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ABSTRACT

This paper investigates the linear merging of models in the context of continual learning (CL). Us-
ing controlled visual cues in computer vision experiments, we demonstrate that merging largely
preserves or enhances shared knowledge, while unshared task-specific knowledge rapidly degrades.
We further find that merging models from an incremental training process consistently outperforms
merging models trained in parallel.

1 INTRODUCTION

Methods that involve averaging the parameters of different models, often termed weight-space ensembling or model
merging, have received significant attention in deep learning (Yang et al., 2024). A common application targets improv-
ing performance for a single task (Izmailov et al., 2018; Wortsman et al., 2022b). When multiple (well-performing)
model variants are trained starting from a common initialization — for instance, through multiple fine-tuning runs with
different random seeds or different hyperparameter settings — averaging their weights tends to yield a final model
with improved accuracy and robustness over any individual model, without increasing inference cost. This benefit is
generally attributed to the geometry of the loss landscape, as models fine-tuned from the same initialization have been
found to often reside in the same wide, and relatively flat basin (Goodfellow et al., 2015; Frankle & Carbin, 2019).
A common interpretation is that averaging the weights of such models produces a solution closer to the center of this
basin, smoothing out noise or over-specifications learned by individual training runs, leading to better generalization
(Izmailov et al., 2018).

Beyond improving performance for single tasks, model merging has also been explored for integrating knowledge from
multiple tasks into a single model (Ilharco et al., 2022; Matena & Raffel, 2022). This renders model merging a potential
mechanism for continual learning (CL), where the goal is to learn multiple tasks sequentially without catastrophically
forgetting earlier ones (McCloskey & Cohen, 1989; Parisi et al., 2019). With CL in mind, two approaches for merging
models that are trained or adapted for different tasks can be distinguished. One option is to merge different states of an
incrementally trained model, by averaging its weights after learning one task with its subsequent weights after learning
a later task. Another option is to merge separate models trained in parallel on different tasks. Some studies have already
shown promising results for model merging in specific CL contexts (Marouf et al., 2024; Udandarao et al., 2024; Kozal
etal., 2024). Notably, the merging mechanism differs fundamentally from the typical approach to CL, which is to make
changes to the loss function to sequentially approximate a joint objective over all observed tasks (Hess et al., 2023).
Instead, weight-space merging is typically applied post-hoc, combining independently or sequentially trained models
that have been specialized for individual tasks. The general conditions under which such post-hoc merging preserves
or degrades knowledge across diverse tasks remain poorly understood. To better understand when merging is suitable
for CL, we conceptualize the knowledge of a model trained on multiple tasks as comprising both shared components
(e.g., general features from pre-training, or knowledge common across multiple tasks) and task-specific components
(e.g., features or decision boundaries unique to a single task). The central question of our study then is: how do these
shared and task-specific knowledge components react during weight merging?

In this work, we conduct controlled experiments targeting the computer vision domain. We propose a methodology
that allows to instantiate either shared or task-specific knowledge via synthetic visual cues injected directly into the
input image space. We empirically show that during linear weight interpolation, shared knowledge tends to be largely
preserved or even enhanced, while unshared task-specific knowledge is significantly degraded. These results align
with recent research by Zaman et al. (2024), who conduct related experiments with large language models. We further
compare merging incrementally trained models with merging parallel trained ones. Our findings provide insight into
the suitability and limitations of weight-space ensembling as a mechanism within various CL scenarios, potentially
informing the design of more effective strategies for knowledge accumulation and retention.
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2 BACKGROUND

Continual learning. An important goal of continual learning (CL) is enabling models to learn sequentially from a
stream of tasks, without catastrophically forgetting previously acquired knowledge (De Lange et al., 2022; Wang et al.,
2024; van de Ven et al., 2025). The dominant approach in CL involves incrementally training a single, evolving model
by attempting to constantly approximate a joint learning objective across all encountered tasks (Hess et al., 2023).
In contrast, model merging as a post-hoc method, offers a distinct approach by combining separately adapted model
states, rather than modifying the sequential training process itself.

Shortcuts. To empirically study the interaction of different knowledge types during merging, we draw inspiration from
research on shortcut learning. ‘Shortcuts’ refer to spurious or overly simple correlations in data, which the models
exploit rather than learning more generalizable features (Geirhos et al., 2020). By intentionally injecting synthetic
visual cues that are correlated with class labels but distinct from core image content, scenarios can be created where
models learn to rely on these shortcuts.

For a more comprehensive review of related literature, we refer the reader to Appendix B.

3 METHODOLOGY

Our methodology is designed to investigate the fate of shared (common) and unshared (task-specific) knowledge
during model merging in computer vision settings. To create controllable and distinct knowledge components in our
models, we augment a base image dataset by superimposing synthetic visual cues onto the input images. Examples
are shown in Figure la. A combination of the base dataset with a specific visual cue constitutes a distinct ‘task’ for
the model to learn. Interpolating between endpoint models that learned tasks with either different or the same visual
cues governs our investigation of task-specific and shared knowledge retention. For all our experiments, CIFAR-100
(Krizhevsky et al., 2009) is used as the base dataset. The full implementation details are presented in Appendix A.

