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ABSTRACT

Spoken dialogue systems often rely on cascaded pipelines that transcribe, pro-
cess, and resynthesize speech. While effective, this design discards paralinguistic
cues and limits expressivity. Recent end-to-end methods reduce latency and bet-
ter preserve these cues, yet still rely on text intermediates, creating a fundamental
bottleneck. We present a true speech-to-speech large language model that di-
rectly understands and generates speech without relying on text guidance. Our
approach combines a modality-based layer-splitting architecture with a frozen
pre-training strategy, preserving the reasoning and knowledge of pretrained text
LLMs while adding native speech capabilities. Experiments show that our model
achieves state-of-the-art results in spoken question answering and delivers compa-
rable speech-to-speech performance relative to existing text-guided systems, while
still maintaining competitive text performance. By narrowing the gap between
text-guided and direct speech generation, our work establishes a new paradigm
for expressive and efficient end-to-end speech interaction. We will release our
code and models to support further research in true speech-to-speech foundation
models.

1 INTRODUCTION

Speech is one of the most natural and intuitive modalities for human–computer interaction, mak-
ing spoken dialogue systems a central focus of contemporary AI research. Traditional systems for
spoken interaction are typically implemented using a cascaded pipeline: speech input is first tran-
scribed into text, a text-based large language model (LLM) generates a response, and the output is
subsequently converted into audio through a text-to-speech (TTS) module (Figure 1a). While this
architecture leverages the full reasoning capacity of text-based LLMs, it inevitably discards infor-
mation encoded in the original speech signal and constrains the system to produce only responses
that can be faithfully represented in text.

Early end-to-end attempts such as GSLM (Lakhotia et al., 2021) and AudioLM (Borsos et al., 2023)
demonstrated that speech could be modeled directly, but these works remained largely confined to
experimental dialogue continuation tasks and faced challenges in scaling into full-featured assis-
tants. Later work shifted toward text-guided generation as a compromise: SpeechGPT (Zhang et al.,
2023a) used a chain-of-modality design, while Moshi (Défossez et al., 2024) and PSLM (Mitsui
et al., 2024) achieved low-latency streaming through parallel speech–text generation. GLM-4-Voice
(Zeng et al., 2024b) advanced this further by interleaving text and speech in chunk-based generation
(Figure 1b), reaching near-text-level performance in streaming dialogue. Importantly, while GLM-
4-Voice primarily relies on text-guided responses, it also supports direct speech generation—but its
direct mode remains noticeably weaker than its text-guided counterpart.
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(a) Cascaded pipeline (b) Text-guided speech models (c) True speech-to-speech models

Figure 1: Paradigms for spoken dialogue modeling. (a) Cascaded pipelines rely on ASR → LLM
→ TTS, discarding paralinguistic cues. (b) Text-guided speech models incorporate speech input
but still depend on text as an intermediate during generation. (c) True speech-to-speech language
models directly comprehend and produce speech, avoiding the text bottleneck.

By accepting speech directly as input, these approaches preserve paralinguistic cues such as prosody,
emphasis, and emotion. Yet their reliance on intermediate text during generation creates a fundamen-
tal bottleneck: it introduces latency, reduces efficiency, and restricts expressivity, since non-verbal
vocalizations (e.g., laughter, hesitation) lack natural text equivalents. In addition, because of the in-
herent gap between speech and text modalities, current methods often introduce speech capability at
the expense of text ability, leading to a measurable degradation in the backbone’s text performance.
For instance, SpiritLM(Nguyen et al., 2024) shows a notable drop in MMLU accuracy from 45.3 to
36.9 after incorporating speech modeling. Closing the gap between text-guided and direct speech
generation is therefore critical for realizing true speech-to-speech interaction.

In this work, we introduce a novel approach that enables large language models to natively model
speech while largely retaining their text-based capabilities. Our method builds on a pretrained
text LLM backbone but diverges from prior approaches through a modality-specific layer-splitting
scheme and a frozen pretraining strategy. This design preserves the backbone’s linguistic knowledge
while equipping the model with native speech understanding and generation abilities comparable to
existing text-guided systems. As a result, our model can directly produce high-quality speech with-
out relying on intermediate text representations, establishing a new paradigm for end-to-end speech-
to-speech generation. Importantly, because the majority of knowledge remains in the pretrained
text model, our approach avoids dependence on large-scale, knowledge-intensive speech datasets.
Instead, alignment transfers reasoning, world knowledge, and generalization abilities from the text
backbone to the speech modality.

The main contributions of this paper are as follows:

• We present a true speech-to-speech large language model that achieves state-of-the-
art performance on speech-to-speech benchmarks without relying on any intermediate text
guidance. At the same time, the model natively supports both text and speech as input and
output modalities, thereby narrowing the gap between spoken and written interaction.

• We introduce modality-based layer-splitting and frozen pre-training that improves
alignment between speech and text while mitigating the degradation of reasoning ability
and world knowledge typically observed when extending LLMs to new modalities.

• We conduct extensive experiments and ablation studies to validate the effectiveness of our
approach, demonstrating advanced speech–text cross-modal alignment and textual ability
preservation.

2 MODEL ARCHITECTURE

For advancing toward a true speech-to-speech large language model, we add a modality-based layer-
splitting to an autoregressive Transformer, enabling deep fusion of heterogeneous modalities and
modality-specific generation.
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Figure 2: Visualization of the layer-wise similarity between speech and text representations.
(a)–(d) Cosine similarity heatmaps at representative layers (0, 10, 24 and 27) reveal how cross-
modal alignment evolves across the model depth. The yellow dots are the points selected by DTW
sampling based on similarity. It can be seen that the points selected by our evaluation method
largely coincide with the points of high similarity. The whole cosine similarity figure of 28 layers
will be posted in Appendix D.1. (e) Similarity score across all layers on five samples shows a
progressive increase up to around layer 10, then there are slight fluctuations in the subsequent 14
layers, followed by a noticeable decline in the final layers. This trend indicates that speech and
text representations become gradually fused in the lower-to-middle layers but diverge again at the
top layers. Content of samples are provided in Appendix D.2. More analyses across models are
provided in the Appendix D.3.

.

