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Abstract

Long chain-of-thought (CoT) significantly enhances large language models’ (LLM)1

reasoning capabilities. However, the extensive reasoning traces lead to inefficien-2

cies and an increased time-to-first-token (TTFT). We propose a novel training3

paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to in-4

terleave thinking and answering for multi-hop questions. We observe that models5

inherently possess the ability to perform interleaved reasoning, which can be fur-6

ther enhanced through RL. We introduce a simple yet effective rule-based reward7

to incentivize correct intermediate steps, which guides the policy model toward8

correct reasoning paths by leveraging intermediate signals generated during inter-9

leaved reasoning. Extensive experiments conducted across five diverse datasets and10

three RL algorithms (PPO, GRPO, and REINFORCE++) demonstrate consistent11

improvements over traditional think-answer reasoning, without requiring external12

tools. Specifically, our approach reduces TTFT by over 80% on average and im-13

proves up to 19.3% in Pass@1 accuracy. Furthermore, our method, trained solely14

on question answering and logical reasoning datasets, exhibits strong generaliza-15

tion ability to complex reasoning datasets such as MATH, GPQA, and MMLU.16

Additionally, we conduct in-depth analysis to reveal several valuable insights into17

conditional reward modeling.18

Question: Who was the director of the film that won the Academy Award for Best Picture five years after the Berlin Wall fell?

<think>First, I know that the Berlin Wall fell in
1989. So five years after that would be 1994. I
remember that The Matrix was a big hit back then,
so it's likely that The Matrix won the Best Picture
award. Since Lana Wachowski and Lilly
Wachowski are the directors of The Matrix, I think
this is the final answer.</think>

<answer>Lana Wachowski and Lilly Wachowski
directed The Matrix and won Academy Award
for Best Picture in 1994, five years after the
Berlin Wall fell in 1989.</answer>

<answer>The Berlin Wall fell in 1989.</answer>

<think>Okay, I need to recall when the Berlin Wall fell.</think>

<think> Now, let's do some math: 1989 + 5 = 1994.</think>

<answer>5 years after 1989 is 1994.</answer>

<think>Next, let's figure out the film won the reward in 1994.</think>

<think>Finally, let's find out who directed Forrest Gump.</think>

<answer>The director was Robert Zemeckis.</answer>

<answer>Forrest Gump won the reward in 1994.</answer>

Think-answer Reasoning Interleaved Reasoning

Reward: -1

Reward: +0.1

Reward: +0.1
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Reward: +1
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Figure 1: Standard think-answer reasoning (left) completes the full chain-of-thought before generating
an answer, resulting in high TTFT and making credit assignment difficult during training when
intermediate steps contain errors (highlighted in yellow). Interleaved reasoning (right) alternates
between thinking and answering, enabling structured, easy-to-verify reward signals for better credit
assignment and significantly reducing TTFT.
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1 Introduction19

Reasoning large language models (LLMs) [18, 13] have demonstrated advanced capabilities in20

complex multi-hop tasks through long chain-of-thoughts (CoT) [50]. However, the standard “think-21

answer” paradigm, where models must complete the full reasoning trace before generating answers,22

introduces two critical limitations. First, it significantly increases time-to-first-token (TTFT), taking23

seconds or minutes for answer generation. This breaks the interaction flow in real-time AI applications24

such as conversational assistants, resulting poor user experience. Second, by delaying answer25

generation until the reasoning concludes, models may follow incorrect intermediate steps, propagate26

errors, and lead to inaccurate final answers and reasoning inefficiencies such as overthinking [6, 42]27

and underthinking [49].28

Humans naturally provide incremental feedback during conversations, signaling understanding even29

as they formulate complete responses. Decomposing a complex problem into smaller steps is also the30

de-facto approach for many reasoning tasks in LLMs [50, 21, 56, 2]. However, current reasoning31

LLMs treat thinking and answering as strictly sequential processes – answers are available only after32

reasoning concludes.33

Currently, reinforcement Learning (RL) [20] is the dominant approach to convert a base LLM into a34

reasoning LLM [22, 16, 13, 52]. Typically, the model is rewarded based on the correctness of the35

final answer and adherence to the reasoning format. The intermediate reasoning traces are often36

treated as a byproduct or unstructured chatter. In this work, we argue that such training paradigm37

is worth revisiting, especially for multi-hop reasoning tasks. First, users rarely have the time or38

cognitive bandwidth to thoroughly examine lengthy and often uninformative reasoning traces [44].39

Yet, reasoning traces may include partial conclusions that are already beneficial to users; clearly40

presenting these conclusions early can enhance interaction [30]. Second, in the cases where the41

reasoning trace is not fully visible to the user, these partial conclusions can assist users in verifying or42

validating the model’s final output. Third, these partial conclusions could also be utilized as dense43

supervision signals to further improve model’s reasoning during training [27, 9]. Ideally, models44

should iteratively switch between “think” and “answer” modes based on their understanding of the45

problem and its complexity. However, effectively applying RL to induce such behavior remains46

challenging. First, it is unclear whether models can learn and generalize interleaved behaviors across47

various complex tasks. Second, effectively leveraging simple, rule-based rewards to detect sufficient48

intermediate signals during training is largely under-explored.49

To address these challenges, we introduce interleaved reasoning, a novel RL training paradigm50

that enables LLMs to interleave thinking and answering, without leveraging any external tools. As51

shown in Figure 1, interleaved reasoning model generates informative intermediate answers during52

reasoning, giving timely feedback to the user (reducing TTFT) while providing verifiable reward53

signal to guide its own subsequent steps toward a correct final answer. We conduct comprehensive54

experiments on three popular RL algorithms (PPO [37], GRPO [38], and REINFORCE++ [17]),55

and found that LLMs are inherently capable of answering questions in an interleaved manner, but56

it is non-trivial to train them to systematically generate useful intermediate answers across diverse57

tasks. We apply a simple yet effective rule-based reward to encourage models to generate informative58

intermediate answers. We found that training only on question answering and logical reasoning59

datasets, models are able to generalize and conduct interleaved reasoning to unseen tasks such as60

MATH [15], GPQA [35], and MMLU [14]. We summarize our key contributions as follows:61

• We propose a novel RL training paradigm that trains LLMs to alternate thinking and62

answering, inherently reducing Time-to-First-Token (TTFT) by over 80% on average.63

• We introduce a rule-based reward that provides consistent, dense feedback for intermediate64

steps during training, guiding the model to stay on the correct thinking path and significantly65

improving its reasoning capability, resulting in averagely up to a 19.3% Pass@1 improvement66

over traditional think-answer reasoning.67

• Our conditional reward strategy on intermediate reward allow us to train on datasets with68

intermediate answers and generalize strongly to unseen reasoning tasks. Comprehensive69

analysis reveals valuable and practical insights into reward modeling, stable RL training,70

and model reasoning dynamics.71
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2 Related Work72

LLM Reasoning and Efficiency. Research on enhancing LLMs’ reasoning capabilities has fol-73

lowed several key directions. Early approaches focused on improving base or instruction-tuned74

LLMs through techniques like chain-of-thought prompting [50], self-consistency [29], and few-shot75

learning [3], while others explored structured reasoning through graph-based methods [2]. Another76

line of work leverages external tools and APIs [25, 11, 5] to augment model capabilities. Recent77

development in RL enable models like OpenAI-o1 [18] and DeepSeek-R1 [13] to generate long CoT78

to improve their reasoning ability. This shift towards longer reasoning also results in inefficiency and79

significantly increased latency and Time-to-First-Token (TTFT). Recent studies address this issue by80

proposing more concise reasoning through techniques such as inference-time adjustments [54, 53, 43],81

length control RL [1, 10, 55], or additional finetuning [31]. Interleaving between reasoning with82

action using RL is also a newly emerged research area. Concurrent work mainly focuses on leveraging83

external tools such as search engine [19, 4, 41, 26] during the reasoning process. In contrast, we84

focus on model’s internal ability of generating verifiable intermediate answers, which can be later85

used as additional reward signal for training.86

Reinforcement Learning for LLM Reasoning. In the context of LLMs, reinforcement learning87

[20] is widely used for human preferences alignment [7, 33, 23]. Recently, RL’s usage has gradually88

shifted towards enhancing LLM’s reasoning capabilities. Reward modeling is a strong means of89

guiding a model to learn new skills during RL [40]. There are primarily two type of rewards used90

during RL: Outcome Reward Model (ORM) and the Process Reward Model (PRM). DeepSeek R191

[13] demonstrates that simple rule-based ORM can significantly improve performance on challenging92

reasoning tasks. PRM are often used to provide denser feedback on intermediate steps [28, 46, 48].93