Shared pre-trained initialization. All model trainings begin from a common base model, fpy, which has been
pre-trained on the base dataset. The primary purpose of pre-training is to ensure that all endpoint models share a
significant initial learning trajectory, a condition motivated by linear mode connectivity research, which suggests it
facilitates meaningful weight-space merging without requiring complex re-parameterization techniques (Goodfellow
et al., 2015; Frankle & Carbin, 2019; Ainsworth et al., 2023). In addition, the pre-training on the base dataset (without
cues) yields a broad set of general features, which allows us to evaluate the preservation of this foundational ‘shared
knowledge’ as an independent measure alongside our visual cue-specific evaluations, which we detail next.

Visual cues. We define a visual cue as an N x N pixel patch superimposed onto an image at a specific location,
providing a simple visual pattern that is consistently correlated with the sample’s ground-truth class label, irrespective
of the underlying image content. To create two different types of shortcuts, we define two families of cues: (1) Colored
patches, consisting of pixel patches of solid color (the color cue, denoted as Ceolor). We utilize the HSV color space,
setting Saturation (S) and Value (V) to 1.0, and distributing Hue (H) evenly across classes. (2) Grayscale noise
patches, consisting of pixel patches containing grayscale noise patterns (the noise cue, Cpoise). For each class, a unique
pixel noise pattern is generated by sampling each pixel’s intensity independently and uniformly from the discrete set
{0,255}. For both families of cues, we use a patch size of N = 5. During training, a cue is superimposed on each
image with a probability pc = 0.5 to incentivize models to learn both the cue and the general image features.

Shared vs. task-specific knowledge. We use the visual cues to construct two knowledge protocols that are at the
core of our experimental setups. (1) The unshared, task-specific knowledge protocol consists of two tasks constructed
using distinct visual cues: in one task the color cue is added to the base dataset (denoted as T¢olor), and in the other
task the noise cue is added (Tise). To minimize information transfer, the cues are placed at non-overlapping positions
(top-left and bottom-right). (2) The shared knowledge protocol consists of two tasks with the same visual cue: in both
tasks, the color cue is added to the base dataset at the same position (top-left). This controlled use of cues allows for a
more explicit separation of shared versus unshared specific knowledge compared to typical CL benchmarks based on
semantic splits, where disentangling preserved from re-discovered knowledge can be challenging (Hess et al., 2024).

Incremental vs. parallel training. Starting from the pre-trained weights fpy, we train models on one of the knowledge
protocols to generate endpoint models (i.e., models that are trained or adapted for a task with a particular visual cue)
for our merging analysis. As illustrated in Figure 1b, we compare two distinct training scenarios. With incremental
training, which represents continual learning without specific forgetting mitigating, factors like catastrophic forgetting
or knowledge transfer between the sequential training stages can influence the characteristics of the endpoint models.
In contrast, parallel training serves as a controlled baseline where both endpoint models are trained independently
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Figure 1: Experimental Protocol and Main Results. (a) Example of shared and task-specific knowledge instantiated
with visual cues. The shared knowledge protocol uses the same cue for both tasks, while the task-specific knowledge
protocol uses distinct cues. (b) Schematic illustration of ‘incremental’ (blue) and ‘parallel’ ( ) training. Both
scenarios start from a common pre-trained model (Task O, ) and adapt models for subsequent tasks (Task 1,
green; Task 2, ) that involve specific visual cues. (¢) Accuracy (y-axis) vs. interpolation coefficient o (x-axis)
for the task-specific knowledge protocol. Performance is evaluated in the presence of the color (left) and noise (right)
visual cues, comparing incremental (blue circles) and parallel (orange diamonds) training. The endpoint models of
the interpolation are specialized for Tioor (v = 0) and Tnoise (v = 1). (d) Accuracy vs. « for the shared knowledge
protocol, where both endpoint models of the interpolation are specialized for Tcolor. (€) Performance on the base
dataset (no cues) when interpolating 7coior (o« = 0) and Toise (o« = 1) endpoints; the solid black line marks accuracy
of the pre-trained model. The plotted lines in the bottom three panels represent the mean accuracy across three
independent runs with different random seeds, while the shaded areas indicate the standard error. All evaluations are on
the full CIFAR-100 test set. These results show that while unshared task-specific knowledge degrades rapidly when
models are merged (panel c), shared knowledge components are largely preserved or even enhanced (panel d,e).
Moreover, merging incrementally trained models consistently leads to better knowledge preservation compared to
merging models trained in parallel.

from the identical pre-trained state fpy. This setup allows for a direct analysis of merging effects with and without
sequential dependencies.

Evaluation protocol. We evaluate all models (pre-trained, endpoints, and interpolated) using classification accuracy
on the held-out test set. To probe shared and task-specific knowledge induced by visual cues, we evaluate performance
on the test set with either the color cue (Ceolor) Or the noise cue (Cyoise) deterministically (po = 1.0) applied. To
measure the preservation of general shared knowledge, we evaluate performance on the original test set without any
visual cues (pc = 0.0) applied. Interpolated models 6(«) = af, + (1 — «)fr, are generated via linear interpolation
of appropriate task-specific endpoints, with « € [0, 1] the interpolation coefficient.

4 RESULTS

Here we present the results of the merging experiments, with the endpoint models generated via either parallel or in-
cremental training and according to either the shared or task-specific knowledge protocol. Key trends are summarized
in Figure 1, with full numerical details presented in Table 1 in Appendix C.

