizes the skewness of all 13 datasets, where the skewness is
measured for the interaction intervals between pairs of nodes in each dataset.

B.2 Descriptions of Baselines

We select nine baseline link prediction methods, covering a wide range of underlying TGNN architec-
tures: random walk-based TGNN (CAWN), and temporal neighbor-based TGNNs (TGN, EdgeBank,
JODIE, DyRep, TGAT, TCL, GraphMixer, DyGFormer).

1. TGN maintains an evolving memory for each node in a temporal graph, updating its memory
when the node participates in an interaction. The stored historical states of the node are
subsequently used by an embedding module to compute its future representation.

22

Table 6: Statistics of Datasets. The ‘-’ symbol denotes that the dataset does not contain the corre-
sponding feature.

Datasets Domains #Nodes #Edges # Unique Edges #N&E Feat Duration Unique Steps Time Granularity

CP Politics 734 74,478 51,331 – & 1 14 years 14 years
CO Proximity 694 2,426,280 79,531 – & 1 1 month 8,065 5 minutes
EN Social 184 125,235 3,125 – & – 3 years 22,632 Unix timestamps
FL Transport 13,169 1,927,145 395,072 – & 1 4 months 122 days
LA Interaction 1,980 1,293,103 154,993 – & – 1 month 1,283,614 Unix timestamps
MO Interaction 7,144 411,749 178,443 – & 4 17 months 345,600 Unix timestamps
RE Social 10,984 672,447 78,516 – & 172 1 month 669,065 Unix timestamps
SE Proximity 74 2,099,519 4,486 – & 2 8 months 565,932 Unix timestamps
UC Social 1,899 59,835 20,296 – & – 196 days 58,911 Unix timestamps
UT Economics 255 507,497 36,182 – & 1 32 years 32 years
UV Politics 201 1,035,742 31,516 – & 1 72 years 72 years
US Politics 225 60,396 26,423 – & 1 12 congresses 12 congresses
WK Social 9,227 157,474 18,257 – & 172 1 month 152,757 Unix timestamps

Table 7: Skewness of datasets measured by interaction intervals.

Datasets CP CO EN FL LA MO RE SE UC UT UV US WK

Skewness 1.71 10.96 4.24 2.37 3.15 4.33 2.46 18.63 5.2 6.35 6.36 9.17 4.48

2. EdgeBank EdgeBank is a transductive link prediction method with no trainable parameters.
It stores observed interactions between nodes in a memory unit, which is updated using
various strategies. A future interaction is predicted as positive if it is retained in memory,
and negative otherwise [21]. Depending on the memory update strategies, EdgeBank
has four variants: EdgeBank∞ uses unlimited memory and retains all observed edges;
EdgeBanktw−ts and EdgeBanktw−re retain only recent edges within a fixed-size time
window. The window size for EdgeBanktw−ts is set to the duration of the test split, while
EdgeBanktw−re adjusts the window size based on the time intervals between repeated edges;
EdgeBankth retains only edges that appear more than a specified threshold number of times.
We evaluate all four variants and report the best-performing one.

3. JODIE is designed for temporal bipartite networks involving user-item interactions. It
maintains the states of both user and item nodes and utilizes two coupled recurrent neural
networks to update these node states. Additionally, a projection operation is introduced to
learn the future representation trajectory for each user and item [13].

4. DyRep introduces a recurrent architecture to update node states at each interaction, com-
plemented by a temporal-attentive aggregation module that captures the evolving structural
information in temporal graphs. [27].

5. CAWN first extracts multiple causal anonymous walks for each node, enabling the explo-
ration of the causality in network dynamics. Then, it employs recurrent neural networks to
encode each walk and aggregates them to obtain the final node representation [31].

6. TGAT It computes the representation of a node by aggregating its temporal neighbors using
the graph attention mechanism [28], with a time encoding function to capture temporal
patterns [34].

7. TCL first performs a breadth-first search on the temporal subgraph to identify the temporal
neighbors of the target node. Subsequently, a graph transformer is used to encode neigh-
bor embeddings and graph topologies, enabling the computation of node representations.
Furthermore, a cross-attention mechanism is employed to capture the interdependencies
between the two interacting nodes [29].

8. GraphMixer utilizes the MLP-Mixer [26] to encode both temporal information and the
historical interactions of the target node. Additionally, a node encoder is employed to
aggregate the node features of temporal neighbors [7]. In their experiments, they show that
a fixed time encoding function outperforms its trainable counterpart.

9. DyGFormer is a Transformer-based architecture that computes node representations by
aggregating features from each node’s temporal neighbors. It introduces a neighbor co-
occurrence encoding scheme to capture the correlations between nodes within an interaction
and a patching technique to help the model capture long-term dependencies [39].

23

B.3 Implementation Details

We train all TGNNs (excluding EdgeBank, which has no trainable parameters) using the Adam
optimizer [11], with binary cross-entropy loss as the objective function. TGNNs are trained for 100
epochs with early stopping, where the patience score is set to 20. We use a learning rate of 0.0001
and a batch size of 200 for all methods and datasets. The model with the best validation performance
is selected for testing. Each method is run five times using random seeds ranging from 0 to 4, with
the average performance reported to minimize any deviations. For the hyperparameter γ in our
LHA module, we search for the best γ range from 0.0001 to 1 during the training and validation
phases and then use the γ with the best validation performance in the test phase. Specifically, we set
γ = 0.0001 for the MO and SE datasets, γ = 0.1 for the UV dataset, and γ = 0.9 for the remaining
ten datasets. The dimension of historical edge embedding is set equal to the dimension of temporal
node embedding, i.e., dr = d, where detailed configurations can be found in Section B.4.

All our experiments are conducted on a GPU server running Ubuntu 22.04, with PyTorch 2.1.0 and
CUDA 12.1. We train and test the proposed TAMI framework using a single NVIDIA A100 80G
GPU.

B.4 Configurations of Baselines

[39] conducted an extensive hyperparameter search across all 13 datasets. For consistency, we adopt
the optimal hyperparameter settings reported in [39] for all baseline methods. We first outline the
configurations that remain consistent across all datasets, followed by the specific hyperparameter
settings for each dataset.

The consistent configurations are as follows:

• JODIE
1. Dimension of node memory: 172
2. Dimension of output representation: 172
3. Memory updater: vanilla recurrent neural network

• DyRep
1. Dimension of time encoding: 100
2. Dimension of node memory: 172
3. Dimension of output representation: 172
4. Number of graph attention heads: 2
5. Number of graph convolution layers: 1
6. Memory updater: vanilla recurrent neural network

• TGAT
1. Dimension of time encoding: 100
2. Dimension of output representation: 172
3. Number of graph attention heads: 2
4. Number of graph convolution layers: 2

• TGN
1. Dimension of time encoding: 100
2. Dimension of node memory: 172
3. Dimension of output representation: 172
4. Number of graph attention heads: 2
5. Number of graph convolution layers: 1
6. Memory updater: gated recurrent unit [5]

• CAWN
1. Dimension of time encoding: 100
2. Dimension of position encoding: 172
3. Dimension of output representation: 172

24

4. Number of attention heads for encoding walks: 8
5. Length of each walk (including the target node): 2
6. Time scaling factor α: 1e-6

• TCL
1. Dimension of time encoding: 100
2. Dimension of depth encoding: 172
3. Dimension of output representation: 172
4. Number of attention heads: 2
5. Number of Transformer layers: 2

• GraphMixer
1. Dimension of time encoding: 100
2. Dimension of output representation: 172
3. Number of MLP-Mixer layers: 2
4. Time gap T : 2000

• DyGFormer
1. Dimension of time encoding: 100
2. Dimension of neighbor co-occurrence encoding dC : 50
3. Dimension of aligned encoding d: 50
4. Dimension of output representation: 172
5. Number of attention heads: 2
6. Number of Transformer layers: 2

The hyperparameter settings for each method across different datasets are shown in Table 8, Table 9,
and Table 10.