However, they face significant practical challenges - they often require human annotation for generated94

output [28, 46], which inevitably introduces risks of reward hacking [34], requiring training a separate95

reward model [48] and adding complexity to the training pipeline [13]. In this work, we leverage the96

concept of PRM, but instead of relying on a separate learned model, we only use a simple rule-based97

reward to capture intermediate signals. Unlike PRMs that generate feedback at each step during98

rollout, our method operates more like an ORM while granting partial credit to the intermediate99

answers. Discussions on the distinction between PRM and our method can be found in Section 5. We100

leverage a conditional reward scheme similar to Yuan et al. [55]. However, instead of focusing on101

reducing response length, our work focuses on improving the quality of intermediate reasoning.102

3 Training LLMs for Interleaved Reasoning103

In this section, we present our approach for training LLMs to interleave thinking and answering. We104

first formalize the interleaving process and then describe our reinforcement learning formulation.105

3.1 Multi-hop Problem Decomposition106

We conceptualize the process of answering a multi-hop question as a sequence of resolved intermedi-107

ate steps. A “sub-answer” is a distinct, user-facing piece of information or partial conclusion that the108

model confidently derives at a given reasoning stage. The model should output a sub-answer when109

it identifies that a self-contained part of the problem has been solved or a meaningful milestone in110

reasoning has been reached. For example, in a multi-hop question, a sub-answer might resolve the111

first hop and guide the next. In a mathematical problem, it could be an intermediate calculation. The112

key is that each sub-answer is presented as a public and conclusive statement for that stage of the113

reasoning, allowing the overall response to be built incrementally.114

3.2 Thinking vs. Answering115

The distinction between thinking and answering requires careful consideration. From a philosophical116

perspective, thinking constitutes an integral component of answer formulation. However, from a117

user experience standpoint, a model’s answer effectively begins when the first valid answer token is118

generated. Based on their utility to the user, we define thinking as a private internal reasoning process119

that is not accessible or useful to the user. In contrast, answering is the generation of public, finalized120

conclusions that constitute a meaningful response to the user’s question. These conclusions may121
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represent partial solutions to the overall problem, but they are presented as complete intermediate122

steps that advance the user’s understanding or problem-solving process.123

Formally, given user input x requiring N reasoning steps, the policy model πθ produces a sequence124

y that alternates between thinking and answering segments. Let k ∈ {1, . . . , N} index the steps.125

We denote the thinking segment by y
(k)
think and the corresponding answer segment by y

(k)
answer. The126

interleaved generation thus is127

y = y
(1)
think ◦ y

(1)
answer ◦ y

(2)
think ◦ y

(2)
answer ◦ · · · ◦ y(N)

answer, (1)

where ◦ denotes concatenation. The final answer to the original question is y
(N)
answer, whereas the128

preceding answer segments {y(k)answer}N−1
k=1 are intermediate answers. The thinking segments y

(k)
think129

guide the reasoning process but are not part of the user-visible answer for the TTFT calculation until130

the subsequent answer segment y(k)answer is produced.131

3.3 Interleaved Reasoning Template132

To guide the model in adopting the interleaved reasoning process, we use a specific instruction133

template during training and inference. The template uses only two special tags: <think></think>134

and <answer></answer> to explicitly ask the model to perform reasoning and provide answers135

within each tag, respectively. We use the original template proposed in Guo et al. [13] for think-answer136

reasoning (Appendix A). The complete interleaved template is shown in Table 1.137

You are a helpful assistant. You reason through problems step by step before providing an answer. You
conduct your reasoning within <think></think> and share partial answers within <answer></answer>
as soon as you become confident about the intermediate results. You continue this pattern of
<think></think><answer></answer><think></think><answer></answer> until you reach the fi-
nal answer. User: prompt. Assistant:

Table 1: Template for interleaving thinking and answering. prompt will be replaced with the specific
reasoning question during training.

3.4 Reinforcement Learning for Interleaved Reasoning138

We formulate the task of learning interleave reasoning as a reinforcement learning problem. During139

RL, the policy model πθ generates sequences that maximize an expected reward while maintaining140

generation quality. The objective function is:141

max
πθ

Ex∼D,y∼πθ(·|x) [r(x, y)]− βDKL [πθ(y | x) ||πref(y | x)] , (2)

where D is the training dataset, πref(y | x) is the reference policy model, β is the KL divergence142

coefficient, and r(x, y) is the reward function. Detailed hyperparameter choices are discussed in143

Appendix B. We discuss the policy optimization in Section 4 and compare the performance of different144

RL algorithms in Section 5. After training, the model should have learned how to dynamically switch145

between them based on the given task at each step.146

3.4.1 Rule-based Rewards147

To effectively train the model to reason within the interleaved format, we utilize three rule-based148

rewards: the format reward assesses whether the interleaved format is correctly followed and149

properly completed; the final accuracy reward evaluates the correctness of the final answer; and the150

conditional intermediate accuracy reward (or intermediate reward) provides additional rewards for151

correct intermediate answers, applied conditionally based on training progress. Following previous152

work [13, 19], our reward design avoids complex neural reward models, instead focusing on simple153

rule-based reward that provide clear and consistent feedback without requiring separate reward model154

training. We discuss the methods to apply the intermediate reward in Section 3.4.3. More details155

about the rewards can be found in Appendix C.156
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3.4.2 Models Are Quick Format Learner
Our initial experiments revealed that models in-
herently possess the ability to interleave think-
ing and answering. Base models (without RL
training) can generate intermediate answers by
directly applying the interleaved template, with
some reduced accuracy. Additionally, models
rapidly learn the structural format. As illustrated
in Figure 2, the format reward for both reasoning
methods quickly plateaus, whereas the accuracy
reward continues to improve. We also observe
that both reasoning methods achieve similar fi-
nal accuracy reward during training. The finding
suggests the main challenge is not stylistic ad-
herence but rather enhancing the quality of their
thought processes for different reasoning tasks.

Figure 2: The format reward rapidly reaches a
plateau during training, significantly faster than
the accuracy reward, suggesting that LLMs natu-
rally adopt structural patterns.

157

This motivates our focus on the reasoning itself: not for its structure per se, but for its potential to158

improve the model’s reasoning by leveraging its explicit intermediate outputs as learning signals.159

3.4.3 Conditional Rewards160

Our finding shows that directly applying intermediate reward during training often leads to suboptimal161

results, as the model may prioritize local correctness at the expense of final solution correctness (Sec-162

tion 5). To effectively leverage the benefit of intermediate answers beyond shorter TTFT, we design a163

conditional reward strategy that incentivizes the model to generate correct intermediate answers early,164

in order to guide the reasoning toward the correct final answer. We apply a conditional reward scheme165

where intermediate rewards are only invoked when the model demonstrates foundational competence166

and shows meaningful learning progress during training. Specifically, the rewards are applied when167

three conditions are met: (1) the final answer is correct, (2) the output format is valid, and (3) the168

model shows improvement in the current training batch compared to previous one. The core idea is169

to ensure that the model first masters the primary objective before optimizing for the sub-tasks of170

generating correct intermediate steps. Formally, the conditional intermediate reward is defined as:171

rintermediate(x, y) = 1(C) ·
N−1∑
k=1

Correct
(
y(k)answer

)
, (3)

172

where C = FormatCheck(y) ∧ Correct
(
y(N)

answer

)
∧

(
Acc(B) > Acc(B − 1)− ϵ

)
, (4)

where Acc(B) denotes the accuracy for the current training batch B, 1(·) is the indicator function,173

Correct(y
(k)
answer) evaluates the answer correctness at step k, and ϵ is the threshold for training stability.174

The batch accuracy criterion serves as a curriculum indicator, gradually introducing intermediate175

rewards as training progresses. Therefore, the overall reward function is:176

r(x, y) = rformat(y) + rfinal(x, y) + rintermediate(x, y), (5)

where rintermediate(x, y) is invoked only if all the aforementioned conditions are met. The full re-177

ward definitions can be found in Appendix C. We discuss different approaches to calculating the178

intermediate reward value in Section 3.4.4.179

3.4.4 Intermediate Reward Calculation.180

We explore different approaches to calculate intermediate reward under the conditional nature. While181

all approaches use the conditional scheme described above, they differ in how they calculate the182

actual reward value. We explore three approaches: (1) All-or-None, which requires all intermediate183

steps to be correct in sequence; (2) Partial Credit, which gives partial credit for individual correct184

intermediate steps; and (3) Time-Discounted, which assigns higher rewards to earlier correct185

intermediate steps while assigning extra rewards to the all correct intermediate steps. Note that186

the intermediate rewards calculation requires the intermediate ground truth answers. However,187

despite training only on datasets with intermediate ground truths, we are able to generalize to other188

unseen datasets (Section 4). We compare these approaches in Section 5, provide additional details in189

Appendix C.2, and present the complete algorithm in Algorithm 1.190
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4 Main Experiments191

Datasets. We evaluate our method on both in-domain and out-of-domain datasets. For in-domain192

datasets, we use Knights and Knaves (K&K) [51] and Musique [45] for both training and evaluation.193

