
Under review as a conference paper at ICLR 2023

DEEP GENERATIVE WASSERSTEIN GRADIENT FLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep generative modeling is a rapidly-advancing field with a wealth of modeling
choices developed in the past decade. Amongst them, Wasserstein gradient flows
(WGF) are a powerful and theoretically rich class of methods. However, their
applications to high-dimensional distributions remain relatively underexplored.
In this paper, we present Deep Generative Wasserstein Gradient Flows (DGGF),
which constructs a WGF minimizing the entropy-regularized f -divergence be-
tween two distributions. We demonstrate how to train a deep density ratio estima-
tor that is required for the WGF and apply it to the task of generative modeling.
Experiments demonstrate that DGGF is able to synthesize high-fidelity images of
resolutions up to 128 × 128, directly in data space. We demonstrate that DGGF
has an interpretable diagnostic of sample quality by naturally estimating the KL
divergence throughout the gradient flow. Finally, we show DGGF’s modularity
by composition with external density ratio estimators for conditional generation,
as well as for unpaired image-to-image translation without modifications to the
underlying framework.

1 INTRODUCTION

Gradient flow methods are a powerful and general class of techniques with diverse applications rang-
ing from physics (Carrillo et al., 2019; Adams et al., 2011) and sampling (Bernton, 2018) to neural
network optimization (Chizat & Bach, 2018) and reinforcement learning (Richemond & Maginnis,
2017; Zhang et al., 2018). In particular, Wasserstein gradient flow (WGF) methods are a popular
specialization that model the gradient dynamics on the space of probability measures with respect
to the Wasserstein metric; these methods aim to construct the optimal path between two probabil-
ity measures — a source distribution q(x) and a target distribution p(x) — where the notion of
optimality refers to the path of steepest descent in Wasserstein space.

The freedom in choosing q(x) and p(x) when constructing the WGF makes the framework a natural
fit for a variety of generative modeling tasks. For data synthesis, we choose q(x) to be a simple
distribution easy to draw samples from (e.g., Gaussian), and p(x) to be a complex distribution
which we would like to learn (e.g., the distribution of natural images). The WGF then constructs
the optimal path from the simple distribution to synthesize data resembling that from the complex
distribution. Furthermore, we could choose both p(x) and q(x) to be distributions from different
domains of the same modality (e.g., images from separate domains). The WGF then naturally
performs domain translation.

However, despite this fit and the wealth of theoretical work established over the past decades (Am-
brosio et al., 2005; Santambrogio, 2017), applications of WGFs to generative modeling of high-
dimensional distributions remain under-explored and limited. A key difficulty is that the 2-
Wasserstein distance and divergence functionals are generally intractable. Existing works rely on
complex optimization schemes with constraints that contribute to model complexity, such as approx-
imations of the 2-Wasserstein distance with input convex neural networks (Mokrov et al., 2021), dual
variational optimization schemes with the Fenchel conjugate (Fan et al., 2021) or adopting a particle
simulation approach, but amortizing sample generation to auxiliary generators (Gao et al., 2019;
2022).

In this work, we take a step towards resolving the shortcomings of WGF methods for deep generative
modeling. We propose Deep Generative Wasserstein Gradient Flows (DGGF), which is formulated
using the gradient flow of entropy-regularized f -divergences (Fig. 1). As this formulation involves
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Figure 1: Left: illustration of the generative gradient flow process using DGGF. The evolution of the
gradient flow is governed by the SDE shown in the figure. We visualize intermediate samples of the
LSUN Church dataset. Right: visualization of application domains of DGGF. At its core, DGGF is
able to perform high-fidelity unconditional image generation. The unconditional model can be used
for class-conditional generation via density ratio composition with external pretrained classifiers.
Additionally, DGGF is able to perform unpaired image-to-image translation with no modifications
needed to the framework. Finally, DGGF possesses an innate sample diagnostic by estimating the
KL divergence over the flow, which decreases as sample quality is improved over the flow.

density ratio estimation, we introduce a novel algorithm for training deep density ratio estimators
and show experimentally for the first time that gradient flow methods can scale to image dimensions
as high as 128 × 128. Our gradient flow is formulated entirely in the data space, with no need for
additional generator networks. The density ratio formulation allows DGGF to be composed with ex-
ternal density ratio estimators, which we show allows us to utilize pretrained external classifiers for
class-conditional generation. In addition, we demonstrate that DGGF can be viewed as estimating
the KL divergence of samples over the flow, providing it with an innate diagnostic to evaluate sam-
ple quality that also enhances model interpretability. We also show a simple technique of leveraging
data-dependent priors to boost generative performance. Finally, by leveraging the freedom of choos-
ing the source and target distributions, we show DGGF can be applied to unpaired image-to-image
translation with no modifications to the framework.

2 BACKGROUND

In the following, we give a brief overview of gradient flows and density ratio estimation. For a more
comprehensive introduction to gradient flows, please refer to Santambrogio (2017). A thorough
overview of density ratio estimation can be found in Sugiyama et al. (2012a).

Wasserstein Gradient Flows. To motivate the concept of gradient flows, we consider Euclidean
space equipped with the familiar L2 distance metric (X , ∥ · ∥2). Given a function F : X → R, the
curve {x(t)}t∈R+ that follows the direction of steepest descent is called the gradient flow of F :

x′(t) = −∇F (x(t)). (1)

In generative modeling, we are interested in sampling from the probability distribution of a given
dataset. Hence, instead of Euclidean space, we consider the space of probability measures with
finite second moments equipped with the 2-Wasserstein metric (P2(Ω),W2). Given a functional
F : P2(Ω) → R in the 2-Wasserstein space, the gradient flow of F is the steepest descent curve of
F . We call such curves Wasserstein gradient flows (WGF).

