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Abstract

Federated Learning (FL) enables collaborative model training across decentralized users
while preserving data privacy, but it also raises a fundamental challenge: how to efficiently
and reliably quantify individual user contributions to the global model. The Shapley value
(SV) provides a principled game-theoretic framework for contribution valuation, yet its ex-
act computation is prohibitively expensive in realistic FL systems. Existing SV approxima-
tion methods face a trade-off between scalability and estimation fidelity, particularly under
heterogeneous data distributions. In this work, we propose DuoShapley, an efficient and
adaptive SV approximation tailored to large-scale FL that adaptively balances two com-
plementary orders: Solo, capturing individual contributions, and Leave-One-Out (LOO),
capturing marginal contributions relative to the full coalition. By adaptively weighting
them during training based on the alignment between local and global model updates, Du-
oShapley achieves both computational efficiency and accurate contribution valuation across
diverse FL scenarios, from independent and identically distributed (IID) to non-IID. Beyond
contribution measurement, DuoShapley enables downstream applications such as robust user
selection in the presence of users with noisy data, by prioritizing users with high estimated
contributions. Such selective participation leads to enhanced robustness to noisy and low-
quality updates, and reduced communication overhead. Extensive experiments show that
DuoShapley is both computationally efficient and effective across diverse data distributions.
Hence, DuoShapley provides a practical and scalable solution for evaluating and leveraging
user contributions in FL.

1 Introduction

Federated Learning (FL) has emerged as a widely adopted paradigm for training machine learning models
over decentralized data McMahan et al. (2017), improving over traditional centralized training approaches in
various aspects, including privacy, communication, and computation efficiency. In FL, users collaboratively
train a shared global model by exchanging model updates rather than raw data, reducing privacy risks and
communication overhead compared to centralized learning. At each iteration, the server updates the global
model by aggregating model updates submitted by each user and then broadcasts the updated global model
to all users Chen & Vikalo (2024).

Despite these advantages, FL introduces a fundamental system-level challenge: how to efficiently measure
each user’s contribution to the overall learning process. Reliable contribution valuation is essential for fair
incentive allocation Murhekar et al. (2024); Li et al. (2024a); Buyukates et al. (2023), enabling reward
mechanisms such as monetary compensation or prioritized access to the final model Wang et al. (2019).
Incentive mechanisms are also essential for sustaining user engagement and collaboration Pan et al. (2024).
Without principled contribution estimates, FL systems risk under-incentivizing high-quality participants
while remaining vulnerable to low-quality or harmful updates, see e.g. Liu et al. (2022b); Cho et al. (2022);
Lu et al. (2024); Allouah et al. (2024); Chen et al. (2024b); Xu et al. (2024).

The Shapley value (SV) offers a principled solution to contribution valuation by fairly attributing the global
utility of a coalition to individual participants. As a result, SV-based methods have been widely studied
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Figure 1: Overview of the DuoShapley framework. The server first broadcasts the global model to all
users. Each user then performs local training and sends back model updates to the server. Finally, the server
aggregates these updates and estimates each user’s contribution by combining Solo and LOO evaluations.

in FL for incentive design and client selection. However, computing SV is prohibitively expensive even
in moderately sized FL systems because it requires evaluating an exponential number of user coalitions.
To address this challenge, prior work has proposed a variety of approximation methods, including Guided
Truncation Gradient Shapley (GTG) Liu et al. (2022a) and Truncated Monte Carlo Shapley (TMC) Ghorbani
& Zou (2019). While effective in small-scale settings, these approaches remain computationally expensive
and scale poorly as the number of users increases.

A key observation underlying this work is that scalability constraints in FL effectively restrict feasible
Shapley approximations to very low-order coalitions. In particular, coalition orders beyond individual users
or the full coalition quickly become impractical as the system scales. This motivates a closer examination of
two extremal yet efficient coalition orders: Solo1: which evaluates users independently, and Leave-One-Out
(LOO): which measures the marginal impact of removing a user from the full coalition. Both scale linearly
with the number of users and are therefore well-suited for large-scale FL.

However, these two orders exhibit complementary limitations. Solo performs well in homogeneous (IID)
settings, where client data distributions are similar. However, as distributions become more heterogeneous
(non-IID) Chen & Vikalo (2024), its reliability declines. When a user’s data differs substantially from others,
its standalone performance appears limited, despite providing valuable complementary information. In such
cases, Solo tends to underestimate the user’s true impact, as it fails to account for collaborative interactions
among clients. LOO, on the other hand, evaluates each user’s contribution by measuring the performance
drop when the user is removed, thus capturing the influence of all other users collectively. However, it lacks
resolution in homogeneous settings, where removing a single user has limited effect on the global model.

