
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNIFYING LATENT UNCERTAINTY SIGNALS
IN LARGE LANGUAGE MODELS
FOR IMPROVED FACTUAL PRECISION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have emerged as powerful tools for knowledge-
intensive tasks, yet their tendency to generate factually incorrect or misleading
outputs—commonly referred to as hallucinations—poses a fundamental challenge
to their reliability. While uncertainty estimation is critical for mitigating such errors,
LLMs are not explicitly trained to represent or express uncertainty. In this work,
we investigate whether and how uncertainty is implicitly encoded within pretrained
models. Through a probing-based analysis, we demonstrate that LLMs internalize
multiple distinct and dataset-specific uncertainty signals, which can be extracted
as linear directions in their latent space. These signals are most pronounced in
intermediate layers, exhibit limited cross-task generalization, and are substantially
enhanced by instruction tuning and [IDK]-token training. Building on these find-
ings, we propose Linear Uncertainty Alignment, a novel framework that leverages
a unified uncertainty direction to train LLMs to classify their own correctness. Our
experiments show that this significantly improves factual precision and reduces
hallucination rates under zero-shot evaluation. Together, these results provide new
insights into the internal structure of uncertainty in LLMs and introduce a practical
method for aligning models toward more trustworthy behavior.

1 INTRODUCTION

Large Language Models (LLMs) are trained on vast corpora of text data (Brown et al., 2020; Raffel
et al., 2020; Chowdhery et al., 2023; Touvron et al., 2023; Le Scao et al., 2023; Jiang et al., 2023a),
enabling them to comprehend and generate human language. These training datasets encompass a
wide range of written human knowledge, including books, news articles, Wikipedia, and scientific
publications. Through this extensive pretraining, LLMs retain significant portions of the information
they are exposed to, effectively embedding real-world knowledge within their parameters such that
they are able to serve as knowledge repositories (Petroni et al., 2019; Roberts et al., 2020; Cohen
et al., 2023a; Pan et al., 2023). This capability allows LLMs to be leveraged in tasks that depend on
such knowledge, such as closed-book question answering (Brown et al., 2020; Roberts et al., 2020)
and information retrieval (Tay et al., 2022).

Despite their widespread adoption, LLMs are widely known to suffer from ‘hallucinations’—a predis-
position towards producing outputs that are false or misleading—which significantly undermines their
accuracy and trustworthiness (Ji et al., 2023; Manduchi et al., 2024). Hallucinations may manifest in
various forms, including factually incorrect statements (Maynez et al., 2020; Devaraj et al., 2022;
Tam et al., 2023), internal inconsistencies (Elazar et al., 2021; Mündler et al., 2023), contradictions
(Cohen et al., 2024a), or statements lacking clear sources or attribution (Bohnet et al., 2022; Rashkin
et al., 2023; Yue et al., 2023).

Uncertainty, however, is a concept that LLMs are not generally known to capture (Yin et al., 2023;
Kapoor et al., 2024). At the very least, they are generally not explicitly trained on it. This lack of
competency regarding uncertainty, however, often results in misinformation generation, which can be
harmful and misleading (Maynez et al., 2020; Devaraj et al., 2022; Tam et al., 2023), as LLMs have a
hard time expressing a lack of knowledge both verbally and through their output distribution.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Multiple data-specific linear uncertainty vectors identified at the end of each transformer
layer. Vectors are near-orthogonal across topics and align within a topic; a unified vector correlates
positively with all.

Some more advanced methods such as instruction tuning (Ouyang et al., 2022; Zhang et al., 2023)
during post-training and [IDK] tuning (Cohen et al., 2024b) during pretraining aim, inter alia, to
align LLMs to more efficiently express their uncertainty and refrain from misinformation generation.
While instruction tuning more generally aligns LLMs with human intent by fine-tuning them on
task-specific instructions and corresponding outputs, the model is often also encouraged to refrain
from answering questions when the specific answer is not known to it.

In this work, we first propose an analysis mechanism to study the uncertainty captured by large
language models (LLMs). Using this mechanism, we show that LLMs internalize a notion of uncer-
tainty during pretraining, which can be extracted via linear probes from their latent representations.
Specifically, we identify linear uncertainty vectors—directions in hidden space—that correlate with
generation correctness across multiple models and datasets, even without further weight training.
This suggests that uncertainty is a learnable, linearly separable concept within LLMs. Our analysis
further shows that LLMs do not encode a single unified notion of uncertainty, but rather multiple
distinct vectors tied to different datasets or knowledge types. While these vectors are often nearly
independent, partial transfer exists—e.g., across mathematics benchmarks. These findings suggest
new ways of mitigating hallucination, since inconsistencies between uncertainty signals may underlie
unreliable outputs.

