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Abstract

The exponentially-modified Gaussian (EMG) distribution is a convolution sum of
a univariate Gaussian and an exponential distribution. This has been used to model
univariate skewed data such as chromatographic peaks’ shape, cell population
dynamics from single-cell data and reaction times in neuropsychology. Currently,
the EMG is only available in its univariate form. In this work, we propose a multi-
variate extension to the EMG, called mvEMG, by using an affine transformation
involving rotation, translation and shearing to accommodate for the three moments
(mean, variance and skew). We derive statistical properties for mvEMG. Although
we demonstrate its performance in synthetic data compared with the multivariate
skew normal distribution, we are unable to show its practical applicability, mainly
due to lack of efficient sampling strategies and a viable real-world dataset.

1 Introduction and motivation

Generally, datasets are described using statistics involving mean and variance, which through the
method of moments, represent the first and second order estimators. Most data-driven approaches
assume the data to be generated using a Gaussian distribution where these estimators are used to
address simple hypotheses about the datasets. To gain deeper insights into the data, one needs to
consider higher-order estimators, such as skewness, and such estimators are rarely used.

In many real world applications, datasets do not generally follow a Gaussian distribution but are
rather highly skewed with complex structures. For computational feasibility, one way to handle such
data is to log normalise the data rendering it as Gaussian, but by doing so, the inherent skewness
is lost. Since the tails of a probability distribution reflect the most extreme data points, it seems
plausible that measures based on skewness would be useful for identifying rare events or entities such
as transcriptional regulators in gene expression data or highly-variable genes that could be targeted in
precision medicine studies. As a specific example, we look at multidimensional single-cell RNA-seq
data where multiple genes are profiled per cell. The distribution of gene counts per cell, called library
size, is highly right-skewed (Figure 1a upper panel) and log normalising renders the distribution to
resemble a Gaussian distribution (Figure 1a lower panel), where the information regarding rare events
triggering data skewness is lost. Skewness is important for modelling complex phenomena.

There exists the exponentially-modified Gaussian (EMG) distribution, to handle univariate skewed
data. In this work, we present a multivariate extension to the EMG to cater to multidimensional skewed
data whilst providing access to the first three distributional moments viz. mean, covariance and skew.
For this, we make use of the multivariate Gaussian that provides the mean and covariance, and the
multivariate exponential distribution that gives the skewness of the data. The multivariate exponential
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Figure 1: a: Upper: Histogram showing the original skewed library-size distribution i.e. the
distribution of genes across cells for the Zeisel, et al. (2015) single-cell RNAseq dataset for 3500
cells and a: Lower: the same library size as above but is log-normalised depicting the shape of a
Gaussian distribution. b: Left: Histograms showing 10K random variables drawn from a standard
Gaussian distribution and b: Right: from a univariate EMG (mean = 0, std = 1, skew = 0.25).

distribution has many forms that can be derived from the univariate exponential distribution (Esary
and Marshall (1974)). This work aims to provide one way to unify these two useful multivariate
distributions into a single viable multivariate form leading to the multivariate EMG (mvEMG).

2 Univariate EMG

The exponentially-modified Gaussian (EMG) probability distribution is the convolution of a uni-
variate Gaussian distribution and an exponential distribution which are independent of each other.
Assume a r.v. Z = Z1 + Z2 with Z1 and Z2 as independent r.vs where Z1 ∼ N (µ, σ2) and
Z2 ∼ exp(λ) then Z is a convolution of a Gaussian and an Exponential random variable and is
said to follow an exponentially-modified Gaussian (EMG) distribution with parameters (µ, σ, λ)

i.e. Z ∼ EMG(µ, σ, λ) and is given by: fZ(z) =
λ

2
exp(

λ(2µ+ λσ2 − 2z)

2
) erfc(

µ+ λσ2 − z√
(2)σ

)

where erfc is the complementary error function and erfc(x) = 1− erf(x) = 1− 2√
(π)