K&K is a logical reasoning dataset that requires multi-step reasoning to identify the correct characters.194

It consists of multiple problem difficulty levels depending on the number of characters involved.195

Musique is a multi-hop question answering dataset that requires retrieving and combining information196

from multiple sources. Both datasets naturally contain subproblems and their ground truth. We leave197

the exploration of dataset without intermediate ground truth for future work. For out-of-domain198

evaluation, we test on GPQA [35], MMLU [14], and MATH [15] to assess how well our models199

generalize to unseen tasks and domains. These datasets cover diverse reasoning scenarios, allowing200

us to comprehensively evaluate the robustness of our approach. More details about the datasets are201

provided in Appendix D.202

Models and Baselines. We conduct experiments using Qwen2.5 instruct models with 1.5B and 7B203

parameters. To comprehensively evaluate the effectiveness of our approach, we compare it against204

verious baselines: Direct Inference, where the model generates answers without explicit reasoning205

steps; Chain-of-Thought (CoT) [50], where the model performs all reasoning before generating the206

final answer; SFT [8], where the model is trained with supervised fine-tuning; Think-answer, where207

we train same model with the standard think-answer RL methods proposed in Guo et al. [13]. We208

compare the baselines with two interleaved reasoning approaches: Interleave, our base approach209

without intermediate rewards; and Interleave + IR, our main approach with conditional intermediate210

rewards (IR) using time-discounted approach, as described in Section 3.4.3. For fair evaluation, we211

use the same setup (eg., datasets, RL algorithms, etc.) for think-answer and interleaved training.212

Evaluation Metrics. In this work, we use two key metrics: pass@1 accuracy (How many problems213

are solved correctly) and time-to-first-token (TTFT) (How quickly the model provides answers to214

users). Following previous work [32, 19], we use Exact Match (EM) to calculate the percentage of215

correct final answers against the ground truth for pass@1 score. For each test instance, we compare216

the model’s final answer against the ground truth answer after normalization. In conventional settings,217

TTFT is typically measured in absolute time units (e.g., milliseconds). However, to apply it across218

different reasoning approaches, we define TTFT as the relative position of the first answer token in219

the complete response. More details on the evaluation metrics are provided in Appendix E.220

Policy Optimization. To train the policy model, we experiment with three policy optimization221

approaches: the traditional Proximal Policy Optimization (PPO) [37] and it’s two variants, Group222

Relative Policy Optimization (GRPO) [38] and REINFORCE++ [17]. The primary distinction223

between them lies in their approaches to advantage value estimation. Specifically, PPO utilizes a224

network to approximate the state value function, leveraging the Generalized Advantage Estimation225

[36] to derive the advantage. In contrast, GRPO and REINFORCE++ bypass the need for an extra226

critic network and reduce the resources required during training, In practice, PPO is more stable227

during training due to the need for a critic model, which requires additional warm-up steps before228

effective training begins. On the other hand, GRPO and REINFORCE++ are sample efficient but229

more sensitive to hyperparameters choices. We compare the performance of three optimization230

methods and discuss the results in detail in Section 5.231

Training Details. We use Proximal Policy Optimization (PPO) as our primary training algorithm,232

as it provides more stable training compared to other RL algorithms. Different RL algrithm results233

can be found in Table 4. To ensure a fair comparison, we train models up to 2,000 steps and report234

the checkpoint that has the highest test score for both think-answer and interleaved training. For235

intermediate reward calculation, we use the Time-Discounted method as it shows better performance236

in our experiments (Detailed results can be found in Section 5). All experiments are conducted on237

eight H100 GPU with 80GB memory. More training details are provided in Appendix B.238

Main Results. The results in Table 2 demonstrate the benefits of interleaved reasoning. Our base239

interleaved approach (Interleave), without using intermediate rewards, maintains Pass@1 accuracy240

comparable to the traditional think-answer baseline while drastically reducing TTFT by an average241

of 80.3% (1.5B) and 81.4% (7B). This means users receive informative responses nearly five times242

sooner, highlighting that the interleaved structure itself enhances responsiveness by default. The243
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Table 2: Main results: Comparison between proposed interleaved reasoning methods and baselines.
‡ and † represents in-domain and out-of-domain datasets, respectively. Higher Pass@1 (↑) is better,
while lower TTFT (↓) is better. The best performance is bold for Pass@1, underlined for TTFT. For
the non-reasoning baselines (Direct Inference, CoT, SFT) TTFT is naturally 0.

Methods K&K‡ Musique‡ GPQA† MMLU† MATH† Avg.

Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓

Qwen2.5-1.5B-Instruct
Direct Inference 0.060 0.000 0.115 0.000 0.051 0.000 0.081 0.000 0.278 0.000 0.117 0.000
CoT 0.097 0.000 0.195 0.000 0.066 0.000 0.167 0.000 0.308 0.000 0.167 0.000
SFT 0.223 0.000 0.290 0.000 0.046 0.000 0.112 0.000 0.263 0.000 0.187 0.000
Think-answer 0.342 0.819 0.675 0.763 0.328 0.929 0.434 0.913 0.323 0.952 0.420 0.875
Interleave 0.357 0.118 0.700 0.210 0.308 0.181 0.429 0.189 0.288 0.163 0.416 0.172
Interleave + IR 0.533 0.132 0.710 0.155 0.489 0.192 0.460 0.211 0.313 0.157 0.501 0.169

Qwen2.5-7B-Instruct
Direct Inference 0.150 0.000 0.295 0.000 0.157 0.000 0.444 0.000 0.475 0.000 0.304 0.000
CoT 0.230 0.000 0.295 0.000 0.192 0.000 0.495 0.000 0.561 0.000 0.355 0.000
SFT 0.343 0.000 0.425 0.000 0.147 0.000 0.465 0.000 0.460 0.000 0.368 0.000
Think-answer 0.843 0.882 0.705 0.917 0.495 0.923 0.758 0.919 0.712 0.876 0.703 0.903
Interleave 0.803 0.133 0.735 0.155 0.505 0.182 0.769 0.199 0.707 0.173 0.704 0.168
Interleave + IR 0.877 0.129 0.750 0.167 0.551 0.166 0.803 0.178 0.732 0.167 0.743 0.161

Table 3: Delayed Intermediate Answers: Comparison between interleaved reasoning (providing
intermediate answers incrementally) versus the delayed version (providing intermediate conclusions
only after the full reasoning trace, similar to “think-answer”). Interleaved reasoning significantly
outperforms the delayed version, which suggests that timely, incremental feedback is crucial.

Method Use IR K&K‡ GPQA† MMLU† MATH† Avg.

Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓

Delayed intermediate
No 0.287 0.762 0.273 0.805 0.409 0.835 0.298 0.821 0.317 0.806
Yes 0.323 0.789 0.298 0.812 0.419 0.833 0.283 0.810 0.331 0.811

Interleave
No 0.357 0.118 0.308 0.181 0.429 0.189 0.288 0.163 0.346 0.163
Yes 0.533 0.132 0.489 0.192 0.460 0.211 0.313 0.157 0.449 0.173

significant improvement in Pass@1 accuracy occurs when intermediate rewards are introduced244

(Interleave + IR), leading to an average relative improvement with of 19.3% (1.5B) and 5.7% (7B)245

with TTFT reductions of 80.7% (1.5B) and 82.2% (7B). Moreover, training on only the datasets with246

intermediate ground truth, our method exhibits strong out-of-domain generalization across diverse247

reasoning tasks (GPQA, MMLU, and MATH), maintaining superior accuracy and reduced latency248

without any training data from that domain. These findings clearly indicate the effectiveness of249

interleaved reasoning in enhancing both model accuracy and utility in practical applications. We250

present a qualitative analysis of interleaved reasoning in Appendix G and examples in Appendix I.251

5 Analysis and Discussions252

Impact of Intermediate Answers. Using the Qwen2.5-1.5B-Instruct model, we investigate how253

intermediate answers influence model performance and training dynamics. First, as shown in254

Figure 3(d), applying intermediate rewards during training leads to a clear increase in the number of255

correct intermediate answers. This indicates that the reward signal effectively encourages the model256

to produce more accurate sub-answers, which helps steer the model along more reliable reasoning257

paths. Second, the timing of intermediate answers is critical. Table 3 compares our standard interleave258

methods with a delayed intermediate variant where intermediate answers are generated only after259

the full reasoning trace and before the final answer, both with and without Intermediate Rewards260

(IR). The results across multiple datasets (K&K, GPQA, MMLU, MATH) clearly show that delaying261

the presentation of intermediate answers substantially lowers Pass@1 accuracy and increases TTFT,262

even when IR is applied. Furthermore, the benefits of IR are diminished in the delayed intermediate263
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Figure 3: Comparative analysis of interleaved reasoning: (a) Performance gap widens on harder
K&K problems as difficulty increases; (b) Training dynamics across different RL algorithms showing
convergence patterns; (c) Response length analysis revealing correct answers are typically shorter; (d)
Effect of intermediate rewards on model behavior showing increased correct intermediate answers.