Endpoint models successfully learn specific cues while retaining general knowledge. Before investigating model
interpolation, we confirm that the endpoint models behave as expected. Models adapted to a specific visual cue
demonstrate high performance when tested on that cue, with cue-specific accuracies consistently above 98.5% (Ta-
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ble 1), while performance on the shared general knowledge (CIFAR-100 without cues) remains close to the pre-trained
baseline of 61.3%. An exception is the endpoint model incrementally trained on both cues, whose performance on
CIFAR-100 without cues surpasses that of the pre-trained baseline, indicating positive transfer from the sequential
training process.

Unshared specific knowledge degrades while shared knowledge is preserved or enhanced. A central finding of
our work is the starkly different effect of linear interpolation on different knowledge types. As shown in Figure Ic,
unshared task-specific knowledge rapidly degrades, i.e. sensitivity to a specific cue decays sharply as the interpolation
moves towards the other endpoint, a transition that is particularly abrupt in the parallel setting. Conversely, shared
knowledge is robust to interpolation. As shown in Figure 1d, when merging models that were trained on tasks with the
same cue (7¢olor), performance is maintained well across the interpolation path. Furthermore, as shown in Figure le,
performance on the common CIFAR-100 task remains stable (in the parallel scenario) or is even enhanced (in the
incremental scenario), peaking at an accuracy of 62.69%, which is above both endpoints.

Merging incrementally trained models preserves knowledge better than merging parallel-trained ones. We also
find a key distinction between training scenarios, as merging models from an incremental training process consis-
tently outperforms merging models trained in parallel (Figure Ic to le). In particular, when merging two models that
are adapted for the same specific cue (T¢olor), the incremental scenario maintains high performance across the entire
interpolation path, whereas the parallel scenario exhibits a slight concave dip in accuracy around the midpoint (Fig-
ure 1d). Furthermore, for general shared knowledge (CIFAR-100 without cues, Figure le), the incremental scenario
produces a notable synergistic effect: accuracy rises to a peak of 62.69%, surpassing both endpoints and the original
pre-trained model. In contrast, the parallel scenario’s performance remains largely flat, showing no significant benefit
from interpolation. This finding, supported by related work of (Marouf et al., 2024), is particularly relevant for CL, as
it indicates that merging states from a single, evolving model can be more advantageous than merging independently
trained specialists.

To assess the generality of these observations, in Appendix D we conduct additional experiments under varied condi-
tions. We analyze the reverse order of cue adaptations (i.e., first TNoise, then Toor), and we explore a ‘chunking’-setup
(Lee & Storkey, 2025), where the pre-trained model’s feature base is weaker and parts of the previously shared com-
mon knowledge of CIFAR-100 are divided over the different tasks. The results for both configurations corroborate the
distinct behaviors of shared and task-specific knowledge during interpolation that we observe in our main experiments.

5 DISCUSSION

Our experiments demonstrate that linear model merging distinctly impacts different knowledge types. On one hand,
shared knowledge is largely preserved and can be enhanced, aligning with earlier findings of consolidating common-
alities within shared loss basins (Izmailov et al., 2018). In stark contrast, unshared task-specific knowledge rapidly
degrades upon interpolation due to interference between divergent parameter adaptations, a finding consistent with
prior work on large language models (Zaman et al., 2024). Another important finding of our work is that merging
incrementally trained models yields better knowledge consolidation than merging parallel-trained ones, suggesting
that the process of sequential adaptation, even without explicit CL mechanisms, guides models along trajectories that
are more amenable to beneficial merging. However, also when incrementally trained models are merged, unshared
task-specific knowledge is still rapidly degraded. For CL, this implies that while naive merging might strengthen the
generality of shared features, it risks catastrophic forgetting of unique past task knowledge. This raises critical ques-
tions about the ‘utility’ of what is preserved versus forgotten, an issue orthogonal to the stability-plasticity dilemma.
Therefore, the suitability of simple merging for CL appears limited to scenarios prioritizing general shared capabilities
or involving highly similar tasks, unless model scale, endpoint training, or merging techniques are specifically tailored
to mitigate these trade-offs. We provide an extended discussion in Appendix E.

6 LIMITATIONS AND FUTURE WORK

Our study offers initial insights into how linear merging of models differentially affects shared and task-specific knowl-
edge in the vision domain. While our controlled setting based on visual cues enabled clear distinctions, several avenues
warrant further exploration to better understand the applicability of merging in continual learning. One is to investi-
gate whether the observed dynamics of shared versus specific knowledge scale to larger, more diverse architectures
(e.g., vision transformers) and more complex, real-world task sequences. While merging benefits are known for large
models, the precise nature of knowledge interaction as identified here needs validation at scale. Another compelling
direction for future work is to explore methods for achieving more explicit internal disentanglement of general versus
task-specific knowledge within models during their (continuous) training.
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APPENDIX

The following Appendix provides supplementary material to accompany the main paper. It offers:

A Further details on our experimental setup

B An extended discussion of related literature

C Comprehensive numerical results for the primary experiments
D Additional experimental validations under varied conditions

E An extended discussion of our results

A EXPERIMENTAL SETUP DETAILS

This section provides further details on the experimental setup and hyperparameters used throughout all training phases
(pre-training and subsequent cue adaptations) described in Section 3 and Appendix D, unless otherwise specified.