2.1 MODALITY-BASED LAYER SPLIT

For the Transformer backbone, our design goal is to preserve the original text capabilities of LLMs
while augmenting LLMs with speech understanding and generation. Existing approaches typically
rely on the Depth Transformer (Défossez et al., 2024) that generates multiple VQ tokens as a sin-
gle input, or alternatively, expand the vocabulary to directly encode speech tokens into the input
sequence (Zeng et al., 2024b). However, our preliminary study on speechgpt2-preview(Open-Moss,
2025) revealed that the hidden-state alignment between a sentence and its corresponding speech se-
quence gradually deteriorates in deeper layers: while strong diagonal similarity emerges in lower
layers, it vanishes in later layers.

As shown in the Figure 2, by examining the hidden-state similarity between the same spoken ut-
terance and its corresponding text across different layers, we observe that in a 28-layer model, the
similarity steadily increases in the first 11 layers, fluctuates and gradually stabilizes in the following
14 layers, and then decreases in the final 3 layers. This finding suggests that as the model is trained,
the representations of text and speech become increasingly fused within the first 25 Transformer
blocks, but gradually diverge in the last four layers.

Motivated by this, we introduce a modality-based layer split at the 32nd block of our 36-layer Trans-
former. At this point, the shared hidden state is routed into modality-specific branches: one branch
continues through the final four layers to predict text tokens, while the other routes into a parallel
four-layer stack to predict speech tokens.

This split-then-specialize design allows the model to leverage the first N layers for joint multimodal-
ity fusion, while reserving the final layers for modality-specific generation. As a result, the archi-

3



Published as a conference paper at ICLR 2026

Figure 3: Model architecture and training strategy. We split the trailing Transformer layers based
on modality, and freeze the text backbone during Stage I pre-training. Both branches are initialized
from the same pretrained text model backbone.

tecture enhances cross-modality transfer, enabling the system to inherit the capabilities of textually-
pretrained LLMs and express it natively in the speech modality.

2.2 SPEECH TOKENIZATION

Our speech tokenizer is designed with four key objectives: (1) to achieve a single-codebook, low-
bitrate representation for efficient autoregressive generation and simplified context management; (2)
to maximize semantic content in order to facilitate knowledge transfer from text to speech; (3) to
preserve sufficient paralinguistic detail to enable faithful reconstruction of human speech; and (4) to
support full streaming operation for low-latency processing.

Encoder Discrete speech tokenizers are commonly trained with reconstruction objectives (Gong
et al., 2025; Zhang et al., 2023c) or self-supervised discovery methods (Shon et al., 2024; Liu et al.,
2024). However, prior work has observed that tokens optimized primarily for reconstruction are
often suboptimal for LLM learning (Défossez et al., 2024). To address this, and following the
design of CosyVoice 2 (Du et al., 2024), we adopt automatic speech recognition (ASR) as the sole
training objective for our tokenizer encoder. Our encoder is further trained based on the GLM-4-
Voice Tokenizer (Zeng et al., 2024b), but we modify it to be fully causal rather than block-causal,
thereby ensuring true streaming support.

Decoder For decoding, we adopt the flow-matching architecture introduced in CosyVoice 2 (Lip-
man et al., 2022; Du et al., 2024). While CosyVoice 2 employs chunk-attention to improve efficiency,
this mechanism introduces undesirable time delays. To mitigate this issue, we compress the chunk
size, which significantly reduces latency while maintaining reconstruction quality. This modifica-
tion makes our tokenizer particularly well-suited for streaming dialogue systems that demand both
high fidelity and low response delay.

3 TRAINING STRATEGY

3.1 PRE-TRAINING

The objective of pre-training is to introduce a speech modality into a pretrained text-based LLM
while preserving its original text capabilities. To this end, we initialize our model from Qwen-3-
8B(Yang et al., 2025) and adopt a two-stage pre-training strategy using a large-scale, high-quality
speech corpus. The procedure is outlined below.

3.1.1 DATA COLLECTION AND PROCESSING

We begin with approximately 9 million hours of real-world audio data collected from the internet.
To remove non-speech content, we apply a custom voice activity detection (VAD) pipeline based on
pyannote (Plaquet & Bredin, 2023; Bredin, 2023), resulting in roughly 4 million hours of speech.
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Table 1: Statistics of pre-training data. Hours are shown in thousands (k).

Dataset Total (h) Real (h) Synthetic (h)

English Interleaved 690k 624k 66k
Chinese Interleaved 952k 876k 76k
Unsupervised 2,303k 2,303k 0

These data are organized into two categories according to source type: (1) interleaved speech–text
pre-training, drawn primarily from podcasts, and (2) unsupervised speech pre-training, drawn pri-
marily from video content. Podcasts are chosen for interleaved pre-training because they typically
provide cleaner recordings and clearer speech, enabling automatic speech recognition (ASR) sys-
tems to generate more reliable transcripts. In contrast, video sources, while more diverse and noisier,
are better suited for the unsupervised pre-training setting, where robustness to challenging acoustic
conditions is essential.

For the interleaved task, we first apply automatic speech recognition (ASR) to obtain text transcripts.
Connectionist Temporal Classification (CTC) word alignment is then used to segment the audio
into random-length chunks of 3–6 seconds. Each chunk contains either the corresponding audio
segment or its transcribed text, and sequences are constructed by interleaving the two modalities.
For unsupervised speech pre-training, we simply use full-length audio segments without transcript.

To mitigate the low knowledge density inherent in natural speech corpora, we also synthesize addi-
tional interleaved data from high-quality text corpora. Following the approach of Zeng et al. (2024c),
we use FineWeb-Edu (Lozhkov et al., 2024) for English and Chinese FineWeb-Edu V2.1(Yu et al.,
2025) for Chinese. These texts are converted into audio using the CosyVoice 2 TTS system (Du
et al., 2024), producing large-scale synthetic speech–text pairs that enrich the training corpus.

A summary of dataset statistics is provided in Table 1.

3.1.2 TWO-STAGE PRE-TRAINING

We initialize our model from the Qwen3-8B backbone and employ a two-stage pre-training pipeline
designed to introduce the speech modality while preserving the model’s text capabilities.

Stage 1: Speech Alignment with Frozen Text Backbone In the first stage, we freeze all param-
eters of the Qwen-3-8B backbone and train only the newly introduced speech-related components,
including the speech token embeddings, speech-specific transformer layers, and the speech language
modeling (LM) head. This stage serves to initialize speech parameters and establish stable align-
ment with the pretrained text representations. Training is conducted for approximately one epoch
using the AdamW optimizer with cosine learning rate scheduling. The initial learning rate is set to
4× 10−4, with a batch size of 2.2M tokens, weight decay of 0.1, context length of 14,336 tokens.