Density Ratio Estimation via Bregman Divergence. Let q(x) and p(x) be two distributions over
X ∈ Rd where we have access to i.i.d samples xq ∼ q(x) and xp ∼ p(x). The goal of density ratio
estimation (DRE) is to estimate the true density ratio r∗(x) = q(x)

p(x) based on samples xq and xp.
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We will focus on density ratio fitting under the Bregman divergence (BD), which is a framework
that unifies many existing DRE techniques (Sugiyama et al., 2012a;b). Let g : R+ → R be a twice
continuously differentiable convex function with a bounded derivative. The BD seeks to quantify
the discrepancy between the estimated density ratio rθ and the true density ratio r∗:

BDg(r
∗||rθ) = Ep(x)[g(r

∗(x))− g(rθ(x)) + ∂g(rθ(x))rθ(x)]− Eq(x)[∂g(rθ(x))]. (2)

As we only have access to samples, we estimate the expectations in Eq. 2 using Monte Carlo
estimates:

BDg(rθ) =
1

N

N∑
n=1

[∂g(rθ(x
(n)
p ))rθ(x

(n)
p )− g(rθ(x

(n)
p ))]− 1

N

N∑
n=1

[∂g(rθ(x
(n)
q ))], (3)

where we drop the term Ep[g(r
∗(x))] as it does not depend on the model rθ during optimization.

The minimizer of Eq. 3, which we denote θ∗, satifies rθ∗(x) = r∗(x) = q(x)/p(x). For ease of
notation, we will use the hatted symbol Êp to refer to Monte Carlo estimates.

3 GENERATIVE MODELING WITH WASSERSTEIN GRADIENT FLOWS

This section describes our key contribution: Deep Generative Wasserstein Gradient Flows (DGGF),
in which we show how to train a deep density ratio estimator for high-fidelity generative modeling.
Let q(x) and p(x) be two distributions over X ∈ Rd. Assume that p(x) is the target distribution
that we wish to learn. We choose q(x) to be a known distribution that we can sample from, such
as a uniform or Gaussian distribution. Our goal is to construct a WGF starting from q(x), such
that trajectories along the flow decrease some notion of distance between q(x) and p(x). This will
allow us to flow samples from q(x) to p(x); in our case, when q(x) is a simple prior and p(x) is the
distribution of natural images, we can perform generative modeling of images.

Formally, the functional F : P2(Ω) → R encodes the aforementioned notion of distance between
q(x) and p(x). Following Ansari et al. (2021), we choose F to be from the family of entropy-
regularized f -divergences defined as

Ff
p (q) =

∫
p(x)f(q(x)/p(x))dx+ γ

∫
q(x) log q(x)dx, (4)

where f : R+ → R is a twice-differentiable convex function with f(1) = 0. We can understand
the first term, the f -divergence, as measuring the discrepancy between q(x) and p(x). Popular
f -divergences include the Kullback-Leibler (KL), Pearson-χ2 divergence and Jensen-Shannon (JS)
divergence. The first term of Eq. 4 thus ensures that the “distance” between q(x) and p(x) decreases
along the gradient flow, while the second (differential entropy) term improves expressiveness and
prevents the collapse of the gradient flow onto the data points (Ansari et al., 2021).

From Distributions to Particles. In this study, we are interested in functional optimization of
the form minq∈P(Ω) Ff

p (q). One way to formulate this optimization is to construct a gradient flow
in Wasserstein space. The gradient flow of the functional Ff

q (p) in Wasserstein space is the curve
of measures {qt}t∈R+ which solves the following Fokker-Planck equation (FPE) (Ambrosio et al.,
2005; Villani, 2009):

∂tqt(x) = div(qt(x)∇xf
′(qt(x)/p(x)) + γ∇2

xqt(x), (5)

where div and ∇2
x denote the divergence and Lapacian operators respectively, and f ′ denotes the

first derivative of f . Eq. 5 is a non-linear partial differential equation, which makes solving for the
distribution qt challenging. Instead of attempting to obtain the WGF at the population density level
by solving for qt, we can utilize the connection of FPEs with stochastic differential equations (SDE)
and simulate the equivalent particle system described by the following SDE:

dxt = −∇xf
′(qt(xt)/p(xt))dt+

√
2γdwt, (6)

where dwt denotes the standard Wiener process. Eq. 6 describes the stochastic evolution of a
particle xt; in image modeling terms, xt represents an image sample as it is evolved through the
SDE. Eq. 6 and Eq. 5 are equivalent in the sense that the marginal distribution qt of particles that
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evolve under Eq. 6 satisfies the FPE of Eq. 5. In other words, we are able to obtain samples from qt
along the gradient flow of Ff

p (q) by first drawing samples x0 ∼ q0 and then simulating the SDE in
Eq. 6. Empirically, we simulate the discretized version of Eq. 6 using the Euler-Maruyama method

xk+1 = xk − η∇xf
′(qk(xk)/p(xk)) +

√
2γηξk, (7)

where ξk ∼ N (0, I), η is the step size and the time interval [0,K] is discretized into equal intervals.

3.1 GRADIENT FLOW VIA DENSITY RATIO ESTIMATION

Simulating the gradient flow in Eq. 7 requires an estimate of the density ratio qt(x)/p(x), which is
unavailable to us. We would like to leverage the Bregman divergence to train an estimator rθ(x),
such that we can simulate the gradient flow numerically as

xk+1 = xk − η∇xf
′(rθ(xk)) + νξk, (8)

where we combine the constants of the Gaussian noise term into a single hyperparameter ν. How-
ever, training such an estimator requires access to samples xt ∼ qt(x). Unlike diffusion models (Ho
et al., 2020; Song et al., 2020), where the time-dependent ground truths xt ∼ q(xt|x0) can be ob-
tained analytically, we do not have access to the ground truth samples along the gradient flow. In
early experiments, we attempted to draw samples xk along every step of the flow when simulating
Eq. 8 during training. However, this resulted in poor performance that regularly diverges as the
x1:K drawn changes at every iteration as parameters θ are updated, resulting in the lack of a stable
learning signal that fixed ground truths would provide.