∫∞
x
e−t

2

dt

Figure 1b depicts the histograms of r.vs distributed according to a standard normal (left panel) and
according to a univariate EMG with mean=0, std=1 and skew = 0.25 (right panel). One of the key
properties of the univariate EMG distribution is its differential behavior in the right and left tails. The
distribution exhibits a Gaussian-distributed left tail and an exponentially-distributed right tail. Hence,
it is particularly well suited to fit empirical distributions that are right-skewed i.e. exhibit thicker
right tails. This distribution has found practical applications in a variety of scientific disciplines such
as chromatography (Naish and Hartwell, 1988; Kong et al., 2005), cellular biology (Golubev, 2010;
Tyson et al., 2012) and microarray preprocessing (Irizzary et al., 2003).

The univariate skew normal (SN ) distribution is also used to model right-skewed data. Since it
has a normal-like right tail, it is thinner as compared to the EMG. Thus the EMG is better suited
in modelling fat-tailed phenomenon consisting of outliers or data points residing in the right-tail.
Additionally, the SN parameters are mean, scale and shape whereas for the EMG, the parameters are
mean, variance and skew. Therefore, to access skewness in fat right-tailed distributions, we pursue
building a multivariate extension to the univariate EMG.
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3 Derivation of the mvEMG PDF

For each Zi ∼ EMG(µi, σi, λi), we have mean E(Zi) = µZi = µi +
1
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λ2i
,
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∈ R. Next we assume a
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where µZ ∈ Rd, ΣZ and λZ ∈ Rd×d.

Affine transformation of a d independent 0-centered univariate EMG random variable ZZZ.
Given an affine transformation L that comprises of (a) the Euclidean transformations of rotation via
matrix A and translation via vector b followed by (b) a shear transformation via matrix S where
A,S ∈ Rd×d, bothA and S are invertible and b ∈ Rd. We define the shear matrix S as S = S∗+Id×d
where S∗ is skew-symmetric i.e. S∗(ij) = λZi , S

∗(ij) = S∗(−ji), diag(S∗) = 0 and diag(S) = 1.
Applying L to ZZZ such that Z ′ = L(ZZZ) results in the image of S(AZZZ + b) := L(ZZZ) = Z ′. We note
here that L(ZZZ) still linearly transforms ZZZ.

Moments of Z ′ The moments of this transformed random variable Z ′ are:

1. E(Z ′) = S(E(AµZ) + E(b)) = S(AµZ + b)

2. Cov(Z ′) = E[(Z ′ − Z̄ ′)(Z ′ − Z̄ ′)T ]

= E[(SA(ZZZ + b)− S(AµZ + b))(SA(ZZZ + b)− S(AµZ + b))
T

] = SAKZZZZZZTATST

where KZZZZZZT = E[(ZZZ − µZ)(ZZZ − µZ)T ] = E[ZZZZZZT ]− µZµ
T
Z

3. Skew(Z ′) = E[
( (Z ′ − Z̄ ′)
cov(Z ′)

)3
] = E[

( SA(ZZZ − µZ)

SAKZZZZZZTATST

)3
]

In our case, we will be considering L given by the rotation due to ΣZ , the translation via µZ and the
shearing via S. Through this construction, we bring in the covariance and mean of a multivariate
Gaussian distribution and the rate parameter of a multivariate exponential distribution, respectively.
From the properties of mean vectors and covariance matrices for a multivariate Gaussian distribution,

we have E(ZZZ) = µZ , Cov(ZZZ) = ΣZ = diag(σ2
i +

1

λ2i
) = AAT where µZ ∈ Rd and ΣZ ∈ Rd×d.

Therefore, the affine transformed Z ′ = S(Σ

1

2
ZZZZ +µZ) and each z′i can be written as: z′i = (S(Σ

1

2
ZZZZ +

µZ))i = S
√
ψT
i Ui.ZZZ + SµZ = Vi

√
ψT
i Ui.ZZZ.V

T
i + ViµZV

T
i =
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j Vij

√
ψT
ijUij .Zj .Vij +
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VijwhereΣZ = UΨUT , ψi is a row of Ψ, Ui is a row of U , λZi

is a row of λZ , S is
Cholesky decomposed to V V T and Vi is a row of V .