Table 8: Dropout rates of different methods.

Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer

CP 0.0 0.0 0.2 0.3 0.0 0.2 0.2 0.1
CO 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.0
EN 0.1 0.0 0.2 0.0 0.1 0.1 0.5 0.0
FL 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1
LA 0.3 0.0 0.1 0.3 0.1 0.1 0.0 0.1
MO 0.2 0.0 0.1 0.2 0.1 0.1 0.4 0.1
RE 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.2
SE 0.1 0.1 0.1 0.0 0.1 0.0 0.3 0.1
UC 0.4 0.0 0.1 0.1 0.1 0.0 0.4 0.1
UT 0.4 0.1 0.1 0.2 0.1 0.0 0.1 0.0
UV 0.1 0.1 0.2 0.1 0.1 0.0 0.0 0.2
US 0.2 0.0 0.1 0.1 0.1 0.3 0.4 0.0
WK 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.1

B.5 Skewness of Temporal Difference

Table 11 presents the skewness of temporal difference for both the baseline (Original TE) and the
proposed (LTE) time encoding functions. The skewness score is computed using Fisher’s moment
coefficient of skewness [12, 2]. A positive skewness score indicates that the temporal differences are
right-skewed, a negative score indicates they are left-skewed, and a score of 0 suggests a balanced
distribution. Compared to the baseline encoding function, the proposed LTE method effectively
reduces the skewness of temporal difference.

C Comprehensive Results for Transductive Temporal Link Prediction

This section presents additional results for transductive link prediction. Section C.1 presents the
comprehensive results of Table 1. Section C.2 shows that applying LTE and LHA individually
also improves the link prediction accuracy of the integrated model. Section C.3 discusses how the

25

Table 9: The sample size of temporal neighbors, the number of causal anonymous walks, and the
length of input sequences & the patch size of different methods. The number in parentheses indicates
the number of historical interactions used to compute each temporal node embedding during the test
stage. For example, on the CP dataset, setting the input sequence length to 2048 denotes that, on
average, 99.98% of historical interactions are used to compute a single temporal node embedding.

Datasets JODIE TGAT TGN CAWN TCL GraphMixer DyGFormer

CP 10 20 10 128 20 20 2048 (99.98%) & 64
CO 10 20 10 64 20 20 32 (0.49%) & 1
EN 10 20 10 32 20 20 256 (31.69%) & 8
FL 10 20 10 64 20 20 256 (34.93%) & 8
LA 10 20 10 128 20 10 512 (41.23%) & 16
MO 10 20 10 64 20 20 256 (57.59%) & 8
RE 10 20 10 32 20 10 64 (40.48%)& 2
SE 10 20 10 64 20 20 32 (0.05%) & 1
UC 10 20 10 64 20 20 32 (34.13%) & 1
UT 10 20 10 64 20 20 256 (7.05%) & 8
UV 10 20 10 64 20 20 128 (1.66%) & 4
US 10 20 10 32 20 20 256 (63.03%) & 8
WK 10 20 10 32 20 30 32 (39.37%) & 1

Table 10: Strategies for sampling temporal neighbors during testing and the best-performing variants
of EdgeBank.

Datasets DyRep TGAT TGN TCL GraphMixer EdgeBank Variant

CP uniform uniform uniform uniform uniform EdgeBanktw−ts

CO recent recent recent recent recent EdgeBanktw−re

EN recent recent recent recent recent EdgeBanktw−ts

FL recent recent recent recent recent EdgeBank∞
LA recent recent recent recent recent EdgeBanktw−ts

MO recent recent recent recent recent EdgeBanktw−ts

RE recent uniform recent uniform recent EdgeBank∞
SE recent recent recent recent recent EdgeBankth
UC recent recent recent recent recent EdgeBank∞
UT recent uniform recent uniform uniform EdgeBanktw−re

UV recent recent uniform uniform uniform EdgeBanktw−re

US recent recent recent uniform recent EdgeBanktw−ts

WK recent recent recent recent recent EdgeBank∞

Table 11: Skewness of temporal difference in different time encoding functions on 13 datasets. The
proposed LTE time encoding function effectively reduces the skewness of temporal difference.

Datasets CP CO EN FL LA MO RE SE UC UT UV US WK

Original TE 1.73 28.81 6.35 7.45 32.76 4.14 3.47 140.42 2.38 0.34 0.62 9.22 2.64

LTE 0.69 1.96 -0.60 2.37 -0.61 0.30 -0.31 0.07 -1.14 -0.96 -0.95 9.22 -0.8865

effectiveness of LTE is influenced by the skewness of temporal differences in a dataset and the
configurations of underlying TGNNs. Section C.4 explores the impact of the hyperparameter γ in our
LHA module. Section C.5 studies the robustness of TAMI under different aggregation strategies and
values of k in our LHA module. Section C.6 highlights that TGNNs suffer from the loss of interaction
histories, which reduces their link prediction performance. Our LHA module helps mitigate this loss
and improves TGNNs’ performance. Section C.7 evaluates the effectiveness of LHA under conditions
of limited memory.

C.1 Comprehensive Results of Table 1

Table 12 presents the comprehensive results of Table 1. Results show that TAMI consistently improves
the link prediction accuracy of underlying TGNNs and remains effective under different negative
sampling strategies.

C.2 Adaptivity of LTE and LHA to Various Types of TGNNs

Table 13 demonstrates the comprehensive results of Table 5 in Section 4.5. It also presents the link
prediction performance of TGNNs integrated with the proposed LTE and LHA, alongside their vanilla

26

Table 12: AP for transductive link prediction. Negative edges are generated using the random (rnd),
historical (hist), and inductive (ind) negative sampling strategies proposed in [21]. NSS stands for
negative sampling strategies. Standard deviations are summarized in Table 21.

NSS Methods CP CO EN FL LA MO RE SE UC UT UV US WK

rnd

JODIE 69.26 95.31 84.77 95.60 70.85 80.23 98.31 89.89 89.43 64.94 63.91 75.05 96.50
DyRep 66.54 95.98 82.38 95.29 71.92 81.97 98.22 88.87 65.14 63.21 62.81 75.34 94.86
TGAT 70.73 96.28 71.12 94.03 73.42 85.84 98.52 93.16 79.63 61.47 52.21 68.52 96.94
TGN 70.88 96.89 86.53 97.95 77.07 89.15 98.63 93.57 92.34 65.03 65.72 75.99 98.45

CAWN 69.82 90.26 89.56 98.51 86.99 80.15 99.11 84.96 95.18 65.39 52.84 70.58 98.76
EdgeBank 64.55 92.58 83.53 89.35 79.29 57.97 94.86 74.95 76.20 60.41 58.49 58.39 90.37