Instead of training the model on x1:K , we propose to only draw samples xK by simulating Eq. 8 for
the full K steps. Consider a density ratio estimator with parameters θt at training iteration t. The
xK are drawn from the distribution q̃t(xK) given by

q̃t(xK) =

∫
q0(x)Mθt(xK |x)dx (9)

where Mθ(xK |x) is the transition kernel of simulating Eq. 8 using rθt(x). We optimize rθt(x) for
the t training iteration using the Bregman divergence

L(θt) = Êp[∂g(rθt(x))r(x)− g(rθt(x))]− Êq̃t [∂g(rθt(x))] (10)

where expectation over p(x) can be estimated using samples drawn from the dataset. Similar
to Ansari et al. (2021), we are effectively approximating the time-dependent density ratio with a
stale estimate rθ(x) = q̃(x)/p(x). As training progresses, the samples xK ∼ q̃t(xK) improve
correspondingly with rθt(x). We hypothesize that training rθ(x) on samples of improving qual-
ity allows it to learn the density ratio across the gradient flow without the need for explicit time-
dependence. We validate our hypothesis experimentally in Sec. 5.2, where we show that despite a
potentially time-independent formulation, our model does not collapse to a single density ratio es-
timate and has implicitly learned the density ratio over the flow. We find this result noteworthy and
motivates further investigations into the necessity of explicit time embedding in relevant frameworks
such as diffusion models.

Our training scheme bears resemblance to Short-Run EBM (Nijkamp et al., 2019), where the model
draws samples from an approximation of the true Langevin dynamics. At each training step, DGGF
learns to refine its estimate of the density ratio rθ(x) by looking at positive samples from the data
distribution and negative samples drawn from its implicit distribution. However, despite the sim-
ilarity, DGGF is fundamentally distinct from EBMs: DGGF is formulated as the path of steepest
descent in Wasserstein space, while EBMs are derived from maximum likelihood. We further elab-
orate on the salient distinctions from EBMs and other models in Sec. 4. Once DGGF is trained,
sampling at test time is simply a matter of running Eq. 8 directly in data space. We provide training
and sampling pseudocode in Algorithms 1 and 2 respectively.

Choices for f -divergences and Bregman divergence. DGGF allows for flexibility in the choice
of f -divergence in the gradient flow, as well as the choice of g in the Bregman divergence objective.
We consolidate a list of common f -divergences and their first derivatives that we study in this paper
in Table 2 in the appendix.
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Certain forms for g pair naturally with specific f -divergences for the gradient flow, as they simplify
the calculations needed. In our experiments, we utilize two forms of g: the first is when g(t) =
1
2 (t− 1)2, which corresponds to the Least-Squares Importance Fitting (LSIF) objective:

LLSIF (θ) =
1

2
Êp[rθ(x)]

2 − Êqt [rθ(x)], (11)

and the second is g(t) = t log t− (1 + t) log(1 + t), which corresponds to the Logistic Regression
(LR) objective:

LLR(θ) = −Êp

[
log

1

1 + rθ(x)

]
− Êqt

[
log

rθ(x)

1 + rθ(x)

]
. (12)

Due to numerical compatibility issues that we discuss in Appendix B, we pair the LSIF objective
with the Pearson-χ2 divergence and the LR objective with the KL, JS and logD divergences. We
abbreviate them as LSIF-χ2, LR-KL, LR-JS and LR-logD respectively and study these pairings in
our experiments in Sec. 5.

3.2 DENSITY CHASM AND DATA-DEPENDENT PRIORS

In principle, the gradient flow formulation does not place any restrictions on the prior distribution
q0(x). In the t→∞ limit, the gradient flow is guaranteed to converge to p(x) (see Appendix D for
a proof). However, empirically, we observe that when implementing the flow with a finite number
of steps, the choice of prior distribution can significantly affect model performance.

This observation may be attributed to the density chasm problem (Rhodes et al., 2020). Consider two
densities q(x) and p(x) which differ greatly, for example as measured by their KL divergence. A
binary classifier that is trained on distinguishing the two distributions, which is equivalent to density
ratio estimation using the “density ratio trick”, can obtain near perfect accuracy while learning a
relatively poor estimate of the density ratio (Ansari et al., 2021). A simple example would be two
narrow Gaussians with means that are far apart. A classifier can learn a trivial boundary with near
perfect accuracy, such as a straight line between the two modes, without having to estimate the
density ratio between the two distributions accurately.

We found that using common priors for q0(x) such as a uniform distribution led to poorer sample
quality due to the large chasm between the simple distribution and the complex multimodal data
distribution. Inspired by generation from seed distributions with robust classifiers (Santurkar et al.,
2019), we leverage a data-dependent prior by fitting a simple multivariate Gaussian to the training
dataset, and sampling x0 from the data-dependent prior

q0(x) = N (µD,ΣD), where µD = ED[x], ΣD = ED[(x− µD]T (x− µD)] (13)

where D represents the training dataset. Samples from this prior are poor but this approach is
sufficient to cross the density chasm; we visualize some samples from the prior in Fig. 8, and
experimental results support this approach (Sec. 5.2).