Building on these insights, we introduce Linear Uncertainty Alignment, a method for aligning models
with their internal uncertainty signals by training them to exploit the identified classifiers to predict
their own correctness. This alignment substantially improves factual precision in zero-shot evaluation
and reinforces that the linear directions correspond to meaningful representations of uncertainty.

In summary, our contributions are twofold: (1) we provide a systematic analysis showing that LLMs
implicitly encode multiple forms of uncertainty that can be isolated through linear probes (Section 2),
and (2) we present a training framework that leverages these signals to improve factual precision and
reduce hallucination (Section 3).

2 IDENTIFYING UNCERTAINTY PREDICTORS

2.1 FRAMEWORK

In this work, we assume that uncertainty is represented within an LLM’s latent space across layers.
Specifically, let hi(x) denote the hidden state at the end of the i-th layer, taken at the last vector
(created from the last input token), given input prompt x. For each hidden state, we search for a linear
vector ui such that the classifier C(x, i) = u⊺

i hi(x) + bi predicts the model’s subsequent answer
correctness with accuracy significantly above chance. Intuitively, this identifies a linear concept
encoding the model’s uncertainty about its own outputs.
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Model OpenBookQA PopQA Qampari ROMQA SVAMP StrategyQA TriviaQA TruthfulQA

Llama-3.2-1B 0.534 0.857 0.634 0.750 0.729 0.689 0.716 0.737
Llama-3.2-3B 0.590 0.793 0.734 0.583 0.750 0.608 0.742 0.600
Llama-3.1-8B 0.644 0.757 0.630 0.763 0.711 0.684 0.757 0.722
Llama-3.1-8B-Instruct 0.694 0.768 0.679 0.750 0.767 0.639 0.776 0.719
Mistral-7B-v0.1 0.597 0.747 0.727 0.750 0.687 0.643 0.760 0.673
IDK-tuned-Mistral-7B-v0.1 0.611 0.829 0.789 0.667 0.628 0.547 0.693 0.725
Qwen2.5-7B 0.678 0.817 0.697 0.615 0.696 0.698 0.717 0.678
Qwen3-14B 0.743 0.833 0.630 0.596 0.789 0.561 0.782 0.699
Qwen3-14B-Instruct 0.619 0.771 0.861 0.655 0.767 0.711 0.756 0.726

Table 1: Correctness prediction accuracy across 8 of the evaluation datasets (see Table 5 for additional
results).

Linear Uncertainty Search Let M be a language model and D = {(qj , aj)}nj=1 a dataset of
questions and answers. To find ui for layer i, we train a linear classifier to predict whether M ’s
answer to qj is correct. Using a training split DTRAIN = {(qj , aj)}mj=1,m < n, we consider the
model’s predictions and define labels as

L(qj) =

{
1 if M(qj) = aj
0 otherwise.

(1)

This yields D̂TRAIN = {(qj , L(qj))}mj=1. A classifier is then trained on the hidden states hi(qj) to
predict L(qj). With a linear classifier, this corresponds to identifying a direction ui(D) in the latent
space—referred to as the uncertainty direction for dataset D—along with its learned bias bi.

Uncertainty Vector as a Predictor We evaluate the uncertainty predictor ui(D) on held-out test
sets from D. Given input x, hi(x) is the hidden state at layer i, and the classifier

Cui(D)(x) =

{
INCORRECT if [ui(D)]⊺hi(x) + bi > 0

CORRECT otherwise
(2)

predicts whether M ’s next-token choice is correct. Comparing predictions against the ground truth
allows us to compute accuracy, precision, recall, and related metrics.

2.2 EXPERIMENTAL SETUP FOR ANALYSIS

To evaluate and utilize our uncertainty identification framework, we consider a series of experiments,
for which we first introduce the experimental setup.

Foundation Models. In order to reach general conclusions that are not specific to any particular
LLM, in this work we study three different families of models: the Llama family of models (Tou-
vron et al., 2023; Dubey et al., 2024), Mistral (Jiang et al., 2023b), and Qwen (Bai et al., 2023;
Yang et al., 2024). Specifically, for Llama, we study Llama-3.2-1B, Llama-3.2-3B, and
Llama-3.1-8B, for Mistral, we consider Mistral-7B-v0.1, and finally for Qwen, we rely on
Qwen2.5-7B and Qwen3-14B.

Advanced Models. For evaluating the effects of different types of training on the linear uncertainty
encodings, we exploit three particular additional models in our experiments. To capture the effect of
instruction tuning (Ouyang et al., 2022; Zhang et al., 2023), we use Llama-3.1-8B-Instruct
and Qwen3-14B-Instruct, which both were post-trained using instruction tuning. Furthermore,
we follow Cohen et al. (2024b) and use the IDK-tuned-Mistral-7B-v0.1 model in our experi-
ments to evaluate the effect of [IDK] tuning—a method that essentially adds a new uncertainty token
to the model’s vocabulary and teaches the model to use it during pretraining by adapting its loss to
consider the new token.
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Datasets and Benchmarks. We utilize 16 QA datasets and benchmarks in both our linear uncer-
tainty search (Section 2.1) and the induced classifier evaluation (Section 2.1). We group them into six
thematic categories:

• Commonsense QA: CommonsenseQA (Talmor et al., 2019), StrategyQA (Geva et al., 2021a).
These include questions that assess the model’s ability to apply everyday reasoning and
background knowledge to answer questions beyond surface-level facts.

