
Deep Learning and Symbolic Regression for Discovering Parametric Equations

Michael Zhang * 1 Samuel Kim * 1 Peter Y. Lu 2 Marin Soljačić 2

Abstract
Symbolic regression is a machine learning tech-
nique that can learn the governing formulas from
data and thus has the potential to transform scien-
tific discovery. However, symbolic regression is
still limited in the complexity of the systems that
it can analyze. Deep learning on the other hand
has transformed machine learning in its ability to
analyze extremely complex and high-dimensional
datasets. Here we develop a method that uses
neural networks to extend symbolic regression to
parametric systems where some coefficient may
vary as a function of time but the underlying gov-
erning equation remains constant. We demon-
strate our method on various analytic expressions
and PDEs with varying coefficients and show that
it extrapolate well outside of the training domain.
The neural network-based architecture can also
integrate with other deep learning architectures so
that it can analyze high-dimensional data while be-
ing trained end-to-end in a single step. To this end
we integrate our architecture with convolutional
neural networks and train the system end-to-end
to discover various physical quantities from 1D
images of spring systems where the spring con-
stant may vary.

1. Introduction
Discovering the governing equations of nature is key to all
scientific disciplines. Many complex systems can be de-
scribed by mathematical equations which in turn can be
used for discovery and design, ranging from Hooke’s law
for harmonic oscillators to Maxwell’s equations for electro-
dynamics. While scientists typically spend years develop-
ing insights to discover these equations, machine learning
has become alluring in its potential to tackle and automate

*Equal contribution 1Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA, USA 2Department of Physics, Massachusetts Institute
of Technology, Cambridge, MA, USA. Correspondence to: Samuel
Kim <samkim@mit.edu>, Marin Soljačić <soljacic@mit.edu>.

2nd AI4Science Workshop at the 39 th International Conference on
Machine Learning (ICML), 2022. Copyright 2022 by the author(s).

extremely complex tasks. For example, deep learning in
recent years has been able to create images from captions
(Ramesh et al., 2022) and predict a protein’s 3D structure
(Jumper et al., 2021) far better than humans could with
hand-constructed algorithms. However, deep learning mod-
els are often black-box, making it difficult to gain scientific
insight from these techniques. Thus, in order to make deep
learning widely applicable for scientific discovery, we need
to develop methods that are interpretable so that scientists
can extract meaningful information from complex datasets.

Symbolic regression is a machine learning method that finds
a mathematical expression that fits the data, thus resulting
in an interpretable model. Symbolic regression is typically
implemented through genetic programming, which searches
through the space of mathematical expressions while en-
suring that the equation is viable through various heuristics
(Koza, 1994). The equations are pieced together through
basic building blocks known as primitive functions, which
include constants and simple functions (e.g. addition, multi-
plication, sine). Schmidt & Lipson (2009), one of the most
popular earlier works in this direction, demonstrated how
symbolic regression could discover equations of motions in-
cluding Hamiltonians and Lagrangians for various physical
systems. However, these approaches do not scale well to
high-dimensional problems and typically require numerous
hand-built heuristics and rules.

There have been numerous approaches into extending sym-
bolic regression to more complex datasets. For example,
the Sparse Identification of Nonlinear Dynamical systems
(SINDy) method discovers the governing equations for dy-
namical systems and has been demonstrated on a variety
of systems including ODEs, PDEs, conservation laws, and
control systems. Additionally, SINDy has been extended to
parametric systems in which some coefficient in the equa-
tion may vary over time or space such that the equation
evolves (Rudy et al., 2019).

There have also been numerous approaches at combining
deep learning and symbolic regression to analyze more com-
plex tasks. For example, AI-Feynman checks for a number
of physics-inspired invariances and symmetries using both
hand-built rules and neural networks to simplify the data
(Udrescu & Tegmark, 2020). Neural network autoencoders
have been combined with SINDy to enable equation discov-

Deep Learning and Symbolic Regression for Discovering Parametric Equations

ery on high-dimensional systems (Champion et al., 2019).
PDE-Net 2.0 incorporates a symbolic network to discover
PDEs using convolutional networks with constrained filters
(Long et al., 2019). Lu et al. (2021) incorporates a symbolic
network with a neural network encoder to discover ODE
and PDE systems from partial observations. Cranmer et al.
(2020) performs traditional symbolic regression on a graph
neural network weights in a 2-step process to discover the
dynamics of many-body systems.