Stage 2: Joint Training with Text Knowledge Preservation In the second stage, we unfreeze
a larger portion of the model to allow cross-modal adaptation. We experiment with three configu-
rations: (1) unfreezing the entire model and training all parameters jointly, (2) unfreezing only the
shared transformer layers while keeping the text embeddings, text-specific layers, and text LM head
frozen, and (3) gradually unfreezing the shared layers in reverse order (from last to first). Since
unfreezing text parameters risks degradation of textual abilities, we incorporate additional text-only
pre-training data to preserve the model’s linguistic competence. Specifically, we include FineWeb-
Edu (Lozhkov et al., 2024) for English and Chinese FineWeb-Edu V2.1 (Yu et al., 2025) for Chinese,
filtering entries with quality scores ≥ 3.

Stage 2 training is conducted for two epochs on the same speech dataset used in Stage 1, combined
with 0.1 epoch of text-only pre-training data. Hyperparameters are largely consistent with Stage 1,
except that the learning rate is reduced (decaying from 6× 10−5 to 6× 10−6) and the batch size is
increased to 2.8M tokens to account for the additional text data. In practice, the three configurations
achieve comparable results. For simplicity, we adopt configuration (1) as the default initialization
for subsequent supervised fine-tuning. A detailed ablation study is provided in section 5.
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3.2 SUPERVISED FINE-TUNING

3.2.1 DATA ADAPTATION AND CONSTRUCTION

Because high-quality supervised fine-tuning data for speech assistants are scarce in natural settings,
we construct such data synthetically. Our process begins with existing open-source text-based su-
pervised fine-tuning datasets listed in Appendix B.

Text Adaptation We employ the GPT-5 API to transform question–answer pairs into formats
suitable for speech representation. This process involves (i) converting non-vocal content such as
mathematical expressions, tables, or Markdown into TTS-compatible forms, and (ii) filtering out
instances that cannot be effectively rendered as speech (e.g., long code dumps or dense LATEX pas-
sages). Adaptation also improves data quality by shortening excessively long responses to make
them more appropriate for spoken delivery, correcting obvious factual errors, and suggesting suitable
emotional tones for TTS synthesis. Prompt for the adaptation process is available in Appendix C.

Speech Synthesis The adapted text is then synthesized into audio using multiple TTS systems.
We primarily employ Seed-TTS (Anastassiou et al., 2024) from VolcEngine. For the user role, we
generate speech with a diverse set of speaker voices to improve robustness. For the assistant role,
we always use a single consistent speaker to establish a stable and recognizable system identity. To
further enhance voice diversity, naturalness, and stylistic control, we additionally employ MOSS-
TTSD (Team, 2025) to synthesize conversational datasets. By assigning different system prompts,
we can vary the assistant’s speaking style and role in a controllable manner.

Quality Filtering Although LLM-based TTS systems produce highly natural speech, they are sus-
ceptible to synthesis errors. To mitigate this, we apply automatic quality filtering using SenseVoice-
Small ASR (An et al., 2024). Specifically, we discard entries whose ASR transcripts exhibit a word
error rate (WER) ≥ 0.2 relative to the original text.

Statistics In total, we end up with over 1500k question–answer pairs for supervised fine-tuning,
comprising approximately 650k English pairs and 860k Chinese pairs.

3.2.2 TRAINING DETAILS

Building on the pretrained model, we conduct supervised fine-tuning on the constructed multimodal
dataset for two epochs. Training is performed with the AdamW optimizer, using a cosine learning
rate schedule that decays from 1×10−5 to 1×10−6. We use a batch size of 8, apply a weight decay
of 0.1, and set the maximum context length to 10,240 tokens with sequence packing.

To further strengthen cross-modal alignment between speech and text, fine-tuning incorporates four
input–output modality configurations: speech question → speech answer, speech question → text
answer, text question → speech answer, and text question → text answer. The modality pairing is
controlled by system prompts, while the underlying content remains identical across configurations.
This design ensures that the model learns to handle both unimodal and cross-modal interactions,
enabling it to accept text or speech as input and generate either text or speech as output within a
unified framework.

4 EVALUATION

4.1 TOKENIZER

In this section, we present the experimental evaluation of our encoder and decoder components.
For the encoder, a crucial aspect is the preservation of semantic information. To assess this, we
fine-tuned a Qwen3-0.6B model (Yang et al., 2025) for ASR. Distinct from embedding-based ap-
proaches (Yang et al., 2021), our method directly leverages discrete codebook IDs generated by
various encoders as input, better aligning with the Large Language Model (LLM) paradigm. This
ASR model was trained on the 960-hour Librispeech training dataset (Panayotov et al., 2015). We
then evaluated the corresponding Word Error Rate (WER) on the test sets (test-clean, test-other, and
dev-clean). Each model was trained for 100k steps using a batch size of 128 and a learning rate of
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1e-4, and we report the lowest WER achieved. Our baselines include codecs designed to capture
semantic information, such as Mimi (Défossez et al., 2024) and XCodec 2.0 (Ye et al., 2025), as
well as ASR-trained codecs like GLM-4-Voice (Zeng et al., 2024a), CosyVoice (Du et al., 2024)
and CosyVoice 2 (Du et al., 2024). Ours represent our proposed streaming model, which is further
fine-tuned from GLM-4-Voice.

Table 2: Evaluation results of our speech encoder

Model Frame
Rate (Hz) BPS Streaming WER (%) ↓

test-clean dev-clean overall

Mimi-8 12.5 1100 × 9.65 9.67 14.45
XCodec2.0 50 800 × 14.17 13.82 20.07
Cosyvoice 25 300 × 10.15 9.64 14.21
Cosyvoice2 25 325 × 9.45 9.42 13.78

GLM-4-Voice 12.5 175 Chunk(2s) 6.59 6.07 9.17
Ours 12.5 175 ✓ 7.89 7.29 10.80

To evaluate our decoder, we utilize the Seed-TTS-Eval benchmark (Anastassiou et al., 2024), em-
ploying its standard English and Chinese test datasets. We assess intelligibility (WER), speaker
similarity (SIM), and speech quality (DNSMOS). Speaker similarity (SIM) is computed as the co-
sine similarity between WavLM-TDNN embeddings (Chen et al., 2022) of the prompt and gen-
erated speech. WER is measured using whisper-large-v3 (Radford et al., 2023) for non-Chinese
languages and paraformer-zh for Chinese (Gao et al., 2022). Additionally, we incorporate the DNS-
MOS (Reddy et al., 2022) metric to assess the perceived quality of the generated speech. Since our
decoder is fine-tuned from CosyVoice 2, we compare it directly with the CosyVoice series.

