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Abstract

Can we learn policies in reinforcement learning without rewards? Can we learn a
policy just by trying to reach a goal state? We answer these questions positively by
proposing a multi-step procedure that first learns a world model that goes backward
in time, secondly generates goal-reaching backward trajectories, thirdly improves
those sequences using shortest path finding algorithms, and finally trains a neural
network policy by imitation learning. We evaluate our method on a deterministic
maze environment where the observations are 64× 64 pixel bird’s eye images and
can show that it consistently reaches several goals.
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1 Motivation

Recently, generative auto-regressive models have shown great prospect with the developments around
GPT-3 (Brown et al., 2020) where predictive coding (Huang & Rao, 2011) seems a promising avenue
for further advancements in machine learning. Model-based Reinforcement learning (MBRL) applies
the same principle already for decades (Schmidhuber, 1991) in order to learn the dynamics of an
environment which is then exploited to maximize the return by learning a policy. These models can
have different advantages to facilitate policy optimization, e.g., simulate future outcomes (Kaiser
et al., 2019; Hafner et al., 2023; Robine et al., 2023), conduct online planning (Schrittwieser et al.,
2020) or provide the model’s state memory as an additional policy input (Ha & Schmidhuber, 2018).

But sometimes no reward function is given and instead some goal states have to be reached. An
important variant of reinforcement learning (RL) is goal-conditioned RL, where a policy tries to
arrive at a state configuration. Typical modern approaches (Andrychowicz et al., 2017; Hafner et al.,
2022; Pateria et al., 2021; Ecoffet et al., 2021; Li et al., 2022; Gupta et al., 2019) start at a certain
state and then try to reach a selected goal. We call this paradigm hit-and-miss, since the trajectories
generated by these approaches within a reasonable amount of steps are not guaranteed to contain a
desired goal.

Outline. In our work, we overcome this problem with the help of world models by ensuring that
every produced trajectory does reach the goal state. We do this by starting at the goal and then
going backward in time. To achieve this, we collect random forward trajectories on which we train
a backwards world model that takes a state-action pair (st, at−1) as input and outputs the previous
state, e.g., f(st, at−1) = st−1.

Once the backwards world model is sufficiently trained, we use it to learn policies. In goal-conditioned
RL the assumption is that we are given some goal state s∗. In real world problems this goal might
be problem specific or be determined by intrinsic or extrinsic reward, game score or by human
preference. After the goal selection our backwards world model generates rollouts, reversed in time,
that ultimately look like typical forward sequences (s0, a0, . . . , st−1, at−1, st, at, st+1, at+1, . . . , s

∗)
but without rewards.
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In principle these forward trajectories seem ideal to train a policy by imitation learning,
since each sequence always reaches the goal state. However, the simulations should not be
carelessly used for optimization due to potential loops or poor action selection (investigated
by Wu et al., 2019; Wang et al., 2021b). Therefore, further tricks are needed to exclude some
of the state-actions pairs, which we analyze and determine by graph search over simulated trajectories.

2 Prior Work

Offline RL. Chebotar et al. (2021) learn a goal-conditioned Q-function on offline data where they
use sub-sequences and relabeling techniques to generate numerous of goal trajectories to learn from
and failure actions to avoid. Kidambi et al. (2020) use offline MBRL to learn a pessimistic estimate
of the underlying MDP and optimize a policy on it while minimizing the model bias.

Backward world models. Currently, world models that unroll simulated trajectories into the past
(backward models) represent a small part in the model-based reinforcement learning literature. It
starts with models that improve sample efficiency (Goyal et al., 2018) or use improved strategies for
returning to high value states (Edwards et al., 2018). Lai et al. (2020) proposes bi-directional world
models which generate short forward and backward trajectories to be more robust against prediction
error of forward models that unroll for too many timesteps. Wang et al. (2021a) learn a reverse policy
and reverse dynamics model for offline reinforcement learning. They generate backward simulations
which lead to novel sub-goal reaching trajectories with respect to the existing offline dataset. Chelu
et al. (2020) address the RL credit assignment problem and examine the benefits of planning with a
backward model in relationship to forward models, where they observe complementary gains using
backward models. Pan & Lin (2022) combine imitation learning with backward world models where
backward simulations are treated as sub-optimal expert demonstrations to improve the expected return
of a forward policy. In this work, we utilize our discrete backward model in a way which allows it to
create demonstrations that can be used without considering the expected return.