In particular, a neural network architecture called the EQL
network was proposed that can perform symbolic regres-
sion by replacing the activation functions with primitive
functions (Martius & Lampert, 2016; Sahoo et al., 2018).
Kim et al. (2020) showed how this architecture can then be
integrated into other deep learning architectures including
convolutional networks and recurrent networks to perform
symbolic regression on high-dimensional and dynamic sys-
tems, while allowing the entire architecture to be trained
end-to-end through backpropagation. Costa et al. (2020) fur-
ther extended this for recursive programs, implicit functions,
and image classification.

In this work we extend (Kim et al., 2020) and enable neu-
ral network-based symbolic regression to parametric equa-
tions, where one or multiple of the coefficients may vary
along some dimension (such as time) while the underly-
ing equation structure remains the same. We propose a
novel architectures, the parametric EQL network, which
can each discover parametric equations. We demonstrate
our method on various analytic equations, a PDE, and a
high-dimensional dataset consisting of images of particles.
We show limited results here for brevity, and more complete
results can be found in (Zhang et al., 2022).

2. EQL Network
The EQL network is a neural network architecture that can
perform symbolic regression by replacing the nonlinear ac-
tivation functions with primitive functions. In Section 2.1
we briefly introduce the base EQL architecture for symbolic
regression, and more details can be found in (Kim et al.,
2020). We also propose several modifications to the EQL
network that improve its training behavior. In Section 2.4
we propose a variant of the EQL architecture that can dis-
cover parametric equations. Note that in our discussion and
notation, we assume that the coefficients are parameterized
with respect to time as this provides a convenient intuition
applicable to many systems. However, the parameterization
can also be with respect to other quantities (e.g. space).

𝒈𝟏 = 𝑾𝟏 ∙ 𝒙 𝒈𝟐 = 𝑾𝟐 ∙ 𝒉𝟏
𝒉𝟏 = 𝒇(𝒈𝟏) 𝒉𝟐 = 𝒇(𝒈𝟐)

ො𝑦 = 𝑾𝟑 ∙ 𝒉𝟐

Symbolic layer

𝒙

𝑥1

𝑥2

id

∙ 2

sin ∙ ො𝑦

id

∙ 2

sin ∙

××

Figure 1. EQL network architecture for symbolic regression

2.1. Base Architecture

The output of the ith layer of a fully-connected neural net-
work can be described by

g(i) = W(i)h(i−1) (1)

h(i) = f
(
g(i)

)
(2)

where W is a weight matrix, f is the activation function,
and h0 = x is the input data. The activation function for
the final layer is typically linear, so the output of the neural
network with L hidden layers is y = W(L+1)h(L).

While conventional neural networks typically functions such
as ReLU or sigmoid for the activation function, the EQL
network uses a vector of primitive functions, where each
component may be a different primitive function (e.g. iden-
tity, square, sine) and where a primitive function may take
multiple inputs (e.g. multiplication). The network is trained
using the same techniques as conventional neural networks,
i.e. stochastic gradient descent, and once it is trained, the
discovered equation can simply be read off of the weights.
The advantage of this architecture is that it can integrate
with other deep learning architectures to enable symbolic re-
gression on high-dimensional systems, where we use “high-
dimensional” loosely to refer to data that requires structure
in its input, such as images.

In this work, we use 2 hidden layers containing the following
activation functions:

[1(×2), g(×4), g2(×4), sin(2πg)(×2), g1 ∗ g2(×2)]

where the (×i) indicated the number of times each activa-
tion function is duplicated.

2.2. Sparsity

To ensure the interpretability of symbolic regression, we
need the system to learn the simplest expression that de-
scribes the data. In genetic programming-based approaches,

Deep Learning and Symbolic Regression for Discovering Parametric Equations

this is typically done by limiting the number of symbols
in the expression. For the EQL network, we use sparsity
regularization on the network weights such that as many
of the weights are set to 0 as possible. While (Kim et al.,
2020) primarily uses a smoothed L0.5 regularization, in this
work we use a relaxed form of L0 regularization (Louizos
et al., 2017). We briefly review the details here, and refer
the reader to the above references for more details.