Table 4: RL algorithm performance: Comparison between different RL algorithms. PPO yields
the best average Pass@1 as training steps increase and is more stable during training. GRPO and
REINFORCE++ are sampling efficient yet less stable.

Methods K&K‡ Musique‡ GPQA† MMLU† MATH† Avg.

Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓

GRPO
Think-answer 0.387 0.878 0.690 0.755 0.333 0.805 0.419 0.795 0.374 0.897 0.441 0.826
Interleave 0.383 0.221 0.650 0.205 0.409 0.151 0.424 0.123 0.313 0.244 0.436 0.189
Interleave + IR 0.473 0.164 0.690 0.132 0.465 0.133 0.455 0.230 0.323 0.198 0.481 0.171

REINFORCE++
Think-answer 0.347 0.859 0.655 0.794 0.389 0.868 0.424 0.912 0.278 0.751 0.419 0.837
Interleave 0.437 0.202 0.645 0.234 0.270 0.113 0.434 0.163 0.354 0.104 0.428 0.163
Interleave + IR 0.493 0.148 0.720 0.186 0.439 0.123 0.429 0.146 0.348 0.204 0.486 0.161

PPO
Think-answer 0.342 0.819 0.675 0.763 0.328 0.929 0.434 0.913 0.323 0.952 0.420 0.875
Interleave 0.357 0.118 0.700 0.210 0.308 0.181 0.429 0.189 0.288 0.163 0.416 0.172
Interleave + IR 0.533 0.132 0.710 0.155 0.489 0.192 0.460 0.211 0.313 0.157 0.501 0.169

setting. This suggests that timely, incremental feedback throughout the reasoning process is key to264

the effectiveness of interleaved reasoning. Additional visualization and discussion in Appendix F.265

Scaling to Harder Problems. The K&K dataset naturally contains multiple levels of problem266

difficulty, with the difficulty increasing as more characters are involved. We train a Qwen2.5-1.5B-267

Instruct model with datasets involving three, four, and five characters and evaluate on the full range268

of difficulties (three through eight; see Appendix D dataset details). Figure 3(a) shows that the gap269

between our method and the think-answer baseline widens as the difficulty increases. During logical270

deduction, the model builds each deduction step upon the previous one; encouraging the model to271

articulate and produce correct intermediate steps keeps the deductive chain intact and makes a correct272

final conclusion more likely. This trend indicates that interleaved reasoning not only offers practical273

speedups on TTFT but also improves overall reasoning, especially for harder multi-hop problems.274

Different RL Algorithms. The results in Table 4 highlight the performance differences among the275

three RL algorithms. PPO consistently achieves higher Pass@1 scores across most tasks, though it276

generally requires more training steps to converge compare to other two, as shown in Figure 3(b).277

Conversely, GRPO and REINFORCE++ demonstrate better sample efficiency, reaching competitive278

performance more rapidly, but they are less stable during training, which aligns with the observation279

from previous work [19]. Overall, PPO emerges as the more stable choice for interleaved reasoning,280

especially when computational resources permit longer training durations, whereas GRPO and REIN-281

FORCE++ provide viable alternatives. Note that across all algorithms, our method (Interleave + IR)282

consistently outperforms the “think+answer” baseline, providing further evidence of its effectiveness.283

Different Reward Strategies. We investigate the effectiveness of different intermediate reward284

strategies in Table 5. Results demonstrate that directly applying intermediate rewards (Direct IR)285
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Table 5: Reward strategy analysis: Directly applying intermediate reward yields suboptimal
performance. Time-discounted conditional intermediate rewards improve interleaved reasoning by
incentivizing early correct steps, outperforming direct and other conditional reward methods.

Methods K&K‡ Musique‡ GPQA† MMLU† MATH† Avg.

Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓

No IR 0.357 0.118 0.700 0.210 0.308 0.181 0.429 0.189 0.288 0.163 0.416 0.172
Direct IR 0.313 0.109 0.640 0.194 0.303 0.166 0.409 0.177 0.293 0.150 0.392 0.159
Cond. IR (Partial) 0.498 0.168 0.690 0.190 0.465 0.171 0.439 0.170 0.298 0.161 0.478 0.172
Cond. IR (All) 0.513 0.102 0.695 0.185 0.475 0.162 0.455 0.208 0.308 0.152 0.489 0.162
Cond. IR (Time) 0.533 0.132 0.710 0.155 0.489 0.192 0.460 0.211 0.313 0.157 0.501 0.169

yields lower accuracy compared to not applying intermediate reward at all (No IR). This is likely286

due to challenges in credit assignment inherent to reinforcement learning, where ambiguous reward287

signals complicate the attribution of specific actions [24]. Conditional reward strategies (Section 3.4.3)288

significantly mitigate this issue by introducing intermediate rewards only when training is stable.289

The All-or-None (All) method slightly outperforms Partial Credit (Partial), suggesting that enforcing290

strict correctness criteria across intermediate steps better supports coherent reasoning paths than291

rewarding individual correct steps independently. The Time-Discounted (Time) method achieves the292

best performance. This result indicates that providing higher incentives for early correct reasoning293

steps effectively guides the model toward accurate reasoning paths. More details about the reward294

strategies are in Appendix C.295

Reasoning Pattern Analysis We analyze the response length of interleaved reasoning and present296

the results in Figure 3(c). We found that 7B and 1.5B models differ significantly in how their response297

length changes during training. While both model sizes achieve better performance (Table 2), the298

response length of the 7B model grows, whereas that of the 1.5B model becomes shorter. This299

indicates that response length is not a reliable indicator of performance, aligning with recent findings300

regarding the relationship between length and performance in reasoning LLMs [52, 47]. However,301

for both the 1.5B and 7B models, correct answers are generally shorter than incorrect answers.302

Consequently, the correct answers contain fewer thought tokens than the incorrect ones, suggesting303

that the model finds the correct solution paths more efficiently. Additional analysis in Appendix H.304

Comparison with Process Reward Models Our approach differs from Process Reward Models305

(PRMs) in several key aspects. While PRMs typically provide token-level feedback during generation,306

our method evaluates the entire trajectory after completion and assigns rewards based on identifiable307

intermediate answers. This design choice helps avoid common PRM challenges such as reward308

hacking and complex training pipelines while still providing meaningful feedback on intermediate309

reasoning steps. Our results suggest that a simple rule-based reward can achieve similar benefits to310

more complex PRM implementations, in terms of guiding the model towards correct solutions.311

6 Conclusion312

We introduce interleaved reasoning, a novel reinforcement learning (RL) paradigm enabling reasoning313

LLMs to alternate thinking with generating structural intermediate answers. Our comprehensive314

experiments across five diverse datasets and three RL algorithms demonstrate significant practical315

benefits: an over 80% reduction in time-to-first-token (TTFT) on average and up to a 19.3% improve-316

ment in Pass@1 accuracy, without needing any external tools. We found that models are inherently317

able to perform interleaved reasoning, and we can further enhance this capability via RL. We propose318

a simple, rule-based conditional reward to incentivize correct intermediate steps and enhance the319

model’s reasoning ability. The interleaved reasoning models, trained solely on logical reasoning320

and QA, generalize strongly to complex, unseen tasks including MATH, GPQA, and MMLU. Our321

analysis reveals several practical insights into reward modeling, RL training, and LLM reasoning322

dynamics. Overall, interleaved reasoning offers a compelling path to build LLMs that are more323

accurate and interactive.324
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A Think-answer Template543

A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The
assistant first thinks about the reasoning process in the mind and then provides the user with the answer.
The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags,
respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: prompt.
Assistant:

Table 6: Template for think-answer reasoning from Guo et al. [13]. prompt will be replaced with the
specific reasoning question during training.

B Additional Training Details544

All experiments were conducted using VERL [39], an efficient reinforcement learning framework for545

language models. We performed all experiments on 8 NVIDIA H100 GPUs with 80GB memory. We546

also used a consistent set of hyperparameters to ensure fair comparison between methods. We evluate547

and save every 100 steps during training, and continue training from the last saved checkpoint if the548

training is interrupted (e.g., OOM). The core parameters are listed in Table 7.

Table 7: Training hyperparameters used for our experiments.

