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Abstract

This work introduces Robots Imitating Generated Videos001
(RIGVid), a system that enables robots to perform com-002
plex manipulation tasks—such as pouring, wiping, and mix-003
ing—purely by imitating AI-generated videos, without re-004
quiring any physical demonstrations or robot-specific train-005
ing. Given a language command and an initial scene im-006
age, a video diffusion model generates potential demon-007
stration videos, and a vision-language model (VLM) au-008
tomatically filters out results that do not follow the com-009
mand. A 6D pose tracker then extracts object trajecto-010
ries from the video, which are retargeted to the robot in011
an embodiment-agnostic fashion. Through extensive real-012
world evaluations, we show that filtered generated videos013
can be as effective as real demonstrations, and that per-014
formance improves with generation quality. We also show015
that relying on generated videos outperforms more com-016
pact alternatives such as keypoint prediction using VLMs,017
and that strong 6D pose tracking outperforms other ways018
to extract trajectories, such as dense feature point tracking.019
These findings suggest that videos produced by a state-of-020
the-art off-the-shelf model can offer a scalable and effec-021
tive source of supervision for robotic manipulation. Project022
page: rigvid25.github.io.023

1. Introduction024

Videos offer a rich and expressive source of training data025
for robotic manipulation, and numerous methods have suc-026
cessfully leveraged them for supervision. Such methods027
typically fall into two categories: (1) Learning from pub-028
licly available large-scale datasets of real-world videos [9,029
13, 22, 36, 106, 125], and (2) Imitation of specific demon-030
strations captured under controlled conditions that closely031
match the execution setting [8, 21, 55, 65, 69, 114]. Un-032
fortunately, both of these strategies come with challenges033
that limit scalability and broad deployment. Large-scale034
video datasets often introduce domain gaps [36, 119, 134]035
and require adaptation to specific robot embodiments and036

tasks [9, 87]. On the other hand, video-based imitation 037
involves laborious data collection that must ensure close 038
alignment in viewpoints, morphologies, and interaction 039
modalities [7, 8, 26, 106]. 040

Motivated by recent advances in video generation, we 041
explore a potentially new paradigm: can a single generated 042
video, synthesized to exactly match our input environment 043
and task description, be used as the sole source of super- 044
vision for robotic manipulation? Recently released models 045
like SORA [16] and Kling [1] have demonstrated impres- 046
sive capabilities in producing realistic-seeming videos from 047
language and image inputs. At the same time, it has been 048
shown that such videos frequently suffer from distorted ob- 049
ject geometries [73, 129], physically implausible interac- 050
tions [83, 124], and unrealistic scene dynamics [11, 39]. 051
Consequently, while the idea of synthesizing supervision is 052
enticing, its usefulness in the robotics setting has not been 053
convincingly established. Prior work incorporating video 054
generation into robotics typically relies on additional super- 055
vision, such as task-specific training [30] or fine-tuning on 056
offline robot trajectory datasets [14, 15]. By contrast, we 057
ask whether a robot can perform real-world manipulation 058
tasks solely by imitating generated videos—without any ad- 059
ditional supervision or task-specific training. 060

To this end, we introduce Robots Imitating Generated 061
Videos (RIGVid), a framework that connects video gener- 062
ation models to real-world robotic execution. Fig. 1 shows 063
an outline of the method. Given an input RGB-D image of 064
the scene and a free-form language command (e.g., “pour 065
water on the plant”), we use a state-of-the-art video diffu- 066
sion model to generate a candidate video of the task being 067
performed. The generated video may not accurately follow 068
the language command, but we show that it is possible to 069
use a VLM to automatically filter out unsuccessful genera- 070
tions. Next, we estimate per-frame depth on the video, seg- 071
ment the manipulated object, and track its 6D pose across 072
the video using a pose tracker, FoundationPose [117], that 073
requires a pre-computed object mesh. The resulting 6D ob- 074
ject pose trajectory serves as a high-level task representa- 075
tion that is retargeted to the robot for execution. Because 076
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Figure 1. Robots Imitating Generated Videos. Given an initial scene image and depth, we generate a video conditioned on a language
command. A monocular depth estimator recovers depth for each frame of the generated video, and these depth maps are combined with the
corresponding RGB frames to produce 6D Object Pose Trajectory. After grasping, the trajectory is retargeted to the robot for execution.

this pose trajectory describes only how the object should077
move, rather than specifying robot-specific actions, it can078
be directly adapted to other robot platforms. During de-079
ployment, RIGVid also performs real-time object tracking080
and dynamically adjusts the robot’s actions to handle dis-081
turbances and execution-time variations, promoting robust082
and adaptive behavior.083

We evaluate RIGVid on four real-world manipulation084
tasks—pouring water, lifting a lid, placing a spatula, and085
sweeping trash. These tasks represent a wide range of ma-086
nipulation challenges, including minimal vs. significant087
depth variation (pouring vs. lifting), thin and partially oc-088
cluded objects (placing, sweeping), and different object ge-089
ometries and actions. Our results show that, when paired090
with our filtering mechanism, generated videos can be as091
effective as real human videos for visual imitation, enabling092
robots to act entirely from synthetic supervision. Moreover,093
the performance of RIGVid improves with video quality,094
suggesting a promising trajectory where advances in gen-095
erative models directly translate to stronger manipulation096
capabilities. While recent advances in VLMs offer a more097
compact alternative by predicting high-level task abstrac-098
tions, it has remained unclear whether these representations099
capture sufficient detail for robust execution, especially100
given the substantial computational cost of full video gener-101
ation. Our results indicate that generating videos is, in fact,102
crucial, yielding higher performance compared to SOTA103
VLM-based trajectory prediction method ReKep [49]. To104
validate our tracking approach, we compare against a broad105
range of existing tracking approaches that reflect the di-106
versity of current paradigms–sparse point tracking [15],107
dense optical flow [60], 3D feature-fields based pose rea-108
soning [58], and generated goal supervision [14]. Despite109
our method’s reliance on a pre-computed mesh, this require-110
ment consistently yields superior accuracy, confirming its111
practical advantage.112