Algorithm 1 Training
repeat

Sample xp ∼ p(x),x0 ∼ q0(x)
for j ← 1,K do

Obtain xK from x0 by simulating Eq. 8.
end for
Update θ according to

∇θ[g
′(rθ(xp))r(xp)− g(rθ(xp))− g′(rθ(xK))]

until converged

Algorithm 2 Sampling

Sample x0 ∼ q0(x)
for j ← 1,K do
Obtain xK from x0 by simulating Eq. 8.

end for
return xK

4 RELATED WORKS

Gradient flows are a general framework for constructing the steepest descent curve of a given func-
tional, and consequently have been used in optimizing a variety of distance metrics, ranging from
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the f -divergence (Gao et al., 2019; 2022; Ansari et al., 2021; Fan et al., 2021), maximum mean dis-
crepancy (Arbel et al., 2019; Mroueh & Nguyen, 2021), Sobolev distance (Mroueh et al., 2019) and
related forms of the Wasserstein distance (Liutkus et al., 2019). Recent works have also explored
the interpretation of the FPE as a continuous normalizing flow for generative modeling (Xu et al.,
2022). A well-known method to simulate WGFs at the population density level is using the Jordan,
Kinderlehrer, and Otto (JKO) scheme (Jordan et al., 1998), which approximates the dynamics of the
FPE through an iterative time-discretization update. The JKO scheme requires computation of the
2-Wasserstein distance and a free energy functional, which are generally intractable. Several works
have been proposed to circumvent this problem: Mokrov et al. (2021) leverages Brenier’s theorem
and convex neural networks to approximately estimate W2, while Fan et al. (2021) leverages the
Fenchel conjugate to evaluate the free energy as f -divergences. Our work avoids the JKO scheme
entirely by adopting a particle-based approach, where we use the Euler-Maruyama method to simu-
late the gradient flow, parameterized by neural networks. In this way, we avoid the need to estimate
W2, as well as the dual optimization needed in the variational formulation of Fan et al. (2021).

More closely related to DGGF are other particle-based approaches. Liutkus et al. (2019) uses a non-
parametric approach to optimize the Sliced Wasserstein distance, where the marginal distribution of
the particles is computed empirically to approximate qt(x). DGf low proposes to leverage pretrained
GAN discriminators as density ratio estimators for sample refinement. DGGF can be seen as a gen-
eral case of DGf low, where we recover DGf low if we fix the prior q0 to be the implicit distribution
defined by the GAN generator. When q0 is chosen as a simple prior, DGGF can perform genera-
tion from scratch, as opposed to purely refinement. Similar to DGGF, VGrow and EPT train deep
density ratio estimators using the Bregman divergence and apply them to the task of unconditional
image generation. However, there are several key differences that distinguish DGGF from VGrow
and EPT. As VGrow is a specific instance of EPT with the logistic regression objective, we focus
on EPT while noting that our discussion applies to both methods. EPT utilizes a formalism that
performs generation on a predetermined batch of particles during the training process. This causes
the estimator to converge to a single density ratio estimate after training, preventing further sam-
pling at test time due to zero gradients. In the same vein, EPT also has poor generative performance
when formulated in the data space1. It was necessary to amortize sample generation to an auxiliary
generator and formulate the WGF in latent space z. By flowing z and matching Gθ(z) = x, the
generator can be sampled at test time. We show from our results in Sec. 5 that generation can be
done entirely in the data space, without the complexity of training an additional generator.

Our model also shares similarities with EBMs (LeCun et al., 2006), which model the data likeli-
hood using a Boltzmann distribution. The model can be sampled efficiently with Langevin dynam-
ics (Welling & Teh, 2011), which requires an infinitely long chain for proper mixing. Similar to
DGGF, Nijkamp et al. (2019) reinitializes the chain at every training iteration, effectively sampling
from an approximation of the true Langevin dynamics. Fundamentally, the key difference is DGGF
is formulated by finding the steepest descent curve in Wasserstein space, while EBMs are derived
from maximum likelihood estimation. As shown in prior works (Jordan et al., 1998; Liu et al.,
2019), Langevin dynamics can be derived from WGFs when f is chosen as the KL divergence,
which we reproduce in Appendix E. The density ratio formulation of DGGF allows us the flexibility
of composition with other density ratio estimators, as well as choosing the source and target distri-
butions of the flow, which permits applications such as composition with pretrained classifiers (Sec.
5.3) and image-to-image translation (Sec. 5.4). These are not directly applicable with EBMs, and
adaptations to such domains require significant theoretical and experimental modifications to the
generative framework (Zhao & Chen, 2021; Sasaki et al., 2021).

5 EXPERIMENTS

In this section, we present empirical results of the generative performance of DGGF on various com-
mon image datasets across different resolutions. Our goal is to demonstrate that DGGF is able to
generate diverse, high-quality images across various f -divergences and Bregman divergence objec-
tives, as well as generalizes to other tasks such as class-conditional generation and image-to-image

1Based on experiments of EPT in Sec. 5 and on unpublished scores cited by the authors; please see https:
//openreview.net/forum?id=awMgJJ9H-0q.

1Score as reported in Gao et al. (2020).
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Figure 2: Samples from DGGF-DDP on CIFAR10 322, CelebA 642 and LSUN Church 1282 using
LSIF-χ2. More results using various BD objectives and f -divergences can be found in Appendix.

translation. We will use DGGF-DDP to abbreviate experiments with the data-dependent prior and
DGGF-UP for ablation experiments with the uniform prior.

5.1 SETUP

Table 1: CIFAR10 and CelebA scores.

Model FID ↓
CIFAR10 32 × 32
EPT (no outer loop) (Gao et al., 2022) 46.63
JKO-Flow (Fan et al., 2021) 23.7
IGEBM (Du & Mordatch, 2019) 40.58
SNGAN (Miyato et al., 2018) 21.7
PixelCNN (Van Oord et al., 2016) 65.93
NVAE (Vahdat & Kautz, 2020) 51.67
NCSN (Song & Ermon, 2019) 25.32
DGGF-DDP (LSIF-χ2) 28.12
DGGF-DDP (LR-KL) 28.80
DGGF-DDP (LR-JS) 29.92
DGGF-DDP (LR-logD) 30.72
DGGF-UP (LSIF-χ2) 35.11
DGGF-UP (LR-KL) 39.90
CelebA 64 × 64
NCSN (Song & Ermon, 2019) 26.89
NVAE (Vahdat & Kautz, 2020) 14.74
EBM-SR (Nijkamp et al., 2019) 23.022

DGGF-DDP (LSIF-χ2) 22.42
DGGF-DDP (LR-KL) 22.88

We test DGGF with unconditional genera-
tion on CIFAR10, CelebA and LSUN Church
datasets, class-conditional generation on CI-
FAR10 and image-to-image translation on the
Cat2dog dataset. All pixel values are normal-
ized to the range [-1, 1]. For CIFAR10, we keep
the resolution of the images at 32×32, while for
CelebA and LSUN Church we resize them to
64×64 and 128×128, respectively. We use mod-
ified ResNet architectures for all experiments in
this study. See Appendix G for more details.