Table 3: Evaluation results of our speech decoder

Model Frame rate Seed-TTS-Eval-EN Seed-TTS-Eval-ZH

WER ↓ SIM ↑ DNSMOS ↑ WER ↓ SIM ↑ DNSMOS ↑
Cosyvoice 25hz 10.53 0.66 3.07 11.29 0.74 3.21
Cosyvoice2 25hz 4.63 0.68 3.09 3.11 0.75 3.22
Ours 12.5hz 4.14 0.67 3.10 2.86 0.73 3.24

Our experimental evaluation demonstrates the robust performance of Our codec across both encoder
and decoder components. For the encoder, Ours achieve an overall Word Error Rate (WER) of
10.80%. While this is slightly higher than the 9.17% of GLM-4-Voice, it is important to note that
GLM-4-Voice operates with 2-second processing blocks rather than pure streaming. While being
a full streaming architecture, Our model achieves a competitive WER. Furthermore, Our encoder
significantly surpass other non-streaming codecs like Mimi-8 (14.45%) and CosyVoice 2 (13.78%),
despite its lower BPS and frame rate. Consequently, our decoder, fine-tuned from CosyVoice 2,
benefits from this enhanced capture of semantic information. Even at a lower frame rate, Our de-
coder achieves better intelligibility (lower WER) and perceived speech quality on both English and
Chinese benchmarks compared to CosyVoice 2, with only a marginal trade-off in speaker similarity.

4.2 PRE-TRAINING

To assess the effectiveness of our pre-training strategy, we evaluate the resulting speech-enabled
model on both speech modeling and text understanding benchmarks.

For speech modeling ability, we use StoryCloze (Hassid et al., 2023) together with our in-house
Chinese counterpart, zh-StoryCloze. These benchmarks test the model’s capacity to reason over and
generate coherent speech continuations.

For textual capability preservation, we evaluate on MMLU (Hendrycks et al., 2021b;a) and
CMMLU (Li et al., 2024), which measure knowledge and reasoning across diverse subject domains.
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Table 4: Evaluation result of our pre-trained model. In the table, “S.C.” refers to “StoryCloze”,
“s” refers to “Spoken”, “t” refers to “Topic”. SpiritLM results are takens from Nguyen et al. (2024).
The tS.C. and sS.C. results for GLM-4-Voice are taken from Zeng et al. (2024b), and the tS.C. and
sS.C. results for Moshi are taken from Défossez et al. (2024). Chinese language evaluations are not
performed on models trained only in English.

Model Speech Text
tS.C. sS.C. zh-tS.C. zh-sS.C. MMLU CMMLU

Moshi 83.60 62.70 - - 49.8 -
GLM-4-Voice 82.90 62.40 83.27 69.10 57.49 54.39
SpiritLM 82.90 61.00 - - 36.90 -
Ours 84.87 63.17 90.32 71.94 67.19 69.53

Table 5: Spoken question answering evaluation results & speech quality. L./T./W. QA refer to
LlamaQA, TriviaQA, and WebQA, respectively. Except for our model and GLM-4-Voice∗, results
for other models in the table are taken from Zeng et al. (2024b) and Défossez et al. (2024). We
follow KimiTeam et al. (2025) to normalize the answer before judging.

Model L. QA T. QA W. QA UTMOS
S → T S → S S → T S → S S → T S → S

Pre-trained Model

GLM-4-Voice 64.70 50.70 39.10 26.50 32.20 15.90 -
TWIST - 4.00 - - - 1.50 -

Supervised Fine-tuned Model

SpeechGPT∗ - 21.60 - 14.80 - 6.50 4.00
Moshi - 21.00 - 7.30 - 9.20 2.81
Moshi∗ - 62.30 - 22.80 - 26.60 -
GLM-4-Voice∗ 74.33 65.67 45.90 43.20 39.22 38.34 4.25
Ours 77.33 63.67 45.20 28.80 45.90 36.71 4.37

∗ : S → S results obtained with text guide

This dual evaluation allows us to verify that (i) the model acquires robust speech modeling abilities,
while (ii) maintaining the original linguistic competence of the pretrained text backbone.

4.3 SUPERVISED FINE-TUNING

To comprehensively evaluate the capabilities of our SFT model, we assess QA ability using
LLaMA-Question, Trivia QA, and Web Questions (Nachmani et al., 2024; Joshi et al., 2017;
Chang et al., 2022). And the quality of generated speech is evaluated with UTMOS (MOS style
evaluation) (Saeki et al., 2022).And we additionally conducted a subjective evaluation experiment,
relevant details are provided in the Appendix H.

5 ABLATION STUDY

We study the effect of two key components in our pre-training pipeline: Modality-based Layer Split
and Frozen Pre-training.

We first compare a naive baseline without either strategy (NF–NoSplit) against a variant that in-
troduces Modality-based Layer Split but trains all parameters directly (NF), isolating the benefit of
modality separation. Next, we evaluate the effect of Frozen Pre-training by comparing NF with
FP–Full, where text parameters are frozen during pre-training and then unfrozen.
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Table 6: Ablation study on pre-training strategy. FP: Frozen Pretrain (text parameters frozen
during pretrain). FP–Full: all parameters unfrozen after Frozen Pretrain. FP–Layerwise: shared
layers gradually unfrozen from last to first. FP–Shared: only speech–text shared layers unfrozen,
text-specific remain frozen. NF: No Frozen Pretrain (all parameters trained directly). NF–NoSplit:
NF without Modality-Based Layer Split, i.e., speech tokens added directly into text vocab without
modality-specific layers. All models are trained for around 2 epochs on the pre-training dataset.