PDF of Z ′ Suppose that ZZZ is a random vector in the subset T ⊆ Rd and has continuous pdf f.
Suppose that Z ′ = r(ZZZ) where r is a differentiable function from T to another subset T ∗ ⊆ Rd, then

we have the continuous pdf g for Z ′ as g(Z ′) = f(ZZZ)|det(
dZ

dZ ′
)|= f(r−1(Z ′))|det(

dZ

dZ ′
)| where

dZ

dZ ′
is the Jacobian of the inverse of r. The inverse transformation is given by ZZZ = Σ

−
1

2
Z (S−1Z ′ −

µZ), the Jacobian
dZ

dZ ′
= Σ

−
1

2
Z S−1 and the determinant of the Jacobian of the inverse transformation
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is
1√

det(ΣZ) detS
. Therefore

g(Z ′) = f(r−1(Z ′))|det(
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)|
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2
) exp((−1)trace(Σ′))

exp(
(−1)trace(Z∗TZ∗)

2
)

det|Z∗|
:= mvEMG(Z ′|µZ ,ΣZ , λZ)

(1)
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−1
ij (

√
ψT
ijUij)

−1.Z ′j .V
−T
ij − (
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−1µZj . We ensure that Z∗ is non-singular.

4 Experiments

We compare the mvEMG with the multivariate skew-normal distribution (mvSN). The mvSN
was introduced by Azzalini and Capitanio (1999); Azzalini and DallaValle (1996) and is a sim-
ple function of a multivariate Gaussian pdf and a univariate Gaussian cdf, given by: f(xxx) =
2Φ(xxx; 000,Σ)ΦΦΦ(αTxxx), xxx ∈ Rd where Φ is the multivariate Gaussian density centered at 000, covari-
ance matrix Σ and Φ(·) is the CDF of the univariate spherical Gaussian, N (0, 1). α contains the
shape for the Gaussian cdf. One convenient property of the mvSN is that the marginal distributions
are scalar skew-normal distributions. The filled contour plots of the mvSN pdf are shown in Figure 2
(upper panel). Notice that when α are zeros (Figure 2 upper panel, first plot), the pdf reduces to that of
a multivariate Gaussian. When α are positive, the pdfs attain right skewness. Figure 2 (lower panel)
shows the filled contour plots for the mvEMG pdf generated using Equation 1. The scale parameters
λZ constitute the off-diagonal elements of the shear matrix S that consists the skew-symmetric matrix
as discussed in Section 3.2. We observe that the heights of the pdf are shorter than that of mvSN
indicating that the mvEMG distributions, with the same shape and covariance parameters as that of
the mvSN, are broader distributions with fatter tails.

Figure 2: Filled contour plots of pdfs: (Upper panel): The multivariate skew normal (mvSN) pdf for
varying shape parameters α and the spherical covariance matrix Σ. (Lower panel): The mvEMG pdf
for the same varying shape parameters α (as above), the spherical covariance matrix Σ and varying
scale parameters λZ that constitute the off-diagonal elements of the shear matrix S.

5 Conclusion

In this paper, we present mvEMG, the multivariate generalisation to a univariate exponentially-
modified Gaussian (EMG) distribution, to handle multivariate skewed data giving access to mean,
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covariance and skewness of the distribution. We make use of an affine transformation involving
rotation, translation and shearing to accommodate for the three moments in mvEMG. We present
the statistical properties for mvEMG. The experiments on synthetic data show that the mvEMG is
potentially better suited to model fat-tailed distributions than the mvSN distribution.

Future work: We would implement an efficient sampling strategy for probabilistic inference to
enable downstream analysis such as cluster identification or building graphical models. We will
further validate mvEMG on a real-world dataset to depict its usefulness where skewness plays a
crucial role in identifying underlying data patterns and that lead to further insights into the data.
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