In this paper, we propose DuoShapley, an efficient Shapley value approximation that adaptively balances
Solo and LOO contributions during training. By leveraging cosine similarity between local and global
updates as a measure for distributional alignment, DuoShapley dynamically adjusts the weighting between
individual and coalition-based contributions without requiring explicit knowledge of data heterogeneity.
Beyond contribution estimation, DuoShapley supports a broad range of downstream use cases. It can guide
user selection by identifying the most valuable participants under different data distributions, and to detect
noisy or low-quality users whose contributions are negligible or detrimental to overall model performance.
An overview of the framework is illustrated in Figure 1. Our key contributions are as follows:

• We provide an in-depth empirical analysis of two scalable coalition orders, Solo and LOO, revealing
their complementary strengths and limitations under varying data heterogeneity in FL.

• We introduce DuoShapley, an efficient and adaptive SV approximation algorithm for estimating user
contributions across FL scenarios with improved accuracy and scalability.

• We demonstrate the practical utility of DuoShapley through a user selection application, showing
its ability to enhance robustness and efficiency in realistic FL settings.

1We refer to the coalition Order-1 as Solo throughout the paper, which evaluates the contribution of each user independently.
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(a) Users Removal in IID (b) Users Addition in IID

(c) Users Removal in Non-IID (d) Users Addition in Non-IID

Figure 2: User removal and addition under IID and non-IID settings. We evaluate the effectiveness
of efficient coalition orders, Solo, and the LOO, for estimating user contributions, with Random included
as a baseline. The analysis is conducted by adding or removing top-ranked users under IID (Dir(10)) and
non-IID (Dir(0.1)) settings in the presence of noisy users.

2 Related Work

Contribution Evaluation via Gradient Shapley Methods. SV-based methods are widely used in FL
to quantify user contributions Wei et al. (2020); Song et al. (2019); Liu et al. (2022a). Gradient Shapley
methods aim to eliminate the lengthy retraining of FL models by utilizing gradient updates of the users
to approximate the FL sub-models for various users coalitions. Reference Song et al. (2019) proposes two
gradient Shapley methods: One-Round (OR) and Multi-Round (MR). OR calculates the SV once after the
training while MR calculates the SV in every FL round. Truncated Multi-Rounds Construction (TMR)
Wei et al. (2020) eliminates unnecessary FL sub-model reconstructions by adding a decay factor. TMC
Ghorbani & Zou (2019) approximates SVs by sampling random permutations and truncating the evaluation
process once marginal contributions become negligible. In GTG Liu et al. (2022a), authors design a guided
Monte Carlo sampling approach combined with truncation techniques to further improve the computation
efficiency. Another line of research studies extreme levels of data heterogeneity, e.g., label imbalance, and
propose variants of gradient Shapley methods for such scenarios Huang et al. (2021); Yang et al. (2024).
Existing approximations, including GTG, TMC, MR, and TMR, face significant computational challenges.
Although they adopt different strategies to approximate user contributions, they all require evaluating a
large number of coalitions, leading to high computational overhead. This limits their scalability and makes
them impractical for large-scale FL deployments.
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3 Problem Setup and Background

Federated Learning (FL). We consider a standard FL system with multiple users and one server. We
denote the set of users by K = {1, 2, . . . , I}, where I is the total number of users. Each user i ∈ K holds a
local dataset Di of size ni = |Di|. Let n =

∑
i∈K ni denote the total number of samples across all users. Each

data point (x, y) ∈ Di consists of a feature vector x and a corresponding label y. Let M = {1, 2, . . . , C}
denote the set of class labels. The global model is parameterized by w, and each user maintains a local
model wi. The global objective is to minimize the empirical loss:

min
w

L(w) =
∑
i∈K

ni

n
Li(w), (1)

where the local loss of user i is defined as

Li(w) = 1
ni

∑
(x,y)∈Di

L(w; x, y). (2)

The FL training process includes the following steps: (i) Initialization: The server initializes the global
model parameters w and broadcasts them to all users. (ii) Local Update and Model Aggregation: In
each communication round t, every user i ∈ K = {1, 2, . . . , I} performs local training and sends the updated
model parameters wt

i to the server. The server then updates the global model by aggregating the received
updates:

w(t+1) =
I∑

i=1

ni

n
w

(t)
i . (3)

Step (ii) is repeated until the global model converges.