Model Architecture and Optimization. The core architecture is a slim ResNet-18 model (Lopez-Paz & Ranzato,
2017). In this model, batch normalization layers were replaced with group normalization layers using a single group to
approximate layer normalization, thereby avoiding potential confounding effects from batch normalization’s running
statistics parameters (Kozal et al., 2024). All training stages (pre-training and subsequent cue adaptations) utilize a
cross-entropy loss function and the same optimization settings. Optimization is performed using Stochastic Gradient
Descent (SGD) with a momentum of 0.9 and weight decay of 5 x 10~%. Each training stage proceeds for 50 epochs.
A linear learning rate warm-up is applied during the first 5% of these epochs, increasing the learning rate from 0.004
to 0.1. Subsequently, a cosine annealing learning rate schedule decays the learning rate from 0.1 down to a minimum
of 1 x 10~° over the remaining epochs. The mini-batch size is 128. All cue adaptation experiments are repeated three
times with distinct random seeds, and reported as mean and standard error. Unless explicitly specified, pre-training is
not subjected to different random seeds, but the same pre-trained weights are used as initialization for all runs.

Data Augmentation and Visual Cue Application. Standard data augmentations for CIFAR-100 are employed during
all training stages: random horizontal flips (with a probability of 0.5) and random crops (image size 32 x 32 pixels,
with padding of four pixels). Visual cues, when applied during the cue adaptation stages, are superimposed onto the
images after these standard augmentations. For the visual cues (both Cgojor and Cpeise), We use a patch size of 5 x 5
pixels. When distinct cues are used to instantiate unshared task-specific knowledge (e.g., Tcolor VS. INoise €Xperiments),
they are placed at fixed, non-overlapping, and distinct positions: the color patch in the top-left corner and the noise
patch in the bottom-right corner of the image.

The code to reproduce our experiments is available at: https://github.com/TimmHess/MergeForget.

B RELATED WORK

Model Merging and Continual Learning. Combining the parameters of multiple neural networks, often referred to
as model merging or weight-space ensembling, has gained significant interest (Li et al., 2023; Yang et al., 2024). In
single-task settings, averaging model weights, particularly those fine-tuned from a common pre-trained initialization,
often improves performance and robustness (‘model soups’ (Wortsman et al., 2022a)), potentially finding solutions
superior to any individual model (Izmailov et al., 2018; Wortsman et al., 2022b). Techniques vary from simple averag-
ing (Wortsman et al., 2022a) and interpolation (Ilharco et al., 2022) to more sophisticated methods like task arithmetic
(Ilharco et al., 2023; Ortiz-Jimenez et al., 2023), Fisher-weighted averaging (Matena & Raffel, 2022), and interfer-
ence resolution strategies (Yadav et al., 2023; Marczak et al., 2024). The potential of merging extends to continual
learning (CL), where models must learn sequentially without catastrophic forgetting (McCloskey & Cohen, 1989;
Parisi et al., 2019). Commonly, CL methods utilize regularization, replay, architectural, or a combination of these
mechanisms, and focus on preserving performance on past tasks during sequential training (De Lange et al., 2022;
Wang et al., 2024). Model merging offers a different perspective, as it involves the post-hoc combination of models
trained independently or sequentially. Indeed, simple averaging has shown promise in the CL ‘chunking’ setting (Lee
& Storkey, 2025), was combined with replay (Marouf et al., 2024), and has been explored in combination with other
techniques for continuous adaptation, sometimes incorporating Fisher information or exponential moving average-like
updates sequentially (Udandarao et al., 2024; Dziadzio et al., 2025). However, merging models adapted to different
tasks introduces interference (Yadav et al., 2023; Marczak et al., 2024), a key challenge shared with the stability-
plasticity dilemma inherent to CL. Building on work distinguishing shared and task-specific knowledge (Zaman et al.,
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2024), which found that merging can be used to selectively forget task-specific information in large language mod-
els (LLMs), our work investigates these dynamics in the vision domain to improve our understanding of the suitability
of model merging for CL.

Loss Landscapes and Mode Connectivity. The effectiveness of model merging, particularly linear interpolation of
weights, is closely tied to the concept of mode connectivity (Garipov et al., 2018; Draxler et al., 2018). Research
suggests that minima found via fine-tuning from a common pre-trained initialization often lie within the same loss
basin and can be connected by linear paths of low loss (Frankle & Carbin, 2019; Neyshabur et al., 2020). This
provides a geometric explanation for why averaging fine-tuned models can be successful (Wortsman et al., 2022a).
The situation is less clear when merging models that were adapted to different tasks or data distributions. In that case
interference might occur (Yadav et al., 2023; Mirzadeh et al., 2021). Our work uses interpolation across models trained
with different task-specific cues to implicitly probe these geometric properties. It reveals the nuance that depending on
whether knowledge is shared between models or not, merging either preserves that knowledge or leads to interference.
This finding aligns with the intuition that incompatible representations (likely residing in different basins or requiring
non-linear paths) are harder to merge effectively via simple averaging.

Merging Shared and Task-Specific Knowledge — Fuse-to-Forget. While model merging is often explored for its
potential to aggregate capabilities in a model, the work of Zaman et al. (2024) investigated the inverse potential:
using merging as a mechanism to selectively forget specific, potentially undesirable knowledge components. They
investigated this using LLMs. Motivated by applications such as reducing societal biases learned during pre-training
or mitigating privacy risks by erasing memorized training examples, the authors postulate that merging might pref-
erentially discard non-shared information. To analyze this phenomenon systematically, they proposed a framework
that distinguishes between shared knowledge (common among the models being merged) and trask-specific knowledge
(unique to individual models). Using this framework, Zaman et al. (2024) evaluated the effect of merging LLMs
fine-tuned with specific, targeted interventions, namely associating disconnected token pairs. In their work, this prop-
erty of forgetting knowledge specific to a particular model is framed as desirable, e.g. for removing unwanted biases.
However, generally speaking, we argue that this property is ambivalent, as forgetting specific task capabilities might
be undesirable in other contexts. Our work adapts the concept of shared and task-specific knowledge to the vision
domain using a different method to instantiate task-specific knowledge.