TCL 68.67 92.44 79.70 91.23 67.27 82.38 97.53 93.13 89.57 62.21 51.90 69.59 96.47
GraphMixer 75.90 91.94 82.26 90.98 75.56 82.83 97.33 93.34 93.38 62.61 52.20 71.55 97.23
DyGFormer 97.91 98.31 92.46 98.92 93.01 87.66 99.22 94.66 95.66 65.07 55.88 70.44 99.02

with TAMI

GraphMixer 78.38 95.26 90.97 96.75 88.13 83.53 98.84 93.41 96.20 62.98 57.74 71.57 98.89
Imp. (%) 3.27% 3.61% 10.59% 6.34% 16.64% 0.85% 1.56% 0.07% 3.02% 0.59% 10.61% 0.03% 1.71%

DyGFormer 98.67 98.70 92.66 98.94 94.03 88.49 99.29 94.74 96.72 66.39 56.02 71.40 99.25
Imp. (%) 0.78% 0.40% 0.22% 0.02% 1.10% 0.95% 0.07% 0.08% 1.11% 2.03% 0.25% 1.36% 0.23%

hist

JODIE 51.79 95.31 69.85 66.48 74.35 78.94 80.03 87.44 75.24 61.39 70.02 51.71 83.01
DyRep 63.31 96.39 71.19 67.61 74.92 75.60 79.83 93.29 55.10 59.19 69.30 86.88 79.93
TGAT 67.13 96.05 64.07 72.38 71.59 82.19 79.55 95.01 68.27 55.74 52.96 62.14 87.38
TGN 68.42 93.05 73.91 66.70 76.87 87.06 81.22 94.45 80.43 58.44 69.37 74.00 86.86

CAWN 66.53 84.16 64.73 64.72 69.86 74.05 80.82 85.53 65.30 55.71 51.26 68.82 71.21
EdgeBank 63.84 88.81 76.53 70.53 73.03 60.71 73.59 80.57 65.50 81.32 84.89 63.20 73.35

TCL 65.93 93.86 70.66 70.68 59.30 77.06 77.14 94.74 80.25 55.90 52.30 80.53 89.05
GraphMixer 74.34 93.29 77.98 71.47 72.47 77.77 78.44 94.93 84.11 57.05 51.20 81.65 90.90
DyGFormer 97.00 97.57 75.63 66.59 81.57 85.85 81.57 97.38 82.17 64.41 60.84 85.30 82.23

with TAMI

GraphMixer 78.81 93.30 81.68 73.01 80.23 83.61 82.56 96.80 87.69 69.74 70.90 84.56 90.97
Imp. (%) 6.01% 0.01% 4.74% 2.15% 10.71% 7.51% 5.25% 1.97% 4.26% 22.24% 38.48% 3.56% 0.08%

DyGFormer 98.96 97.72 81.02 67.77 83.40 86.26 85.18 97.56 85.89 65.16 81.72 86.10 82.38
Imp. (%) 2.02% 0.15% 7.13% 1.77% 2.24% 0.48% 4.43% 0.18% 4.53% 1.16% 34.32% 0.94% 0.18%

ind

JODIE 48.42 93.43 68.96 69.07 62.67 65.23 86.96 89.82 65.99 60.42 67.79 50.27 75.65
DyRep 58.61 94.18 67.79 70.57 64.41 61.66 86.30 93.28 54.79 60.19 67.53 83.44 70.21
TGAT 68.82 94.35 63.94 75.48 71.13 75.95 89.59 94.84 68.67 60.61 52.89 61.91 87.00
TGN 65.34 90.18 70.89 71.09 65.95 77.50 88.10 95.13 70.94 61.04 67.63 67.57 85.62

CAWN 67.75 89.31 75.15 69.18 67.48 73.51 91.67 88.32 64.61 62.54 52.19 65.81 74.06
EdgeBank 62.16 85.20 73.89 81.08 75.49 49.43 85.48 83.69 57.43 72.97 66.30 64.74 80.63

TCL 65.85 91.35 71.29 74.62 58.21 74.65 87.45 94.90 76.01 61.06 50.62 78.15 86.76
GraphMixer 69.48 90.87 75.01 74.87 68.12 74.26 85.26 94.72 80.10 60.15 51.60 79.63 88.59
DyGFormer 95.44 94.75 77.41 70.92 73.97 81.24 91.11 97.68 72.25 55.79 51.91 81.25 78.29

with TAMI

GraphMixer 70.94 96.12 88.95 93.64 91.06 79.82 96.19 96.09 84.12 87.73 79.53 83.31 93.89
Imp. (%) 2.10% 5.78% 18.58% 25.07% 33.68% 7.49% 12.82% 1.45% 5.02% 45.85% 54.13% 4.62% 5.98%

DyGFormer 97.25 98.47 86.23 75.55 74.03 92.39 94.37 97.76 80.13 68.01 78.19 81.31 78.96
Imp. (%) 1.90% 3.93% 11.39% 6.53% 0.08% 13.72% 3.58% 0.08% 10.91% 21.90% 50.63% 0.07% 0.86%

counterparts. The results suggest that TAMI is adaptable to different types of TGNNs, consistently
improving the performance of underlying models. Moreover, applying LTE and LHA individually
also improves the link prediction accuracy of the integrated model.

C.3 Application Scenarios of LTE

The effectiveness of the proposed LTE is influenced by the distribution of temporal distances within
the dataset. Based on the skewness of the temporal differences in the original TE, we classify the
datasets into two types: (1) skewed, where small temporal differences dominate, while a considerable
number of large temporal differences exist; and (2) balanced, where the temporal differences roughly
follow a normal distribution. As shown in Table 3 and Table 11, for balanced datasets (e.g., UV and
UT), the improvements observed in GraphMixer are marginal. This is because LTE is specifically
designed to address the skewness of temporal differences, which is rarely presented in balanced
datasets. For datasets with skewed temporal differences (e.g., CP, EN, and UC), LTE significantly
improves GraphMixer’s performance compared to the vanilla version with the original TE.

27

Table 13: AP for transductive setting. The proposed LTE and LHA can be integrated into various
types of TGNNs. When applied individually, both LTE and LHA improve the link prediction accuracy
of the integrated models. No LTE and TAMI results are reported for JODIE because it does not utilize
the time encoding function.

Method EN LA UC UV

TGN 87.09 ± 1.04 75.73 ± 1.53 91.87 ± 1.42 65.68 ± 1.19
TGAT 72.89 ± 1.12 73.37 ± 0.07 79.29 ± 0.06 53.14 ± 0.56
CAWN 88.39 ± 0.07 86.99 ± 0.01 94.97 ± 0.08 52.88 ± 0.08
JODIE 84.79 ± 4.80 70.17 ± 3.82 89.15 ± 0.98 63.52 ± 0.10

w/ LTE

TGN 90.23 ± 0.47 85.03 ± 1.45 94.17 ± 1.12 64.90 ± 0.32
Imp. (%) 3.61% 12.27% 2.51% -1.20%

TGAT 84.75 ± 0.04 83.49 ± 0.01 94.85 ± 0.50 54.97 ± 3.96
Imp. (%) 16.27% 13.79% 19.62% 3.45%
CAWN 90.70 ± 0.39 88.76 ± 0.03 96.63 ± 0.08 52.92 ± 0.77

Imp. (%) 2.61% 2.03% 1.75% 0.08%

w/ LHA

TGN 90.20 ± 0.60 90.12 ± 0.30 93.34 ± 0.55 67.95 ± 1.22
Imp. (%) 3.57% 19.00% 1.61% 3.46%