Shapley Value (SV) for User Valuation in FL. SV Shapley (1971); Ghorbani & Zou (2019) of user i
is given by

ϕi(K, V) = 1
|K|

∑
Q⊆K\{i}

V(Q ∪ {i}) − V(Q)(|K|−1
|Q|

) , (4)

where ϕi is the SV for user i, Q denotes a subset of the set of participants K. V(·) is the utility function
that quantifies the performance or value of a given subset (coalition) of users.

Computing the exact SV in equation 4 requires evaluating the utility over |K| · 2|K|−1 subsets, which is
computationally prohibitive, even for moderate |K|. For user contribution assessment in FL, gradient-based
SV approximations are employed. In our work, we use validation accuracy evaluated on the server-side
validation dataset as the utility.

4 Proposed Method: DuoShapley

In this section, we analyze two fundamental coalition orders, Solo and LOO, and examine their behavior
across different data distributions. Our analysis highlights that Solo tends to perform well when user datasets
are similar, while LOO becomes more effective in heterogeneous settings. Motivated by these observations,
we propose our method DuoShapley, which balances efficiency and accuracy in estimating SVs across a wide
range of FL scenarios.

4.1 Motivation

With the growing scale of FL deployments, efficiency is a key requirement for ensuring practical and scalable
contribution evaluation. Instead of exploring complex coalition structures, we focus on two of the most

4



Under review as submission to TMLR

efficient and scalable SV coalition orders: Solo and LOO. These two represent minimal coalition settings.
Solo evaluates each user independently, while LOO measures a user’s marginal contribution by removing
them from the full coalition. Both scale linearly with the number of users, making them ideal for efficient
SV estimation.

Importantly, Solo and LOO exhibit complementary strengths under different data distributions. Figure 2
analyzes the impact of adding and removing top-ranked users under IID and non-IID settings, in the presence
of noisy users. For example, when the fraction is set to 0.3, the removal setting excludes the top 30% of users
and retrains the model using the remaining participants. Conversely, the addition setting trains the model
using only the top 30% of users. As shown in Figures 2a and 2b, Solo tends to perform well in IID settings,
where user contributions are relatively uniform and individual evaluation suffices. In contrast, Figures 2c and
2d show that LOO is better suited for non-IID scenarios, where a user’s value is revealed only in combination
with others. Notably, LOO tends to capture top contributors, who are most critical to model performance,
while Solo is more effective at identifying tail-end ones, highlighting their complementary strengths in user
valuation.

Thus, each method alone fails to generalize well across all cases. Solo underestimates contributions in
heterogeneous settings, and LOO lacks resolution in homogeneous ones. Motivated by this observation, we
propose to dynamically combine Solo and LOO in our method, enabling more robust and distribution-aware
user valuation in FL.

4.2 DuoShapley: Adaptive Weighting of Solo and LOO

To adaptively balance these two perspectives, we introduce a dynamic weighting scheme based on the cosine
similarity between a user’s update and the aggregated global update. Cosine similarity is a widely adopted
metric in FL for measuring similarity based on direction, independent of magnitude. Recent studies in
heterogeneous FL, robust aggregation, clustering, and personalization have demonstrated its effectiveness
in capturing similarity across diverse user distributions Yan et al. (2024); Chen et al. (2024a); Mai et al.
(2024); Li et al. (2024b); Sun et al. (2024). Building on these insights, we incorporate cosine similarity into
our framework to capture meaningful relationships among user updates and to guide weighting of Solo and
LOO.

Intuitively, when a user’s update direction is well aligned with the aggregated global update, indicating
consistent behavior with the majority, we place more weight on the Solo contribution. Conversely, when the
cosine similarity is low, suggesting that the user may bring unique or complementary information, we shift
more weight toward the LOO contribution. This mechanism allows our method to adjust smoothly across
different data distributions without requiring explicit prior knowledge of the data heterogeneity.

We define the estimated SV of user i as:

ϕ
(t)
i = α(t) · ϕ

Solo,(t)
i + (1 − α(t)) · ϕ

LOO,(t)
i , (5)

where ϕ
Solo,(t)
i denotes the individual contribution of user i at round t, and ϕ

LOO,(t)
i represents their marginal

contribution when removed from the full coalition, and α(t) ∈ [0, 1] balances the influence of each term.