The weights of the neural network are reparameterized as

W = W̃ ⊙ z

where z can be interpreted as a gate variable. Ideally each el-
ement of z is a binary “gate” such that z ∈ {0, 1}. However,
this is not differentiable and so we allow z to be a stochastic
variable drawn from the hard concrete distribution:

u ∼ U(0, 1)
s = sigmoid ([log u− log(1− u) + logα] /β)

s̄ = s(ζ − γ) + γ)

z = min(1,max(0, s̄))

where α is a trainable variable that describes the location of
the hard concrete distribution, and β, ζ, γ are hyperparame-
ters that describe the distribution. In the case of binary gates,
the regularization penalty would simply be the element-wise
sum of z (i.e., the number of non-zero elements in W). In
the case of the hard concrete distribution, we can calcu-
late an analytical form for the expectation of the sparsity
regularization penalty over the distribution parameters:

LR =
∑
j

sigmoid
(
logαj − β log

−γ

ζ

)

where j is indexing over all of the elements of the weights.
This is differentiable and so it can be applied to neural
networks.

The advantage of L0 regularization is that it enforces spar-
sity without placing a penalty on the magnitude of the
weights by placing a penalty on the expected number of
non-zero weights. Additionally, it lends itself to a straight-
forward definition of group sparsity across time-steps as we
will see in Section 2.4. In our experiments, we use the hyper-
parameters for the L0 regularization suggested by (Louizos
et al., 2017).

2.3. Skip Connections

In this work, we add skip connections to the EQL network
to introduce an inductive bias towards simpler equations
while simultaneously enabling the learning of more complex
equations. In particular, we turn to the skip connections
introduced by DenseNets which concatenates the output of

Symbolic
layer

෩𝑊

𝑊 𝑓𝑥 ො𝑦

𝑡

MWU

Architecture of the parameterized network.

⊙

𝑧 Symbolic
layer

෩𝑊

𝑊 𝑓

MWU

⊙

𝑧

Figure 2. Architecture of the parameterized EQL network.

the previous layer with that of the next layer (Huang et al.,
2017). More specifically, we modify Equation 2 as:

h(i) =
[
f
(
g(i)

)
;h(i−1)

]
(3)

Skip connections introduce a slight inductive bias towards
learning simpler functions, since functions can route “di-
rectly” to the output without needing to go through the
identity primitive function of successive layers.

2.4. Parameterized Architecture

To modify the EQL network to learn parametric systems,
we parameterize the weights W themselves so that they
are a function of time, W(t). While a number of models
can be used to parameterize the weights, we use what we
call the meta-weight unit (MWU), which consists of a fully-
connected network that time t as an input and outputs a
weight matrix for a single layer. The gate variables z are not
modified from the original EQL network and are thus not
a function of the parametric variable. As a result, all of the
“time steps” share the same sparsity regularization allowing
us to forego any further modifications to implement group
sparsity.

The MWU can handle arbitrary functions, including those
with discontinuities, and can be trained with backpropaga-
tion, allowing the entire system including the EQL network
to be trained end-to-end. We call the overall architecture
the parameterized EQL (PEQL) network, and is shown in
Figure 2.

The advantage of this architecture is that it can make pre-
dictions on a continuous domain of t and does not need to
restrict the data to fixed points in time. This is in contrast to
other methods for parametrics systems that rely on gridded
data (Rudy et al., 2019; Xu et al., 2021). More specifically,
we can view the dataset as

D =
{
x(i), y(i), t(i)

}N

i=1
(4)

Deep Learning and Symbolic Regression for Discovering Parametric Equations

2.5. Training

All neural network architectures are implemented in Ten-
sorflow (Abadi et al., 2015). We use a sum of the MSE
and the sparsity regularization for the loss function, and
RMSprop to minimize the loss. For both learning rate and
regularization weight schedules, we use a one cycle policy.

3. Results
3.1. Analytic Expressions

To verify the ability of the parameterized and stacked EQL
architectures to perform symbolic regressions on parametric
systems, we benchmark the networks on data generated
from the analytical expressions listed in Table 1, namely
t · x2 +3 sgn(t) · x and sin

(
5+t
2 · x

)
, where sgn is the sign

function (also known as the signum function).