TGAT 88.06 ± 0.12 87.97 ± 0.23 89.74 ± 0.11 57.58 ± 0.27
Imp. (%) 20.81% 19.89% 13.17% 8.37%
CAWN 90.13 ± 0.01 89.29 ± 0.04 95.16 ± 0.03 56.50 ± 0.54

Imp. (%) 1.96% 2.64% 0.21% 6.85%
JODIE 90.62 ± 0.01 87.95 ± 0.01 92.44 ± 0.02 65.57 ± 0.34

Imp. (%) 6.88% 25.33% 3.68% 3.22%

w/ TAMI

TGN 92.34 ± 0.04 92.83 ± 0.01 95.36 ± 0.11 67.80 ± 0.59
Imp. (%) 6.03% 22.58% 3.80% 3.22%

TGAT 91.37 ± 0.04 91.60 ± 0.13 96.36 ± 0.18 60.03 ± 0.34
Imp. (%) 25.35% 24.85% 21.53% 12.98%
CAWN 91.23 ± 0.06 91.02 ± 0.00 96.69 ± 0.13 57.49 ± 0.18

Imp. (%) 3.21% 4.64% 1.81% 8.72%

C.4 Analysis of the Hyperparameter γ in LHA

In this experiment, we study the impact of the hyperparameter γ in our LHA module on link
prediction performance. We train, validate, and test models with γ = (0.1, 0.3, 0.5, 0.7, 0.9, 1) and
report the test AP in Table 14. As shown, integrating GraphMixer into TAMI consistently improves
its performance over its vanilla counterpart across all values of γ. In addition, γ affects link prediction
accuracy differently across different datasets. For the UV dataset, the performance of GraphMixer
with LHA remains similar across different values of γ. When it comes to the EN, LA, and UC
datasets, higher γ values generally yield better performance. This is because larger γ values place
more weight on recent historical interactions, while reducing the influence of older ones. These
results suggest that prioritizing recent interactions is more advantageous for these datasets.

Table 14: AP of GraphMixer with varying values of the hyperparameter γ when integrated with
our LHA module. The first and the second best performances are marked in bold and underlined
respectively.

EN LA UC UV

GraphMixer 82.26 75.56 93.38 52.20

with TAMI

γ = 0.1 90.41 85.97 95.80 58.02
γ = 0.3 90.87 87.42 96.11 57.99
γ = 0.5 90.97 87.94 96.22 57.95
γ = 0.7 90.96 88.18 96.24 57.87
γ = 0.9 90.77 88.19 96.20 57.74
γ = 1 90.60 88.09 96.16 57.55

28

C.5 Analysis of the Choice of Aggregation Strategies and the Value of k in LHA

To predict the future link between two nodes, LHA retrieves all stored k historical edge embeddings
for the target node pair and summarizes them into a single vector using an aggregation function. In
this experiment, we study the effectiveness of TAMI under different values of k and aggregation
strategies. By default, we set k = 1 and use the most-recent aggregator. Note that our LHA module
uses an exponentially weighted moving average to compute the dedicated historical edge embeddings
for a given target pair of nodes, as shown in Equation 4. Thus, even if k = 1, LHA considers all the
interaction history between the pair of nodes.

In Table 15, we show the performance of TAMI with different k values and aggregation functions.
The mean aggregator computes the average of the k historical edge embeddings, whereas the max
aggregator follows the implementation in GraphSAGE [8], where each historical edge embedding is
passed through a fully connected neural network, followed by an element-wise max-pooling operation
across all transformed vectors. Overall, the performance of different variants of TAMI is better than
the vanilla version (without TAMI), indicating the effectiveness of our design. It is also important
to note that larger k value does not necessarily lead to better performance. This is expected as
different datasets may have different levels of dependency on the interaction history for temporal link
prediction. In addition, TAMI is not sensitive to the choice of aggregation functions.

Table 15: Test AP of DyGFormer on the EN and CP datasets with different k values and aggregation
strategies.

Method EN CP
DyGFormer (Vanilla) 92.46 97.91

with TAMI
most-recent 92.66 98.67

mean (k = 1) 92.66 98.67
mean (k = 2) 92.60 98.76
mean (k = 3) 92.56 98.77
max (k = 1) 92.66 98.67
max (k = 2) 92.84 98.74
max (k = 3) 92.60 98.74

C.6 Preventing the Forgetting of Interaction Histories by LHA

In Figure 5, we demonstrate that the loss of interaction histories occurs in GraphMixer [7] and
degrades its link prediction performance. Here we extend our analysis to JODIE [13]. JODIE adopts
two RNNs to maintain an evolving temporal memory for each node and uses stored historical node
states to compute temporal node embeddings. When predicting the link between two nodes, if neither
node appears in the other node’s 20 most recent interactions, we consider their interaction histories
as no longer retained in their temporal node embeddings. Figure 8 presents the distribution of the
appearance index along with the link prediction accuracy. The appearance index represents the
earliest position at which at least one node appears in the interaction sequence of the other. For
instance, an index value of 1 means that at least one node is the most recent encounter of the other,
while a larger index indicates that fewer historical interactions between the nodes are retained. The
term “> 20” denotes the case where neither node appears in the most recent 20 interactions of the
other and their interaction histories are forgotten.

As shown in Figure 8, the “> 20” term has the highest percentage across all examined datasets. This
suggests that the loss of historical interactions also occurs in memory-based TGNNs. On the EN, LA,
and UC datasets, the AP of the vanilla JODIE model decreases as the appearance index increases,
indicating that retaining fewer historical interactions leads to worse link prediction performance. In
comparison, when the proposed LHA is incorporated, the AP of JODIE consistently improves across
all datasets, demonstrating the effectiveness of our LHA module in mitigating the loss of historical
interactions.

29

1 6 11 16 > 20
0

10

20

30

40

Dataset: EN

1 6 11 16 > 20
0

20

40

60
Dataset: LA

1 6 11 16 > 20
0

10

20

Dataset: UC

1 6 11 16 > 20
0

20

40

60

80

Dataset: UV

1 6 11 16 > 20
0.90

0.92

0.94

0.96

0.98

JODIE
w/ LHA

1 6 11 16 > 20
0.80

0.85

0.90

0.95

1.00

JODIE
w/ LHA

1 6 11 16 > 20

0.90

0.92

0.95

0.98

JODIE
w/ LHA

1 6 11 16 > 20

0.82

0.85

0.88

0.90 JODIE
w/ LHA

Pe
rc

en
t

Av
er

ag
e

Pr
ec

isi
on

Appearance index over the 20 most recent interactions.

Figure 8: AP of JODIE to the number of interaction histories retained. An increase in the appearance
index indicates that fewer interaction histories are retained for predicting future links.

C.7 Cold Start of LHA in Inference

LHA maintains the historical connections between nodes. It may happen that in the training set, two
nodes never interact. In this experiment, we evaluate how LHA performs in that case. Specifically,
we introduce a variant called “w/ LHA (no history before test)”, where the interaction histories
accumulated during the training and validation phases are not loaded when the test stage begins.
In other words, interaction histories must be constructed from scratch, as the test progresses. This
variant is compared against the default LHA setting, “w/ LHA,” where the history accumulated during
training and validation is loaded before testing. Figure 9 illustrates the test AP of various methods.
The x-axis shows the test phase timeline, with timestamps normalized to [0, 1] for better visualization.