5.2 IMAGE GENERATION

In Fig. 2, we show uncurated samples of DGGF-
DDP on different combinations of g and f -
divergences. Visually, our model is able to pro-
duce high-quality samples on a variety of datasets
up to resolutions of 128 × 128, surpassing exist-
ing gradient flow techniques (Gao et al., 2019;
2022). More samples with other f -divergences
can be found in Appendix I. In Table 1, we show
the FID scores of DGGF-DDP in comparison with
relevant baselines utilizing different generative ap-
proaches. On CIFAR10, our model performs com-
parably with SNGAN and the score-based NCSN, while outperforming the baseline EBM, autore-
gressive method PixelCNN. Our method strongly outperforms EPT without an auxiliary generator
(no outer loop), which is the gradient flow baseline utilizing a density ratio method.In comparison
to the WGF baselines, DGGF strongly outperforms EPT without an auxiliary generator (no outer
loop), while performing comparably with JKO-Flow. For CelebA, our model is outperformed by the
state-of-the-art variational autoencoder NVAE, but outperforms NCSN and Short-Run EBM.

To provide intuition for the gradient flow process, we provide intermediate samples for the LSUN
Church dataset in Fig. 5 of the appendix, which visualizes how samples drawn from the data-
dependent prior is evolved to a high quality sample. In this scenario, the prior contains low level
features such as the color of the sky and rough silhouette of the building. The gradient flow retains
these coarse features, but generates the higher frequency details necessary to create a realistic im-
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age. This matches the intuition that the gradient flow is the steepest descent curve, as the shortest
path would mean changing as little of the image as possible to reach the target distribution. We also
visualize samples obtained by interpolating in the prior space for CelebA in Fig. 6 of the appendix.
Despite the use of a relatively complex prior, the model is able to smoothly interpolate in the latent
space, indicating the model has learnt a semantically relevant latent representation that is charac-
teristic of a valid generative model. Finally, to verify that our model has not merely memorized
the dataset, particularly due to concerns that the prior is fitted from data, we show nearest neighbor
samples of the generated images in the training set in Appendix H. We can clearly see that samples
produced by DGGF-DDP are distinct from the closest samples in the training set, which tells us that
DGGF-DDP is capable of generating new and diverse samples beyond the data it was trained on.

0.0

0.5

1.0

1.5 DDP
UP

0 50 100
Gradient flow steps K

0.0

3.0

6.0

D
KL

Figure 3: KL estimate D̂KL of
the gradient flow for CIFAR10
generation for both DDP and UP
for LSIF-χ2 (upper) and LR-KL
(lower).

Model Estimate of KL over Flow. As our model outputs the
density ratio rθ(xk) = q(xk)/p(xk) throughout the gradient
flow, our model can be interpreted as estimating the KL di-
vergence DKL(q(xk)||p(xk) =

∫
q(xk) log(q/p)(xk)dxk =

Exk
[log rθ(xk)] where the expectation is taken over the batch

of samples being evolved. We denote this estimate as D̂KL.
We show that this estimate is valid in Fig. 3, which plots D̂KL

over the gradient flow for both DDP and UP (the UP results
serve as ablations in the next paragraph). Focusing on the DDP
results, we observe that D̂KL decreases monotonically over
the flow, which agrees with the notion that q(xk) approaches
p(xk), as seen in Fig. 5. This validates our hypothesis that de-
spite the use of a stale estimate, the model did not collapse to a
single density ratio and has learnt a valid density ratio over the
flow. As evident from Fig. 5, the sample quality improves pro-
gressively over the flow as D̂KL decreases. As such, this pro-
vides DGGF with an interpretable diagnostic of its own sample
quality that comes innately with the density ratio formulation.

Ablations with Uniform Prior. We motivate the use of the
data-dependent prior by conducting ablation experiments with q0 being a uniform prior, x0 ∼
U [−1, 1]. All hyperparameters are kept identical to DDP experiments to isolate the effects of the
choice of prior distribution. We include qualitative samples of DGGF-UP in Fig. 18 in the appendix.
The quantitative results can be seen from the FID scores in Table 1. Visually, DGGF-UP produces
diverse and appealing samples even with a uniform prior. However, when comparing quantitative
scores we observe that the use of DDP improves results significantly. Support for the density chasm
hypothesis can be found by comparing the D̂KL of DDP and UP in Fig. 3. For both LSIF-χ2 and
LR-KL, DGGF-UP has a significantly larger D̂KL at the start of the flow as compared to DGGF-
DDP. This corresponds to our intuition, as the uniform prior is ‘farther’ from the data distribution as
compared to the data-dependent prior. As a result, the model has to push the particles over a larger
density chasm, leading to poorer performance given a fixed computational budget.

5.3 CONDITIONAL GENERATION WITH ROBUST CLASSIFIERS

The density ratio framework allows us to compose different density ratio estimators together, there-
fore allowing us to construct WGFs between distributions different from those in training. To illus-
trate this, consider a multiclass classifier which predicts the probability that a given image belongs
to any one of N classes. We show in Appendix F that we can express such classifiers as a density
ratio p(y = n|x) = N−1p(x|y = n)/p(x). We can thus obtain a conditional density ratio estimator
rθ(xt|y = n) = qt(xt)/p(xt|y = n) by composing our unconditional estimator rθ(xt) with the
classifier output (see Appendix F):

rθ(xt|y = n) =
1

N
rθ(xt)p(y = n|xt)

−1. (14)

When rθ(xt|y = n) is used in simulating the WGF in Eq. 8, we obtain a class-conditional generative
model. This is conceptually similar to the idea proposed in Song et al. (2020), where an uncondi-
tional score model ∇x log pt(x(t)) is composed with a time-dependent classifier ∇x log pt(y|x(t))

8
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(a) (b)

Figure 4: (a) Class-conditional samples from composition with a robust classifier. (b) Image-to-
image translation process from cat to dog images using DGGF.

to form a class-conditional model. However, whereas Song et al. (2020) requires the separate train-
ing of a time-dependent classifier, our formulation allows us to use off-the-shelf pretrained classifiers
with no further retraining. Inspired by earlier work on image synthesis with robust classifiers (San-
turkar et al., 2019), we found that using a pretrained adversarially-robust classifier was necessary in
obtaining useful gradients for the gradient flow. We show our results in Fig. 4a, where each row
represents conditional samples of each class in the CIFAR10 dataset.