Parameter Value

Actor learning rate 1× 10−6

Critic learning rate 1× 10−6

Train batch size 16
Validation batch size 2048
PPO mini batch size 32
PPO micro batch size 16
Critic micro batch size 8
KL coefficient 0.001
KL loss type low variance KL
Max prompt length 3096 tokens
Max response length 2548 tokens
Sampling temperature 0.8
Number of samples per prompt 8
Stable training threshold (ϵ) 0.05
Critic warmup steps 0
Evaluation frequency 200 steps
Tensor model parallel size 2

549

C Reward Calculation550

C.1 Individual Reward551

Given the generated sequence y and the ground truth answer g = {g1, g2, ..., gN}, which contains all552

intermediate and the final answer, we perform the reward calculation based on three main components:553

1. Format Reward: This basic component evaluates the structural aspects of the generated554

response. It checks whether the model properly alternates between thinking and answering555

phases using the designated tags (<think></think> and <answer></answer>). The556

reward is calculated as:557

rformat(y) = λf ·
{
1.0 if format is correct
−1.0 if format is incorrect

(6)

where “correct” format means all tags are properly opened and closed, with proper alternation558

between thinking and answering. This reward is applied to both think-answer and interleaved559

reasoning.560
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2. Final Accuracy Reward: This component evaluates whether the final answer provided by561

the model matches the ground truth. We apply this reward only when the format is correct562

and use exact match for evaluation:563

rfinal(x, y) = λa ·


2.0 if y(N)

answer = gN

−1.5 if y(N)
answer ̸= gN

−2.0 if answer is not parseable
(7)

where gN is the final ground truth answer. For structured outputs (like numerical answers564

or multi-choice questions), we normalize both the model’s answer and ground truth and565

use exact match for evaluation. This reward is applied to both think-answer and interleaved566

reasoning.567

3. Intermediate Accuracy Reward: This component provides rewards for correct intermediate568

answers, calculated using one of the three strategies discussed in Section 3.4.3. The569

intermediate reward is applied conditionally, as detailed in Algorithm 1, and is only used for570

interleaved reasoning.571

C.2 Conditional Intermediate Reward572

We provide detailed descriptions on three intermediate reward strategies in this section. The base573

intermediate reward value Rbase is set to be 0.5 in this work. We present the full algorithm for interme-574

diate reward calculation in Algorithm 1. Our evaluation in Section 5 shows that the Time-Discounted575

strategy performs best overall, balancing the need for early correct answers with maintaining coherent576

reasoning during the reasoning process.577

1. All-or-None: This strategy requires all intermediate answers to be correct in sequence to578

receive any reward. The reward calculation is:579

rall-or-none
intermediate(x, y) =

{
Rbase if Correct

(
y
(k)
answer

)
, ∀k ∈ [1, N − 1],

0 otherwise
(8)

This strategy is the most demandingf but ensures the model maintains a consistent reasoning580

path throughout.581

2. Partial Credit: This strategy rewards each correct intermediate answer independently,582

providing partial credit regardless of other steps:583

rpartial
intermediate(x, y) =

Rbase

N − 1

N−1∑
k=1

Correct(y(k)answer) (9)

This approach is more forgiving, allowing the model to recover from early mistakes while584

still incentivizing correct intermediate steps.585

3. Time-Discounted: This strategy awards the full base reward Rbase when every intermediate586

answer is correct. If any intermediate answers are missing or wrong, the reward is shared587

among the correct ones with higher weight on earlier appears correct answers. Formally,588

rtime-disc
intermediate(x, y) =


Rbase, if Scorrect = g,

Rbase
1

|g|
∑

gj∈Scorrect

1

kj
, otherwise,

(10)

where Scorrect ⊆ g is the set of ground-truth intermediate answers that the model outputs589

at least once, kj is the index of the first step in which the model’s answer matches gj , and590

|g| is the total number of ground-truth intermediate answers. The harmonic weight 1/kj591

gives greater credit to earlier correct answers while still granting some credit to later ones.592

Note that the time-discounted partial reward calculation will not be used if all intermediate593

answers are correct. Therefore the model receives a larger reward when all intermediate594

answers are correct, and the reward quickly drops even if one intermediate answer is595

incorrect. This design choice was intentionally made to strongly incentivize the model to596

generate all correct intermediate steps, rather than being satisfied with partial correctness.597

16



Algorithm 1 Intermediate Reward Calculation

1: Input: Generated sequence y, ground truth intermediate answers g = {g1, g2, ..., gN}, current
training batch B, reward strategy S

2: Parameters: Base reward value Rbase, stable training threshold ϵ
3: Output: Intermediate reward value
4: Parse y to extract all intermediate answers yanswer = {y(1)answer, . . . , y

(N)
answer}, where y

(N)
answer is the

final answer
5: is_final_correct← Correct(y

(N)
answer)

6: is_format_valid← FormatCheck(y)
7: is_progressing← (Acc(B) > Acc(B − 1)− ϵ)
8: if is_final_correct AND is_format_valid AND is_progressing then
9: reward_sum← 0

10: if S = “All-or-None” then
11: all_correct← TRUE
12: for k = 1 to N − 1 do
13: if NOT Correct(y

(k)
answer) then

14: all_correct← FALSE
15: break
16: end if
17: end for
18: if all_correct then
19: reward_sum← Rbase
20: end if
21: else if S = “Partial Credit” then
22: for k = 1 to N − 1 do
23: if Correct(y(k)answer) then
24: reward_sum← reward_sum +Rbase/N
25: end if
26: end for
27: else if S = “Time-Discounted” then
28: correct_step← {} {Track all correct steps}
29: for k = 1 to N − 1 do
30: for each required answer gk in g do
31: if gj not in correct_step AND Correct(y

(k)
answer) then

32: correct_step[gj ]← i
33: end if
34: end for
35: end for
36: if |correct_step| = |g| then
37: reward_sum← Rbase
38: else
39: sum_weights←

∑
step∈correct_step 1/step

40: reward_sum← (sum_weights/|g|) ·Rbase
41: end if
42: end if
43: return reward_sum
44: else
45: return 0
46: end if
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D Dataset Details598

D.1 In-Domain Datasets599

Knights and Knaves (K&K). K&K is a logical reasoning dataset that requires multi-step reasoning600

to identify the correct characters [51]. The dataset contains problems with varying difficulty levels601

based on the number of characters involved. In our experiments, we use problems with 3, 4, and 5602

characters for both training and evaluation. Each difficulty level consists of 900 training examples603

and 100 test examples. To evaluate generalization across difficulty levels, we also test our models on604

problems with 6, 7, and 8 characters, which were not seen during training (Figure 3(a)). Our results605

indicate that interleaved reasoning is particularly effective for more challenging problems.606

Musique. Musique is a multi-hop question answering dataset that requires retrieving and combining607

information from multiple sources [45]. Problems in Musique are categorized by the number of608

reasoning hops needed (i.e., 2-hop, 3-hop, 4-hop). For our experiments, we use 3-hop and 4-hop609

questions, with 900 training examples and 100 test examples for each hop category. For efficient610

training and inference, we select only up to 1,000 tokens in total for the context, which includes all611

the supporting documents and a portion of distraction documents. Both K&K and Musique naturally612

contain intermediate reasoning steps and ground truth, making them ideal for training and evaluating613

interleaved reasoning approaches.614

D.2 Out-of-Domain Datasets615

GPQA. We use the GPQA-diamond version [35], which consists of 198 data points. GPQA is616

crafted by domain experts in biology, physics, and chemistry, designed to assess LLMs advanced617

reasoning and knowledge.618

MMLU. We use MMLU-redux-2.0 [12], a cleaned and reannotated version of MMLU [14]. To619

match with GPQA, we select a subset of 198 data points from domains requiring formal reasoning:620

college computer science, college mathematics, abstract algebra, formal logic, college physics, and621

machine learning.622

MATH. We also use 198 data points from the level 5 subset of MATH [15], which are the most623

challenging problems within the dataset. These problems require complex mathematical reasoning624

and often involve multiple steps of computation and logical deduction.625

E Evaluation Metrics626

E.1 Pass@1 Accuracy627

Pass@1 accuracy measures the proportion of problems that the model solves correctly on its first628

attempt. We follow the evaluation methodology established in prior work [50, 13, 19], using629

Exact Match (EM) to determine correctness. For each test instance, we compare the model’s final630

answer against the ground truth answer after normalizing both (removing punctuation, converting to631

lowercase, and standardizing numerical formats). A prediction is considered correct only if it exactly632

matches the normalized ground truth.633

E.2 Time-to-First-Token (TTFT)634

TTFT measures how quickly a model produces its first useful output to the user. While traditional635

approaches measure TTFT in absolute time (milliseconds), we normalize TTFT as the ratio of the636

first answer token’s position to the total response length to ensure fair comparison across different637

model configurations and reasoning strategies:638

TTFT =
Position of first answer token

Total response length
(11)
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This normalized metric ranges from 0 to 1, where lower values indicate faster initial responses. This639

metric is particularly important for interactive applications where immediate response could vastly640

improve user experience.641

E.3 Substring Exact Match (SubEM) and Reward Hacking642

We initially experimented with SubEM as an additional evaluation metric for intermediate answers.643

SubEM is more lenient than EM – it measures whether the ground truth answer appears as a644

substring in the model’s response. We found that models trained with SubEM quickly learned to645

generate excessively long intermediate answers containing numerous potential responses, significantly646

increasing the probability of including the correct answer somewhere in the text. For example, instead647

of generating a concise intermediate step "The value is 42," models would produce verbose outputs648

like "Let me consider different possibilities: the value is 41, the value is 42, the value is 43 ..." This649

gaming behavior provided no pedagogical value and undermined the training.650

This observation aligns with prior findings in reinforcement learning, where models exploit evaluation651

metrics in unintended ways [52], which is as known as reward hacking. Therefore, we use EM as our652

main evaluation metric.653

F Intermediate Reward
In addition to Figure 3(d), we present Figure 4
to visualize how frequently intermediate rewards
are applied during training. Notably, interme-
diate rewards are primarily given in the early
stages of training. As training progresses and the
batch accuracy threshold rises, the application
rate of intermediate rewards decreases. This im-
plies that only a modest amount of intermediate
reward is needed to effectively incentivize the
model to produce better intermediate steps and
ultimately improve final accuracy. The condi-
tional reward strategy thus works as intended: a
frequent, always-on intermediate reward is not
necessary – a targeted, conditional approach is
sufficient to guide the model.