We first explore using fixed values of α, but no single value universally works well across all data heterogene-
ity levels. High α can overemphasize individual contributions in highly non-IID settings, leading to poor
estimations. Conversely, low α can ignore useful individual signals in IID settings.

To address this, we design an adaptive weighting strategy that adjusts α based on the alignment between
each user’s local update and the aggregated global update. Specifically, we compute the cosine similarity st

i

between the local ∆(t)
i and the global ∆(t) for each user i at round t:

s
(t)
i = ∆(t)

i · ∆(t)

∥∆(t)
i ∥2 · ∥∆(t)∥2

, (6)
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Algorithm 1: DuoShapley for User Valuation in FL
1 Input: T : number of training rounds; E: number of local epochs; K: set of users; Di: dataset of user i; B:

batch size; ni: dataset size of user i; Vval(·): utility function on validation dataset; τ : normalization threshold;
ηi: learning rate at user i.

2 Server executes:
3 for each round t = 0, . . . , T − 1 do
4 for each user i ∈ K in parallel do
5 w

(t)
i ← UserUpdate(w(t), i)

6 w(t+1) ←
∑
i∈K

ni∑
j∈K

nj
w

(t)
i

7 {ϕ(t)
i }i∈K ← DuoShapley ({w(t)

i }i∈K, w(t), w(t+1),V)
8 function UserUpdate(w(t), i):
9 for each local epoch e = 1, . . . , E do

10 for each batch D(B)
i ⊆ Di of size B do

11 w
(t)
i ← w(t) − ηi∇Li(D(B)

i , w(t))
12 end for
13 return w

(t)
i to server

14 function DuoShapley({w(t)
i }, w(t), w(t+1),V):

15 for each user i ∈ K do
16 ϕ

Solo,(t)
i ← V(w(t)

i )− V(w(t))
17 w

(t+1)
−i ← Aggregated model without user i

18 ϕ
LOO,(t)
i ← V(w(t+1))− V(w(t+1)

−i )
19 ∆(t)

i ← w
(t)
i −w(t) for each i ∈ K

20 ∆(t) ←
∑

i∈K
ni∑

j∈K
nj

∆(t)
i

21 s
(t)
i ← CosSim(∆(t)

i , ∆(t)) for each i ∈ K
22 α

(t)
i ← clip(s(t)

i /τ ; 0, 1) for each i ∈ K
23 α(t) ← 1

|K|

∑
i∈K α

(t)
i

24 for each user i ∈ K do
25 ϕ

(t)
i ← α(t) · ϕSolo,(t)

i + (1− α(t)) · ϕLOO,(t)
i

26 return {ϕ(t)
i }i∈K

where

∆(t) =
I∑

i=1

ni∑I
j=1 nj

∆(t)
i , ∆(t)

i = w
(t)
i − w(t). (7)

Cosine similarity st
i ranges from [−1, 1], where +1 indicates perfect alignment, 0 denotes orthogonality, and

-1 implies complete opposition. In our setting, this cosine similarity serves as a proxy for the directional
alignment between users’ updates and the global update.

We then compute the α value for round t as:

α(t) = 1
I

I∑
i=1

α
(t)
i , α

(t)
i := clip

(
s

(t)
i

τ
; 0, 1

)
, (8)

where clip(·) denotes the element-wise clipping operation defined as clip(z; a, b) := min(b, max(a, z)),
which restricts the value of z to lie within [a, b]. In Equation 8, τ acts as a tunable hyperparameter that
controls how sharply the weighting transitions occur between Solo and LOO. Lower values of τ cause the
weighting to shift rapidly toward Solo, while higher values result in a more gradual transition, giving more
influence to LOO.
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As shown in Equation 8, we apply clipped normalization to each user’s similarity score s
(t)
i , mapping it to

the range [0, 1] to obtain α
(t)
i . This transformation ensures a smooth transition between Solo and LOO

weighting, where users with lower alignment receive weights closer to 0 (favoring LOO), and those with
higher alignment receive weights closer to 1 (favoring Solo). Finally, we compute the global weighting factor
α(t) for round t by averaging all users’ normalized α

(t)
i . This averaged α(t) reflects the overall directional

agreement among users in that round, guiding the balance between Solo and LOO in the SV estimation.

As shown in Algorithm 1, the server first collects model updates from all users. It then computes the Solo
and LOO contributions for each user based on their uploaded updates. To balance Solo and LOO, the server
calculates a weight α

(t)
i for each user by applying clipped normalization to their cosine similarity score s

(t)
i , as

defined in Equations 6 and 8. Finally, the overall Shapley-based contribution ϕ
(t)
i for each user is computed

using the weighted combination in Equation 5.