5.4 UNPAIRED IMAGE-TO-IMAGE TRANSLATION

Our framework can also be directly applied to unpaired image-to-image-translation (I2I). We simply
fix the prior distribution q0(x) to a source domain and p(x) to a target domain. We then train the
model in exactly the same manner as unconditional generation (see Algorithm 1).

We test our I2I model on the Cat2dog dataset (Lee et al., 2018). From Fig. 4b, DGGF is able to
smoothly translate images of cats to dogs while maintaining relevant semantic features of the image.
For example, the background colors of the image and the pose of the cat are unchanged—a cat that
is facing a certain direction is translated to a dog that faces the same direction. We also observe
that the facial tones of the cat is preserved—a cat with light fur is translated to a dog with light
fur. CycleGAN (Zhu et al., 2017) achieves better FID scores than DGGF (Table 4 in the appendix)
but like many I2I methods (Lee et al., 2018; Choi et al., 2020; Zhao & Chen, 2021; Nie et al.,
2021), CycleGAN incorporates specific inductive biases, such as dual generators and discriminators
together with the cycle-consistency loss. Incorporating such inductive biases into the gradient flow
process can improve the translation and would make for interesting future work.

6 CONCLUSION

In this paper, we proposed DGGF, a method to simulate the Wasserstein gradient flow between
two distributions that minimizes the entropy-regularized f -divergence. As constructing such a flow
requires an estimate of the density ratio, we showed how to leverage the Bregman divergence to train
a deep density ratio estimator that is able to synthesize diverse images of high quality. We showed
that the modularity of DGGF allows for composition with external density ratio estimators, as well
as direct application to tasks such as unpaired image-to-image translation. Given the flexibility
of choosing the source and target distribution, future work can investigate different choices of the
two distributions that could correspond to entirely new applications. Another possible avenue is
investigating how we can incorporate task-specific inductive biases into the gradient flow process,
which should allow the WGF to perform better on the problem at hand.

9
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Figure 5: Illustration of the gradient flow process for LSUN Church, starting from a sample from
the data-dependent prior on the leftmost column.

Figure 6: Interpolation results between leftmost and rightmost samples with CelebA.

A TOY DATASETS

Figure 7: Comparison of different DGGF pairings of Bregman and f -divergences on the 2DSwiss-
roll dataset.

To affirm that samples generated by DGGF indeed converge to the target distribution p(x), we
train DGGF on the synthetic 2DSwissroll dataset. The density ratio estimator is parameterized by
a simple feedforward multilayer perceptron. We train the model to flow samples from the prior
q0(x) = N (0, I) to the target distribution, which we sample from the make swiss roll function
in scikit-learn. We plot the results in Fig. 7, from which we can see that the model indeed
converges to p(x) successfully for all combinations of f and g.

B BREGMAN DIVERGENCE AND f -DIVERGENCE PAIRING

When computing the LR objective Eq. 12, we find that we run into numerical stability issues when
letting rθ(x) be the output of an unconstrained neural network and subsequently taking the required
logarithms in Eq. 12. To circumvent this issue, we let rθ(x) be expressed as the exponential of
the neural network’s output, i.e., the output of the neural network is log rθ(x). This formulation
naturally lends itself to the gradient flow of the KL, JS and logD divergences, whose first derivatives
f ′ that is required in Eq. 8 are also logarithmic functions of rθ(x), as seen from Table. 2. We can
thus utilize numerically stable routines in existing deep learning frameworks, avoiding the need for
potentially unstable operations like exponentiations (see Appendix C for details). As such, we pair
LR with the aforementioned divergences and abbreviate the combinations as LR-KL, LR-JS, LR-
logD. We did not run into such stability issues for the LSIF objective (Eq. 11) as the model learns to
automatically output a non-negative scalar over the course of training, hence for LSIF we allow the
neural network to estimate rθ(x) directly and pair it with the Pearson-χ2 divergence. We abbreviate
this pairing as LSIF-χ2.
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C STABLE COMPUTATION OF LR AND f -DIVERGENCES

As mentioned in Sec. B, computing the logarithm of unconstrained neural networks leads to in-
stabilities in the training process. This is a problem when computing the LR objective in Eq. 12
and the various first derivatives of f -divergences. We can circumvent this problem by letting rθ(x)
be expressed as the exponential of the neural network and use existing stable numerical routines to
avoid intermediate computations that lead to the instabilities (for example, computing logarithms
and exponentials directly). Let us express the neural network output as NNθ(x) ≜ log rθ(x). The
LR objective can then be rewritten as

LLR(θ) = −Êp

[
log

1

1 + rθ(x)

]
− Êqt

[
log

rθ(x)

1 + rθ(x)

]
(15)

= −Êp [logsigmoid(−NNθ(x))]− Êqt [logsigmoid(NNθ(x))] (16)

where logsigmoid(x) = log 1
1+exp(−x) , which has stable implementations in modern deep learn-

ing libraries.