• Fact-Lookup and Adversarial QA: GranolaEntityQuestions (Yona et al., 2024), Natural
Questions (Kwiatkowski et al., 2019), PopQA (Mallen et al., 2022), TriviaQA (Joshi et al.,
2017), TruthfulQA (Lin et al., 2021). These consist of questions that test the model’s factual
recall and resilience to misleading or adversarial question phrasing.

• List-Output QA: QAMPARI (Amouyal et al., 2023), RoMQA (Zhong et al., 2022). Both
evaluate whether models can produce comprehensive sets of correct answers, challenging
their ability to recall multiple relevant facts simultaneously

• Science QA (K–12): ARC-Easy (Clark et al., 2018), OpenBookQA (Mihaylov et al., 2018).
These focus on elementary school and high-school level science, requiring models to
combine factual knowledge with basic reasoning.

• Math Word Problems: GSM8K (Cobbe et al., 2021), ASDiv-A (Miao et al., 2020), SVAMP
(Patel et al., 2021). These include queries that test models on arithmetic and algebraic
reasoning through natural language mathematical problems.

• Code Generation: HumanEval-X (Zheng et al., 2023), MBPP (Austin et al., 2021). We use
these datasets to evaluate the ability of models to generate correct and functional software
code given natural language programming prompts.

Notably, for each of these, we create a fixed training split, which will be used to derive our uncertainty
vectors, and a test split, which will be used to evaluate their performance.

Linear Uncertainty Search Details. For every model M , transformer layer i, and evaluation
dataset D, we fit a logistic regression probe on the hidden states hi(x) and obtain a single weight
vector,

ui(D),

which serves as the linear uncertainty direction for that (layer, dataset) pair.

To obtain a dataset-agnostic baseline, we also train an additional probe on the concatenation of all
datasets. The resulting vector is denoted as

ui(DUNIFIED).

Evaluation. We evaluate the ability of our identified uncertainty linear vectors to predict the
correctness of the model’s generation. For this, we consider the following metrics: (i) Accuracy:
the ratio of correct predictions by the classifier that is induced by the uncertainty linear vector, (ii)
Precision: the ratio of actually wrong completions by the model among those that the induced
classifier predicted to be wrong.

2.3 ANALYSIS RESULTS

A Linear Representation of Uncertainty is Learned during Pretraining. Tables 1 and 5 report
the performance of correctness classifiers, derived from linear uncertainty vectors, across models and
datasets (best-performing layers only; full layer-wise analysis in a later section). Despite keeping
model weights frozen, we identify linear directions in latent space that yield meaningful correctness
predictions, with accuracy well above the 0.5 random baseline. The strongest signals consistently
emerge from upper-intermediate layers (roughly 2/3 depth), while performance declines in final layers
(Figures 8 and 9). This concentration suggests that uncertainty becomes most explicit once knowledge
has been consolidated but before it is fully transformed into generation-specific representations. These
findings provide strong evidence that uncertainty is encoded in a linearly separable form, concentrated
in the middle of the network.
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Figure 2: Correctness prediction accuracy
results of the classifier induced by u26(D),
for datasets D given on the y-axis, using
Llama-3.1-8B, while testing on the test
set for datasets given on the x-axis.

Figure 3: Cosine similarity results across all
linear uncertainty vectors at layer number 22
of Llama-3.1-8B

LLMs Learn Multiple Different Linear Uncertainty Vectors. Linear uncertainty vectors appear
across layers but are typically dataset-specific. A classifier trained on D1 often fails on a different
D2 (D1 ̸= D2), and cosine similarity between vectors is often near-zero (Figure 3). Nonetheless,
exceptions exist: in domains like Math Word Problems, classifiers transfer effectively across
datasets such as GSM8K, ASDiv, and SVAMP (Figure 7), sometimes matching or exceeding in-
domain accuracy. Thus, while uncertainty is largely dataset-specific, certain domains exhibit shared
structures that support generalization.

A Unified Uncertainty Axis with Universal Positive Alignment. The unified probe ui(DUNIFIED),
trained on all datasets, aligns positively with each dataset-specific vector, despite the near-
orthogonality of those vectors. One would ordinarily anticipate a mix of positive and negative
associations, so this universal positivity reveals a shared component across tasks. Conceptually,
this indicates a generalized axis of uncertainty (Figure 1), offering both theoretical insight and a
methodological tool for surfacing common uncertainty structure.