Cumulative Shapley Score. To maintain a stable and historical view of user contributions, we compute
the Exponential Moving Average (EMA) of estimated SVs across rounds Liao et al. (2025); Zhou et al. (2025);
Kim et al. (2024); Wang et al. (2023); Nagalapatti & Narayanam (2021). Let R

(t)
i denote the EMA for user

i at round t. Then we have:

R
(t)
i = β · R

(t−1)
i + (1 − β) · ϕ

(t)
i , (9)

where β ∈ [0, 1] is a smoothing factor. A higher β gives more weight to past estimates, leading to more
stable accumulation over time.

5 Experiments

We comprehensively evaluate the effectiveness of DuoShapley across varying levels of data heterogeneity and
two user scales: 10, and 50 users. Each setting is designed to examine different aspects of SV approximation.
These experiments enable a systematic evaluation of DuoShapley across diverse settings, ranging from small-
scale scenarios where SV approximations are feasible to large-scale systems where efficiency and adaptability
are essential.

5.1 Evaluation Setup

Datasets and Models. We use two common benchmark datasets, (i) CIFAR-10 Krizhevsky et al. (2009)
consisting of colored images of 10 classes, with 50,000 samples for training and 10,000 for testing, and (ii)
Fashion-MNIST (F-MNIST) Xiao et al. (2017) consisting of fashion images, with 60,000 samples for training
and 10,000 for testing. For both CIFAR-10 and F-MNIST, we randomly split 20% of testing samples as
validation dataset. We utilize a commonly employed CNN model Albawi et al. (2017) for the CIFAR-10 and
F-MNIST datasets.

Data Heterogeneity Scenarios. Both CIFAR-10 and F-MNIST datasets are uniformly distributed across
all 10 class labels. To simulate data heterogeneity, we adopt the widely used practical heterogeneous setting
based on the Dirichlet distribution Zhang et al. (2023), denoted as Dir(γ). We consider four levels of hetero-
geneity with γ ∈ 10, 1, 0.5, 0.1 across all datasets. The parameter γ controls the level of heterogeneity: higher
values lead to more IID-like data partitions across users, while lower values introduce greater heterogeneity.
Specifically, Dir(10) reflects the extreme IID scenario, where user data distributions are nearly identical,
and Dir(0.1) represents the most heterogeneous case, where user distributions differ substantially.

FL Setup. We train for 100 rounds in the 10-user setting, and for 200 rounds in the 50-user setting for
both F-MNIST and CIFAR-10 datasets. The batch size is 64; the learning rate is 0.05 for all baselines in
both datasets. We employ 1 local training round. All results are averaged over three runs.

Baselines. MR Song et al. (2019); TMR Wei et al. (2020); TMC Ghorbani & Zou (2019); GTG Liu et al.
(2022a); LOO Ghorbani & Zou (2019).

10 User Setting. In this setting, we assess the practical utility of each SV approximation by removing
users with the highest estimated SVs (top 10%, 30%) and measuring the resulting drop in model accuracy.
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(a) IID (b) Non-IID

(c) IID (Adaptive vs. Fixed) (d) Non-IID (Adaptive vs. Fixed)

Figure 3: User addition analysis under IID and non-IID settings. We evaluate the impact of adding
top-ranked users (from 10% to 50%) in the 50-user setting with noisy users. (a) and (b) show results under
IID (Dir(10)) and non-IID (Dir(0.1)) distributions, respectively, comparing Solo, LOO, and DuoShapley.
(c) and (d) compare DuoShapley with the adaptive α against the fixed α variants under IID and non-IID
settings, respectively.

Table 1: Per-round runtime (in seconds) of each method for varying numbers of users. All
methods use FedAvg-style aggregation, with cost dominated by model utility evaluation.

Method 5 Users 10 Users 50 Users 100 Users
MR 8.70 224.18 ✗ ✗
TMR 8.34 222.40 ✗ ✗
GTG 8.58 153.20 10101.86 ✗
TMC 8.73 118.17 6017.78 ✗
LOO 1.91 3.62 13.71 25.69
Solo 1.93 3.51 13.21 24.25
DuoShapley 3.24 6.61 23.93 47.41

This tests how effectively each method identifies the most important users. We also measure the runtime of
each method to highlight differences in computational efficiency.