Similarly for the f -divergences whose first derivatives involve logarithms, we can calculate them
stably as

f ′
KL(r(x)) = log r(x) + 1 = NNθ(x) + 1 (17)

f ′
JS(r(x)) = log

2r(x)

1 + r(x)
= log 2 + logsigmoid(NNθ(x)) (18)

f ′
logD(r(x)) = log(r + 1) + 1 = −logsigmoid(−NNθ(x)) + 1. (19)

D PROOF OF CONVERGENCE OF GRADIENT FLOW

We provide a simple proof of the convergence of the Wasserstein gradient flow in the t→∞ limit.

Theorem 1. Let the functional Ff
p (q

t) be defined as

Ff
p (q

t) =

∫
p(x)f(qt(x)/p(x))dx+ γ

∫
qt(x) log qt(x)dx. (20)

F f
p (q

t) is non-increasing as a function of time and converges to the global minimum in the t → ∞
limit.

Proof.

∂Ff
p (q

t)

∂t
= ⟨∇W2Ff

p (q
t),

∂qt

∂t
⟩ (21)

= −||∇W2
Ff

p (q
t)||2. (22)

where in the first line we apply the chain rule, and in the second line we use the definition of the
gradient flow in the Wasserstein space, ∂qt

∂t = −∇W2
Ff

p (q
t) (analogous to the gradient flow in

Euclidean space of Eq. 1).

E CONNECTIONS WITH LANGEVIN DYNAMICS

In this section we demonstrate the connection between WGFs and Langevin dynamics, which have
also been studied in prior works such as Jordan et al. (1998); Liu et al. (2019). Langevin dynamics
is a MCMC method that is able to produce samples from a probability density p(x) using only the
score function ∇x log p(x). Let ϵ be the step size and x0 ∼ π(x) be an initial sample drawn from a
prior distribution, Langevin dynamics iteratively updates xk as

xk+1 = xk +
ϵ

2
∇x log p(xk) +

√
ϵξk, (23)
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Table 2: f -divergences and their first derivatives f ′.

f -divergence f f ′

Pearson-χ2 (r − 1)2 2(r − 1)

KL r log r log r + 1

JS r log r − (r + 1) log r+1
2 log 2r

r+1

log D (r + 1) log(r + 1)− 2 log 2 log(r + 1) + 1

where ξk ∼ N (0, I). As shown by Welling & Teh (2011), as k → ∞ and η → 0, then xk ∼ p(x)
under certain regularity conditions. Langevin dynamics are most notably utilized as a method to
sample from EBMs, which model p(x) as a Boltzmann distribution pθ(x) = exp(−Eθ(x))/Z(θ).

We show the connection to WGFs by considering the discretized SDE Eq. 7 with f ′ = log r + 1
corresponding to the KL divergence:

xk+1 = xk − η∇x log(qk(xk)/p(xk)) +
√

2γηξk. (24)
Upon decomposing the logarithm term, we immediately see that the WGF gives us

xk+1 = xk − η∇x log qk(xk)︸ ︷︷ ︸
prior downweighting

+ η∇x log p(xk) +
√

2γηξk︸ ︷︷ ︸
Langevin dynamics

. (25)

We exactly recover Langevin dynamics in the last two terms if we set the hyperparameters η = ϵ/2
and γ = 1. The emergence of the term we call ‘prior downweighting’ can be interpreted as pushing
the samples away from q(x) by reducing its log-likelihood. Hence, WGF with f corresponding to
the KL divergence can be intuitively understood as an ‘enhanced’ version of Langevin dynamics,
where samples are pushed in the direction which not only increases log p(x), but also explicitly
decreases log q(x).

F CLASSIFIERS ARE DENSITY RATIO ESTIMATORS

To perform class-conditional generation in the DGGF framework, we would like to estimate the
density ratio of a certain class over the data distribution: p(x|y = n)/p(x). With Bayes rule, we can
write this as

p(x|y = n)

p(x)
=

p(y = n|x)p(x)/p(y = n)

p(x)
(26)

=
p(y = n|x)
p(y = n)

. (27)

The denominator term p(y = n) can be viewed as a constant, e.g., assume the N classes are equally
distributed, then p(y = n) = 1/N . Therefore, we have that the class probability given by the
softmax output of a classifier is actually a density ratio:

Np(y = n|x) = p(x|y = n)

p(x)
. (28)

We can use this equation to convert an unconditional DGGF to a class-conditional generator. Recall
the gradient flow equation:

dxt = −∇xf
′(rθ(xt))dt+

√
2γdwt (29)

We can multiply the inverse of the classifier output with rθ(xt) = qt(xt)/p(xt) to get a density ratio
between qt(xt) and the conditional data distribution p(xt|y = n):

rθ(xt)p(y = n|xt)
−1 =

qt(xt)

p(xt)

Np(xt)

p(xt|y = n)
= N

qt(xt)

p(xt|y = n)
. (30)

That is, we took our unconditional model and converted it to a conditional generative model by
composing it with a pretrained classifier. To get the correct class-conditional density ratio, we should
therefore compute

rθ(xt|y = n) =
1

N
rθ(xt)p(y = n|xt)

−1 (31)

and use this conditional density ratio estimator in the WGF SDE.
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Table 3: Network structures for the density ratio estimator rθ(x).