Fine-Tuning, Not Scale, Enhances Uncertainty Representation. Scaling does little to improve
uncertainty prediction: larger Llama models perform only marginally better than smaller ones
(Figure 9). In contrast, specialized training substantially boosts performance. Instruction tuning
improves the accuracy and shifts peak performance to earlier layers, while [IDK] tuning not only
increases accuracy but also reduces overconfidence, yielding more reliable predictors. Both enhance
cross-dataset transfer, underscoring that fine-tuning—not scale—is key to strengthening uncertainty
representations. These results suggest that tuning strategies can explicitly guide models to align latent
uncertainty signals with observable correctness, whereas sheer model size does not.

3 LINEAR UNCERTAINTY ALIGNMENT

As a consequence of our previous analysis (Section 2), we propose a novel tuning mechanism
designed to explicitly align language models with their own internal uncertainty representations. The
key idea is to leverage the dataset-specific uncertainty vectors ui(D) identified in Section 2.1 and
integrate them into the training objective. By doing so, the model is encouraged not only to predict
correct answers but also to recognize and classify the correctness of its own generations.
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3.1 DUAL-OBJECTIVE TRAINING

Our method tunes the model with two complementary objectives:

Standard Cross-Entropy Loss. As in conventional fine-tuning, the model is trained to maximize
the likelihood of gold answers. Given a dataset D = {(qj , aj)}nj=1, the cross-entropy loss is defined
as

LCE = − 1

n

n∑
j=1

logPθ(aj | qj), (3)

where Pθ(aj | qj) denotes the probability assigned by the model with parameters θ to the correct
answer aj given question qj .

Uncertainty Classification Loss. To align the model with its own uncertainty, we introduce a
secondary objective that encourages hidden states to reflect correctness predictions. For each input qj ,
let hi(qj) denote the hidden state of layer i, and let L(qj) ∈ {0, 1} be the correctness label defined in
Equation 1. Using the fixed uncertainty vector ui(D) and bias bi, the predicted correctness is given
by

L̂(qj) = σ (ui(D)⊺hi(qj) + bi) , (4)

where σ(·) is the logistic sigmoid function. The corresponding classification loss is

LU = − 1

n

n∑
j=1

[
L(qj) log L̂(qj) + (1− L(qj)) log(1− L̂(qj))

]
. (5)

3.2 UNIFIED OBJECTIVE

The final training objective combines both components as

L = LCE + λ · LU, (6)

where λ is a tunable hyperparameter controlling the trade-off between improving factual correctness
and aligning with the model’s internal uncertainty representation.

This dual-objective formulation encourages the model to (a) produce accurate answers where possible,
while (b) learning to reflect and calibrate its uncertainty in line with the fixed, data-derived uncertainty
vectors. As we show in Section 4, models tuned with this method exhibit improved factual precision
and reduced hallucination rates under zero-shot evaluation.

4 EXPERIMENTS AND RESULTS

We proceed by detailing the setup underlying the experimental evaluation of our proposed Linear
Uncertainty Alignment method, followed by a discussion of the corresponding results and conclusions.

4.1 EXPERIMENTAL SETUP

Our experimental design builds directly on the models, datasets, and evaluation metrics introduced in
Section 2. Here, we describe the details specific to assessing our alignment method.

Instruction-Based Evaluation Protocol. To probe both factual precision and calibrated abstention
behavior, we employ an instruction-driven evaluation format. The instruction is designed to explicitly
invite models to abstain when uncertain, thereby testing their ability to leverage internal uncertainty
representations. Specifically, each test instance is presented in the form:

“Please answer the following question. Please answer with I don’t know the answer in cases
where you’re not certain in your answer. The question is: . . . ”
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Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B
Dataset Tuned +Aligned Tuned +Aligned Tuned +Aligned

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
CommonsenseQA 40.5 25.0 30.9 50.7 23.9 32.5 38.9 28.7 33.0 50.5 28.1 36.2 45.3 34.0 38.9 57.2 32.7 41.6
Natural Questions 27.0 18.9 22.2 36.1 18.1 24.1 28.5 21.7 24.7 36.9 20.4 26.0 31.7 25.5 28.3 40.4 24.0 30.1
TriviaQA 56.2 47.0 51.2 65.9 46.2 54.4 58.5 52.7 55.5 66.7 50.9 57.8 59.8 58.9 59.3 68.1 57.8 62.5
PopQA 45.1 32.0 37.4 55.0 30.8 39.6 45.7 36.2 40.4 56.9 34.9 43.2 48.4 42.5 45.3 60.1 39.9 48.0
TruthfulQA 35.6 27.9 31.3 44.8 26.8 33.4 35.5 31.6 33.4 45.0 30.1 36.1 39.6 35.0 37.1 49.8 34.2 40.7
GSM8K 46.9 39.7 43.0 54.7 39.2 45.8 48.6 42.5 45.4 56.3 41.6 47.9 53.0 46.8 49.7 61.8 46.3 53.0
Average 41.9 31.7 36.0 51.2 30.8 38.3 42.6 35.6 38.7 52.0 34.3 41.2 46.3 40.5 43.1 56.2 39.2 46.0