Figure 4: Visualization of intermediate reward
application rate during training. The rate de-
creases as training progresses due to increasing
batch accuracy thresholds.

654

G Qualitative Analysis of Interleaved Reasoning655

To complement our quantitative findings on significant time-to-first-token (TTFT) reduction, we656

conduct a qualitative evaluation using an LLM-based judge (gpt-4o-mini-2024-07-18) to assess657

the value of interleave reasoning. Specifically, we compared two versions of the interleaved method658

(with and without intermediate rewards) against the standard think-answer method. For each problem659

that are solved correctly by all three methods (126 problems in total, 38 in-domain, 88 out-of-domain),660

we presented the problem statement and the model responses to the LLM evaluator, asking it to rate661

each answer on three criteria: (1) clarity and usefulness of intermediate steps, (2) timeliness and662

informativeness of feedback, and (3) overall user experience. The LLM was instructed to mimic a663

human evaluator and assign scores for each criterion and to select a winner between the two methods664

for each example. The evaluation prompt is shown in Appendix G.1.665

We calculate the win rates for each method, as shown in Table 8. Win rate is calculated as the666

percentage of pairwise wins (excluding ties). The results show that the base interleaved method667

(without intermediate rewards) had a lower win rate compared to think-answer, indicating that668

not all intermediate answers were useful by default. However, when intermediate rewards were669

used to encourage the model to produce more meaningful intermediate answers, the interleaved670

method outperformed think-answer in terms of both win rate and qualitative scores, highlighting the671

importance of intermediate rewards in enhancing the user experience.672
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Table 8: LLM-based qualitative evaluation: average win rates and average scores by domain.

Think-Ans vs. Interleave Think-Ans vs. Inter+IR

Dataset Group Think-Ans Win (%) Inter Win (%) Think-Ans Win (%) Interleave+IR Win (%)

In-domain 36.7 63.4 43.4 56.7
Out-of-domain 70.1 29.9 52.1 47.9
Overall 53.4 46.7 48.6 51.4

G.1 LLM-Judge Evaluation Prompt673

The following prompt was used to instruct the LLM judge for qualitative evaluation:674

Evaluation Prompt

You are an expert evaluator of large language model reasoning. You are given a multi-hop
problem and two model-generated answers. The first answer uses interleaved reasoning: it
alternates between thinking and answering, providing intermediate answers as soon as they
are derived. The second answer uses the traditional think-answer reasoning: it completes all
reasoning before providing the final answer. For each answer, your task is to rate it on a scale
from 1 (very poor) to 10 (excellent) for each of the following criteria:

• Clarity and usefulness of intermediate reasoning steps
• Timeliness and informativeness of feedback (does the response help the user under-

stand the reasoning?)
• Overall user experience

Instructions:
• Assign a score (1-10) for each criterion for both answers.
• After scoring, briefly explain your reasoning for the scores.
• Respond in JSON as:

{
"interleave": {

"clarity_usefulness": <int>,
"timeliness_informativeness": <int>,
"overall_experience": <int>

},
"think_answer": {

"clarity_usefulness": <int>,
"timeliness_informativeness": <int>,
"overall_experience": <int>

},
"explanation": "<your reasoning for these scores>"

}

Problem:
<problem_text>

Interleaved Reasoning Answer:
<interleave_response>

Think-Answer Reasoning Answer:
<think_answer_response>

675
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Table 9: Average response length for each reasoning method.

Dataset / Setting Think-Answer Interleave Interleave+IR

GPQA 414.55 314.95 433.22
K&K 710.58 316.05 401.08
MATH 491.24 297.49 500.32
MMLU 277.60 191.07 329.35
Musique 110.89 113.21 165.10

Overall average 400.97 252.79 368.73

Correct answers 198.11 207.56 308.31
Incorrect answers 445.75 259.09 380.27

H Additional Response Length Analysis676

Table 9 shows the average number of tokens produced by each method on every dataset, as well as677

the overall averages and the split between correct and incorrect responses. Interleaved reasoning678

produces the longer traces after applying intermediate rewards (Interleave+IR), though the traditional679

think-answer method generates longest answers in general. Pure interleaving (Interleave) is the most680

concise across the board. We also observe that shorter reasoning does not hurt accuracy: although681

interleave reasoning produces the fewest tokens, it matches or exceeds Think-answer on every dataset682

(see main results in Table 2). Additionally, for every training recipe and model size we evaluated,683

correct solutions are consistently shorter than incorrect ones. This suggests that once the model has684

found a reliable path it stops generating unnecessary thoughts, whereas failure cases often involve685

extra turns spent exploring.686

I Case Studies of Interleaved Reasoning687

We present case studies to gain a deeper understanding of interleaved reasoning. We focus on688

Qwen2.5-1.5B-Instruct that was trained using PPO and the Time-Discounted reward strategy. We689

present the examples from both in-domain (K&K, Musique) and out-of-domain (MATH, MMLU,690

GPQA) datasets. The model successfully generalizes to unseen, complex problems, demonstrating its691

ability to break down problems into logical steps, provide intermediate conclusions, and arrive at692

final answers. Green for correct answers and red for incorrect answers.693

MATH

The model successfully decomposes the problem into smaller steps and correctly computes
the final answer.

Question:
Expand the product (x− 2)2(x+ 2)2. What is the product of the nonzero coefficients of the
resulting expression, including the constant term?
Ground Truth: -128
Interleaved Reasoning:
<think>First, let’s expand the product step by step. We start with the expression (x−2)2(x+
2)2. We can simplify this by recognizing that (x− 2)(x+ 2) = x2 − 4. So, the expression
becomes (x2 − 4)2.</think>
<answer>(x2 − 4)2</answer>
<think>Next, we need to expand (x2 − 4)2. This is a square of a binomial, which can be
expanded using the formula (a− b)2 = a2 − 2ab+ b2.</think>
<answer>(x2 − 4)2 = x4 − 8x2 + 16</answer>
<think>The expanded form of the expression is x4 − 8x2 + 16. The nonzero coefficients
are 1, -8, and 16. We need to find the product of these coefficients.</think>
<answer>The product of the coefficients 1, -8, and 16 is 1×−8× 16 = −128.</answer>
<think>The final answer is:</think>
<answer>-128</answer>

694
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MATH

A failed case: the model follows the interleaved structure but makes a calculation error in step
4, resulting in an incorrect final answer. However, with interleaved reasoning, the incorrect
intermediate answer can potentially be spotted early by users.

Question:
Let f(x) be the polynomial

f(x) = 3x4 + 5x2 − 9x− 2.

If g(x) is equal to the polynomial f(x− 1), what is the sum of the coefficients of g?
Ground Truth: -2
Interleaved Reasoning:
<think> First, we need to find the polynomial g(x) by substituting x−1 into f(x). </think>
<answer> f(x) = 3x4 + 5x2 − 9x− 2 </answer>
<think> Second, we substitute x− 1 into f(x) to get g(x). </think>
<answer> g(x) = 3(x− 1)4 + 5(x− 1)2 − 9(x− 1)− 2 </answer>
<think> Third, we expand g(x) to find the polynomial in standard form. </think>
<answer> g(x) = 3(x4−4x3+6x2−4x+1)+5(x2−2x+1)−9(x−1)−2 </answer>
<think> Fourth, we simplify g(x) to find the coefficients. </think>
<answer> g(x) = 3x4− 12x3+24x2− 24x+3+5x2− 10x+5− 9x+9− 2 </answer>
<think> Fifth, we combine like terms to get the polynomial in standard form. </think>
<answer> g(x) = 3x4 − 12x3 + 29x2 − 43x+ 15 </answer>
<think> Sixth, we find the sum of the coefficients of g(x). </think>
<answer> 3− 12 + 29− 43 + 15 = −4 </answer>
<think> Seventh, the final answer is:</think>
<answer> -4 </answer>

695

Knights and Knaves

The model successfully breaks down a multi-hop logic puzzle, providing correct intermediate
conclusions at each step, and arrives at the correct final answer.