For all tests, 512 training data points with x ∈ [−3, 3] are
sampled for each of 128 fixed values of t ∈ [−3, 3] for
a total of 512 · 128 = 65 536 training examples. To test
generalization, the EQL architectures are evaluated on test
data points with x ∈ [−5, 5].

Due to sensitivity of the EQL architectures to the random
initialization of network weights, 40 trials were run for each
function. In practice, the networks only need to learn the
correct equation once over a reasonable number of trials,
since it is possible to construct a validation method that
selects the best equation from a set of learned equations.
Considerations such as equation simplicity and prior beliefs
can be used to construct pareto fronts and select the best
equation, as is often done with more traditional symbolic
regression approaches. For simplicity in this work, we
simply select the trial with the lowest generalization error.

Table 1 shows the learned equations for our benchmarks.
Note that the PEQL does not learn a functional form for
t, and so we list the learned equations at chosen points
in t. Thus, the PEQL is able to learn arbitrary functions
of the parametric coefficient, although we choose simple
functional forms here for convenience.

As an example of the prediction fit and extrapolation ability
of the PEQL, we look at the results for learning the function
f(t, x) = t · x2 + 3 sgn(t) · x in Figure 3. We see that the
PEQL network prediction not only matches the training data
extremely well, it also extrapolates outside of the training
regime, |x| > 3. This is only possible because the PEQL
has learned the underlying governing equation of the system.
Figure 3(b) shows that the PEQL also learns the paramet-
ric coefficient, and demonstrates that it can learn arbitrary
functions of t that may have discontinuities.

We also show the prediction results of the stacked network
for the function f(t, x) = sin

(
5+t
2 · x

)
in Figure 4. Again,

Figure 3. Results of the PEQL network for the function f(t, x) =
t · x2 + 3 sgn(t) · x. (a) Predictions for select values of t. Outputs
with |x| > 3 (highlighted in red) are extrapolated. (b) Learned
coefficient functions.

Figure 4. PEQL network predictions on select t values for the
function f(t, x) = sin

(
5+t
2

· x
)
. Outputs with |x| > 3 (shown in

red) are extrapolated.

the predictions match the true data extremely well across
time steps and outside of the training regime. Although
sinusoidal functions are typically difficult to learn through
linear regression techniques, our method is able to learn this
function across multiple spatial frequencies. Additionally,
our method integrates t into symbolic discovery and does
not merely perform a regression to compute the t-dependent
coefficients.

Note that because the varying coefficient is inside the sgn
and sin functions for f3 and f4, respectively, methods such
as from refs. (Luo et al., 2021) or (Brunton et al., 2016) that
rely on linear regression techniques would not be able to
discover these types of equations. However, the multi-layer
architecture of the SEQL and PEQL networks allow for the
varying coefficient to be inside nested functions, enabling
discovery of much more complex parametric equations.

Deep Learning and Symbolic Regression for Discovering Parametric Equations

Table 1. Learned equations of the parameterized network on select t values for various analytical equations.

t · x2 + 3 sgn(t) · x
t TRUE LEARNED

−2.619 −2.62x2 − 3.00x −2.63x2 − 3.02x− 0.06
−1.095 −1.10x2 − 3.00x −1.10x2 − 3.00x+ 0.01
0.381 0.38x2 + 3.00x 0.38x2 + 3.00x− 0.01
1.905 1.91x2 + 3.00x 1.90x2 + 2.99x+ 0.03

sin
(
5+t
2

· x
)

t TRUE LEARNED
−2.619 sin(1.190x) sin(1.190x)
−1.095 sin(1.952x) sin(1.952x)
0.381 sin(2.690x) sin(2.691x)
1.905 sin(3.452x) sin(3.452x)

3.2. Differential Equation Datasets

We now look at a PDE datasets investigated in Rudy et al.
(2019). In Rudy et al. (2019), the partial differential terms
(e.g. ux, uxx and their combinations (e.g. uux) were pre-
computed and fed into SINDy to discover the governing
PDE. Here we pre-compute the individual partial differen-
tial terms, but we do not explicitly pre-compute the combi-
nations.