First, integrating LHA into GraphMixer and JODIE consistently boosts their performance throughout
the testing phase, surpassing their vanilla counterparts. Second, even when LHA history is not
initialized at the beginning of the test phase (i.e., in the “w/ LHA (no history before test)” variant),
the augmented TGNNs still outperform their vanilla versions on the EN, LA, and UC datasets. This
indicates that the LHA module provides significant performance improvements, even with a limited
history in the early stage of inference. As the test progresses and more interaction histories are stored
in the LHA, the performance of the “w/ LHA (no history before test)” variant gradually converges to
that of the “w/ LHA” variant. This is expected, as both variants share increasingly similar histories,
leading to similar performance over time.

0.00 0.25 0.50 0.75 1.00
0.90

0.92

0.94

0.96

0.98

1.00
Dataset: EN

0.00 0.25 0.50 0.75 1.00
0.85

0.90

0.95

1.00
Dataset: LA

0.00 0.25 0.50 0.75 1.00
0.92

0.94

0.96

0.98

1.00
Dataset: UC

0.00 0.25 0.50 0.75 1.00
0.70

0.73

0.75

0.78

0.80

0.82
Dataset: UV

0.00 0.25 0.50 0.75 1.00

0.92

0.94

0.96

0.98

1.00

0.00 0.25 0.50 0.75 1.00

0.85

0.90

0.95

1.00

0.00 0.25 0.50 0.75 1.00
0.90

0.92

0.94

0.96

0.98

1.00

0.00 0.25 0.50 0.75 1.00
0.78

0.80

0.82

0.85

0.88

GraphMixer JODIE w/ LHA w/ LHA (no history before test)

Av
er

ag
e

Pr
ec

isi
on

Av
er

ag
e

Pr
ec

isi
on

Elapsed time since the test started (normalized to 0~1)

Figure 9: LHA consistently improves the performance of TGNNs throughout the entire testing
phase. The “w/ LHA” variant denotes that interaction histories accumulated during the training and
validation phases are loaded at the beginning of the test phase. In contrast, the “w/ LHA (no history
before test)” variant starts the test phase without any interaction histories stored in the LHA memory
module. Test node pairs are grouped into chronological bins, and the average link prediction accuracy
for each bin is reported.

30

Table 16: AP for inductive link prediction. Imp. (%) denotes the percentage of improvement.
Improved results are colored in blue. The first and the second best performances are marked in bold
and underlined respectively. For dataset names, please kindly refer to Section B.1.

Methods CP CO EN FL LA MO RE

JODIE 53.92 ± 0.94 94.34 ± 1.45 80.67 ± 2.11 94.74 ± 0.37 78.31 ± 3.82 79.63 ± 1.92 96.50 ± 0.13
DyRep 54.02 ± 0.76 92.18 ± 0.41 74.55 ± 3.95 92.88 ± 0.73 83.02 ± 1.48 81.07 ± 0.44 96.09 ± 0.11
TGAT 55.18 ± 0.79 95.87 ± 0.11 67.63 ± 0.96 88.73 ± 0.33 78.48 ± 0.07 85.50 ± 0.19 97.09 ± 0.04
TGN 54.10 ± 0.93 93.82 ± 0.99 78.74 ± 1.53 95.03 ± 0.60 80.05 ± 4.00 89.04 ± 1.17 97.50 ± 0.07
CAWN 55.80 ± 0.69 89.55 ± 0.30 84.97 ± 0.21 97.60 ± 0.02 89.48 ± 0.02 81.42 ± 0.24 98.62 ± 0.01
TCL 54.30 ± 0.66 91.11 ± 0.12 76.14 ± 0.79 83.41 ± 0.07 73.53 ± 1.66 80.60 ± 0.22 94.09 ± 0.07
GraphMixer 57.46 ± 0.11 90.61 ± 0.09 75.94 ± 0.21 83.00 ± 0.04 82.06 ± 0.25 81.35 ± 0.01 95.23 ± 0.03
DyGFormer 88.14 ± 0.19 98.06 ± 0.01 89.86 ± 0.28 97.79 ± 0.01 94.20 ± 0.17 87.24 ± 0.35 98.83 ± 0.03

with TAMI

GraphMixer 58.57 ± 0.92 94.49 ± 0.21 85.54 ± 0.45 92.64 ± 0.06 90.71 ± 0.64 81.55 ± 0.10 97.93 ± 0.01
Imp. (%) 1.93% 4.28% 12.63% 11.62% 10.55% 0.25% 2.84%

DyGFormer 88.97 ± 0.41 98.30 ± 0.00 89.87 ± 0.06 97.85 ± 0.02 95.08 ± 0.13 88.08 ± 0.23 98.91 ± 0.00
Imp. (%) 0.94% 0.24% 0.01% 0.06% 0.93% 0.96% 0.08%

Methods SE UC UT UV US WK

JODIE 91.96 ± 0.48 79.27 ± 1.97 59.65 ± 0.77 56.86 ± 0.06 54.93 ± 2.29 94.82 ± 0.20
DyRep 90.04 ± 0.47 57.48 ± 1.87 57.02 ± 0.69 53.62 ± 2.22 57.28 ± 0.71 92.43 ± 0.37
TGAT 91.41 ± 0.16 79.11 ± 0.28 61.03 ± 0.18 51.98 ± 0.14 51.00 ± 3.11 96.22 ± 0.07
TGN 90.77 ± 0.86 86.66 ± 1.83 58.31 ± 3.15 54.13 ± 2.37 58.63 ± 0.37 97.83 ± 0.04

CAWN 79.94 ± 0.18 92.45 ± 0.06 65.24 ± 0.21 49.29 ± 0.87 53.17 ± 1.20 98.24 ± 0.03
TCL 91.55 ± 0.09 87.36 ± 2.03 62.21 ± 0.12 51.60 ± 0.97 52.59 ± 0.97 96.22 ± 0.17

GraphMixer 91.71 ± 0.13 91.39 ± 0.05 62.26 ± 0.13 50.58 ± 0.45 50.72 ± 0.64 96.47 ± 0.13
DyGFormer 93.16 ± 0.08 94.40 ± 0.21 63.86 ± 0.35 56.16 ± 0.07 54.93 ± 0.53 98.54 ± 0.07

with TAMI

GraphMixer 93.03 ± 0.46 93.44 ± 0.29 62.40 ± 1.50 56.63 ± 0.36 51.44 ± 0.75 98.17 ± 0.01
Imp. (%) 1.44% 2.24% 0.22% 11.96% 1.42% 1.76%

DyGFormer 93.17 ± 0.01 95.67 ± 0.09 64.25 ± 0.24 56.23 ± 0.17 55.08 ± 0.21 98.88± 0.07
Imp. (%) 0.01% 1.35% 0.61% 0.12% 0.27% 0.35%

D Comprehensive Results for Inductive Temporal Link Prediction

This section presents comprehensive results for inductive link prediction. Section D.1 demonstrates
that LTE and LHA improve the link prediction performance of integrated models in the inductive
setting. Section D.2 presents the results of an ablation study in the inductive setting, showing that
both LTE and LHA remain effective. In Section D.3, we show that LTE and LHA are robust to an
increasing number of negative links per positive link in the inductive setting. Finally, Section D.4
shows that the proposed LTE and LHA can be integrated into various types of TGNN while enhancing
their performance in the inductive setting.

D.1 Main Results for Inductive Link Prediction

Table 16 summarizes the test performance of methods in the inductive setting. The results demonstrate
that TAMI improves GraphMixer and DyGFormer on all the 13 datasets. This highlights the
effectiveness and versatility of TAMI, suggesting TAMI can enhance link prediction performance in
inductive settings.