Question:
A very special island is inhabited only by knights and knaves. Knights always tell the truth,
and knaves always lie. You meet 5 inhabitants: Victoria, Mia, Sebastian, Ethan, and Olivia.
"Mia is a knave and Ethan is a knave" - Victoria.
Mia said that If Mia is a knight then Sebastian is a knave.
Sebastian expressed that Victoria is a knave if and only if Ethan is a knave.
Ethan remarked, "Sebastian is a knight or Victoria is a knave".
"Sebastian is a knight and Sebastian is a knave" - Olivia.
So who is a knight and who is a knave?
Ground Truth: (1) Victoria is a knave (2) Mia is a knave (3) Sebastian is a knight (4) Ethan
is a knight (5) Olivia is a knave
Interleaved Reasoning:
<think> First, consider Victoria’s statement: ’Mia is a knave and Ethan is a knave’. This
must be a lie because an implication can only be true if both conditions are false. </think>
<answer> Victoria is a knave </answer>
<think> Second, consider Sebastian’s statement: ’Victoria is a knave if and only if Ethan is
a knave’. Since Victoria is a knave (from our previous deductions) and Sebastian is a knight
(since he always lies), Sebastian must be a knight. </think>
<answer> Sebastian is a knight </answer>
<think> Third, consider Mia’s statement: ’If Mia is a knight then Sebastian is a knave’.
Since Mia is a knight (since she always lies) and Sebastian is a knight (since he always lies),
Mia must be a knave. </think>
<answer> Mia is a knave </answer>

696
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<think> Fourth, consider Ethan’s statement: ’Sebastian is a knight or Victoria is a knave’.
Since Sebastian is a knight (since he always lies) and Victoria is a knave (since she always
lies), Ethan must be a knight. </think>
<answer> Ethan is a knight </answer>
<think> Fifth, consider Olivia’s statement: ’Sebastian is a knight and Sebastian is a knave’.
This must be a lie because an implication can only be true if both conditions are simultaneously
true, which is impossible. </think>
<answer> Olivia is a knave </answer>
<think> So, the final answer is:</think>
<answer>(1) Victoria is a knave (2) Mia is a knave (3) Sebastian is a knight (4) Ethan is a
knight (5) Olivia is a knave</answer>

697

Musique

The model sequentially solves each sub-question, yielding the correct final answer. Occasion-
ally, the model provides intermediate answers that are duplicates of the final answer, which is
not ideal.

Question:
Where does Plymouth rank in population among the cities of the country having a gallery
displaying the painting named The Woman Taken in the main subject of milkman joke?
Ground Truth: 30th
Interleaved Reasoning:
<think> First, identify the country where Plymouth is located. </think>
<answer> United Kingdom </answer>
<think> Second, identify the painting named The Woman Taken in Adultery. </think>
<answer> The Woman Taken in Adultery </answer>
<think> Third, identify the gallery displaying this painting. </think>
<answer> National Gallery </answer>
<think> Fourth, determine Plymouth’s ranking in population among the cities of the United
Kingdom. </think>
<answer> 30th </answer>
<think> Fifth, state the final answer. </think>
<answer> 30th </answer>

698

MMLU

The model translates logic formulas stepwise, mapping each part to natural language and
selecting the correct answer.

Question:
Use the following key to translate the given formula of PL to natural, English sentences.
A: Marina reads a Percy Jackson book.
B: Izzy plays Minecraft.
C: Emily stops working.
D: Russell makes dinner.
E: Ashleigh stops by.
∼ (A ⊃ B) · (B ⊃∼ E)
A) It’s not the case that Marina’s reading a Percy Jackson book entails that Izzy plays
Minecraft, but Izzy’s playing Minecraft does entail that Ashleigh doesn’t stop by.
B) If Marina doesn’t read a Percy Jackson book, then Izzy plays Minecraft, which entails that
Ashleigh doesn’t stop by.
C) Marina’s reading a Percy Jackson book does not entail that Izzy plays Minecraft, but Izzy
plays Minecraft provided that Ashleigh doesn’t stop by.
D) It’s not true that Marina reads a Percy Jackson book only when Izzy plays Minecraft, but
Izzy plays Minecraft only when Ashleigh stops by.
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Ground Truth: A
Interleaved Reasoning:
<think>First, identify the logical structure of the given formula. The formula is a conjunc-
tion of two main parts: ∼ (A ⊃ B) and (B ⊃∼ E). The symbol ⊃ represents material
implication ("entails", "if...then...", "only when"), ∼ represents negation ("not", "it’s not the
case that"), and · represents conjunction ("and", "but").</think>
<answer>The formula is ∼ (A ⊃ B) · (B ⊃∼ E).</answer>
<think>Second, translate the first part of the conjunction: ∼ (A ⊃ B). A ⊃ B translates to
"Marina reads a Percy Jackson book entails Izzy plays Minecraft" or "If Marina reads a Percy
Jackson book, then Izzy plays Minecraft." The negation ∼ (A ⊃ B) means "It is not the case
that (Marina reads a Percy Jackson book entails Izzy plays Minecraft)."</think>
<answer>∼ (A ⊃ B) translates to "It’s not the case that Marina’s reading a Percy Jackson
book entails that Izzy plays Minecraft."</answer>
<think>Third, translate the second part of the conjunction: (B ⊃∼ E). B translates to "Izzy
plays Minecraft." ∼ E translates to "Ashleigh doesn’t stop by." So, B ⊃∼ E translates to
"Izzy plays Minecraft entails that Ashleigh doesn’t stop by" or "If Izzy plays Minecraft, then
Ashleigh doesn’t stop by."</think>
<answer>(B ⊃∼ E) translates to "Izzy’s playing Minecraft does entail that Ashleigh doesn’t
stop by."</answer>
<think>Fourth, combine the translations of the two parts with a conjunction (e.g., "but"
or "and"). The overall formula ∼ (A ⊃ B) · (B ⊃∼ E) combines these two state-
ments.</think>
<answer>Combining the parts: "It’s not the case that Marina’s reading a Percy Jackson
book entails that Izzy plays Minecraft, but Izzy’s playing Minecraft does entail that Ashleigh
doesn’t stop by."</answer>
<think>Fifth, compare this translation with the given options to select the correct one. Op-
tion A matches our translation. Option B incorrectly translates ∼ (A ⊃ B) as "If Marina
doesn’t read a Percy Jackson book, then Izzy plays Minecraft". Option C incorrectly translates
(B ⊃∼ E) as "Izzy plays Minecraft provided that Ashleigh doesn’t stop by", which would
be (∼ E ⊃ B). Option D incorrectly translates (B ⊃∼ E) as "Izzy plays Minecraft only
when Ashleigh stops by", which would be (B ⊃ E). Therefore, option A is the correct
translation.</think>
<answer>The final answer is: A</answer>

700

MMLU

The model successfully applies interleaved reasoning to derive and combine gradients step by
step, leading to the correct answer.

Question:
Suppose we have the following objective function: argminw

1
2∥Xw− y∥22 + 1

2γ∥w∥
2
2. What

is the gradient of 1
2∥Xw − y∥22 + 1

2λ∥w∥
2
2 with respect to w?

A)∇wf(w) = (XTX + λI)w −XT y + λw
B) ∇wf(w) = XTXw −XT y + λ
C) ∇wf(w) = XTXw −XT y + λw
D) ∇wf(w) = XTXw −XT y + (λ+ 1)w
Ground Truth: A
Interleaved Reasoning:
<think>First, let’s identify the objective function and the terms involved. The objective
function is given by:</think>
<answer>the objective function is 1

2∥Xw − y∥22 + 1
2γ∥w∥

2
2</answer>

<think>Now, let’s break down the terms:</think>
<answer>the terms are 1

2∥Xw − y∥22 and 1
2γ∥w∥

2
2</answer>

<think>Next, we need to find the gradient of the first term 1
2∥Xw − y∥22 with respect to w.

Recall that the gradient of ∥z∥22 with respect to z is 2z. So, the gradient of 1
2∥Xw − y∥22

is:</think>
<answer>the gradient of 1

2∥Xw − y∥22 is XT (Xw − y)</answer>
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<think>Now, let’s find the gradient of the second term 1
2γ∥w∥

2
2 with respect to w. The

gradient of ∥w∥22 with respect to w is 2w. So, the gradient of 1
2γ∥w∥

2
2 is:</think>

<answer>the gradient of 1
2γ∥w∥

2
2 is γw</answer>

<think>Now, we can combine these gradients to find the gradient of the entire objective
function:</think>
<answer>the gradient of the entire objective function is XT (Xw − y) + γw</answer>
<think>Now, let’s compare this with the given options:</think>
<answer>The correct option is A)∇wf(w) = (XTX + λI)w −XT y + λw</answer>

702

GPQA

The model answers the problem step by step, ruling out distractors and resulting in the correct
final answer.