CIFAR10
3×3 Conv2d, 128
3 × ResBlock 128

ResBlock Down 256
2 × ResBlock 256

ResBlock Down 256
2 × ResBlock 256

ResBlock Down 256
2 × ResBlock 256

Global Mean Pooling
Dense→ 1

CelebA 64
3×3 Conv2d, 64

ResBlock Down 64
ResBlock Down 128

ResBlock 128
ResBlock Down 256

ResBlock 256
ResBlock Down 256

ResBlock 256
Global Mean Pooling

Dense→ 1

LSUN Church 128
3×3 Conv2d, 64

ResBlock Down 64
ResBlock Down 128
ResBlock Down 128

ResBlock 128
ResBlock Down 256

ResBlock 256
ResBlock Down 256

ResBlock 256
Global Mean Pooling

Dense→ 1

Cat2dog 64
3×3 Conv2d, 64

ResBlock Down 64
ResBlock Down 128
Self Attention 128

ResBlock Down 128
ResBlock Down 256
Global Mean Pooling

Dense→ 1

G EXPERIMENTAL DETAILS

Unconditional Image Generation. For all datasets, we perform random horizontal flip as a form
of data augmentation. For CelebA, we center crop the image to 140×140 before resizing to 64×64.
For LSUN Church, we resize the image to 128×128 directly. We use the same training hyperpa-
rameters across all three datasets, which is as follows. We train all models with 120000 training
steps with the Adam optimizer with a batch size of 64. We use a learning rate of 1 × 10−4 and
decay by a factor of 0.1 at training steps 100000 and 110000. We set the number of gradient flow
steps to K = 100 at training time and K = 110 at test time as discussed in Sec. 5.2, and use a
step size η = 3 and noise factor ν = 10−2. The specific residual architectures are given in Table
3. We update model weights using an exponential moving average (Song & Ermon, 2020) given by
θ′ ← mθ′+(1−m)θi, where θi is the parameters of the model at the i-th training step, and θ′ is an
independent copy of the parameters that we save and use for evaluation. We set m = 0.998. We use
the LeakyReLU activation with a negative slope of 0.2. We experimented with spectral normaliza-
tion and self attention layers for unconditional image generation, but found that training was stable
enough such that they were not worth the added computational cost. The FID results in Table 1 are
obtained by generating 50000 images from the data-dependent prior, and testing the results against
the training set for both CIFAR10 and CelebA.

Conditional Generation with Robust Classifier. The unconditional model used for conditional
generation is the same model obtained from the section above. The pretrained robust classifier
checkpoint is obtained from the robustness3 Python library (Engstrom et al., 2019). It is based
on a ResNet50 architecture and is trained with L2-norm perturbations of ε = 1.

We choose the LR-KL variant for our results in Fig. 4a. This means that our conditional gradient
flow is given by

xk+1 = xk − 2α∇x log

(
rθ(xk) ∗

1

N
p(y = n|xk)

−1

)
+ νξk (32)

= xk − 2α∇x (log rθ(xk)− ϕ log p(y = n|xk)) + νξk (33)

where in the second line we introduce ϕ as a parameter that scales the magnitude of the classifier’s
gradients so they are comparable to the magnitude of DGGF’s gradients. We use ϕ = 0.1.

Unpaired Image-to-image Translation. The Cat2dog dataset contains 871 Birman cat images
and 1364 Samoyed and Husky dog images. 100 of each are set aside as test images. We first resize
the images to 84×84 before center cropping to 64×64. Due to the relatively small size of the dataset,
we use a shallower residual architecture as compared to CelebA 642 despite the same resolution
(Table 3) to prevent overfitting. We also utilize spectral normalization and a self attention layer at
the 128-channel level to further boost stability. We set K = 100 during training and K = 110

3https://github.com/MadryLab/robustness
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Table 4: FID scores for image-to-image translation with the cat2dog dataset.

Model FID ↓
DGGF 108.10
CycleGAN 51.79

(a) (b) (c)

Figure 8: Samples drawn from the data-dependent priors of (a) CIFAR10 322, (b) CelebA 642 and
(c) LSUN Church 1282.

at test time. As we observed the model tends to diverge late in training, we limit the number of
training steps to 40000, with a decay factor of 0.1 applied to the learning rate at steps 20000 and
30000. All other hyperparameters are kept identical to the experiments on unconditional image
generation. We report results for LSIF-Pearson, although we have experimented with LR-KL and
found performance to be similar. The FID result in Table. 4 is obtained by translating the 100 test
cat images, and testing the results against the 100 test dog images.

17



Under review as a conference paper at ICLR 2023

H NEAREST NEIGHBORS

(a) (b)

Figure 9: Nearest neighbor images for CIFAR10 as measured by L2 distance in (a) the feature space
of an Inception V3 network pretrained on ImageNet and (b) data space. The column to the left of
the red line are samples from DGGF LSIF-χ2. The images to the right of the line are the 10 nearest
neighbors in the training dataset.

(a) (b)

Figure 10: Nearest neighbor images for CelebA as measured by L2 distance in (a) the feature space
of an Inception V3 network pretrained on ImageNet and (b) data space. The column to the left of
the red line are samples from DGGF LSIF-Pearson. The images to the right of the line are the 10
nearest neighbors in the training dataset.
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I UNCURATED SAMPLES DGGF-DDP

Figure 11: Uncurated samples of CIFAR10 LSIF-Pearson.

Figure 12: Uncurated samples of CIFAR10 LR-KL.

Figure 13: Uncurated samples of CIFAR10 LR-JS.
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Figure 14: Uncurated samples of CIFAR10 LR-logD.

Figure 15: Uncurated samples of CelebA LSIF-Pearson.

Figure 16: Uncurated samples of CelebA LR-KL.
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Figure 17: Uncurated samples of LSUN Church LSIF-Pearson.

21



Under review as a conference paper at ICLR 2023

J UNCURATED SAMPLES DGGF-UP

(a) LSIF-Pearson uniform prior. (b) LR-KL uniform prior.

Figure 18: Uncurated CIFAR10 samples with DGGF-UP.

22


	Introduction
	Background
	Generative Modeling with Wasserstein Gradient Flows
	Gradient Flow via Density Ratio Estimation
	Density Chasm and Data-Dependent Priors

	Related Works
	Experiments
	Setup
	Image Generation
	Conditional Generation with Robust Classifiers
	Unpaired Image-to-image Translation

	Conclusion
	Toy Datasets
	Bregman Divergence and f-divergence Pairing
	Stable Computation of LR and f-divergences
	Proof of convergence of gradient flow
	Connections with Langevin Dynamics
	Classifiers are Density Ratio Estimators
	Experimental Details
	Nearest Neighbors
	Uncurated Samples DGGF-DDP
	Uncurated Samples DGGF-UP