Model Split Layers Speech Text
tS.C. sS.C. zh-tS.C. zh-sS.C. MMLU CMMLU

FP–Full 4 85.20 63.12 90.21 72.10 66.50 69.15
FP–Layerwise 4 84.77 62.64 90.11 71.51 68.82 69.26
FP–Shared 4 83.27 63.50 90.11 72.69 67.26 69.27
NF 8 78.73 56.33 88.88 69.16 62.92 63.84
NF 6 79.05 56.49 89.10 67.93 63.27 63.79
NF 4 77.66 56.60 88.51 67.56 62.11 64.11
NF 2 78.09 56.87 88.62 68.31 62.92 63.74
NF–NoSplit 0 77.12 55.80 88.72 67.02 60.97 63.73

Qwen3-8B - - - - - 76.60 77.35

We further ablate different unfreezing strategies after Frozen Pre-training: (i) FP–Full, unfreezing
all parameters at once; (ii) FP–Shared, unfreezing only speech–text shared layers while keeping
text-specific parameters frozen; (iii) FP–Layerwise, gradually unfreezing shared layers from last to
first. The learning rate schedule for FP–Layerwise is described in Appendix F.

Results in table 6 highlight three main findings: (1) Modality-based Layer Split improves both
speech modeling and textual ability preservation; (2) Frozen Pre-training provides substantial addi-
tional gains; (3) unfreezing strategies yield relatively small differences.

Overall, the ablation confirms that modality separation and freezing text parameters during pre-
training are both critical to balancing speech learning with text knowledge preservation. While
different unfreezing schedules provide slight trade-offs, their impact is minor compared to the gains
from Modality-based Layer Split and Frozen Pre-training themselves.

6 RELATED WORKS

A detailed discussion of related work is provided in Appendix G.

7 CONCLUSION

We introduced a large language model capable of true speech-to-speech interaction without interme-
diate text, advancing the state of spoken dialogue systems beyond cascaded and text-guided frame-
works. Our modality-based layer-splitting and frozen pre-training strategies enable the transfer of
linguistic and reasoning knowledge to speech modality from pretrained text LLMs while preserving
text abilities, avoiding the degradation often observed in multimodal adaptation. Our model achieves
state-of-the-art results in spoken question answering, while supporting both text and speech as native
input and output modalities. This work demonstrates that end-to-end speech modeling can reach near
parity with text-guided methods while overcoming their inherent limitations in latency and expres-
sivity. Looking forward, we envision speech-native models as the foundation of future human–AI
interaction, supporting seamless, multimodal dialogue across diverse languages and contexts.

ETHICS STATEMENT

This work introduces a speech-enabled large language model. While the model has potential benefits
for accessibility and natural human–computer interaction, it also carries risks. Despite incorporating
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alignment datasets during fine-tuning, the model may still produce unsafe or biased content. Addi-
tionally, the speech decoder could be misused for voice cloning or impersonation. We do not release
tools or data optimized for such misuse and recommend responsible deployment with safeguards to
mitigate these risks.
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Neil Zeghidour, Rémi Dossa, Abhinav Katiyar, Jakob Uszkoreit, Siddharth Kumar, Krzysztof
Choromanski, Samuel Gershman, and John Schulman. Soundstream: End-to-end neural audio
codec. In NeurIPS, 2021.

Aohan Zeng, Zhengxiao Du, Mingdao Liu, Kedong Wang, Shengmin Jiang, Lei Zhao, Yuxiao Dong,
and Jie Tang. Glm-4-voice: Towards intelligent and human-like end-to-end spoken chatbot. arXiv
preprint arXiv:2412.02612, 2024a.

14

https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://aclanthology.org/2025.findings-naacl.211/
https://aclanthology.org/2025.findings-naacl.211/
https://arxiv.org/abs/2408.16725
https://arxiv.org/abs/2406.08464
https://aclanthology.org/2023.findings-emnlp.165/
https://aclanthology.org/2023.findings-emnlp.165/
https://arxiv.org/abs/2501.08197
https://arxiv.org/abs/2501.08197


Published as a conference paper at ICLR 2026

Aohan Zeng, Zhengxiao Du, Mingdao Liu, Kedong Wang, Shengmin Jiang, Lei Zhao, Yuxiao Dong,
and Jie Tang. Glm-4-voice: Towards intelligent and human-like end-to-end spoken chatbot,
2024b. URL https://arxiv.org/abs/2412.02612.

Aohan Zeng, Zhengxiao Du, Mingdao Liu, Lei Zhang, Shengmin Jiang, Yuxiao Dong, and Jie
Tang. Scaling speech-text pre-training with synthetic interleaved data, 2024c. URL https:
//arxiv.org/abs/2411.17607.

Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, and Xipeng Qiu.
SpeechGPT: Empowering large language models with intrinsic cross-modal conversational abil-
ities. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 15757–15773, Singapore, December 2023a. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.1055. URL
https://aclanthology.org/2023.findings-emnlp.1055/.

Ge Zhang, Yemin Shi, Ruibo Liu, Ruibin Yuan, Yizhi Li, Siwei Dong, Yu Shu, Zhaoqun Li, Zekun
Wang, Chenghua Lin, Wenhao Huang, and Jie Fu. Chinese open instruction generalist: A prelim-
inary release, 2023b.

Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechtokenizer: Unified
speech tokenizer for speech large language models. arXiv preprint arXiv:2308.16692, 2023c.

15

https://arxiv.org/abs/2412.02612
https://arxiv.org/abs/2411.17607
https://arxiv.org/abs/2411.17607
https://aclanthology.org/2023.findings-emnlp.1055/


Published as a conference paper at ICLR 2026

A LLM USAGE DISCLOSURE

ChatGPT 5 was used to refine the writing style of certain paragraphs and as a supplementary tool
to suggest related works. It was not the sole or primary source for the related work section; all
references were independently identified, reviewed, and selected by the authors. The LLM did not
contribute to research design, experiments, analysis, or results. The authors assume full responsibil-
ity for the content of this paper.

B SUPERVISED FINE-TUNING DATASETS

Table 7 lists the supervised fine-tuning datasets used in our work. We report only the number of
examples actually used for training.

Dataset Language Used Samples

OpenHermes-2.5 EN 200k
OpenHermes-2.5 (Chinese translated) ZH 200k
Magpie-Llama-3.1-Pro-MT-300K-Filtered EN 300k
Magpie-Qwen2-Pro-200K-Chinese ZH 200k
BAAI OL-CC ZH 11.7k
RefGPT-Fact ZH 50k
COIG-CQIA ZH 45k
Ruozhiba ZH 1.4k
Huatuo26M-Lite ZH 30k
Align-Anything-Instruction-100K EN&ZH 100k
Chinese-DeepSeek-R1-Distill-SFT ZH 110k
Chain-of-Thought-ShareGPT EN 7.14k

Table 7: Supervised fine-tuning datasets used in our experiments.