Cues, Shortcuts, Confounders. To create distinct task-specific knowledge components in a controlled manner in
the vision domain, we draw inspiration from the literature on shortcut learning (Geirhos et al., 2020). This research
area studies how deep neural network models are prone to exploiting spurious correlations instead of learning robust
features. By injecting synthetic visual cues that are easy to learn and correlated with the class label, but distinct
from the core image content, we encourage models to specialize on these particular ‘shortcuts’. This setup allows
for a cleaner separation between shared (same shortcut in each task) and task-specific (different shortcut in each task)
knowledge compared to using standard datasets with semantic splits, where the nature of shared vs. specific features
can be ambiguous (Hess et al., 2024). It provides a visual analog to the token-pair association used by Zaman et al.
(2024) and allows us to study how merging interacts with models reliant on different, easily controlled, task-specific
strategies. This controlled approach is also related to Busch et al. (2025), who study the impact of confounders
to CL, but we focus specifically on the interaction of shared and task-specific knowledge when using merging-like
approaches.

C FuLL NUMERICAL RESULTS

This section presents the comprehensive numerical data of the main experiments discussed in Section 4 and visualized
in Figure 1. Table | details the mean classification accuracies and standard errors (across three runs) for all evaluated
conditions: endpoint models (¢« = 0 and o = 1) and interpolated models (o € (0, 1)), trained in either the task-
specific knowledge protocol (Tcoior — INoise) OF the shared knowledge protocol (Tcolor — Tcolor), for both parallel and
incremental training scenarios, and evaluated with or without the visual cues used during training.

D ADDITIONAL EXPERIMENTS

This section describes experiments designed to further probe and validate the observations presented in the main paper.
These include experiments utilizing a ‘chunked’ training approach, and an analysis with the reversed cue adaptation
order.
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Table 1: Numerical Results of the Experiments in the Main Text. Displayed for each experiment is the classification
accuracy (in %) on the test set, reported as the mean =+ standard error across three runs with different random seeds.

Interpolation Coefficient a

Training Evaluation  Scenario 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T Incr. 98.58£0.05 97.22+0.07 94.85+0.13 90.89+0.29 85.22+0.29 79.74+0.22 74.60+£0.20 7L.08£0.20 6850+0.19 66.46+0.15 64.97+0.24
Color Para. 98.57+£0.05 96.28=0.10 90.25+0.37 78.96+0.15 69.56 +0.23 64.96+0.27 62.69+0.25 61.61£0.22 60.92+0.20 60.29+0.19 59.43+0.26
Teoor = Thoise Incr. 60.05+£0.17 60.70£0.15 61.11+0.20 61.83+£0.10 62.59+0.06 64.19+0.11 67.27+£0.36 73.63+£0.75 84.70+0.62 9545+0.26 99.26 £ 0.05
Noise Para. 60.05+0.16  60.16 £0.18 60.12+0.08 60.20£0.03 60.45+0.09 60.88+0.03 62.27+0.15 65.46+0.40 74.15+0.74 92.78+0.21 99.72+0.03
No Cue Incr. 60.91+£0.02 61.53+0.06 61.73+0.12 61.99+0.11 62.18+0.09 6240+0.09 62.59+0.10 62.69+0.02 62.69+0.05 6243+0.15 62.08=+0.18
Para. 60.90£0.03 60.98=0.10 60.87+0.05 60.85+0.10 60.94+0.22 60.93+0.09 61.07+0.14 6117017 61.27+0.24 61.23+0.18 60.83 £ 0.29
T T T Incr. 98.50 4 0.06 98.59+0.04 98.70£0.05 98.76£0.05 98.84:+£0.05 98.91+0.05 98.96+0.05 99.01+0.03 99.03+0.02 99.07+0.02 99.06 = 0.01
Color =7 £ Color £ Color Para. 98.49+0.06 98.25+0.05 97.74+0.12 97.24+0.23 96.87+£0.22 96.71+£0.25 96.87+0.24 97.22+0.16 97.73+0.14 98.17+0.06 98.45+ 0.04

D.1 MODEL MERGING IN THE CHUNKING-SETUP

To further investigate the fate of shared and task-specific knowledge under model merging, we investigate a condition
where the pre-trained feature base is weaker and where parts of the previously shared and pre-trained knowledge are
divided over the different tasks.

Experimental Setup. Following Lee & Storkey (2025), we divide the CIFAR-100 training dataset randomly into three
chunks of approximately equal size. We checked that each chunk contains examples from all classes. The pre-training
phase now consists of training only on the data of chunk 1. As before, this model, denoted Oprchunk, Serves as the
common starting point for subsequent adaptations.