Table 2: Comparison of precision (P), recall (R), and F1-score between tuned and uncertainty-aligned
LLaMA models across evaluation datasets. For each dataset and metric, the better result is highlighted
in bold.
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Figure 4: Comparison of precision, recall, and F1-score between tuned and uncertainty-aligned
LLaMA models (Llama-3.2-1B, Llama-3.2-3B, Llama-3.1-8B). Alignment consistently
improves precision and F1, with only a minor decrease in recall.

Tuning Variants. For each foundation model considered, we fine-tune the model under the dual-
objective formulation from Section 3. The tuning is conducted separately with respect to:

1. each layer-specific uncertainty vector ui(D) identified in Section 2;
2. the unified uncertainty direction uuni obtained by aggregating datasets (Section 2.3).

These two variants allow us to directly compare the impact of alignment to individual vectors versus
the global, unified representation.

Evaluation. Each tuned model variant is evaluated across all benchmark datasets used in our earlier
analysis, following the same correctness, precision, and hallucination metrics. We thus obtain a
comprehensive picture of how uncertainty alignment impacts model behavior across diverse tasks. In
particular, we measure improvements in factual precision, the reduction of spurious hallucinations,
and the calibrated use of abstentions (I don’t know) as a function of the tuning vector employed.

4.2 EVALUATION RESULTS

Per-Dataset Evaluation. Our first evaluation examines the effect of the proposed method on factual
precision in a dataset-specific setup. Concretely, for each dataset, we train a separate model using its
training split and then evaluate performance on the corresponding held-out test split. Importantly,
we choose the fixed uncertainty vector to be the one corresponding to the layer for which the
corresponding uncertainty vector produces the best classification results out of all the model layers.
Across all model sizes and datasets, we observe a consistent pattern: alignment markedly boosts
precision, with average gains of nearly 10 points, while recall is only moderately affected (Tables 2
and 6, Figure 4). This balance results in substantial improvements in F1, confirming that the method
not only reduces factual errors but also preserves the model’s ability to retrieve correct answers.
For example, on CommonsenseQA, precision improves from 45.3 to 57.2 for the 8B model, with
recall remains at a competitive 32.7, leading to an F1 increase from 38.9 to 41.6. Similar trends are
observed across Natural Questions, TriviaQA, PopQA, TruthfulQA, and GSM8K, where precision
gains consistently outweigh the relatively small recall drops, yielding stronger overall F1 scores.
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LLaMA-1B LLaMA-3B LLaMA-8B
Dataset Tuned +Aligned Tuned +Aligned Tuned +Aligned

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
CommonsenseQA 36.1 25.7 30.0 43.8 23.5 31.0 33.4 27.0 29.9 41.5 26.8 32.6 41.0 31.3 35.5 47.6 32.5 38.6
StrategyQA 35.0 20.3 25.7 32.2 24.1 27.7 34.6 26.5 30.0 36.0 24.9 29.5 33.9 29.0 31.3 38.0 25.1 30.3
Natural Questions 24.6 17.1 20.2 29.6 18.7 23.0 25.4 19.9 22.3 31.0 19.8 24.4 32.0 23.2 26.9 34.4 24.8 28.8
TriviaQA 56.0 46.1 50.6 60.7 44.9 51.6 58.3 53.8 56.0 61.1 50.3 56.0 58.3 58.9 58.6 65.0 56.1 60.4
PopQA 47.3 32.3 38.4 48.2 30.1 37.5 43.9 33.9 38.3 48.9 34.3 40.3 50.2 43.6 46.7 51.4 40.0 45.0
TruthfulQA 33.7 28.2 30.7 38.1 26.0 31.1 37.3 32.5 34.7 38.7 29.4 33.4 39.1 33.9 36.3 42.5 32.5 36.6
GSM8K 41.7 39.9 40.8 50.4 38.0 43.6 45.3 41.7 43.4 52.8 40.6 46.0 50.4 38.0 43.3 57.0 44.5 50.1

Table 3: Performance comparison between the baseline tuned LLaMA models and our Aligned
variants trained with the unified uncertainty vector as the classification signal in the auxiliary loss.
Results are reported on all evaluation datasets in terms of precision (P), recall (R), and F1-score. For
each dataset and metric, the better score between Tuned and +Aligned is highlighted in bold.
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Figure 5: Layer-wise evaluation of Llama-3.2-1Bmodels aligned using the different layer-specific
uncertainty vectors. Results are shown across all datasets in terms of (a) precision and (b) recall. The
curves demonstrate consistent improvements near the alignment layers, indicating that the extracted
vectors capture meaningful uncertainty signals.