3.2.1. ADVECTION-DIFFUSION EQUATION

The advection-diffusion equation describes numerous phys-
ical transport systems and has been applied to describe the
movement of pollutants, reservoir flow, heat, and semicon-
ductors. We use an adaptation of the equation that includes a
spatially-dependent velocity field, as in (Rudy et al., 2019):

ut = f ′(x)u+ f(x)ux + ϵuxx. (5)

Note that the parametric quantities vary with respect to
space rather than time. The PDE is solved numerically
using a spectral method on the domain x ∈ [−5, 5] and
t ∈ [0, 5] with f(x) = −1.5+cos

(
2πx
5

)
and ϵ = 0.1 using

code from (Rudy et al., 2019). Data was sampled from 256
different points in the x-domain and 512 different points in
the t-domain, for a total of 256 · 512 = 131 072 examples.

The predicted value of ut and the predicted coefficients
f̂ ′(x) and f̂(x) after training are shown in Figure 5. The
predicted values match the actual values very closely and the
EQL network is able to extract the correct equation. Again,
note that the predicted coefficients by the fully-connected
neural network are smooth as a function of x despite the
lack of explicit regularization.

3.3. Spring System

Finally, we demonstrate the ability of the PEQL network
to performing symbolic regression on structured, high-
dimensional data by integrating with other deep learning
architectures and training end-to-end.

We consider a dataset that consists of pairs of 1D images of
point particles that interact through a spring-like force. The
input data is a 1D grayscale image x with 64 pixels which
represents a 1D spatial domain z ∈ [−4, 4]. Each image
contains a single particle, represented by a Gaussian with

Figure 5. Results for learning the advection-diffusion equation us-
ing the PEQL network. (a) Predicted vs. actual values of ut.
(b) Predicted coefficient functions and prediction errors in (ut =
a(x) · u+ b(x) · ux + c(x) · uxx) with a(x) = − 2π

5
sin

(
2π
5

· x
)
,

b(x) = −1.5 + cos
(
2π
5

· x
)
, and c(x) = 0.1.

Conv
Encoder

shared weights

Ƹ𝑧1

SEQL/
PEQL

ො𝑦

Conv
Encoder Ƹ𝑧2

𝑥1

𝑥2

Figure 6. The combined architecture used for high-dimensional
system tasks involving a convolutional encoder followed by an
EQL network.

mean centered at its position zi and a fixed variance of 0.1.
We look at two different target for symbolic regression: the
spring force F = −k(t)(z2 − z1) with k(t) = 5−t

2 .

To approach this problem, we use the architecture shown
in Figure 6. Each image xi is fed into a separate encoder,
where the two encoders share the same weights. The en-
coder consists of 2 convolutional layers followed by 3 fully-
connected layers and a batch normalization layer. The
encoders each output a single-dimensional latent variable
ẑ1, ẑ2, which are then fed into the PEQL network. The batch
normalization layer serves to constrain the variance (and
thus, range) of the latent variable so that the PEQL network

Deep Learning and Symbolic Regression for Discovering Parametric Equations

Figure 7. Results for learning the spring force function. (a) Pre-
dictions for select t values. Outputs with |z2 − z1| > 4 (shown
in red) are extrapolated. (b) Learned coefficient functions in the
equation f(t, z1, z2) = −k(t) · (z2− z1) = −a(t) · z1+ b(t) · z2
with k(t) = 5−t

2
using the convolutional PEQL.

Figure 8. Learned latent representation using the (left) convolu-
tional EQL network and (right) convolutional ReLU network for
the spring force problem.

does not need to scale to arbitrarily-sized inputs. The PEQL
network has a single scalar output, which is either the spring
force or the spring energy. The entire network is trained
end-to-end and is only shown the inputs x1,2 and the output
y, but must learn an appropriate representation ẑi. While
there are no constraints on the latent representation ẑi, we
expect it to have a one-to-one mapping to the true position
of the particle, zi.

For all tests, 512 training data points with z1, z2 ∈ [−3, 3]2

were sampled for each of 128 fixed values of t ∈ [−3, 3]. To
evaluate the extrapolation ability of these architectures, train-
ing data points were restricted to pairs with |z2 − z1| ≤ 4,
while no such restriction was imposed on testing data. In
addition, we compare against a baseline test of a model con-
sisting of the same encoder architecture with a dense ReLU
network replacing EQL network. We call this baseline the
ReLU network. 20 trials were run for each experiment and
the trial with the lowest generalization error was selected.