3 Method

As commonly done in model-based RL, we project the raw state observations into a latent space. In
order to also utilize return strategies from Go-Explore methods (Ecoffet et al., 2021; Höftmann et al.,
2023) we learn an encoder Φθ that generates a discrete latent representation (following Hafner et al.,
2020) jointly with a latent world model Ψθ. In short, we denote them as

Φθ(st) = Zt Ψθ(zt, at−1) = Ẑt−1. (1)

where Zt, Ẑt−1 are distributions over the latent space and discrete samples zt can be obtained via
sampling, i.e., zt ∼ Zt. In addition, we define the latent space decoder as st ∼ pθ(st|zt).
Representation Model. The representation model is implemented by a Convolutional Neural
Network (CNN, LeCun et al., 1989) with an Encoder-Decoder architecture (Ballard, 1987) that uses
the categorical latent representation from Hafner et al. (2020) with straight-through gradients. In our
case, the encoder’s latent representation Z ∈ Rg×c is stochastic and uses g = 16 categoricals with
c = 16 classes each, where we obtain a discrete representation z ∼ Z by sampling from g softmax
distributions. The representation loss can be written as

LRepr
θ = Et

− log pθ(st|zt)︸ ︷︷ ︸
reconstruction loss

+α ·max

 1

gc

g∑
i=1

c∑
j=1

Zti,j log(Zti,j ), 0.05


︸ ︷︷ ︸

entropy loss

with zt ∼ Zt, (2)

and consists of two objectives. The first one is the classic reconstruction loss to minimize the
decoder’s image reconstruction error using a binary cross entropy loss. Secondly, we add an entropy
loss term with weighting α that increases over time. Its schedule is based on the current training
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epoch ec and the terminal training epoch eT as follows

α =

{
0 if ec < 0.9 · eT ,
5× 10−6 otherwise,

(3)

such that the entropy of our latent representation decreases at the end of training to a minimum.
This is necessary, since each observation should be precisely projected to only one latent sample in
order to use return strategies from Go-Explore (Ecoffet et al., 2021) but also to build directed graphs
without multiple nodes for a single observation.

Dynamics Model. The backwards world model uses a Multi-Layer Perceptron (MLP) (Rosenblatt,
1958) with SiLU nonlinearity (Elfwing et al., 2018) and layer normalization (Ba et al., 2016). It
takes an observation and action encoding (zt, at−1) as input and outputs the estimated distribution
Ẑt−1 over previous latent states. Consequently, the world model’s loss minimizes the discrete
Kullback–Leibler (DKL) divergence

LWM
θ = Et

[
DKL

(
Ẑt−1∥Zt−1

)]
,

with Φθ(st−1) = Zt−1,

and Ψθ(zt, at−1) = Ẑt−1

(4)

between the encoder’s latent distribution Zt−1 and the world model’s predicted distribution Ẑt−1.
Both models are jointly trained to allow gradient flow back into the encoder parameters and therefore
allowing the world model to influence the encoding structure in the latent space. The complete loss
function is written as

Lθ = LRepr
θ + wwm · LWM

θ , (5)
which combines both terms with an additional weight wwm = 0.0025 for the world model loss.

Policy optimization. With a discrete world model at hand, we create an improved dataset D for
imitation learning instead of just relying on raw rollout trajectories from a (non-discrete) world model.
The following procedure is implemented:

1. Generate backward simulations via random action selection while starting at the goal z∗.
In addition, start further rollouts at already simulated states based on their inverse visit
frequency (following the cell selection rule from Ecoffet et al., 2021).

2. Create a directed graph (DG) with the simulation data where each node is a state encoding
zt. A directed edge is added to the graph when a backward state transition (zt+1, zt) is
found in the simulations. In that way, the DG contains and unifies the information from all
separate simulations.