These findings provide strong empirical support for our central hypothesis: the linear uncertainty
direction we identified indeed captures meaningful uncertainty in the model’s latent space. By
aligning generations along this axis, the model becomes more calibrated with respect to factual
correctness, which manifests as higher precision and better overall reliability.

Unified Vector results. In contrast to our above per-dataset alignment experiments, where a separate
model was tuned for each dataset-specific uncertainty vector, here we trained a single model by
leveraging the unified uncertainty vector as the auxiliary classification signal. For both the baseline
tuned models and our aligned variants, the training set was constructed by randomly sampling
10% of each dataset’s original training split used in the previous experiments, ensuring a fair and
consistent comparison. As shown in Tables 3 and 7, the unified alignment consistently improves
precision and F1 scores relative to the tuned baseline across nearly all datasets, while recall remains
competitive. Importantly, the fact that a single unified vector—learned once and applied across
heterogeneous tasks—leads to systematic gains provides strong evidence that this vector indeed
captures and represents the general concept of uncertainty within the model’s latent space.

4.3 FURTHER ANALYSIS

Layer Analysis. Figure 5 shows per-layer trends in precision and recall across all datasets. Perfor-
mance is consistently lowest at the embedding layer (layer 0), increases through intermediate layers,
and peaks around layers 10–12. Beyond this range, precision and recall either plateau or decline
slightly, suggesting that mid-layer representations capture the most informative uncertainty signal
for alignment. These findings are compatible with our earlier analysis results, further reinforcing
the conclusion that the unified uncertainty vector captures the underlying concept effectively (see
Appendix C).

Uncertainty Classification Loss Only. In this ablation study, we trained models using only the
auxiliary classification loss based on the uncertainty vector, while omitting the standard cross-entropy
objective. We then compared their performance to our full +Aligned method across all datasets. The
results show that removing cross-entropy leads to a substantial drop in recall, in some cases exceeding
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LLaMA-1B LLaMA-3B LLaMA-8B
Dataset +Aligned Ablation +Aligned Ablation +Aligned Ablation

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
CommonsenseQA 43.8 23.5 31.0 44.2 17.9 25.3 41.5 26.8 32.6 41.2 19.7 26.5 47.6 32.5 38.6 47.0 24.8 32.3
StrategyQA 32.2 24.1 27.7 33.0 16.0 21.2 36.0 24.9 29.5 35.6 17.8 23.2 38.0 25.1 30.3 37.7 19.4 25.2
Natural Questions 29.6 18.7 23.0 30.1 13.5 18.6 31.0 19.8 24.4 30.6 14.2 19.6 34.4 24.8 28.8 33.9 17.1 22.4
TriviaQA 60.7 44.9 51.6 61.2 32.5 40.6 61.1 50.3 56.0 60.9 36.4 45.2 65.0 56.1 60.4 64.7 41.2 49.9
PopQA 48.2 30.1 37.5 47.8 19.7 27.9 48.9 34.3 40.3 49.2 21.8 29.8 51.4 40.0 45.0 51.0 28.4 36.6
TruthfulQA 38.1 26.0 31.1 38.5 17.9 24.2 38.7 29.4 33.4 39.0 21.0 27.1 42.5 32.5 36.6 42.2 23.7 29.9
GSM8K 50.4 38.0 43.6 50.7 25.7 32.6 52.8 40.6 46.0 52.3 27.1 35.4 57.0 44.5 50.1 56.6 29.4 38.3

Table 4: Ablation study: comparison between our full +Aligned method (with cross-entropy and
classification loss) and the Ablation variant trained only with the classification loss. Results are
reported on all evaluation datasets in terms of precision (P), recall (R), and F1-score. The better score
for each dataset and metric is highlighted in bold.

25%, while precision is occasionally comparable or slightly higher. However, the overall F1 scores
consistently favor the full method, highlighting that the cross-entropy loss is crucial for maintaining
balanced predictions and preventing the model from becoming overly conservative.

5 RELATED WORK

Model Calibration. Our analysis is closely related to the challenge of model calibration (Guo et al.,
2017): providing a measure of the probability that a prediction is incorrect alongside the prediction
itself. Factual error detection can be viewed as a variation of calibration, where instead of a continuous
probability, we output a binary judgment of correctness. Common approaches include transformations
of model logits (Desai & Durrett, 2020; Jiang et al., 2021) and uncertainty-based methods (e.g.,
see Kuhn et al., 2023). Recent work explores supervised calibration with LMs, using fine-tuning
(Kadavath et al., 2022; Lin et al., 2022), in-context learning (Cohen et al., 2023a; Alivanistos et al.,
2022), zero-shot instruction methods (Cohen et al., 2023b), and consistency sampling (Yoran et al.,
2023). Other studies leverage internal states for certainty classification (Azaria & Mitchell, 2023),
introduce special tokens for unanswerable inputs (Lu et al., 2022), or design datasets for refusal
tuning (Zhang et al., 2024). Our work instead analyzes the dynamics of uncertainty encoding in
pretrained and calibrated models.