The methodology is analogous to our experiments in the main text. We adapt models using visual cues, employing
both parallel and incremental scenarios originating from Opr.chunk- For parallel adaptation, one model branch is trained
on chunk 2 augmented with the Ccqjor cue, and another independent branch is trained on chunk 3 augmented with the
Choise cue. For incremental adaptation, the model is first trained on chunk 2 with Ccojor, and then training continues
using chunk 3 augmented with Cyise. The visual cues, training objectives, probabilistic cue application (pc = 0.5),
and optimization hyperparameters remain the same (see Appendix A). Note that in contrast to the experiments in the
main text, here, the pre-training is subject to the random seeds of the individual runs.

Finally, linear interpolation is performed between the endpoint models obtained from the cue-specific adaptation phase
for both parallel and incremental scenarios. All models, and interpolated models are evaluated on the full CIFAR-100
test set, using the three conditions defined in Section 3: color cue specific knowledge, noise cue specific knowledge,
and shared general knowledge (CIFAR-100 with no cues).

Table 2: Numerical Results for the “Chunking” Setup. Displayed for each experiment is the test accuracy (in %),
reported as the mean =+ standard error across three runs with different random seeds.

Interpolation Coefficient o

Training Evaluation  Scenario 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
e Cue Incr. 90.62 £0.38 86.98£0.36 83.55+£0.40 79.41+£0.56 75.00+0.58 70.64+0.70 66.29+0.78 63.63£0.73 55.76+£0.71 53.09+1.04
Color Para. 90.95 £ 0.40 81.71+0.22 72.95+0.55 62.89+0.67 54.6740.55 48.58+£0.49 46.12+0.44 43.71+0.41 41.35+£0.41 39.42+0.61
Teotor = TNoise 73 Cue Incr. 41.62 £0.63 44.49£0.64 45.69+0.60 46.92+0.61 48.60+0.61 52.76+£0.62 60.16+0.64 75.12+0.94 92.76+£0.23 99.12+0.05
Noise Para. 41.62£0.63 4248 +0.61 42.824+0.64 4320£0.60 43.60£0.61 4525+0.61 49.08+0.62 56.75+0.64 74.12+£0.94 92.76+0.23 99.1240.05
CIFAR-100 Incr. 4229 £0.61 43.60£0.52 44.49+0.48 45344047 46.12+£0.46 46.53+0.68 46.98+0.61 47.02+0.48 46.87+£0.49 46.15+0.55 45.6440.59
Para. 42974+0.56 43.18£0.50 43.23+£0.52 43.29+0.47 43.334+048 43.15+£0.32 43.59+£0.31 43.66+0.31 43.59+0.30 43.02+£0.30 41.62+0.40
Teer s T Teor Cue Incr. 90.62£0.38 91.39+£0.39 91.93+0.35 92534040 93.07£0.40 93.60+£0.40 93.94+0.40 9426040 94.56+£0.40 94.72+0.40 94.7340.40
Color Color Color Para. 90.81£0.27 90.87+£0.28 90.83+0.22 90.66+0.17 90.39£0.16 90.24+0.15 90.36+£0.17 90.48+0.17 90.68£0.16 90.82+0.13 90.79 4 0.04

Results and Observations. The interpolation results for this chunking experiment are presented in Figure 2. The
overall trends we observe are largely consistent with our main findings, though with some nuances reflecting the
modified pre-training.

Endpoint Performance: The Opr.punk model (black diamond in the CIFAR-100 panel of Figure 2) establishes the
baseline shared knowledge accuracy after seeing only chunk 1. Models subsequently adapted to specific cues on new
data chunks (chunks 2 and 3) achieve high accuracy when tested with their respective cues on the full test set, indicating
successful learning of these specific visual features. Performance of these endpoints on the general CIFAR-100 task
(no cues) reflects both the retained knowledge from chunk 1 and any generalizable features learned from chunks 2
and 3.

Unshared Task-Specific Knowledge: Sensitivity to the distinct Tgoor and Toise cues shows rapid degradation during
interpolation between the two cue-specialized models, for both parallel and incremental scenarios. This aligns with
the main experiments, suggesting that unshared specific knowledge is poorly preserved by merging.
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Figure 2: Weight-Interpolation Results in the CIFAR-100 ‘Chunking’ Setup. (a) Accuracy (y-axis) vs. interpola-
tion coefficient « (x-axis) for the task-specific knowledge protocol in the chunking setup. Performance is evaluated
on the color (left) and noise (right) visual cues, comparing incremental (blue circles) and parallel (orange diamonds)
training. The endpoint models are specialized on chunk 2 with T¢eer (@« = 0) and chunk 3 with Tyeise (v = 1),
both originating from a base model pre-trained on chunk 1. (b) Accuracy vs. a for the shared knowledge protocol,
where the endpoint models of the interpolation are specialized for chunk 2 with Ty (¢ = 0) and chunk 3 with
Teolor (@ = 1). (c) Performance on the base CIFAR-100 dataset (no cues) when interpolating the same endpoints
as in (a). The solid black diamond marks the accuracy of the model pre-trained only on chunk 1. In all panels, the
plotted lines represent the mean accuracy across three independent runs with different random seeds, while the shaded
areas indicate the standard error. All evaluations are on the full CIFAR-100 test set. These results corroborate our
main findings: also when general knowledge is learned distributively across data chunks, merging leads to the
rapid degradation of unshared task-specific knowledge (panel a) while preserving and enhancing the consolidated
shared knowledge (panel b,c).