50 User Setting. This setting simulates a practical FL environment, where the slow runtime of baseline
methods limits their scalability to larger deployments. We therefore focus on the most efficient approaches:
Solo, LOO, and the proposed DuoShapley, to evaluate scalability and robustness. In this setup, we include
50 benign users and 25 additional noisy users (approximately 33% of the total 75 participants) to simulate
practical conditions involving low-quality and noisy users. We introduce noisy users to reflect real-world
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(a) 10% Removal (b) 30% Removal

Figure 4: Trade-off between accuracy and runtime under user removal in non-IID setting. We
evaluate all baselines and DuoShapley in a 10-user FL setting with non-IID (Dir(0.1)). The x-axis denotes
total runtime, and the y-axis reflects test accuracy. (a) and (b) correspond to top-ranked user removal rates
of 10% and 30%.

scenarios where some participants may produce unreliable updates caused by label noise, data quality issues,
or inconsistent local optimization.

5.2 Evaluation of Efficiency and Scalability

Table 1 reports the average runtime (in seconds) per round for each SV approximation method across four
user scales. For small-scale settings (5 and 10 users), all methods are tractable, though the baselines (MR,
TMR, GTG, TMC) are significantly slower than LOO, Solo, and DuoShapley. As the number of users
increases, the inefficiency of the baseline methods becomes more apparent: for 50 users, TMC and GTG
require over 6,000 and 10,000 seconds per round, respectively, while MR and TMR become even more
impractical (due to exponential complexity).

In contrast, Solo and LOO maintain low runtimes and scale efficiently, showing linear growth with respect to
the number of users. Since DuoShapley is a linear combination of Solo and LOO, it inherits their efficiency
and benefits in practice. For example, DuoShapley is 200× faster than GTG and TMC at 50 users. These
results highlight the practical advantage of DuoShapley as a scalable and efficient approximation suitable
for real-world FL deployments.

5.3 Evaluation of SV Approximation Accuracy

10-User Evaluation. This setting simulates how well each method identifies the most critical contributors.
Figures 4a and 4b show that all methods behave similarly in terms of accuracy when a small fraction of
users is removed (top 10% and 30%) despite GTG, TMR, and TMC taking more than 3× longer. When
runtime is taken into account, our method, DuoShapley, along with other efficient baselines like LOO and
Solo, clearly stands out by providing a better trade-off between accuracy and runtime efficiency.

50-User Evaluation. As shown in Table 1, computing SVs using GTG and TMC becomes over 200× slower
compared to LOO and Solo for 50 users, making these baseline methods impractical at scale. Due to their
computational inefficiency, we narrow our focus to the most scalable methods: Solo, LOO, and DuoShapley.

Figures 3a and 3b compare Solo, LOO, and DuoShapley under IID and non-IID conditions, respectively. To
assess their effectiveness, we simulate the process of incrementally adding users with the highest estimated
SVs. Solo and LOO excel in different regimes: Solo performs best in IID settings, while LOO is more effective
under non-IID distributions. DuoShapley, by adaptively leveraging both, consistently achieves superior or
comparable performance across both settings. Specifically, for the top 10%, 20%, and 30% most valuable
user additions, DuoShapley outperforms both Solo and LOO under non-IID conditions.
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(a) σ = 0.05, 15% noisy users (b) σ = 0.1, 15% noisy users (c) σ = 0.15, 15% noisy users

(d) σ = 0.05, 30% noisy users (e) σ = 0.1, 30% noisy users (f) σ = 0.15, 30% noisy users

Figure 5: Robust user selection in the presence of noisy users. Test accuracy comparison of Du-
oShapley across different data distributions and noise levels. Experiments are conducted with 15% and 30%
noisy users, injected with noise sampled from a Gaussian distribution with zero-mean and standard deviation
σ (i.e., noise level), where σ ∈ {0.05, 0.1, 0.15}. In each round, the server selects the top 20% of users based
on the ranking of their estimated contributions. Every 5 rounds, the server queries updates from all users
to update their contribution estimates.

Beyond the addition of top 40%, Solo starts to slightly outperform DuoShapley. This happens because Solo
evaluates each user’s contribution independently, allowing it to better recognize the value of users with less
obvious impact, especially toward the tail. In contrast, LOO excels at identifying users whose contributions
significantly benefit the overall coalition, which leads to high-value users being ranked near the top. However,
it tends to overlook those users at the tail-end whose contributions are smaller or harder to spot within the
coalition. Overall, DuoShapley is universally effective across different data heterogeneity levels. It strikes a
good balance between Solo and LOO and is particularly effective at identifying the most valuable users, who
play a key role in practical FL deployments where only a small subset of strong contributors can be selected
from the entire user pool.