Mechanistic Interpretability Recent work has been aiming to identify circuits and features within
models that correspond to interpretable concepts such as factual recall, syntax, or positional reasoning
(Olsson et al., 2022; Yu et al., 2023). For instance, tools such as SAE (Sparse Autoencoders) have
been used to isolate human-interpretable features from residual stream activations (Meng et al., 2022).
Other studies explore how knowledge is stored and manipulated across layers, such as tracing factual
associations or memorized content to specific directions in the latent space (Geva et al., 2021b;
Gurnee et al., 2023; Geva et al., 2023; Yu et al., 2024). Despite promising progress, full mechanistic
understanding remains an open challenge due to the scale and complexity of modern models.

6 CONCLUSION

Our systematic analysis of uncertainty representation in Large Language Models reveals four key
findings: (1) linear uncertainty representations are learned during pretraining, with probing classifiers
achieving above-chance accuracy in predicting answer correctness, most pronounced in upper-
intermediate layers around two-thirds of model depth; (2) models acquire multiple, dataset-specific
uncertainty vectors that are largely orthogonal yet show meaningful cross-dataset generalization
within task families; (3) despite this near-orthogonality, a unified uncertainty axis aligns positively
with all dataset-specific directions, revealing a shared component across tasks; and (4) special-
ized training strategies—instruction tuning and [IDK] tuning—substantially enhance uncertainty
representation, while scaling alone provides only marginal gains.

Building on the third finding, we introduce Linear Uncertainty Alignment, a training method that
teaches models to classify their own correctness through dual objectives. This approach improves
factual precision while maintaining competitive recall, showing that uncertainty is not only learnable
and accessible but also deliberately alignable for building more trustworthy language models.
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A LIMITATIONS

While our analysis provides compelling evidence for the existence of linearly accessible uncertainty
representations in LLMs, it is limited to linear probes and does not explore more complex, nonlinear
structures that may further explain model behavior. Our evaluation focuses on a fixed set of models and
datasets, which, although diverse, may not capture the full variability seen in real-world applications
or domain-specific tasks. Additionally, correctness is treated as a proxy for uncertainty, which may not
fully align with how uncertainty manifests in open-ended or ambiguous generation scenarios. Finally,
the performance of our classifiers may also be influenced by dataset-specific biases, potentially
limiting generalizability.

B COMPUTATIONAL RESOURCES

In our experiments we use one NVIDIA A100 80G GPU.

C ADDITIONAL RESULTS

Here we provide additional noteworthy results from our experiments.
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Figure 6: Correctness prediction accuracy
results of the classifier induced by u27(D),
for datasets D given on the y-axis, using
Mistral-7B-v0.1, while testing on the
test set for datasets given on the x-axis.

Figure 7: Correctness prediction accuracy
results of the classifier induced by u21(D),
for datasets D given on the y-axis, using
Qwen2.5-7B, while testing on the test set
for datasets given on the x-axis..

Figure 8: Accuracy results of
Mistral-7B-v0.1 across all model
layers and datasets. Here the induced
classifiers were tested on the same dataset
(but different split) as they were searched on.

Figure 9: Correctness prediction pre-
cision averaged over all datasets of
the induced classifier, considering
the Llama family: Llama-3.2-1B,
Llama-3.2-3B, Llama-3.1-8B, and
Llama-3.1-8B-Instruct.
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Figure 10: Correctness prediction accuracy
results of the classifier induced by u15(D),
for datasets D given on the y-axis, using
Llama-3.1-8B-Instruct, while test-
ing on the test set for datasets given on the
x-axis.

Figure 11: Correctness prediction accu-
racy averaged over all datasets of the
induced classifier, considering the Qwen
family: Qwen2.5-7B, Qwen3-14B, and
Qwen3-14B-Instruct

Model ARC-Easy ASDiv-A CommonsenseQA GSM8K GranolaEntityQuestions HumanEval-X MBPP NaturalQuestions

Llama-3.2-1B 0.535 0.670 0.625 0.444 0.789 0.708 0.769 0.600
Llama-3.2-3B 0.710 0.648 0.598 0.688 0.790 0.732 0.641 0.675
Llama-3.1-8B 0.657 0.667 0.649 0.577 0.763 0.692 0.722 0.590
Llama-3.1-8B-Instruct 0.652 0.885 0.667 0.737 0.705 0.781 0.728 0.655
Mistral-7B-v0.1 0.657 0.691 0.709 0.550 0.782 0.707 0.707 0.630
IDK-tuned-Mistral-7B-v0.1 0.600 0.750 0.571 0.688 0.758 0.545 0.688 0.673
Qwen2.5-7B 0.750 0.800 0.718 0.682 0.704 0.578 0.648 0.750
Qwen3-14B 0.727 0.786 0.655 0.878 0.738 0.800 0.694 0.651
Qwen3-14B-Instruct 0.800 0.750 0.638 0.702 0.770 0.688 0.625 0.674

Table 5: Correctness prediction accuracy across the remaining datasets, complementing the results
given in Table 1.