In summary, this work introduces a generative vision-113
driven paradigm for robotic manipulation that scales su-114

pervision through synthetic videos. Our key contributions 115
are: (1) We propose RIGVid, a framework that enables 116
robots to perform open-world manipulation tasks using only 117
generated videos, by extracting structured, embodiment- 118
agnostic representations that can be directly retargeted for 119
execution—without requiring any real-world demonstra- 120
tions. (2) We show that RIGVid, when using filtered gen- 121
erated videos, performs on par with real human videos, 122
demonstrating that high-quality synthetic videos can serve 123
as effective substitutes for real-world demonstrations. (3) 124
We achieve state-of-the-art performance, outperforming 125
representative methods based on VLMs, point tracking, op- 126
tical flow, feature fields, and generated-goal supervision. 127

2. Related Work 128

Imitation from Videos. Imitation from videos seeks to ac- 129
quire robotic skills directly from raw observational data, 130
without requiring expert action labels or robot state in- 131
formation. This paradigm has attracted significant atten- 132
tion [12, 22, 32, 60, 78, 81, 91, 96, 100–102, 107, 114, 133
128, 133] because it eliminates the need for precisely la- 134
beled robot data. A first line of work focuses on learn- 135
ing actionable affordance models from internet-scale video 136
datasets [9, 10, 27, 52, 54, 67, 68, 82, 108, 127]. How- 137
ever, these methods suffer from domain gap between train- 138
ing videos and task-specific environments, and require addi- 139
tional mechanisms to obtain task-conditioned affordances. 140
To address this, many methods adopt direct imitation from 141
videos, matching visual states in demonstration videos 142
to those of the learner [8, 26, 34, 46, 55, 58, 93, 103, 143
104, 106, 112, 114, 121, 126]. While effective, this ap- 144
proach demands paired demonstrations in the same set- 145
ting. A common strategy is to leverage visual correspon- 146
dences—tracks [15] or optical flow [5, 35, 122]—to infer 147
object trajectories. For example, Bharadhwaj et al. [15] 148
predicts object tracks and uses PnP to recover poses for 149
closed-loop task execution. Dense descriptor learning [33, 150
113, 135] has also proven powerful for handling variations 151
in object geometry and appearance. Kerr et al. [58] recover 152
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object part trajectories from monocular videos using fea-153
ture fields. Crucially, all these methods rely on demonstra-154
tions collected under conditions closely matching the target155
task. In contrast, our method removes this strict require-156
ment by generating task and scene-conditioned videos. Our157
approach can be viewed as a hybrid between the affordance-158
based and direct imitation paradigms. Like the affordance-159
based approaches, our generated videos implicitly encode160
actionable affordances without requiring closely matched161
demonstrations. At the same time, similar to direct imita-162
tion approaches, we leverage visual imitation on these gen-163
erated videos, providing the robot with task-specific guid-164
ance.165

Video Generation for Robotics. Video generation has ap-166
peared as a promising avenue for robotics [3, 4, 14, 29,167
30, 71, 71, 123, 132]. A common limitation of these ap-168
proaches is their reliance on robot data, either to train the169
video generation model [71, 110], or to train policies [14],170
or both [3, 29, 30]. Bharadhwaj et al. [14] leverages tracks171
on generated videos to condition policy learning. Albaba172
et al. [4] uses generated videos to compute rewards for RL173
training. The closest related work is of Liang et al. [71],174
which executes robotic tasks by tracking tools attached to175
the robot’s end effector. While effective, their method re-176
lies on 1,822 human-collected robot demonstrations for just177
four tasks, and is confined to tasks executable only by tools.178
In contrast, our approach requires no such data collection.179
Instead of tools, our method tracks objects—allowing for180
a significantly broader range of manipulation tasks without181
using any robot data.182

6D Pose Estimation and Tracking. Instance-level object183
pose tracking methods fall into two main categories: model-184
based and model-free. Model-based approaches [19, 43, 44,185
62, 63, 85, 89, 105] require a 3D CAD model and typically186
estimate pose by constructing 2D-3D correspondences and187
solving the PnP problem [89, 111]. In contrast, model-free188
methods [17, 42, 45, 66, 79, 90, 109] rely on multiple ref-189
erence images instead of an explicit 3D mesh. Recent ad-190
vances in vision foundation models and large datasets have191
enabled zero-shot methods [6, 19, 63, 77, 88], which ex-192
tend to unseen objects and categories but still lag behind193
instance-level methods in performance. We employ Foun-194
dationPose [117], a versatile instance-level tracking method195
that supports model-based pose tracking. Notably, it does196
not require any instance-specific fine-tuning. Our choice197
is guided by its state-of-the-art performance and real-time198
execution speed, both of which are crucial for ensuring ro-199
bustness against disturbances during execution.200