C PROMPT FOR SUPERVISED FINE-TUNING TEXT ADAPTATION

You are converting a supervised fine-tuning dataset (Q&A) into a format
that can be read naturally by a TTS system for a speech language
model. For each question and answer pair, you must determine whether
the text is suitable for TTS according to the following rules.
Possible states are: require no changes (PASSTHROUGH), requires
adaptation (ADAPT), or unsuitable (REJECT).

CORE RULES
1) Preserve Meaning, Adapt for Speech

- Preserve content verbatim where possible, but always rephrase rigid
or written phrasing into natural, flowing speech transcript.
- Adapted transcript should not include parentheses, brackets,
symbols, Markdown, or formatting that only works on paper, or
structured written formatting like "Method:... Result:...".
- Do NOT add meta-statements such as "the spoken version is".

2) Convert Non-Vocal Elements
- Math & Formulas: simple inline LaTeX is supported by TTS. Convert
all math to inline LaTeX, e.g. $\cos 30ˆ\circ =\frac {\sqrt
{2}}{2}$. Complex or block LaTeX (derivatives, integrals, etc.) is
not supported, read out if feasible, otherwise REJECT. Note that
inline LaTeX command involving summations/limits,
integrals/derivatives, sets/intervals, vectors/matrices, Greek
letters (except \pi), \approx, \text, etc. are not supported. Use
English letters instead of Greek letters for variables. [IMPORTANT]
Single variables (e.g., $x$) MUST be wrapped in LaTeX.
- Tables: content summary, e.g., "First, two CPUs at two hundred
dollars each, then one GPU at one thousand dollars".
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- URLs: rephrase or remove. Only simple URLs may be read ("google dot
com").
- Short Code: narrate, e.g., "this.parseOptions": "this dot parse
options".
- Other non-vocal elements: narrate or rephrase.
- Do NOT explicitly read out punctuation.

3) Length Constraint
- If the content exceeds 200 words, shorten it to ˜200 words

while preserving factual correctness and logical flow.
- If the question explicitly requests detail, allow up to 400

words.
- Prioritize clarity over brevity - it is acceptable to keep

light redundancy or slightly exceed the word limit if it improves
understanding.
- If simplification cannot be done without major distortion, REJECT.

4) Language Policy
- Supported languages: English and Simplified Chinese.
- Mixed English-Chinese allowed. Do not translate.
- Unless specified, avoid Classical Chinese or Old English.
- If other languages appear: REJECT.

5) Formatting-Specific Prompts
- If the question requires a format impossible for speech (tables,
LaTeX \boxed{}), REJECT if inseparable from meaning.
- Otherwise, keep the question unchanged and begin the answer with a
polite clarification: "Sorry, I cannot provide the answer in a
table. However..."
- Do NOT add meta-statements like "this is the adapted answer."

6) Pause & Rhythm Control
- Adjust punctuation or sentence boundaries to guide natural pauses
and rhythm.
- Break long or complex sentences into shorter ones.
- Insert natural discourse markers when helpful ("so," "in other
words," "for example").

7) Oral Smoothness
- Always ensure the adapted text sounds like something a human would
naturally say aloud.
- Favor conversational flow, short clauses, and rhythm over rigid
literalism.
- Add light redundancy for clarity if needed ("That means...," "In
short...").
- Prioritize spoken fluency over textual fidelity.

8) Correction
- If the answer contains incorrect or irrelevant content, correct it.
- Do not reject unsafe or inappropriate content. Instead, rewrite the
answer to make it appropriate.
- Unless specifically instructed, the answer should be neutral and
objective. Rewrite answers that are not.
- Keep corrections minimal and faithful to the question. Do NOT add
meta statements like "the corrected answer is".

9) Chain of Thought
- When answering a complex question from the user: if the

assistant gives the answer first, then reasons, reorder to reasoning
first, then answer. (Unless explicitly instructed otherwise.)

10) Style
- Recommend a TTS style for each content.
- Available options: neutral, happy, sad, angry, surprised, fear,
hate, excited, coldness.
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11) Rejection Policy
- REJECT if content contains long code dumps, complex math, dense
LaTeX, giant tables, etc.
- REJECT if any of the rules above are violated.

OUTPUT RULES
Return a JSON that follows this schema:
{

"question": {
"state": "PASSTHROUGH | ADAPT | REJECT",
"text": "", // adapted text if ADAPT, else empty
"style": "", // recommended TTS style
"simplified": false

},
"answer": {
"state": "PASSTHROUGH | ADAPT | REJECT",
"text": "",
"style": "",
"corrected": false,
"simplified": false

},
"quality": 1-5 // 5 = excellent, 1 = unusable

}

D SIMILARITY DETAILS

D.1 HEATMAPS

Figure 4 shows the similarity maps of all layers for sample 0. It can be observed that the similarity
diagonal begins to appear at layer 7, becomes clearly noticeable by layer 11, and after layer 24, the
similarity of other tokens gradually increases at layers 25 and 26, while at layer 27, all similarities
drop significantly. This pattern is consistent with the observations in our Similarity Score figure.

D.2 SAMPLES

Below are the five random samples we used to calculate the similarity score, with all text content
aligned and presented in English.

Sample0:
Speech-to-text alignment is a core problem in the field of speech
processing, and it becomes especially critical during the training
of large-scale speech models. "Alignment" refers to accurately
matching acoustic segments of the speech signal with characters,
words, or subword units in the text sequence along the temporal
dimension, enabling the model to learn the mapping between speech
and language. If the alignment is inaccurate, the model struggles to
capture the correspondence between speech and text effectively,
which in turn affects the performance of speech recognition, speech
synthesis, and multimodal tasks. Therefore, building a high-quality
speech-text alignment mechanism is not only a fundamental step in
training large speech models but also a prerequisite for enhancing
model generalization and practical performance.