Moreover, as formulated in Equation 5, DuoShapley adaptively combines Solo and LOO using a balancing
parameter α. The comparisons in Figures 3c and 3d further demonstrate the advantage of using an adaptive
α. The adaptive α strategy achieves performance closely aligned with the best fixed α across both IID and
non-IID settings, without requiring manual selection of a fixed α.

6 Practical Applications of DuoShapley

In real-world FL deployments, users often vary in data quality, availability, and reliability. Involving all
users in every round is typically impractical due to resource constraints, communication overhead, and
the existence of noisy or low-quality participants. This motivates the need for a principled user selection
mechanism that prioritizes those who contribute most to model improvement.

We design a selection mechanism based on the cumulative Shapley score, as defined in Equation 9. In each
round, the server selects the top ρ fraction of users based on their cumulative Shapley scores, which are
updated every ν rounds using model updates collected from all users. In our experiments, we set ρ = 0.2
and ν = 5. To evaluate the selection mechanism, we simulate noisy user scenarios with 15% and 30% noisy
users and noise levels of 0.05, 0.1, and 0.15. Noisy users return random updates drawn from a zero-mean
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Gaussian distribution, with the standard deviation σ corresponding to the noise level. These settings allow
us to compare Solo, LOO, and DuoShapley in selecting high-quality users under challenging conditions.

As shown in Figure 5, Solo performs well in IID and moderately non-IID settings (Dir(10), Dir(1), Dir(0.5)).
In contrast, LOO excels in highly non-IID settings (Dir(0.1)), as demonstrated in Figures 5a and 5d, where
user data distributions are significantly heterogeneous. However, the performance of LOO is sensitive to
the noise level and the proportion of noisy users. As noise increases, Figures 5b and 5e show that LOO’s
coalition-based valuation becomes more affected by unreliable participants, degrading its estimation accuracy.
Conversely, Solo’s focus on individual contribution makes it more resilient to noise, exhibiting more stable
performance under higher noise conditions, as shown in Figures 5c and 5f. DuoShapley effectively inherits
the strengths of both Solo and LOO, aligning closely with Solo in IID settings and more with LOO in
non-IID scenarios, achieving robust performance throughout. Overall, Figure 5 demonstrates the consistent
performance of DuoShapley across all settings, highlighting its practical value for real-world FL deployments.

7 Conclusion

In this work, we present DuoShapley, an efficient and adaptive algorithm for user valuation in FL. By
leveraging the complementary strengths of Solo and LOO contributions, DuoShapley dynamically adjusts
their influences through a cosine-based weighting strategy that reflects the alignment between local and global
model updates, enabling effective SV approximation across both IID and heterogeneous data distributions.
DuoShapley scales linearly with the number of users and achieves over 200× speedup in per-round runtime
compared to existing methods such as GTG and TMC, making it highly suitable for practical and large-scale
FL deployments. To further highlight its applicability in practice, we apply DuoShapley to a user selection
application, demonstrating its effectiveness in identifying the most valuable participants and enhancing both
robustness and efficiency. Overall, DuoShapley strikes a practical balance between computational efficiency
and valuation accuracy, and offers a scalable solution for contribution evaluation in real-world FL systems.
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A Appendix

This appendix extends the main body of our paper, providing supplementary materials to enhance the
understanding of DuoShapley.

(a) 50% Removal (b) 70% Removal

Figure 6: Trade-off between accuracy and runtime under user removal in non-IID setting.
We evaluate all baselines and DuoShapley in a 10-user FL setting without noisy users, under a non-IID
distribution (Dir(0.1)). The x-axis denotes total runtime, and the y-axis reflects test accuracy. (a) and (b)
correspond to top-ranked user removal rates of 50%, and 70%, respectively, with users removed according to
their estimated SV rankings.

(a) IID (b) Non-IID

Figure 7: User removal under IID and non-IID settings. We evaluate the effectiveness of efficient
coalition orders, Solo, and the LOO, for estimating user contributions, with Random included as a baseline.
The analysis is conducted by removing top-ranked users under IID (Dir(10)) and non-IID (Dir(0.1)) settings
without the presence of noisy users.

A.1 Additional Results on F-MNIST.