Motion Retargeting for Object Manipulation. Early201
work in learning from demonstration established the foun-202
dation for object-centric motion retargeting [18, 38, 51,203
80, 86, 95]. More recently, deep learning-based retarget-204
ing methods have emerged [24, 25, 41], with some incor-205

porating object-centric representations to bridge the gap 206
between the demonstrator and the robot [58, 69, 118]. 207
Many approaches have applied retargeting to humanoid 208
robots [47, 61, 72, 84, 94]. Other works have extended 209
these techniques to dexterous manipulation [64, 97]. Like 210
most prior work, we assume a fixed transformation between 211
the end-effector and the object. While motion retargeting 212
has traditionally relied on human demonstrations, RIGVid 213
eliminates this dependency by leveraging generated videos. 214

3. Robots Imitating Generated Videos 215

We begin with an overview of RIGVid, introducing the key 216
notations and constituent modules. We then describe each 217
module and necessary implementation details for reproduc- 218
ing RIGVid. 219

3.1. Overview 220
Our method is shown in Fig. 1. Inputs are the initial scene 221
RGB image, its corresponding depth map, and a free-form 222
human command. Our goal is to predict the robot’s 6DoF 223
end-effector trajectory. To this end, we predict 6D pose 224
rollout that can be easily retargeted to any robot for real- 225
world execution. Concretely, RIGVid entails the follow- 226
ing key steps: (1) Generate a scene- and task-conditioned 227
video and predict its corresponding depth using a monocu- 228
lar depth estimator (Sec. 3.2); (2) Identify the active object 229
mask (Sec. 3.3); (3) Compute 6D pose rollout via an object 230
pose tracker (Sec. 3.4); (4) Grasp the object and retarget the 231
pose trajectory to robot, and execute the resulting trajectory 232
(Sec. 3.5). 233

3.2. Generating Videos and Corresponding Depth 234
We generate a video conditioned on the scene (using initial 235
real RGBD observation) and the task (using human com- 236
mand) by employing a pre-trained video diffusion model. 237
The recent surge in video generation research has enabled 238
models to generate videos that are both photorealistic and 239
also semantically aligned with open-ended instructions, an 240
achievement that was unattainable just a year ago. We 241
evaluate three generators–Sora [16], Kling v1.5, and Kling 242
v1.6 [1]. 243

Sora, introduced by OpenAI in early 2024, is notable for 244
its ability to create highly cinematic videos with striking re- 245
alism. In contrast, Kling v1.5 and its successor Kling v1.6 246
were both released by Kling AI in mid and late 2024 and 247
are trained with a specific emphasis on command following. 248
Our experiments reveal that Kling v1.6 produces the most 249
reliable and physically plausible generated videos, result- 250
ing in higher downstream robotic performance compared to 251
earlier models. As a result, we use Kling v1.6 as our de- 252
fault generator in all reported results. App. A details the 253
practices that yielded the most reliable results in generated 254
videos for us, although we expect these practices to become 255
less important as the models improve. 256

Since the generated videos may not necessarily follow 257
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the language command, we introduce a filtering mechanism258
to discard inaccurate generations. We prompt GPT-4o to259
assess whether the generated video depicts a successful ex-260
ecution of the human command. We sample four evenly261
spaced frames in the video and concatenate them vertically262
into a single image to create a video summary. The VLM263
determines whether this summary depicts a successful exe-264
cution of the task. If the response is negative, we regenerate265
the video and repeat the process for up to five attempts. If266
all attempts fail, we default to the final attempt. App. B pro-267
vides the full prompt used for filtering, examples of video268
summaries with their corresponding VLM responses, and269
filtering statistics.270

The resulting filtered video is a plausible execution of271
the task, but it is in raw pixel space. To extract action-272
able information from this video, we predict its correspond-273
ing depth by employing the depth predictor from Ke et274
al. [56]. Although directly using the predicted depth is the275
intuitive choice here, we are faced with the challenge of276
scale and shift ambiguity [40], where the estimated depth277
values are not grounded in real-world units. Consistent278
with prior works adopting depth estimators in vision-based279
robotics [23, 37], we compute a linear scale-and-shift trans-280
formation that aligns the predicted depth in the first frame281
with the initial real depth map. This transformation is then282
applied to the entire predicted video to resolve scale ambi-283
guity.284

3.3. Identifying Active Object Mask285
Our next step is to identify the active object–the one being286
manipulated in the generated video. We require a binary287
mask in the initial RGB image, which is essential both for288
object tracking (Sec. 3.4) and for determining which ob-289
ject to grasp (Sec. 3.5). Given the initial image and the290
task command, we prompt GPT-4o [2] to identify which291
object in the scene is likely to be manipulated. We then292
ground the predicted object category into a bounding box293
using Grounding DINO [76], and further refine this bound-294
ing box into a segmentation mask using SAM-2 [99].295