Sample1:
In the previous lesson, we learned the concepts of the greatest
common divisor (GCD) and the least common multiple (LCM), as well as
how to calculate them. Today, we will continue to learn about the
concept of prime numbers and use prime factorization to find the
common divisors of two numbers.
First, let us review what we learned in the previous lesson. We
mainly studied several methods to find common divisors. The first
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Figure 4: Heatmaps for embedding and layers 0–27.
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method is the listing method. The listing method is a general
approach that can be applied to any two numbers

Sample2:
A team of emerging scientists has developed a novel artificial
intelligence algorithm that, by observing and analyzing human brain
activity, successfully replicates the thinking processes of the
human brain. This enables AI to simulate human thought while
performing computations and processing information more efficiently,
generating a significant response in the global scientific
community. According to reliable sources, the research findings have
already passed review by international academic institutions and
will be presented and announced this month at the world’s most
prestigious scientific conference. It is expected to have a profound
impact on the development of artificial intelligence.

Sample3:
What about large language models? How do they work? They learn from
an enormous corpus of text using natural language processing to
understand the relationships between all the sentences in that
corpus. For example, if one person says a sentence and another
person responds, there is often a certain relationship between the
two sentences. For instance, if the first person says, "I’m hungry,"
the second person might respond, "I can make something for you."
Once the model learns these relationships, it can use them to
perform tasks such as translation or generating appropriate
responses in other contexts.

Sample4:
The harsh way of survival. Some species rely on complex social
structures or specialized physical traits to ensure their survival
and reproduction. Some species can even assist humans in locating
resources. In the tropical regions of the Pacific, certain species
live on the water surface, while others inhabit the seafloor. There
are also species whose range spans both the surface and the
seafloor, forming what is known as a three-dimensional ecosystem.
Due to the vast expanse of the Pacific, these species must adapt to
survive.

D.3 LAYER-WISE SIMILARITY SCORE OF DIFFERENT MODELS.

We conducted layer-wise similarity analyses on more models and a larger set of samples. For the two
models shown in the Figure 5, due to implementation constraints that prevent us from mapping text
tokens back to the original text, we used a global DTW–based metric to measure similarity score.
In contrast, for the Figure 6, we adopted the fine-grained similarity computation method described
in Appendix E. In both cases, we used the same set of 1K long-form speech samples and averaged
the scores to obtain each model’s layer-wise similarity profile.

From the results, we observe a consistent trend across all speech models: similarity increases from
shallow to middle layers, and then decreases toward the deeper layers. In the global-DTW setting,
the last few layers show a slight increase because stopwords and punctuation often lead to artificially
higher similarity. However, this does not alter the overall trend of “rising then falling.”

Across all models in the figure, a unified pattern can be observed: similarity begins to decline at
approximately one-third of the total depth. The above analysis result guided our model design
choice.

E LAYER-WISE SIMILARITY SCORE.

To evaluate cross-modal alignment inside a Transformer backbone, we compute a similarity score at
each layer i ∈ {1, . . . , L}. Let the text tokens be {t1, . . . , tn} and the speech tokens {s1, . . . , sm}.
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Figure 5: Similarity Score of GLM-4-Voice and Kimi-Audio. Due to implementation constraints
that prevent us from mapping text tokens back to the original text, we used a global DTW–based
metric to measure similarity score in this figure.
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Figure 6: Similarity Score of SpeechGPT 2.0-preview and MiMo-Audio. We adopted the fine-
grained similarity computation method described in Appendix E.

Using forced alignment(Pratap et al., 2023), we obtain Ji alignment pairs

{(Ti,1, Si,1), (Ti,2, Si,2), . . . , (Ti,Ji , Si,Ji)},

where Ti,j is the set of aligned text tokens and Si,j is the corresponding set of speech tokens (the
alignment is fixed, but hidden states depend on the Transformer layer i).

For each pair (i, j) we construct a cosine similarity matrix

Mi,j [u, v] = cos
(
hi,tu , hi,sv

)
,

where hi,t and hi,s denote hidden states of text token t and speech token s at layer i.

The DTW-based similarity is defined as

DTWi,j =
1

|Pi,j |
∑

(u,v)∈Pi,j

Mi,j [u, v],

where Pi,j is the optimal Dynamic Time Warping path through Mi,j , i.e., the alignment trajectory
maximizing similarity under temporal constraints.

As a background normalization, we compute

BGi,j =
1

|Si,j | (n− |Ti,j |)
∑

s∈Si,j

∑
t∈{t1,...,tn}\Ti,j

cos
(
hi,t, hi,s

)
.

Finally, the layer-wise similarity score at layer i is

SSi =

Ji∑
j=1

(
DTWi,j

BGi,j + λ

)
, λ =

1∑L
k=1 Jk

L∑
k=1

Jk∑
j=1

DTWk,j .
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Here, DTWi,j measures the mean similarity along the DTW-optimal path for pair j at layer i, BGi,j

normalizes against similarities with non-aligned text tokens, and SSi means Similarity Score of layer
i quantifies the relative strength of text–speech alignment at Transformer layer i, with λ serving as a
global coefficient averaged over all pairs and layers.

F LAYER-WISE UNFREEZE LEARNING RATE SCHEDULE

To implement gradual layer-wise unfreezing, we assign each transformer layer its own learning rate
with a delayed warmup–cosine schedule. Let s denote the global training step, the model contain
N = 32 layers to be unfrozen indexed by i ∈ {0, . . . , N − 1} (with i = N − 1 denoting the final
layer), and define:

di = (N − 1− i) k, Di = T − di − w,

where k is the per-layer delay (in steps), T the global step at which all layers have reached ηmin,
ηmax the peak learning rate, and r = 0.1 the final decay ratio.

For each layer i, we define u = s− di and set its learning rate as

ηi(s) =



0, u < 0,

ηmax
u

w
, 0 ≤ u < w,

ηmin +
ηmax − ηmin

2

(
1 + cos

(
π
u− w

Di

))
, w ≤ u ≤ w +Di,

ηmin, u > w +Di .

Variable definitions

• s: global training step.

• i: layer index (N − 1 = last layer).

• N : total number of layers (32).

• k: per-layer delay (5000 steps).

• w: warmup duration (2000 steps).

• T : global step when all layers reach ηmin.

• ηmax: maximum learning rate.

• ηmin = 0.1 ηmax: minimum learning rate.

• di = (N − 1− i) k: start delay for layer i.

• Di = T − di − w: cosine decay duration for layer i.

This schedule ensures that higher (later) layers are unfrozen earlier, while lower (earlier) layers
remain frozen longer, enabling a controlled and stable adaptation of the pretrained text backbone.