10 User Setting. We evaluate the utility of each method by removing users with the highest estimated SVs
and observing the resulting drop in model accuracy. As the removal rate increases to 50% and 70% (Figures 6a
and 6b), baseline methods such as GTG, TMR, and TMC lead to larger accuracy drops, suggesting stronger
alignment with key contributors. However, these higher removal rates of 50% and 70% mostly involve users
ranked in the middle or near the end of the contribution list. In practice, large-scale FL systems rarely select

14



Under review as submission to TMLR

such a large fraction of participants per round. Instead, they prioritize identifying the top contributors, such
as the top 10–30%, who drive most of the model improvement. Our primary focus is on evaluating how well
each method identifies and ranks these most valuable users.

50 User Setting. Figure 7 examines the impact of removing top-ranked users in both IID and non-IID
settings, without any noisy participants. In the IID case (Figure 7a), all methods perform similarly because,
with homogeneous data and no noisy users, participants contribute equally. As a result, removing any of them
leads to similar effects. In contrast, Figure 7b shows that LOO performs better in non-IID settings, where
a user’s value emerges only through interaction with others. Notably, LOO is more effective at identifying
top contributors who are most critical to overall model performance.

A.2 Additional Results on CIFAR-10.

Figure 8: Evaluation of SV approximation accuracy on CIFAR-10. Approximation accuracy is
assessed across seven levels of data heterogeneity using the Cosine Distance metric. Lower values indicate
more accurate approximations.

Figure 9: Robust user selection in the presence of noisy users on CIFAR-10. Test accuracy
comparison of DuoShapley across different data distributions. Experiments are conducted with 30% noisy
users, injected with random noise level 0.06. In each round, the server selects the top 20% of users based on
the ranking of their estimated contributions. Every 5 rounds, the server queries updates from all users to
update their contribution estimates.

5 User Setting. Given the small number of clients, exact Shapley values (ExactSV) and all approximation
methods can be computed efficiently. We use ExactSV as the ground truth to evaluate the accuracy of
each approximation. To assess the effectiveness of evaluated mechanisms, we report the Cosine Distance as
the accuracy metric for estimating the distance between ExactSV and approximations. Prior to distance
calculation, we apply min-max normalization to all Shapley value vectors to ensure fair comparison across
metrics and eliminate scale-related bias. As shown in Figure 8, all methods yield similar results in this small-
scale setting, with error metrics tightly clustered and performance differences marginal. This outcome is
expected, as the limited number of users reduces combinatorial complexity and flattens the variation among
approximations.

User Selection with CIFAR-10 Figure 9 presents results under the CIFAR-10 setting with 50 benign
users, and 22 noisy participants (noise level 0.06). Solo performs well in IID settings but its effectiveness
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(a) Dir(10) (b) Dir(1) (c) Dir(0.5) (d) Dir(0.1)

Figure 10: Data distribution across 10 users in four scenarios. Circle size indicates sample count,
with heterogeneity controlled by γ in Dir(γ). Higher γ means lower heterogeneity. (a) is the most IID setting
with identical distributions for all. (b) and (c) show moderate heterogeneity. (d) is the most non-IID.

(a) Dir(10) (b) Dir(1) (c) Dir(0.5) (d) Dir(0.1)

Figure 11: Data distribution across 50 users in four scenarios. Circle size indicates sample count,
with heterogeneity controlled by γ in Dir(γ). Higher γ means lower heterogeneity. (a) is the most IID setting
with identical distributions for all. (b) and (c) show moderate heterogeneity. (d) is the most non-IID.

diminishes as data heterogeneity increases. In contrast, LOO excels in highly non-IID scenarios, where
collaborative effects play a larger role, but performs worse under IID settings due to its reliance on coalition-
based evaluation. DuoShapley effectively combines the strengths of both, aligning with Solo in IID and LOO
in non-IID settings.

A.3 Data Heterogeneity Scenarios.

Figures 10 and 11 visualize the distribution of data across users for four levels of heterogeneity, from highly
IID (Dir(10)) to highly non-IID (Dir(0.1)), under 10 and 50 users settings, respectively.

A.4 Hyperparameter Settings

In our experiments, we set β = 0.8 for all baseline methods in user removal and addition tasks, and β = 0.9
for the user selection application. For DuoShapley, we use τ = 1.0 in the 10-user setting. In the 50-user
setting, we set τ = 0.3 for user addition experiments and τ = 1.0 for user selection. For all truncation-based
baselines, we use a round truncation threshold of 0.01. All experiments are implemented in PyTorch and
conducted on two NVIDIA RTX A5000 GPUs and two Intel Xeon Silver 4316 CPUs.
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