3.4. 6D Object Pose Trajectory296
We then track the active object, localized by the binary297
mask, across the generated video using the scaled predicted298
depth. This yields the 6D pose rollout. Tracking objects in299
videos is a rich area of research, and we experimented with300
several video trackers in 6D pose space [63, 116, 117]. With301
the goal of real-world deployment, we found the tracker302
from Wen et al. [117] to perform the best. It requires an ob-303
ject mesh, which we pre-compute using BundleSDF [116].304
For this, we record a short RGBD video in which the object305
is held in front of the camera and rotated, so that it is ob-306
served from all sides. While this process is straightforward,307
it does constrain our method to objects for which a mesh308
can be precomputed. However, as shown in App. C, our309
method is compatible with mesh-free approaches, though310

their inference speed is currently infeasible for real-time de- 311
ployment. To ensure real-world feasibility, we apply an av- 312
eraging filter to smooth abrupt pose changes, particularly in 313
the rotational component, to prevent jerky movements. This 314
refinement stabilizes the object pose trajectory and enables 315
more realistic executions. App. D provides more details on 316
pose smoothing. 317

3.5. Object to Robot Motion Retargeting 318

Figure 2. Re-targeting RIGVid to a robot trajectory. Assum-
ing a fixed transformation between the end-effector and the object
after grasping, the 6D Object Pose Trajectory (orange arrow) is
re-targeted to the robot (blue arrow). This formulation is embodi-
ment agnostic and can be transferred to a different robot.

Once the object trajectory is obtained, the first step is 319
to grasp the object. We use an off-the-shelf grasper, Any- 320
Grasp [31], to identify and execute the highest-scoring 321
grasp within a defined boundary around the active ob- 322
ject mask. After grasping, we retarget its trajectory to 323
the robot’s end-effector. Since the object remains firmly 324
grasped, we assume a fixed transformation between the 325
robot’s end-effector and the object. This transformation is 326
composed of two components: (1) the pose of the object 327
relative to the gripper at the moment it is grasped and (2) 328
the offset between the gripper and the robot’s end-effector. 329
By combining these two components, we obtain a single 330
transformation from the end-effector to the object. 331

The corresponding end-effector trajectory is obtained by 332
applying the fixed end-effector-to-object transformation to 333
the object’s pose along the entire trajectory. This formu- 334
lation ensures that the retargeted 6D pose rollout follows 335
the object’s motion while maintaining a stable grasp. These 336
are executed on the physical robot, enabling it to reproduce 337
the object’s movement as observed in the generated video. 338
A key strength of this approach is that it is robot-agnostic. 339
Specifically, to accommodate a different robot or gripper, 340
only the end-effector to the object transformation needs to 341
be updated to reflect the new end-effector configuration. 342

4. Experiments 343

We describe our experimental setup, evaluation metrics, and 344
overview of the baselines. We provide empirical evidence to 345
answer key research questions about RIGVid: (1) How does 346
the choice of video generation model impact performance, 347
and how does the robot perform with real videos of humans 348
demonstrating these tasks? (2) How does RIGVid compare 349
with VLM-based trajectory prediction methods that allow 350
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zero-shot robot executions? (3) How does RIGVid compare351
to the most relevant visual imitation methods?352

4.1. Robot Setup, Tasks, and Evaluation353
We conduct experiments on an xArm7 robot arm with a354
stationary Orbbec Femto Bolt camera, positioned next to355
the robot to capture RGBD observations. We evaluate our356
method on four everyday manipulation tasks that together357
span a diverse range of robotic challenges:358

1. Pouring water requires the robot to position and tilt a359
watering can above a plant. While the depth of the can360
from the camera remains largely constant, successful361
execution demands a smooth trajectory spanning the362
pick-up, transport, and pouring phases. A trial is con-363
sidered successful if the spout of the watering can is364
positioned above the plant at the end of the execution.365

2. Lifting a lid requires the robot to lift a pot lid. Unlike366
pouring, this task involves significant variation in ob-367
ject depth, as the lid moves closer to the camera during368
execution. This task assesses the method’s adaptability369
to changing object-to-camera distances and the robust-370
ness of trajectory extraction under substantial depth371
shifts. Success is achieved if the lid is no longer in372
contact with the pot at the end of the trial.373

3. Placing a spatula on a pan requires the robot to374
place the head of a spatula into a pan. The spatula375
presents a thin, elongated geometry and is often par-376
tially occluded during manipulation, which presents a377
challenge for object tracking. This task evaluates the378
method’s ability to handle objects with small surface379
area and persistent occlusion, both of which are par-380
ticularly difficult for non-mesh-based approaches. The381
task is considered successful if the spatula’s head is in382
the pan at the end of execution.383

4. Sweeping trash requires the robot to sweep trash into384
a dustpan. This task is especially challenging as it385
combines the need for precise positioning to align the386
head of the sweeping brush with the trash, along with387
all the challenges encountered from the previous task.388
A trial is successful if the trash is touching the base of389
the dustpan at the end of the execution.390

Task success is determined via human judgment based391
on these criteria, though the procedure could be readily au-392
tomated with a VLM. The initial setup is fixed across tri-393
als of the same task and each trial has a different generated394
video. All baselines use the same videos for consistent com-395
parison and reporting. We run all experiments on a single396
Nvidia TitanX GPU machine with 32 GB RAM.397

4.2. Quality and Filtering of Generated Videos398
As mentioned in Sec. 3.2, we experimented with Sora,399
Kling v1.5, and Kling v1.6 and compared different video400
filtering strategies. Next, we summarize our key empirical401
findings.402