3. Apply a shortest path finding algorithm on the DG to find the shortest distances to the goal
node. For our method we use Dijkstra’s algorithm (Dijkstra, 1959) to get a shortest path
estimate (SPE) for every state in the graph, e.g., SPE(z∗) = 0.

By using the SPE, we evaluate whether a state-action pair (zt, at) should be used for the imitation
learning dataset D: if a forward transition (zt, at, zt+1) brings us closer to the goal, we include it, i.e.

(SPE(zt) > SPE(zt+1)) ⇒ (zt, at) ∈ D. (6)
Note, that this dataset D has no loops and contains only paths that directly lead to the goal (according
to the world model). In fact, the rule selects only shortest paths since it uses Dijkstra’s algorithm for
evaluation.

Finally we use the standard imitation learning technique of maximizing the log-probability for the
selected state-action pairs (zt, at), i.e., we minimize

Lpolicy
θ = Et [− log(πθ(at|zt)) + c1S[πθ](zt)] with (zt, at) ∈ D, (7)

where we added a small action space entropy bonus S (Schulman et al., 2017) with weight c1.
The entropy bonus is helpful if D contains bad samples. Furthermore, it makes additional policy
improvement easier, e.g., by applying further classical reinforcement learning using REINFORCE
(Sutton & Barto, 2018) on the policy πθ.
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(a) Maze (20×20) observation (b) Single goal policy (c) Four goal policy

Figure 1: Visualization of the maze environment. Panel (a) shows a raw observation where no goals
are marked. Panel (b) shows the results for a learned policy with one goal state (marked as blue).
The brightness of a square in green indicates how often we reached the goal. Panel (c) shows results
for four goal states (marked as dark-{orange,cyan,yellow,violet}). Colors indicate to which goal the
policy has returned to, e.g., a position is colored orange when the agent went to the dark-orange goal.

(a) One goal optimization
Maze size Goal Return positions

Orange 207.1 / 234 (88%)
20 × 20 Cyan 218.5 / 234 (93%)

Yellow 210.2 / 234 (90%)
Violet 207.7 / 234 (89%)

(b) Four goal optimization
Maze size Return positions Went to closest goal
20 × 20 221.9 / 234 (95%) 219.9 / 221.9 (99%)

Figure 2: Quantitative evaluation on the maze shown in Figure 1 with 20 runs for each result. One
and four goal optimization use the goals from Figure 1c.

4 Experiments

We study our method on a 20x20 maze environment where an observation is one 64× 64 pixel image
with RGB color channels and has a bird’s-eye view over the whole maze (see Fig. 1a). Note, that
a deterministic maze is non-deterministic when it is unrolled backwards in time. Our latent world
model incorporates this property by predicting a latent state distribution (as in Hafner et al., 2023).
For this work, the encoder, the decoder, the world model and the policy are neural networks.

After the world model training, every learned policy is conditioned on up to four goals. For our test,
we choose the goal locations at the maze corners shown in Fig. 1b/c. To deal with multiple goals for
one policy requires only tiny adjustments in the DG. Finally, all policies are tested by placing the
agent at every maze position five times and check whether they can return to their goal. To exclude
attempts that reach the goal in time by chance, we consider only trials to be successful, if a goal was
reached within 1.5 times the shortest goal distance. The locations marked in lighter green or even
white indicate that the agent did not always reach the goal (see Fig. 1b/c).

Fig. 2 shows the quantitative evaluation on the maze. Policies are conditioned either on one goal
(bottom left corner in Fig. 1b) or on four goals simultaneously (all corners in Fig. 1c). The results
show that the policies can reach their goal(s) from almost every maze position which are up to 37
steps away. Our experiments show we can learn complex goal-oriented policies even without rewards.

5 Conclusion

We introduce a novel method for goal-conditioning a policy on one or more states by using a discrete
world model jointly with graph search. Even though our method is not using rewards for optimization,
it is still able to reach the desired state configurations by using a refined imitation learning dataset
that has been generated by our backward world model.
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