Shared Task Knowledge: In the incremental scenario, sequentially training with the same color cue yields forward
transfer, strengthening the model’s ability to use the cue in the context of new data. Consequently, a monotonic
improvement in performance along the interpolation path (Figure 2b) is observed. Here, merging does not benefit,
but visibly reverts the accumulation of knowledge with respect to the visual cue. Results for the parallel training
scenario, without any forward transfer, show the same trends as our experiment in the main text. A slight concave dip
in accuracy at the merging midpoint suggests that specializing on the same cue in the context of different data leads to
parametrically distinct solutions that are not perfectly compatible under linear averaging.

Shared General Knowledge (CIFAR-100): Performance on the full CIFAR-100 test set (no cues) during interpolation
shows improvements for both endpoints, and further substantial gains from interpolation. It contrasts the above results
for shared specific task knowledge and re-emphasizes a key finding of the main: while merging may revert the learning
of a specific shared skill in a sequential setting, it can simultaneously consolidate and improve the more distributed,
general shared knowledge acquired across the same sequence.

This experiment and its findings reinforce our main observations. Also when the general features relevant to the
CIFAR-100 task are learned in a distributed manner across different data chunks (each potentially paired with a spe-
cific cue during adaptation), linear model merging demonstrates a capacity to consolidate and enhance this broadly
applicable knowledge. Concurrently, it continues to struggle with reconciling unshared, task-specific cue knowl-
edge introduced within individual chunks. The consistency of these shared-versus-specific dynamics, whether general
knowledge is established via comprehensive pre-training or learned incrementally across data chunks, underscores
their robustness.

D.2 INTERPOLATION RESULTS — REVERSE ORDER OF CUE ADAPTATION

To further assess the robustness of our main findings regarding the interaction of shared and task-specific knowledge,
we conducted an additional set of experiments where the order of cue adaptation in the incremental scenario was
reversed compared to that primarily presented in Section 3.

Experimental Setup Modification. The core methodology for pre-training, visual cue design (Ceoor and Cyoise)s
optimization, and evaluation remains identical to our main experiments (details in Appendix A). The key difference
lies in the reversed order of the cues in the task-specific adaptation phase.

10
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Table 3: Numerical Results for the Reverse Cue Order Experiments. Shown for each experiment is the classifica-
tion accuracy (in %) on the test set, reported as mean =+ standard error across three runs with different random seeds.

Alpha

Training Evaluation  Scenario 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Noi Incr: 99.76 £0.04 97.11 £0.33 8744 +1.00 76.17+£0.99 69.57+0.66 66.34+0.37 64.684+0.15 6383 +£0.04 63.36+0.05 6287 +0.18 62.39+0.20
oise Para. 99.76 £0.04 9370 £0.23 7586+ 0.14 6639 +0.17 62.764+0.06 6131 £0.04 60.71+0.06 60.51£0.06 60.51+0.12 60.48+0.09 60.29 +0.12
Toise = Teolor g, Incr. 59.71£0.12 60.70 £0.13 61.84+0.02 63.03+£0.17 65.05+023 6859+024 74774+028 8352+£0.22 90.324+0.05 9425+0.14 9621 +0.13
olor Fara. 59.714£0.12  60.23 £0.10 60.60 +0.06 60.94 £0.04 61.73+0.03 63.36+0.08 67.26+028 7535+049 87.22+£0.30 94.63+0.26 97.59£0.10
CIFAR-100 Incr. 61.07+0.16 61.66+0.13 61.98+0.13 6238 +0.15 62.684+0.18 62.75+0.16 62.824+0.16 62.99+0.20 63.12+0.17 6298 +0.11 62.81 +£0.13
B ra. 61.07+£0.16 61.35+£0.17 61.454+0.20 61.43£020 61.15+0.13 61.02£0.12 60.88+£0.08 60.94+0.04 60.99+£0.06 61.14+0.11 60.85=+0.13

Results and Observations. The interpolation results for this reverse order experiment are presented in Figure 3
and Table 3. The observed trends are qualitatively consistent with those reported in our main results (Section 4.
Unshared task-specific knowledge (sensitivity to the initial Tyeise cue at « = 0 or the final T¢oor cue at a = 1)
rapidly degrades when interpolating towards the opposing endpoint. Performance on the shared CIFAR-100 task (no
cues) again shows that the incremental adaptation scenario can lead to an enhancement of this knowledge around the
midpoint of interpolation. The parallel scenario for shared knowledge remains relatively flat.

Task-Specific
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Figure 3: Weight-Interpolation Results for Reverse Order Cue Adaptation. Accuracy (y-axis) vs. interpolation
coefficient o (x-axis). The o = 0 endpoint is specialized on Tneise and the & = 1 endpoint on T¢or. Results
compare ‘incremental’ (blue circles) and ‘parallel” (orange diamonds) training. (a) The task-specific panels (Tnoise,
Tcolor) show the performance on the respective cue-specific test sets. (b) The shared CIFAR-100 panel shows the
performance without cues. In both panels, the plotted lines represent the mean accuracy across three independent
runs with different random seeds, while the shaded areas indicate the standard error. All evaluations are on the full
CIFAR-100 test set.
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E EXTENDED DISCUSSION

As discussed in Section 5 of the main text, our experiments investigating the linear merging of models highlight
a distinct impact on shared versus task-specific knowledge, particularly when merging different checkpoints of an
incrementally trained model. This extended discussion elaborates on these core findings, delving deeper into the
interactions observed, the nuances between incremental and parallel adaptation scenarios, the broader implications
for applying merging in CL, and considerations regarding when this approach might be most suitable. We begin by
re-examining the different behavior of shared and specific knowledge components.