How do different video generation models compare for403

robotic imitation? Sora is known for creating visually im- 404
pressive and cinematic videos. However, these videos often 405
prioritize aesthetics over following the human command. 406
For example, as seen in the top row of Fig. 3, Sora fre- 407
quently alters the camera viewpoint, changes object posi- 408
tions, or even swaps out objects mid-sequence. This lack 409
of scene and object consistency makes Sora poorly suited 410
for imitation. Kling v1.5 places more emphasis on follow- 411
ing language instructions. In our evaluations, videos from 412
Kling v1.5 generally preserved the original scene and cor- 413
rectly depicted the target object. Nonetheless, it still ex- 414
hibited physically implausible behaviors, such as objects 415
moving in unnatural ways or actions that defy basic phys- 416
ical constraints. These issues, although less frequent than 417
in Sora, still prevent successful downstream robot execu- 418
tion. In addition, we frequently observed that Kling v1.5 419
would fail to follow the commanded instruction at all, noth- 420
ing happens in the video, and the intended manipulation is 421
simply not attempted. Kling v1.6 further improved com- 422
mand following and physical plausibility. Videos generated 423
by it were the most consistent with the initial scene and the 424
intended task. As shown in the bottom row of Fig. 3, Kling 425
v1.6 avoids altering the scene layout, maintains the posi- 426
tions of all objects, and depicts motions that are physically 427
reasonable and closely aligned with the human command. 428
Hence, Kling v1.6 proved to be the most reliable video gen- 429
erator for us. 430

Does higher video quality lead to better robot perfor- 431
mance? To quantify this, Fig. 4 plots RIGVid ’s task success 432
across five video sources: unfiltered Sora, unfiltered Kling 433
v1.5, unfiltered Kling v1.6, filtered Kling v1.6, and real hu- 434
man demonstration videos. For each source, we used 10 435
videos per task. We observe a clear trend: as video qual- 436
ity improves, so does success rate. Sora’s videos led to the 437
lowest success, Kling v1.5 performed better, and Kling v1.6 438
gave the highest results among all generated videos. Filter- 439
ing further improved reliability: by discarding failed gen- 440
erations using our automatic approach, performance with 441
filtered Kling v1.6 videos matched that obtained with real 442
demonstration videos. 443

How effective is automatic video filtering? Filtering suc- 444
cess rates varied by task: 83% for pouring, 66% for lift- 445
ing, 55% for placing, and 45% for sweeping. Most errors 446
were false negatives—i.e., the filter occasionally discarded 447
some usable videos, but almost never passed an incorrect 448
one. Compared to standard metrics like video-text consis- 449
tency and subject consistency from VBench++ [50, 115], 450
our VLM-based filter correlated much more strongly with 451
true task completion (Tab. 1). 452

Can generated videos replace real videos for imitation? 453
The results in Fig. 4 indicate that, when using filtered 454
Kling v1.6 videos, RIGVid ’s performance is similar to that 455
achieved with real human demonstration videos. This find- 456
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Figure 3. Qualitative comparison of video generation. Sora (top) drastically alters the scene layout and objects. Kling v1.5 (middle) is
better but exhibits physically-implausible interations. Kling v1.6 (bottom) produces the most consistent and realistic videos.

ing suggests that, at current model quality, generated videos457
are already sufficient for visual imitation, substantially re-458
ducing the need for manual data collection.459

What causes failure? Aside from one case where the ob-460
ject slipped out of the gripper, all failures are attributed to461
errors in monocular depth estimation. These errors result in462
inaccurate 6D trajectories and lead to tracking failures. No-463
tably, similar depth estimation issues are also observed in464
real videos, suggesting that the limitation lies in the depth465
model itself. App. I provides a detailed analysis with quali-466
tative examples.467

4.3. RIGVid vs. VLM-based Trajectory Prediction468

Video generation is computationally expensive, prompt-469
ing the question of whether more efficient alternatives470

can enable robot manipulation without any demonstrations. 471
VLMs offer one by predicting simplified task abstrac- 472
tions—goal states [48], constraints [49], or reward func- 473
tions [92]—without generating full visual sequences, mak- 474
ing them cheaper in computation and inference time. We 475
compare against the state-of-the-art VLM-based method 476
ReKep [49] in Fig. 5, where RIGVid achieves 85% vs. 50% 477
success over four tasks. App. F illustrates ReKep’s fail- 478
ures, which we attribute to inaccurate keypoint predictions. 479
This comparison suggests that while VLM-generated ab- 480
stractions are compact, they may lack the rich, necessary 481
details. Thus, despite its higher cost, video generation pro- 482
vides crucial supervision rather than being a wasteful ex- 483
pense. 484

0

20

40

60

80

100

Sora Kling V1.5 Unfiltered Kling V1.6 Unfiltered Kling V1.6 Filtered Real Videos
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Figure 4. RIGVid performance vs. video quality. The dashed lines separate performance on generated videos from real videos. Kling
V1.6 produces most reliable videos and leads to highest RIGVid success. Filtered videos yields performance on par with real videos.

Filtering Metrics Description Pour Water Lift Lid Place Spatula Sweep Trash Average

Video-text Consistency Text-video match 0.06 0.47 0.70 0.11 0.34
I2V Subject Consistency Image-video subject match 0.35 0.58 -0.09 0.63 0.37
Querying GPT o1 VLM-based filtering 0.91 0.91 0.91 0.66 0.84

Table 1. Comparison of video filtering metrics. Pearson correlation coefficients measure each metric’s effectiveness in assessing whether
a generated video follows the language command. Each task has 10 success and failure cases. Querying GPT o1 proves to be most effective.
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Figure 5. RIGVid vs. VLM-Based Trajectory Prediction. By
leveraging rich spatial and temporal structure, RIGVid provides
accurate execution for challenging manipulation tasks.