D.2 Ablation Study for Inductive Link Prediction

In this experiment, we study the individual contributions of LTE and LHA to the performance
improvements of the integrated TGNNs. Table 17 presents the test performance of TAMI and its
two variants: w/ LTE, where we replace the original TE in TGNNs with the proposed LTE and keep
the rest unchanged; w/ LHA, where we integrate the LHA module into TGNNs and keep the rest
unchanged.

First, replacing the original time encoding function with the proposed LTE improves the performance
of GraphMixer on 11 datasets and the performance of DyGFormer on 12 datasets. This suggests
that LTE can enhance the link prediction performance of integrated models in the inductive setting.

31

Second, incorporating the LHA module improves the performance of TGNNs. In the inductive
setting, even though no test edges are observed during training (i.e., no historical interactions are
stored in the LHA memory at the beginning of the test phase), the LHA module still improves the
performance of GraphMixer and DyGFormer on 12 datasets. This is because LHA can update its
memory as the test stage progresses and improve the accuracy of subsequent link predictions. These
results suggest that the LHA unit remains effective in the inductive setting.

D.3 Robustness to the Increase of Negative Links (Inductive)

In Section 4.4, we demonstrate that TAMI is robust to an increasing ratio of negative links to positive
links under the transductive setting. In this experiment, we evaluate the robustness of TAMI in the
inductive setting. Table 18 presents the test performance of TGNNs under the inductive setting. The
term “NEG=50” denotes that the connection probability of each positive link is evaluated against
50 negative links. The results demonstrate that the performance of underlying TGNNs consistently
improves across various numbers of negative links per positive link on all examined datasets. These
findings suggest that the proposed TAMI framework remains effective against the increasing ratio of
negative links in the inductive setting.

D.4 Adaptivity to Different TGNN Architectures (Inductive)

In Section 4.5 and Section C.2, we demonstrate that the proposed TAMI, LTE, and LHA can enhance
the link prediction performance of underlying TGNNs in the transductive setting. In this experiment,
we explore whether the proposed methods can also improve the performance of TGNNs in the
inductive setting. Table 19 presents the performance of the vanilla TGNNs along with those enhanced
with the proposed modules. No results for w/ LTE and w/ TAMI are reported for JODIE, as it does
not incorporate the time encoding function. The results demonstrate that LTE, LHA, and TAMI
consistently improve the inductive AP of TGNNs. This suggests TAMI and the two novel modules
LTE and LHA remain effective in the inductive setting and can improve the performance of various
TGNNs.

E Experimental Settings on the TGB Datasets

We further evaluate TAMI on three large-scale datasets from the Temporal Graph Benchmark
(TGB) [9], including tgbl-wiki-v2, tgbl-review-v2, and tgbl-coin-v2. Dataset statistics are available at
https://tgb.complexdatalab.com/docs/linkprop/. We apply TAMI to the recent state-of-the-art method
DyGFormer and compare its performance against the original version. For fair comparison, we
adopt the best hyperparameter settings of DyGFormer on the TGB benchmark, as detailed in [36].
In our LHA module, the hyperparameter γ is fixed at 0.9 across the training, validation, and testing
phases. The dimension of historical edge embeddings is equal to the dimension of temporal node
embeddings. The detailed results are presented in Table 2. We also report the original skewness
of temporal differences in the TGB datasets and the skewness after applying our LTE in Table 20
below. Results show that our LTE effectively reduces the skewness in the distribution of the temporal
differences.

F Standard Deviations in Main Text

Table 21, Table 22, and Table 23 present the standard deviations of the results shown in Table 1,
Table 3, and Table 4 in the main text, respectively.

32

https://tgb.complexdatalab.com/docs/linkprop/

Table 17: Ablation study. AP for inductive link prediction. For dataset names, please kindly refer to
Section B.1.

Methods CP CO EN FL LA MO RE

GraphMixer 57.46 ± 0.11 90.61 ± 0.09 75.94 ± 0.21 83.00 ± 0.04 82.06 ± 0.25 81.35 ± 0.01 95.23 ± 0.03
w/ LTE 58.25 ± 1.14 90.83 ± 0.27 76.15 ± 0.26 83.05 ± 0.18 81.22 ± 0.90 81.73 ± 0.18 95.31 ± 0.01

Imp. (%) 1.37% 0.25% 0.27% 0.07% -1.02% 0.47% 0.08%

w/ LHA 57.30 ± 0.30 95.03 ± 1.06 85.16 ± 0.15 92.60 ± 0.06 90.92 ± 0.24 81.50 ± 0.06 97.94 ± 0.01
Imp. (%) -0.29% 4.88% 12.13% 11.57% 10.80% 0.19% 2.85%

w/ TAMI 58.57 ± 0.92 94.49 ± 0.21 85.54 ± 0.45 92.64 ± 0.06 90.71 ± 0.64 81.55 ± 0.10 97.93 ± 0.01
Imp. (%) 1.93% 4.28% 12.63% 11.62% 10.55% 0.25% 2.84%

DyGFormer 88.14 ± 0.19 98.06 ± 0.01 89.86 ± 0.28 97.79 ± 0.01 94.20 ± 0.17 87.24 ± 0.35 98.83 ± 0.03
w/ LTE 88.72 ± 0.36 98.10 ± 0.01 89.97 ± 0.51 97.82 ± 0.02 94.94 ± 0.04 88.30 ± 0.28 98.93 ± 0.03

Imp. (%) 0.66% 0.04% 0.12% 0.03% 0.79% 1.21% 0.10%

w/ LHA 89.41 ± 0.21 98.28 ± 0.03 90.36 ± 0.49 97.91 ± 0.01 94.24 ± 0.08 87.45 ± 0.01 98.87 ± 0.13
Imp. (%) 1.44% 0.22% 0.56% 0.12% 0.04% 0.24% 0.04%

w/ TAMI 88.97 ± 0.41 98.30 ± 0.00 89.87 ± 0.06 97.85 ± 0.02 95.08 ± 0.13 88.08 ± 0.23 98.91 ± 0.00
Imp. (%) 0.94% 0.24% 0.01% 0.06% 0.93% 0.96% 0.08%

Methods SE UC UT UV US WK

GraphMixer 91.73 ± 0.13 91.39 ± 0.05 62.26 ± 0.13 50.58 ± 0.45 50.72 ± 0.64 96.47 ± 0.13
w/ LTE 91.81 ± 0.11 92.07 ± 0.14 61.92 ± 0.37 50.76 ± 0.34 50.87 ± 0.21 96.58 ± 0.13

Imp. (%) 0.09% 0.75% -0.54% 0.37% 0.30% 0.11%

w/ LHA 91.91 ± 0.01 92.84 ± 0.13 63.05 ± 0.83 55.37 ± 0.22 50.99 ± 0.96 98.11 ± 0.01
Imp. (%) 0.20% 1.59% 1.28% 9.47% 0.53% 1.70%

w/ TAMI 93.03 ± 0.46 93.44 ± 0.29 62.40 ± 1.50 56.63 ± 0.36 51.44 ± 0.75 98.17 ± 0.01
Imp. (%) 1.44% 2.24% 0.22% 11.96% 1.42% 1.76%

DyGFormer 93.16 ± 0.08 94.40 ± 0.21 63.86 ± 0.35 56.16 ± 0.07 54.93 ± 0.53 98.54 ± 0.07
w/ LTE 93.21 ± 0.10 95.62 ± 0.05 64.94 ± 0.08 56.27 ± 0.16 54.06 ± 1.03 98.86 ± 0.01

Imp. (%) 0.05% 1.29% 1.69% 0.20% -1.58% 0.32%

w/ LHA 94.49 ± 0.01 94.62 ± 0.01 63.65 ± 0.18 56.20 ± 0.47 55.85 ± 0.20 98.63 ± 0.06
Imp. (%) 1.42% 0.23% -0.33% 0.07% 1.67% 0.09%

DyGFormer 93.17 ± 0.01 95.67 ± 0.09 64.25 ± 0.24 56.23 ± 0.17 55.08 ± 0.21 98.88± 0.07
Imp. (%) 0.01% 1.35% 0.61% 0.12% 0.27% 0.35%

Table 18: Inductive link prediction performance. AP of methods under various numbers of negative
links during testing. NEG=50 indicates that each positive link is evaluated against 50 negative links
in the AP computation. For dataset names, please kindly refer to Section B.1.