Results for learning the spring force are shown in Figure 7.
We see that both the EQL network and the ReLU architec-
tures are able to train on the data inside the training domain,

but only the EQL network is able to extrapolate outside of
the training regime whereas the ReLU network completely
fails to extrapolate. Additionally, the EQL network learns
the governing equation, with the learned parametric coeffi-
cient plotted in Figure 7 (left). Note that while the data is
generated by the equation F = −k(t)(z2 − z1), the EQL
network learns the expression F̂ = −a(t)ẑ1+b(t)ẑ2. Upon
inspection, we see that a(t) ≈ b(t) and so the EQL network
has discovered an approximately equal expression to what
we expect.

An additional feature of the EQL network is the linear map-
ping of the latent variable to the true position in Figure 7
(right). While there is no explicit constraint or regularization
placed on the latent space, because the EQL network must
learn to use the latent variable to form the equation, the
end-to-end training of the architecture forces the mapping
to be an analytical transformation of the original variable,
which in this case is a linear mapping. In contrast, the latent
variable mapping for the ReLU network is shown in Figure
8. While it is one-to-one, it is not linear since there is no
bias to make the mapping linear.

4. Discussion
We have proposed a variant of the EQL network—the pa-
rameterized architecture—to enable neural network-based
symbolic regression of parametric systems. We have demon-
strated our system on parametric analytic equations, a PDE,
as well as a dataset encoded as images. Our method has the
potential to combine the power of deep learning and sym-
bolic regression to enable scientific discovery on complex
and high-dimensional datasets.

We note that we used analytic expressions for the param-
eterizations of the coefficients for simplicity of analysis.
However, this is unnecessary and the parametric coefficient
can be an arbitrary function without an analytic form. Thus,
our system is useful to analyze systems that we know are
partially governed by an analytic equation, but partially gov-
erned by some other mechanism that may be too complex
or noisy to capture. This is similar in spirit to methods for
solving PDEs that replace part of the equation with a neural
network often to correct for discretization errors (Pathak
et al., 2020; Kochkov et al., 2021).

The PEQL is much more flexible than other methods for
parametric systems such as (Rudy et al., 2019; Xu et al.,
2021), as the PEQL is able to interpolate in time and make
predictions at arbitrary time points whereas prior methods
rely on the data being in a gridded format. We note that
while the PEQL does not always perfectly converge, once
the base equation has been found, further fine-tuning can be
done to more accurately extract the parametric coefficients.
In addition, another direction for future work to bridge this

Deep Learning and Symbolic Regression for Discovering Parametric Equations

gap is to introduce different learning rate schedules for the
EQL network and the MWU in the parameterized architec-
ture, as the EQL network typically requires large learning
rates to escape local minima and converge, whereas large
learning rates may be detrimental to the MWU.

Acknowledgements
We would like to thank Rumen Dangovski, Anka Hu, and
Amber Li for insightful discussions and work on related
projects. This work is supported in part by the the National
Science Foundation under Cooperative Agreement PHY-
2019786 (The NSF AI Institute for Artificial Intelligence
and Fundamental Interactions, http://iaifi.org/).
This research was also sponsored in part by the Department
of Defense through the National Defense Science & En-
gineering Graduate Fellowship (NDSEG) Program. This
material is based upon work partly supported by the Air
Force Office of Scientific Research under the award number
FA9550-21-1-0317. Research was sponsored by the United
States Air Force Research Laboratory and the United States
Air Force Artificial Intelligence Accelerator and was ac-
complished under Cooperative Agreement Number FA8750-
19-2-1000. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the United States Air Force or the U.S. Gov-
ernment. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwith-
standing any copyright notation herein.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Brunton, S. L., Proctor, J. L., and Kutz, J. N. Discovering
governing equations from data by sparse identification of
nonlinear dynamical systems. Proceedings of the national
academy of sciences, 113(15):3932–3937, 2016.

Champion, K., Lusch, B., Kutz, J. N., and Brunton, S. L.
Data-driven discovery of coordinates and governing equa-
tions. Proceedings of the National Academy of Sciences,
116(45):22445–22451, 2019.

Costa, A., Dangovski, R., Dugan, O., Kim, S., Goyal,
P., Soljačić, M., and Jacobson, J. Fast neural mod-
els for symbolic regression at scale. arXiv preprint
arXiv:2007.10784, 2020.