4.4. Baseline Tracking Methods485

We adapted several well-studied and competitive baselines486
that use different types of tracking for visual imitation to be487
able to work without any demonstrations. For each baseline,488
we describe its inputs and outputs, core approach, our mod-489
ifications, and the motivation for its inclusion. We describe490
these baselines below and defer further details to App. E.491

Track2Act [15] (Tracks-Based). It takes as input RGBD492
image of the initial scene, together with a goal image that493
specifies the desired final configuration. Since we have no494
way to get the goal configuration, we generate its goal im-495
age by using the last frame of the generated video. The496
method predicts a dense grid of 2D point tracks between497
the initial and goal image to estimate pixel-wise correspon-498
dences. These tracks are then lifted to 3D using the depth499
map from the initial frame and converted into a sequence500
of 3D object poses via the Perspective-n-Point (PnP) algo-501
rithm. All other components of the method are kept un-502
changed. Track2Act is notable for its use of a dedicated503
track prediction network, which is conceptually similar to504
approaches that predict affordances, but here enables object505
motion to be inferred directly from observation pairs.506

AVDC [60] (Flow-Based). Given an initial image and a507
task description, AVDC predicts object motion by first gen-508
erating a task-conditioned video and then computing optical509
flow between frames. This optical flow is used in an opti-510

mization process to reconstruct the object trajectory. In our 511
adaptation, we substitute AVDC’s original video generator 512
with our improved model, while preserving all downstream 513
processing. This method is compelling because it leverages 514
dense correspondences across all points on the object, pro- 515
viding more correspondences for tracking. 516
4D-DPM [58] (Feature Field-Based). We modify this 517
method from tracking object part poses to tracking single 518
objects. It takes as input a 3D Gaussian splatting field of 519
the object and a video of the task, and outputs estimated ob- 520
ject trajectories over time. To build the field, this requires 521
a separate video where object is captured from all sides. In 522
our adaptation, since 4D-DPM typically expects a real hu- 523
man demonstration video, we instead use a generated video 524
as the task input video. This approach is compelling be- 525
cause it applies geometric, feature-based reasoning to track 526
objects, capturing entire object structure from video, with- 527
out relying on explicit correspondences. 528
Gen2Act [14] (Generated Goal-Based). Gen2Act takes as 529
input an RGBD image of the scene and a task description, 530
and outputs robot actions predicted by a learned policy. The 531
method first generates a video of the task as an intermedi- 532
ate step, then extracts object tracks from this video. These 533
tracks, together with offline robot demonstrations, are used 534
to train a policy for robot execution. In our adaptation, we 535
remove the fine-tuning on real robot demonstrations and in- 536
stead directly estimate object poses from the video tracks, 537
eliminating any dependence on expert demonstration data. 538
Gen2Act is notable for leveraging sparse correspondences 539
extracted from the generated video, enabling task-relevant 540
object motion to be tracked and retargeted without requir- 541
ing explicit actions. 542

4.5. RIGVid vs Other Robotics Tracking Methods 543
In the following, we include takeaways based on the results 544
in Fig. 6 and Fig. 7. 545

How does RIGVid compare to prior works that use other 546
tracking methods, and what accounts for its advantage? 547
Fig. 6 reveal that RIGVid achieves a success rate of 85.0%, 548
compared to 67.5% for Gen2Act and considerably lower 549

0
20
40
60
80
100

Pour Water Lift Lid Place Spatula Sweep Trash Average

Track2Act (Track-based) AVDC (Flow-based) 4D-DPM (Feature Field)
Gen2Act (Track-based) Ours

Figure 6. Performance on everyday manipulation tasks. Shown in the table, RIGVid, which uses 6D Object Pose Trajectory, consistently
achieves higher success rates (bottom) across all four tasks (top). Relative improvements are higher as tasks become harder (i.e., from left
to right in the bar plot). All results are on valid video generations (i.e., human filtered; detailed study in Sec. 4.2) and ten episodes for each
reported metric.
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rates for all other baselines. This margin grows on the550
more complex tasks. Crucially, all approaches are evalu-551
ated using the same set of generated videos, isolating the ef-552
fect of the trajectory representation itself. Methods such as553
Track2Act (7.5%), AVDC (32.5%), and 4D-DPM (35.0%)554
rely on point tracks or optical flow, but their performance re-555
mains limited—especially as object rotations or occlusions556
become severe. Gen2Act, which combines video genera-557
tion with point-based tracking, closes part of the gap but558
consistently struggles when large portions of the object be-559
come untrackable. In contrast, RIGVid’s use of a structured560
6D object pose trajectory enables robust execution across all561
tasks, accounting for the observed 17.5% absolute improve-562
ment over Gen2Act. This advantage persists even when563
more powerful tracking models like CoTracker3 [53] are564
used, as shown in App. G. These results indicate that it is565
the accuracy and stability of the 6D object pose trajectory566
that is key to RIGVid’s stronger performance across a range567
of manipulation tasks.568