LLaMA-1B LLaMA-3B LLaMA-8B
Dataset Tuned +Aligned Tuned +Aligned Tuned +Aligned

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
GranolaEntityQ 33.1 22.4 26.7 34.7 21.0 26.6 32.8 25.1 28.5 35.2 24.3 28.9 36.0 28.7 32.0 38.1 27.1 31.7
QAMPARI 29.4 19.8 23.6 31.2 18.7 23.7 28.5 22.6 25.2 32.0 21.8 26.0 33.1 27.2 29.9 35.0 26.1 29.8
RoMQA 26.8 16.5 20.4 28.3 15.1 19.7 27.4 19.7 22.8 29.1 18.9 22.8 30.6 24.5 27.1 32.8 23.3 27.1
ARC-Easy 42.2 31.6 36.1 44.0 30.4 36.1 45.1 37.2 40.7 47.0 35.8 40.6 48.2 41.0 44.3 49.9 39.6 44.2
OpenBookQA 39.0 27.3 32.1 40.5 26.0 31.6 38.7 31.8 34.9 41.2 30.7 35.2 42.5 35.4 38.6 44.3 34.0 38.4
ASDiv-A 34.8 28.1 31.1 37.1 26.5 30.9 36.5 31.2 33.6 39.0 30.1 34.0 40.2 34.0 36.9 42.5 32.7 36.8
SVAMP 32.7 26.4 29.2 34.5 25.0 29.1 33.9 29.3 31.4 36.1 28.1 31.9 37.5 32.1 34.6 39.8 30.5 34.6
HumanEval-X 21.0 12.4 15.5 23.2 11.5 15.9 22.6 15.8 18.6 24.0 14.9 18.4 25.8 19.7 22.3 27.6 18.4 22.1
MBPP 26.5 18.1 21.5 27.3 17.2 21.3 27.1 20.6 23.5 28.8 19.8 23.6 29.9 24.0 26.6 31.5 22.7 26.4

Table 6: Performance comparison on the remaining benchmarks not included in Table 3. Consistent
with earlier results, the +Aligned models typically improve recall and F1 across datasets, while tuned
models sometimes retain slightly higher precision.

LLaMA-1B LLaMA-3B LLaMA-8B
Dataset Tuned +Aligned Tuned +Aligned Tuned +Aligned

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
GranolaEntityQ 30.5 18.6 23.1 34.8 20.1 25.5 33.0 22.0 26.4 36.7 23.5 28.7 37.9 26.0 31.0 41.0 27.1 32.7
QAMPARI 25.2 14.7 18.6 28.5 15.9 20.4 27.1 17.5 21.3 30.2 19.0 23.2 30.5 22.0 25.6 34.1 23.5 27.9
RoMQA 21.0 13.2 16.2 24.7 14.0 18.0 22.4 15.9 18.6 26.3 16.8 20.6 27.0 18.3 21.9 30.8 19.6 23.9
ARC-Easy 43.2 34.5 38.4 46.0 33.1 38.7 45.0 36.8 40.5 49.1 37.2 42.3 50.3 41.0 45.2 53.0 42.1 46.9
OpenBookQA 39.5 26.3 31.6 41.7 27.5 33.0 40.9 28.0 33.2 44.3 29.6 35.4 46.0 33.1 38.6 48.5 34.4 40.3
ASDiv-A 37.8 29.4 33.1 42.2 30.7 35.6 39.4 31.8 35.1 44.0 33.0 37.9 45.5 36.5 40.5 49.0 37.6 42.5
SVAMP 34.0 25.0 29.0 39.1 26.5 31.5 35.8 28.2 31.6 41.3 29.7 34.7 43.0 33.0 37.4 47.2 34.5 39.9
HumanEval-X 20.5 12.0 15.1 23.8 13.1 17.0 21.7 13.7 16.7 25.5 14.9 19.2 26.1 16.5 20.2 29.0 17.6 21.8
MBPP 28.7 19.2 23.0 32.0 20.1 24.8 30.1 21.5 25.2 34.4 22.8 27.2 35.0 24.2 28.7 38.1 25.6 30.6

Table 7: Performance comparison on the additional datasets not shown in Table 3. Same setup as
before, results are reported in terms of precision (P), recall (R), and F1-score, with better scores
highlighted in bold.
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