Cranmer, M., Sanchez Gonzalez, A., Battaglia, P., Xu, R.,
Cranmer, K., Spergel, D., and Ho, S. Discovering sym-
bolic models from deep learning with inductive biases.
Advances in Neural Information Processing Systems, 33:
17429–17442, 2020.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589,
2021.

Kim, S., Lu, P. Y., Mukherjee, S., Gilbert, M., Jing, L.,
Čeperić, V., and Soljačić, M. Integration of neural
network-based symbolic regression in deep learning for
scientific discovery. IEEE Transactions on Neural Net-
works and Learning Systems, 32(9):4166–4177, 2020.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner,
M. P., and Hoyer, S. Machine learning–accelerated com-
putational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21), 2021.

Koza, J. Genetic programming as a means for programming
computers by natural selection. Statistics and Comput-
ing, 4(2):87–112, jun 1994. ISSN 0960-3174. doi: 10.
1007/BF00175355. URL http://link.springer.
com/10.1007/BF00175355.

Long, Z., Lu, Y., and Dong, B. Pde-net 2.0: Learning pdes
from data with a numeric-symbolic hybrid deep network.
Journal of Computational Physics, 399:108925, 2019.

Louizos, C., Welling, M., and Kingma, D. P. Learn-
ing Sparse Neural Networks through $L 0$ Regulariza-
tion. arXiv preprint arXiv:1712.01312, dec 2017. URL
https://arxiv.org/abs/1712.01312.

Lu, P. Y., Ariño, J., and Soljačić, M. Discovering sparse
interpretable dynamics from partial observations. arXiv
preprint arXiv:2107.10879, 2021.

Luo, Y., Liu, Q., Chen, Y., Hu, W., and Zhu, J. Ko-
pde: Kernel optimized discovery of partial differen-
tial equations with varying coefficients. arXiv preprint
arXiv:2106.01078, 2021.

http://iaifi.org/
https://www.tensorflow.org/
http://link.springer.com/10.1007/BF00175355
http://link.springer.com/10.1007/BF00175355
https://arxiv.org/abs/1712.01312

Deep Learning and Symbolic Regression for Discovering Parametric Equations

Martius, G. and Lampert, C. H. Extrapolation and learning
equations. arXiv preprint arXiv:1610.02995, oct 2016.
URL http://arxiv.org/abs/1610.02995.

Pathak, J., Mustafa, M., Kashinath, K., Motheau, E., Kurth,
T., and Day, M. Using machine learning to augment
coarse-grid computational fluid dynamics simulations.
arXiv preprint arXiv:2010.00072, 2020.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Rudy, S., Alla, A., Brunton, S. L., and Kutz, J. N. Data-
driven identification of parametric partial differential
equations. SIAM Journal on Applied Dynamical Systems,
18(2):643–660, 2019. doi: 10.1137/18M1191944. URL
https://doi.org/10.1137/18M1191944.

Sahoo, S., Lampert, C., and Martius, G. Learning equations
for extrapolation and control. In International Conference
on Machine Learning, pp. 4442–4450. PMLR, 2018.

Schmidt, M. and Lipson, H. Distilling free-form natu-
ral laws from experimental data. Science (New York,
N.Y.), 324(5923):81–5, apr 2009. ISSN 1095-9203. doi:
10.1126/science.1165893. URL http://www.ncbi.
nlm.nih.gov/pubmed/19342586.

Udrescu, S.-M. and Tegmark, M. Ai feynman: A physics-
inspired method for symbolic regression. Science Ad-
vances, 6(16):eaay2631, 2020.

Xu, H., Zhang, D., and Zeng, J. Deep-learning of parametric
partial differential equations from sparse and noisy data.
Physics of Fluids, 33(3):037132, 2021.

Zhang, M., Kim, S., Lu, P. Y., and Soljačić, M. Deep learn-
ing and symbolic regression for discovering parametric
equations. arXiv preprint arXiv:2207.00529, 2022.

http://arxiv.org/abs/1610.02995
https://doi.org/10.1137/18M1191944
http://www.ncbi.nlm.nih.gov/pubmed/19342586
http://www.ncbi.nlm.nih.gov/pubmed/19342586