How does RIGVid perform on tasks involving depth vari-569
ation, small objects, and occlusion? Looking at the task-570
wise breakdown in Fig. 6, we find that RIGVid consistently571

maintains high success rates even as object depth varies sig- 572
nificantly (such as in the lifting task) or when the manipu- 573
lated objects are thin, small, or partially occluded (such as 574
in placing a spatula or sweeping trash). Other methods fre- 575
quently struggle in these settings, often failing to recover ac- 576
curate object trajectories when objects become partially hid- 577
den or change distance rapidly. The advantage of RIGVid 578
is most pronounced on the most challenging tasks: for both 579
spatula placement and sweeping, RIGVid achieves success 580
rates 20–25% higher than the next best baseline. These re- 581
sults suggest that the structured 6D pose trajectory not only 582
enables robust tracking under depth changes and occlusion, 583
but also scales to manipulation scenarios where traditional 584
correspondence-based methods break down. 585

What do the intermediate predictions reveal about these 586
methods? Visualizing the outputs in Fig. 7 for the same gen- 587
erated video, we observe the intermediate predictions and 588
resulting robot executions produced by each method. For 589
Track2Act, the predicted tracks diverge from the true object 590
path, leading to failed execution. AVDC generates reason- 591
able optical flow in individual frames, but when summed 592
across the entire video, the resulting trajectory is often phys- 593

Track2Act (Tracks) AVDC (Flow) Gen2Act (Generated Goal) 4D-DPM (Feature Field) RIGVid (6D Object Pose Traj)

t

Ro
bo

t E
xe

cu
tio

n

Figure 7. Analyzing intermediate visual representations. Our 6D Object Pose Trajectory can correctly track the position and rotation of
the watering can (rightmost column), leading to a successful execution.
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Iron shirtWipe Table

Unplug ChargerUpright Ketchup Spill Beans

Mix PotAloha Pouring

Bimanual Place Shoes

Figure 8. RIGVid’s embodiment-agnostic capabilities and examples on solving complex, open-world tasks. RIGVid can readily work
on ALOHA setup [131] as shown on top left. On the bottom left, RIGVid is retargeted to the ALOHA setup. On the right, it generates
trajectories for diverse manipulation tasks—including wiping, mixing, and ironing—without using any physical demonstrations.

ically implausible and the execution fails. Gen2Act yields594
plausible tracks and leads to successful manipulation. 4D-595
DPM exhibits inconsistent tracking performance. While it596
accurately follows the object in certain segments, the ex-597
ample shown reveals incorrect tracking during the first half598
of the episode, which ultimately causes the rollout to fail.599
In contrast, the 6D object pose trajectories produced by600
RIGVid remain stable throughout the episode and closely601
match the actual object motion, resulting in successful exe-602
cution.603

4.6. Testing Generalization and Robustness604

Embodiment-Agnostic Transfer. We test RIGVid’s gen-605
eralizability to another embodiment by deploying it on the606
ALOHA robot for the pouring task (Fig. 8, top left). On this607
setup, it achieves 80% success, compared to 100% on our608
default xArm setup.1 RIGVid also generalizes to a biman-609
ual setup, simultaneously placing a pair of shoes into a box610
using both arms (Fig. 8, bottom left).611

Extensions to New Tasks. RIGVid enables zero-shot612
execution of diverse and challenging manipulation tasks613
that involve complex and unconstrained trajectories. As614
shown in Fig. 8 (right), it completes tasks such as wip-615
ing, mixing, and ironing. It also handles physically intricate616
scenarios, including uprighting a ketchup bottle, rotating a617
spoon to spill beans, and unplugging a charger, despite these618
tasks involving extreme rotations.619

Recovery from Perturbations. A key strength of620
RIGVid is its robustness to external disturbances during ex-621
ecution, as shown in Fig. 9. The system continuously tracks622
the object’s position using ftrack and updates the robot’s end-623
effector trajectory in real time. To detect a deviation (im-624
age 1), the current object pose is compared to the precom-625
puted motion plan. If it strays beyond 3 cm in position or 20626
degrees in orientation (image 2), the system classifies it as a627
disturbance. The robot then backtracks to the last success-628

1The slight performance drop stems primarily from camera calibration
challenges, as ALOHA’s arms yield less accurate pose estimates.

fully executed trajectory point (image 3) and resumes the 629
planned motion (image 4). This realignment allows RIGVid 630
to maintain stable task execution even under physical per- 631
turbations. Additional robustness examples are discussed in 632
App. H. 633

Human interrupts execution Object deviates from the trajectory

Robot backtracks Successful execution

1 2

3 4

Figure 9. RIGVid is robust to perturbations. The robot detects
and recovers from external disturbances by backtracking to the last
achieved pose before resuming execution.

5. Conclusions and Limitations 634

We introduced Robots Imitating Generated Videos 635
(RIGVid), the first method for robotic manipulation that 636
works without demonstrations—no teleoperation, no hu- 637
man demonstration, or expert policy rollouts. By leveraging 638
recent advances in generative vision models and 6D pose 639
estimation, RIGVid enables robots to execute complex 640
tasks entirely from generated video. We extract 6D Object 641
Pose Trajectory from the generated videos and retarget 642
it to the robot, demonstrating a scalable, data-efficient 643
approach to robotic skill acquisition. Our analysis shows 644
a clear correlation between video quality and task success: 645
as generation improves, RIGVid approaches real demo 646
performance. Additionally, our comparisons with SOTA 647
VLM-based zero-shot manipulation methods confirm that 648
leveraging detailed visual and temporal cues from gener- 649
ated videos yields substantially superior performance. We 650
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also show that RIGVid significantly outperforms baselines651
across a diverse set of visual imitation tasks, and demon-652
strate the robustness of our approach to environmental653
disturbances. Our work represents a step toward enabling654
robots to learn from the vast visual knowledge in generative655
models, reducing reliance on costly and time-consuming656
real-world data collection.657