Question:
In the lab, a chemist discovers an unnamed bottle with a white solid inside. He gathers the
following spectral information in order to identify the liquid. Make a reasonable structural
suggestion for the unidentified drug using the information provided.
Mass: molecular ion peak at m/z = 156 (100%)
a peak at m/z = 158 (32%)
IR : broad peak from 3500-2700 cm−1, strong sharp peak at 1720 cm−1

1H NMR: 11.0 ppm (s, 1H), 8.02 ppm (d, 2H), 7.72 (d, 2H)
A) Phenyl chloroformate
B) 2-chlorobenzoic acid
C) 3-Chloro-2-hydroxybenzaldehyde
D) 4-chlorobenzoic acid
Ground Truth: D
Interleaved Reasoning:
<think>First, analyze the Mass Spectrum data. A molecular ion peak (M+) at m/z = 156 and
an M+2 peak at m/z = 158 with an intensity ratio of approximately 100:32 (or 3:1) is char-
acteristic of a compound containing one chlorine atom (35Cl/37Cl isotopic abundance). The
molecular weight of C7H5ClO2 is approximately 156.5 g/mol (using 35Cl), which matches
the M+ peak. All given options have this molecular formula.</think>
<answer>The mass spectrum indicates a molecular weight of approximately 156 and
the presence of one chlorine atom. All options (Phenyl chloroformate, 2-chlorobenzoic
acid, 3-Chloro-2-hydroxybenzaldehyde, 4-chlorobenzoic acid) have the molecular formula
C7H5ClO2.</answer>
<think>Second, analyze the IR Spectrum. A very broad peak spanning 3500-2700 cm−1

is highly characteristic of the O-H stretch of a carboxylic acid, which is broadened due to
hydrogen bonding. The strong, sharp peak at 1720 cm−1 is characteristic of a C=O (carbonyl)
stretch, consistent with a carboxylic acid (typically 1700-1725 cm−1). This strongly suggests
the presence of a -COOH group.</think>
<answer>The IR spectrum strongly suggests the presence of a carboxylic acid group (-COOH)
due to the broad O-H stretch (3500-2700 cm−1) and the C=O stretch (1720 cm−1).</answer>
<think>Third, analyze the 1H NMR Spectrum. The signal at 11.0 ppm (singlet, 1H) is highly
deshielded and is characteristic of a carboxylic acid proton (-COOH). The signals at 8.02
ppm (doublet, 2H) and 7.72 ppm (doublet, 2H) are in the aromatic region. A pattern of two
doublets, each integrating to 2 protons, is indicative of a para-substituted benzene ring. The
two protons of one type are chemically equivalent, and the two protons of the other type are
also chemically equivalent, and they are ortho to each other respectively.</think>
<answer>The 1H NMR spectrum shows a carboxylic acid proton at 11.0 ppm and a
para-substituted benzene ring pattern (two doublets, each 2H, at 8.02 ppm and 7.72
ppm).</answer>
<think>Fourth, evaluate the options based on the combined spectral data: A) Phenyl chloro-
formate: Contains an ester-like C=O and an acid chloride C-Cl. IR for C=O in R-O-CO-Cl is
typically higher (around 1760-1780 cm−1). It lacks the carboxylic acid O-H and the acidic
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proton at 11.0 ppm. B) 2-chlorobenzoic acid: Is a carboxylic acid, consistent with IR and
the 11.0 ppm NMR signal. However, an ortho-substituted benzene ring (1,2-disubstituted)
would typically give a more complex pattern for the 4 aromatic protons (e.g., 4 distinct signals
or complex multiplets), not two doublets of 2H each. C) 3-Chloro-2-hydroxybenzaldehyde:
Contains an aldehyde and a phenolic -OH. An aldehyde C=O IR is plausible ( 1720-1740
cm−1), but the broad O-H from 3500-2700 cm−1 points to a carboxylic acid, not typically a
phenol (phenols are usually sharper, 3200-3600 cm−1). The aldehyde proton (-CHO) signal
is typically around 9-10 ppm. The aromatic region for a 1,2,3-trisubstituted benzene would
show 3 distinct aromatic protons. D) 4-chlorobenzoic acid: Is a carboxylic acid. This fits
the IR data (broad O-H, C=O at 1720 cm−1) and the NMR signal at 11.0 ppm (-COOH).
It is a para-substituted benzene ring (chlorine at position 4, carboxylic acid at position 1).
This substitution pattern gives rise to two sets of equivalent aromatic protons (H-2/H-6 and
H-3/H-5), which would appear as two doublets, each integrating to 2H. This perfectly matches
the NMR signals at 8.02 ppm and 7.72 ppm.</think>
<answer>Comparing the spectral interpretations with the options: A) Phenyl chloroformate is
inconsistent with IR (no broad O-H) and NMR (no signal at 11 ppm). B) 2-chlorobenzoic acid
is inconsistent with the aromatic NMR pattern (would not be two doublets of 2H each). C)
3-Chloro-2-hydroxybenzaldehyde is inconsistent with IR (carboxylic acid O-H unlikely) and
NMR (aldehyde H at 9-10 ppm, different aromatic pattern). D) 4-chlorobenzoic acid is fully
consistent with all spectral data: MS indicates C7H5ClO2, IR indicates a carboxylic acid, and
1H NMR indicates a carboxylic acid proton and a para-substituted benzene ring.</answer>
<think>The final answer is therefore 4-chlorobenzoic acid.</think>
<answer>D) 4-chlorobenzoic acid</answer>
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GPQA

A failed case: the model occasionally fails to follow the interleaved structure. The model also
sometimes generates shorter thinking and longer answers than necessary.

Question:
Reaction of solid A with 8 equivalents of gas B forms bright red product C.
When C reacts with 2 equivalents of gas D, it produces the extremely hazardous product E.
C reacts with water to reform A plus two different acids F and G. F is a strong acid while G is
a weak acid.
D reacts with B in a 1:1 ratio to form H, which is used as a solvent. What is the molecular
symmetry group of E?
A) C2v

B) D4h

C) D∞h

D) C2

Ground Truth: A
Interleaved Reasoning:
<think>First, let’s identify the products and their properties:</think>
<answer>The products are C, E, F, and G. C is a bright red product, E is an extremely
hazardous product, F is a strong acid, and G is a weak acid. D reacts with B in a 1:1 ratio to
form H, which is used as a solvent.</answer>
<think>Next, let’s analyze the reaction of C with water to reform A plus two different acids
F and G:</think>
<answer>The reaction of C with water to reform A plus two different acids F and G is a
typical acid-base reaction. Since C is a bright red product, it is likely a metal oxide or a metal
hydroxide. When it reacts with water, it will form a metal hydroxide and a metal ion, which
will then react with the acid to form the two different acids F and G.</answer>
<think>Now, let’s consider the reaction of E with D to produce H:</think>
<answer>The reaction of E with D to produce H is a typical acid-base reaction. Since E is an
extremely hazardous product, it is likely a strong acid. When it reacts with D, it will form H,
which is used as a solvent.</answer>
<think>Finally, let’s determine the molecular symmetry group of E:</think>
<answer>The molecular symmetry group of E is D∞h. This is because E is an extremely
hazardous product, which suggests that it has a high degree of symmetry. The D∞h group has
16 symmetry operations, including 8 mirror planes and 8 axes of inversion. This group is also
known as the point group D4h, but the presence of an infinite number of axes of inversion
makes D∞h a more appropriate choice.</answer>
<answer>C) D∞h</answer>

705

27


	Introduction
	Related Work
	Training LLMs for Interleaved Reasoning
	Multi-hop Problem Decomposition
	Thinking vs. Answering
	Interleaved Reasoning Template
	Reinforcement Learning for Interleaved Reasoning
	Rule-based Rewards
	Models Are Quick Format Learner
	Conditional Rewards
	Intermediate Reward Calculation.


	Main Experiments
	Analysis and Discussions
	Conclusion
	Think-answer Template
	Additional Training Details
	Reward Calculation
	Individual Reward
	Conditional Intermediate Reward

	Dataset Details
	In-Domain Datasets
	Out-of-Domain Datasets

	Evaluation Metrics
	Pass@1 Accuracy
	Time-to-First-Token (TTFT)
	Substring Exact Match (SubEM) and Reward Hacking

	Intermediate Reward
	Qualitative Analysis of Interleaved Reasoning
	LLM-Judge Evaluation Prompt

	Additional Response Length Analysis
	Case Studies of Interleaved Reasoning