G RELATED WORKS

Codec Speech codecs are crucial for speech large language models (SLMs) and can be grouped
into two categories. Neural acoustic codecs based on (R)VQ-GAN optimize reconstruction loss to
preserve fine-grained acoustic details (Zeghidour et al., 2021; Défossez et al., 2022; Kumar et al.,
2023), but their tokens often lack semantic coherence when used for language modeling. In contrast,
semantic-oriented codecs adopt a single-layer VQ to encode linguistic content and recover timbre
with generative modules such as conditional flow matching (Du et al., 2024; Zeng et al., 2024b).
While trading off perfect fidelity, this design yields tokens better suited for semantic modeling. We
therefore follow the latter approach and further enhance it with streaming encoder–decoder modules
for real-time interaction.
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Speech-to-Speech Interaction Models Existing models mostly depend on text guidance for
speech generation. For instance, SpeechGPT (Zhang et al., 2023a) integrates large language mod-
els with discrete speech representations but requires text-based prompts to guide speech genera-
tion. Similarly, Moshi (Défossez et al., 2024) employs a full-duplex spoken dialogue framework,
generating speech tokens from a neural audio codec, yet it still necessitates text instructions for
generating speech responses. Qwen-Audio (Chu et al., 2024) accepts diverse audio inputs and out-
puts text, relying on textual prompts for speech understanding. LLaMA-Omni (Fang et al., 2025)
and Freeze-Omni (Wang et al., 2025b) extend LLMs to process speech inputs and generate speech
outputs directly, but they continue to depend on text prompts to guide the interaction. Mini-Omni
(Xie & Wu, 2024) fine-tunes language models to generate text and speech responses simultane-
ously using instruction datasets, yet the quality of both text and speech responses is limited without
prior speech pre-training. GLM-4-Voice (Zeng et al., 2024b) further advances toward speech-to-
speech interaction by integrating speech input and output with large language models, but it still
fundamentally relies on textual supervision for alignment and instruction following. These models
demonstrate progress toward speech-to-speech interaction but still require text guidance for effective
performance.

Frozen and Progressive Training Recent work on integrating speech into decoder-only LLMs
has emphasized retaining text capabilities while extending to new modalities. A common strat-
egy is to freeze most LLM parameters and train lightweight adapters. For instance, Wang et al.
(2025b) proposed Freeze-Omni, which augments a frozen LLM backbone with speech encoder and
decoder modules, while Das et al. (2025) introduced SpeechVerse, combining frozen speech and text
backbones with adapters to enable zero-shot speech processing from text instructions. Beyond such
frozen-backbone designs, other works adopt progressive or staged adaptation. Xie & Wu (2024) pre-
sented Mini-Omni, which proceeds in phases: first learning speech adapters with the LLM frozen,
then performing LM-only fine-tuning to align modalities, and finally unfreezing all but the audio en-
coder for joint multimodal training. Together, these studies show that freezing LLM backbone helps
preserve language modeling ability, while progressive unfreezing provides a pathway for more flex-
ible and effective multimodal integration.

H DOUBLE-BLIND HUMAN EVALUATION

We conducted an additional double-blind human evaluation specifically targeting non-verbal speech
generation.

H.1 HUMAN EVALUATION SETUP

We recruited nine independent anonymous raters, all graduate students with bachelor’s degrees and
CET-6 English proficiency certification, ensuring sufficient linguistic competence and evaluation
reliability. None of the raters were involved in this project.

The evaluation focused on accuracy and naturalness across three controlled non-verbal behaviors:

• Silence: Models paused for randomly sampled durations (1–10 seconds) before respond-
ing.

• Vocal fillers: Models produced paralinguistic cues (e.g., light laughter or sighs) prior to
verbal responses.

• Response style: Models replied in designated affective states (e.g., hesitant or confident).

H.2 EVALUATION PROTOCOL

Each condition included five distinct prompts. Raters evaluated every model response using a 5-
point Likert scale along three dimensions:

• Speech Naturalness
– 5: completely natural (human-indistinguishable)
– 4: natural with minor flaws
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– 3: acceptable with noticeable defects
– 2: unnatural with clear issues
– 1: severely unnatural / unintelligible

• Instruction Adherence
– 5: perfect compliance
– 4: minor deviations
– 3: partial compliance
– 2: minimal compliance
– 1: non-compliant

• Response Quality
– 5: high relevance / accuracy
– 4: trivial errors
– 3: moderately acceptable
– 2: poor but marginally reasonable
– 1: irrational or strongly non-human

Final MOS values were computed by averaging across all raters and dimensions.

H.3 RESULTS

Our model demonstrates substantial improvements, particularly in fine-grained prosodic behaviors
such as pauses and paralinguistic vocalizations. Table 8 summarizes the MOS results.

Non-Verbal Behavior Ours MIMO GLM-4 Kimi Qwen3 Gemini GPT-4o

Silence 4.17 2.40 2.35 1.93 2.54 2.73 2.81
Vocal fillers 4.15 3.85 3.04 3.56 3.04 2.85 3.11
Response style 4.25 3.60 3.81 3.85 3.44 3.22 3.59

Table 8: MOS results for non-verbal behavior generation across models.

These results highlight clear differences in non-verbal expressiveness across models. Our sys-
tem consistently excels across all three categories—especially in fine-grained prosodic con-
trol—indicating strong capacity for natural, interpretable, and controllable non-verbal behavior. We
believe this human evaluation provides concrete empirical evidence that directly addresses concerns
that UTMOS and WER alone do not capture prosodic quality.

24


	Introduction
	Model Architecture
	Modality-based Layer Split
	Speech Tokenization

	Training Strategy
	Pre-training
	Data Collection and Processing
	Two-stage Pre-training

	Supervised Fine-tuning
	Data Adaptation and Construction
	Training Details


	Evaluation
	Tokenizer
	Pre-training
	Supervised Fine-tuning

	Ablation Study
	Related Works
	Conclusion
	LLM Usage Disclosure
	Supervised Fine-tuning Datasets
	Prompt for Supervised Fine-tuning Text Adaptation
	Similarity Details
	HeatMaps
	Samples
	Layer-wise Similarity Score of Different Models.

	Layer-wise Similarity Score.
	Layer-wise Unfreeze Learning Rate Schedule
	Related Works
	Double-Blind Human Evaluation
	Human Evaluation Setup
	Evaluation Protocol
	Results