Methods EN LA UC UV Methods EN LA UC UV

NEG = 1

GraphMixer 75.94 ± 0.21 82.06 ± 0.25 91.39 ± 0.05 50.58 ± 0.45 DyGFormer 89.86 ± 0.28 94.20 ± 0.17 94.40 ± 0.21 56.16 ± 0.07
w/ TAMI 85.54 ± 0.45 90.71 ± 0.64 93.44 ± 0.29 56.63 ± 0.36 w/ TAMI 89.87 ± 0.06 95.08 ± 0.13 95.67 ± 0.09 56.23 ± 0.17
Imp. (%) 12.63% 10.55% 2.24% 11.96% Imp. (%) 0.01% 0.93% 1.35% 0.12%

NEG = 5

GraphMixer 41.80 ± 0.35 58.37 ± 0.69 77.20 ± 0.05 17.38 ± 0.62 DyGFormer 66.88 ± 0.33 81.90 ± 0.52 85.86 ± 0.45 21.26 ± 0.30
w/ TAMI 57.22 ± 0.37 72.63 ± 1.95 81.75 ± 0.74 20.89 ± 0.21 w/ TAMI 67.31 ± 0.08 84.37 ± 0.59 88.02 ± 0.28 21.50 ± 0.47
Imp. (%) 36.91% 24.43% 5.90% 20.20% Imp. (%) 0.64% 3.01% 2.51% 1.13%

NEG = 25

GraphMixer 15.16 ± 0.33 33.93 ± 1.25 55.31 ± 0.21 4.14 ± 0.22 DyGFormer 34.66 ± 0.24 58.96 ± 1.15 71.89 ± 1.73 5.31 ± 0.13
w/ TAMI 24.19 ± 0.09 45.18 ± 4.36 60.48 ± 1.58 5.09 ± 0.08 w/ TAMI 35.85 ± 0.04 63.78 ± 2.10 75.52 ± 0.51 5.43 ± 0.11
Imp. (%) 59.58% 33.18% 9.35% 22.97% Imp. (%) 3.42% 8.18% 5.06% 2.26%

NEG = 50

GraphMixer 8.87 ± 0.21 24.85 ± 1.30 45.00 ± 0.51 2.15 ± 0.15 DyGFormer 22.53 ± 0.04 46.74 ± 1.36 62.61 ± 3.26 2.76 ± 0.08
w/ TAMI 14.50 ± 0.30 33.66 ± 4.48 49.54 ± 2.18 2.64 ± 0.05 w/ TAMI 23.72 ± 0.06 53.47 ± 1.61 67.75 ± 0.70 2.79 ± 0.05
Imp. (%) 63.42% 35.45% 10.08% 22.84% Imp. (%) 5.28% 14.39% 8.21% 1.09%

33

Table 19: AP for inductive link prediction. The proposed LTE and LHA can be integrated into various
types of TGNN. No LTE and TAMI results are reported for JODIE because it does not utilize the
time encoding function.

Method EN LA UC UV

TGN 78.74 ± 1.53 80.05 ± 4.00 86.66 ± 1.83 54.13 ± 2.37
TGAT 67.63 ± 0.96 78.48 ± 0.07 79.11 ± 0.28 51.98 ± 0.14
CAWN 84.97 ± 0.21 89.48 ± 0.02 92.45 ± 0.06 49.29 ± 0.87
JODIE 80.67 ± 2.11 78.31 ± 3.82 79.27 ± 1.97 56.86 ± 0.06

w/ LTE

TGN 84.02 ± 1.63 89.33 ± 0.87 91.56 ± 1.41 57.92 ± 3.41
Imp. (%) 6.71% 11.59% 5.66% 7.01%

TGAT 77.70 ± 0.34 88.27 ± 0.05 92.61 ± 0.29 50.03 ± 0.31
Imp. (%) 14.89% 12.47% 17.07% -3.75%

CAWN 86.88 ± 0.13 91.14 ± 0.05 94.64 ± 0.08 48.54 ± 0.25
Imp. (%) 2.25% 1.86% 2.37% -1.51%

w/ LHA

TGN 85.97 ± 0.78 92.35 ± 0.44 89.55 ± 0.18 57.26 ± 3.58
Imp. (%) 9.18% 15.37% 3.34% 5.79%

TGAT 83.89 ± 0.01 90.26 ± 0.33 88.16 ± 0.13 54.42 ± 1.02
Imp. (%) 24.04% 15.01% 11.44% 4.69%

CAWN 86.24 ± 0.15 91.03 ± 0.06 92.74 ± 0.06 55.62 ± 1.66
Imp. (%) 1.49% 1.73% 0.31% 12.84%

JODIE 85.48 ± 0.24 91.71 ± 0.56 83.56 ± 0.08 57.64 ± 1.41
Imp. (%) 5.97% 17.11% 5.42% 1.37%

w/ TAMI

TGN 85.54 ± 0.45 90.71 ± 0.64 93.44 ± 0.29 57.63 ± 0.36
Imp. (%) 8.64% 13.32% 7.82% 6.47%

TGAT 84.53 ± 0.13 93.32 ± 0.20 94.25 ± 0.10 54.29 ± 0.30
Imp. (%) 24.98% 18.91% 19.15% 4.44%

CAWN 87.45 ± 0.23 92.61 ± 0.04 94.69 ± 0.11 64.33 ± 1.37
Imp. (%) 2.92% 3.50% 2.42% 30.53%

Table 20: Skewness of temporal differences before and after applying our LTE on the three TGB
datasets tested.

Datasets tgbl-wiki tgbl-review tgbl-coin
Originally 4.181 3.297 4.562

with LTE -0.307 -0.524 0.308

34

Table 21: The standard deviations of five runs for results in Table 1 and Table 12.