Fate of Shared and Task-Specific Knowledge. A consistent observation across our experiments is the divergent
behavior of shared versus task-specific knowledge under linear interpolation. Shared knowledge, whether established
during pre-training or by specific features like a common visual cue learned by both endpoint models, is largely pre-
served and can even be enhanced by interpolation (Figure 1d and le). This aligns with findings where merging is
thought to consolidate commonalities by finding a more central solution within a shared loss basin, often facilitated
by a common training history (Izmailov et al., 2018; Wortsman et al., 2022b). At the same time, the minor perfor-
mance variations observed, particularly the slight dip in the parallel scenario, hints at a nuanced interaction. While
functionally near-identical (both proficient at Tcoor), their underlying parametric solutions for this relatively simple,
cue-specific skill might still diverge. This observation links to early findings on linear mode connectivity (Frankle
& Carbin, 2019), where the extent of shared training iterations influences the ease of finding low-loss paths between
solutions. In particular, subsequent independent fine-tuning that results in distinct features (T¢oor cue) can lead to
slightly different local minima, ultimately resulting in (minor) barriers upon linear interpolation. Depending on the
characteristics of the newly learned features, initialization in a common basin is no guarantee for future merging com-
patibility. In sharp contrast, unshared task-specific knowledge (e.g., when interpolating between a T¢oor-Specialized
model and a Tyise-specialized model) rapidly degraded upon interpolation. This highlights that distinct parameter
adaptations optimized for unrelated specific cues are easily disrupted by averaging. This differential effect on shared
versus unshared components aligns with observations made by Zaman et al. (2024) regarding knowledge dynamics in
language models.

Benefits of Merging Sequentially Adapted Models. Another observation is the superior performance of merging
models adapted in the incremental (naive CL) scenario compared to the parallel scenario, particularly for shared
knowledge (Figure le, CIFAR-100 panel). When interpolating between sequentially trained states, the performance
on the general CIFAR-100 task consistently surpassed that of merging parallel-trained endpoints, often exceeding
even the original pre-trained model’s accuracy. This suggests that the process of sequential adaptation, even without
explicit CL. mechanisms, moves the models along trajectories that are more amenable to beneficial merging. The shared
trajectory of adaptation across tasks in the incremental setup could lead to more compatible or aligned representations
of features, which are then effectively consolidated by interpolation. Similar results are presented by Marouf et al.
(2024). This finding is particularly relevant for CL, as it indicates that merging states from a single, continually
evolving model might be more advantageous than merging independently trained specialists.

Implications for Continual Learning. The observed degradation of unshared task-specific knowledge when merging
models presents a complex consideration for CL. The fact that specific learned information can be lost during merging
introduces a critical question of ‘utility’. If such specific adaptations represent undesirable artifacts like reliance on
various biases or spurious correlations, as framed by Zaman et al. (2024), their erosion could be beneficial. However,
in many CL contexts, the unique knowledge acquired for distinct past tasks is precisely what needs to be preserved,
especially as retraining on all historical data is often infeasible. In these cases, naive merging would exacerbate
catastrophic forgetting. This underscores the challenge of determining whether specific knowledge components are
valuable or detrimental, a decision crucial for applying merging, but also other CL mechanism, effectively.

When Might Merging Be Suitable for CL? Our results suggest that naive linear interpolation might be most promis-
ing for CL scenarios aiming to consolidate general, shared capabilities, or where tasks are sufficiently similar that
their specific solutions are not too disconnected. It appears less suited for maintaining strong performance on diverse,
specialized tasks if unique knowledge components are crucial. However, several factors could modify this outlook:
Task Similarity and Relatedness: Merging models from closely related tasks may lead to less degradation. While one
might question the gains if tasks are very similar, merging could still offer robustness by averaging out optimization
noise or consolidating compatible specializations (Izmailov et al., 2018; Ilharco et al., 2022). Model Architecture and
Scale: Our study used a variant of ResNet-18. Much recent merging success has been on very large models. As works
like Ramasesh et al. (2022); Ilharco et al. (2022) suggest, the effectiveness of patching or merging can improve with
scale, possibly due to greater parameter capacity allowing for more disentangled (Ortiz-Jimenez et al., 2023) or robust
encoding of specific knowledge. Merging Techniques: Simple linear interpolation is a baseline. More advanced meth-
ods, including Fisher-weighted averaging (Matena & Raffel, 2022) or interference-resolving techniques (Yadav et al.,
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2023; Marczak et al., 2024), might better preserve specific knowledge. However, such methods primarily re-balance
existing knowledge components; their utility still depends on the desirability of preserving those specific components.
Nature of Endpoint Models: The training regimen of the endpoint models is critical. Recent work in continual pre-
training suggests that specific optimization strategies for endpoints, such as using exponential moving averages, can
significantly improve their suitability for subsequent merging and overall CL performance (Udandarao et al., 2024;
Marouf et al., 2024). This points towards co-designing training and merging strategies.

Operationally, linear merging is often applied post-hoc and is computationally inexpensive compared to many online
CL methods that modify the training process itself. While this offers flexibility, the success of merging implicitly still
relies on the initial training trajectories leading to compatible solutions in parameter space, a condition often facilitated
by shared pre-training or task similarity (Frankle & Carbin, 2019).
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