NSS Methods CP CO EN FL LA MO RE SE UC UT UV US WK

rnd

JODIE 0.31 1.33 0.30 1.73 2.13 2.44 0.14 0.55 1.09 0.31 0.81 1.52 0.14
DyRep 2.76 0.15 3.36 0.72 2.21 0.49 0.04 0.30 2.30 0.93 0.80 0.39 0.06
TGAT 0.72 0.09 0.97 0.18 0.21 0.15 0.02 0.17 0.70 0.18 0.98 3.16 0.06
TGN 2.34 0.56 1.11 0.14 3.97 1.60 0.06 0.17 1.04 1.37 2.17 0.58 0.06

CAWN 2.34 0.28 0.09 0.01 0.06 0.25 0.01 0.09 0.06 0.12 0.10 0.48 0.03
EdgeBank 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TCL 2.67 0.12 0.71 0.02 2.16 0.24 0.02 0.16 1.63 0.03 0.03 0.48 0.16
GraphMixer 0.46 0.09 0.06 0.01 0.02 0.04 0.01 0.16 0.05 0.13 0.09 0.23 0.04
DyGFormer 1.89 0.08 0.50 0.01 1.53 0.17 0.01 0.11 1.15 0.02 0.02 0.34 0.11

w/ TAMI

GraphMixer 0.07 0.06 0.06 0.01 0.41 0.04 0.04 0.11 0.21 0.49 0.08 0.36 0.00
DyGFormer 0.12 0.01 0.21 0.00 0.08 0.14 0.00 0.03 0.21 0.04 0.03 0.28 0.01

hist

JODIE 0.63 2.13 2.70 2.59 3.81 1.25 0.36 6.78 5.80 1.83 0.81 5.76 0.66
DyRep 1.23 0.20 2.76 0.99 2.45 1.12 0.31 0.43 3.14 1.07 1.12 2.25 0.56
TGAT 0.84 0.52 1.05 0.18 0.24 0.62 0.20 0.44 1.37 0.91 2.14 6.60 0.22
TGN 3.07 2.35 1.76 1.64 4.64 1.93 0.61 0.56 2.12 5.51 3.93 7.57 0.33

CAWN 2.77 0.49 0.36 0.97 0.43 0.95 0.45 0.38 0.43 0.38 0.04 8.23 1.67
EdgeBank 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TCL 3.00 0.21 0.39 0.24 2.31 0.41 0.16 0.31 2.74 1.17 2.35 3.95 0.39
GraphMixer 0.87 0.41 0.92 0.26 0.49 0.92 0.18 0.31 1.35 1.22 1.60 1.02 0.10
DyGFormer 0.31 0.06 0.23 0.49 0.48 0.66 0.67 0.14 0.82 1.40 1.58 3.38 2.56

w/ TAMI

GraphMixer 0.12 0.02 0.68 0.11 1.06 0.62 0.29 0.03 0.53 2.15 0.32 1.11 0.57
DyGFormer 0.01 0.02 0.01 2.93 1.84 0.89 0.10 0.04 0.32 1.46 2.12 2.50 0.24

ind

JODIE 0.66 1.78 0.98 4.02 4.49 2.19 0.16 4.11 1.40 1.48 1.48 5.13 0.79
DyRep 0.86 0.10 1.53 1.82 2.70 0.95 0.26 0.48 1.76 1.24 1.24 1.16 1.58
TGAT 1.21 0.48 1.36 0.26 0.17 0.64 0.24 0.44 0.84 1.24 1.24 5.82 0.16
TGN 2.87 3.28 2.72 2.72 5.98 2.91 0.24 0.56 0.71 6.01 6.01 6.47 0.44

CAWN 1.00 0.27 0.58 1.52 0.77 0.94 0.24 0.27 0.48 0.67 0.67 8.52 2.62
EdgeBank 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TCL 1.75 0.21 0.32 0.18 0.89 0.54 0.29 0.36 1.11 1.74 1.74 3.34 0.72
GraphMixer 0.63 0.35 0.79 0.21 0.33 0.92 0.11 0.33 0.51 1.29 1.29 0.84 0.17
DyGFormer 0.57 0.28 0.89 1.78 0.50 0.69 0.40 0.10 1.71 1.02 1.02 3.62 5.38

w/ TAMI

GraphMixer 0.28 0.74 0.29 0.69 0.06 0.38 0.09 0.00 0.39 0.68 0.04 0.01 0.24
DyGFormer 0.09 0.06 1.39 2.82 1.63 1.38 0.21 0.21 0.35 3.27 1.44 2.86 0.08

Table 22: The standard deviations of five runs for results in Table 3.

Methods CP CO EN FL LA MO RE SE UC UT UV US WK

GraphMixer 0.46 0.09 0.06 0.01 0.02 0.04 0.01 0.16 0.05 0.13 0.09 0.23 0.04
w/ LTE 0.11 0.18 0.34 0.01 0.45 0.15 0.01 0.12 0.02 0.35 0.23 0.18 0.01
w/ LHA 0.60 0.05 0.04 0.03 0.07 0.19 0.02 0.06 0.18 0.19 0.17 0.33 0.00
w/ TAMI 0.07 0.06 0.06 0.01 0.41 0.04 0.04 0.11 0.21 0.29 0.08 0.36 0.00

DyGFormer 0.26 0.00 0.04 0.01 0.19 0.24 0.01 0.08 0.30 0.94 0.32 0.91 0.05
w/ LTE 0.07 0.01 0.06 0.00 0.00 0.11 0.01 0.01 0.22 0.01 0.45 0.69 0.02
w/ LHA 0.12 0.01 0.06 0.01 0.34 0.33 0.01 0.00 0.05 0.66 1.09 0.51 0.05
w/ TAMI 0.12 0.01 0.21 0.00 0.08 0.14 0.00 0.03 0.21 0.04 0.03 0.28 0.01

Table 23: The standard deviations of five runs for results in Table 4.

Method EN LA UC UV Method EN LA UC UV

NEG = 1

GraphMixer 0.06 0.02 0.05 0.09 DyGFormer 0.04 0.19 0.30 0.32
w/ TAMI 0.06 0.41 0.21 0.08 w/ TAMI 0.21 0.08 0.21 0.33

NEG = 5

GraphMixer 0.39 0.23 0.09 0.16 DyGFormer 0.07 0.71 0.69 0.26
w/ TAMI 0.68 1.36 0.43 0.04 w/ TAMI 0.62 0.51 0.46 0.44

NEG = 25

GraphMixer 0.20 0.53 0.27 0.05 DyGFormer 0.04 1.46 1.18 0.19
w/ TAMI 1.19 2.62 1.10 0.02 w/ TAMI 0.52 1.58 0.57 0.13

NEG = 50

GraphMixer 0.16 0.52 0.08 0.04 DyGFormer 0.11 1.82 1.60 0.06
w/ TAMI 0.90 2.54 1.73 0.01 w/ TAMI 0.59 2.13 0.53 0.11

35

	Introduction
	Related Work
	TAMI Design
	Problem Definition
	LTE: Log Time Encoding Function
	LHA: Link History Aggregation

	Experiments
	Experimental Settings
	Main Results
	Ablation Study
	Robustness to the Increase of Negative Links
	Adaptivity to Different TGNN Architectures
	Improved Training Efficiency

	Conclusion
	Proof of Proposition 1
	Experimental Settings
	Descriptions of Datasets
	Descriptions of Baselines
	Implementation Details
	Configurations of Baselines
	Skewness of Temporal Difference

	Comprehensive Results for Transductive Temporal Link Prediction
	Comprehensive Results of Table 1
	Adaptivity of LTE and LHA to Various Types of TGNNs
	Application Scenarios of LTE
	Analysis of the Hyperparameter in LHA
	Analysis of the Choice of Aggregation Strategies and the Value of k in LHA
	Preventing the Forgetting of Interaction Histories by LHA
	Cold Start of LHA in Inference

	Comprehensive Results for Inductive Temporal Link Prediction
	Main Results for Inductive Link Prediction
	Ablation Study for Inductive Link Prediction
	Robustness to the Increase of Negative Links (Inductive)
	Adaptivity to Different TGNN Architectures (Inductive)

	Experimental Settings on the TGB Datasets
	Standard Deviations in Main Text