Despite the advancements, our method has certain limi-658
tations. We need a precomputed mesh of the objects. In the659
future, it can be simplified by using single-image to mesh660
reconstruction methods [74, 75]. Additionally, our ap-661
proach depends on the video generation quality, which may662
struggle with complex prompts or scenes. As video gener-663
ation improves, we anticipate this limitation will become664
less significant. Our work aims to democratize robotics by665
removing the need for demonstrations, which could enable666
broader accessibility of robotic capabilities. However, we667
also acknowledge potential risks. Highly generalizable668
manipulation methods could be misused in applications669
such as automated weapons or unsafe industrial automation.670

671
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Appendix

A. Best Practices for Video Generation1280

We found that the following practices lead to reliable video1281
generation: (1) having a clean background without visual1282
distractions, (2) minimizing the number of distractor objects1283
in the scene, (3) ensuring objects are reasonably large and1284
viewed from a natural, human-like perspective, (4) ensuring1285
there is one clearly identifiable task that can be performed,1286
(5) using simple and concise text prompts, and (6) setting1287
the relevance factor to 0.7 with the negative prompt “fast1288
motion” led to the most reliable video generations.1289

B. Prompting for Video Filtering and Filtering1290

Statistics1291

The prompt for GPT o1-based filtering is shown in Figure1292
10. We provide GPT o1 with the prompt, the video sum-1293
mary—constructed by vertically concatenating evenly sam-1294
pled frames from the video—and the language command1295
(e.g., ”pour water”). GPT o1 then responds with ”Yes” or1296
”No” to indicate whether the specified task is successfully1297
performed in the video. The filtering success rates are: 83%1298
for pouring, 66% for lifting, 55% for placing, and 45% for1299
sweeping.1300

C. Mesh-Free Object Tracking1301

We experiment with a mesh-free object tracking version of1302
our method. Specifically, we use BundleSDF [116], which1303
jointly performs 6-DoF object tracking and reconstruction1304
from RGBD observations. For the pouring task, we evalu-1305
ate our method using trajectories obtained via BundleSDF1306
over 10 trials and observe a success rate of (90%), matching1307
our default tracking setup. While the BundleSDF paper re-1308
ports real-time capabilities, we found that its official imple-1309
mentation takes approximately 30 minutes to process each1310
video in practice, which limits its applicability for real-time1311
deployment. In contrast, our default tracker operates in real-1312
time, enabling closed-loop execution and recovery from dis-1313
turbances as discussed in Sec. 4.6. While the BundleSDF1314
paper reports real-time capabilities, we observed signifi-1315
cantly higher runtimes in practice with the official imple-1316
mentation. We expect that future advances in model-free1317
tracking will address these efficiency bottlenecks, allowing1318
for real-time mesh-free deployment.1319

D. Smoothing Object Trajectories1320

To reduce noise and jitter in the estimated object poses, we1321
apply a moving average filter with a fixed sliding window1322
(centered on each point), separately to the position and ori-1323

## Instructions
You need to determine whether a specific action occurs in the 
given image.
### Image Format
- The image has four rows.
- The action progresses from top to bottom.
### Task
- Examine the image and the provided query.
- Decide if the action described in the query is clearly 
depicted.
- A hand should be performing the action. Without it, the 

actions are likely implausible as the action needs to be 
executed by an actor.

- The task has to be done with the specified object in the first 
frame. The video cannot bring in a new object such that there 
are two of the same objects.

### Output Format
Your response must be in the following format
Explain if we see a hand.
Explain if a new object has been brought in that is different 
from any objects in the first frame
Explain your reasoning for the given image.
action_done: Yes or No
## Query
Query Task: Pour water from the watering can on the plant
Query Image:

1) Hand present?  Yes, a hand is visible holding the spatula.
2) New object introduced? No, there is no new object introduced; it is still the original 
spatula and the original pan.
3) Reasoning:  Although we see a hand holding the spatula, there is no point at which the 
spatula is placed on or in the pan. The spatula instead ends up resting on the table next 
to the pan.
action_done: No

Prompt

## Instructions
Same as previous prompt. Instructions omitted for simplicity.
## Query
Query Task: Place the spatula on the pan 
Query Image:

Prompt

We do see a hand holding and tilting the same watering can from the first frame. Water is 
visibly flowing onto the plant in the final frame.  
action_done: Yes

GPT o1 Response

GPT o1 Response

Figure 10. Examples of prompting GPT o1 to filter generated
videos. We sample generated video frames and prompt GPT o1 to
assess whether the specified task is performed successfully in the
video.

entation components. Translations are smoothed indepen- 1324
dently along each axis, while orientation undergoes a sim- 1325
ilar process after conversion from quaternions to rotation 1326
vectors. This approach mitigates abrupt changes, resulting 1327
in a more stable and realistic object trajectory with smoother 1328
transitions. 1329

E. Description of Baselines 1330

Track2Act [15]: We adapt Track2Act’s procedure to our 1331
setup preserving its core idea of object-centric trajectory es- 1332
timation from point tracks. Track2Act generates a future 1333
interaction plan by predicting 2D point trajectories (using 1334
a DiT-based diffusion model) between an initial image and 1335
a goal image, then recovers a sequence of 3D object trans- 1336
forms via Perspective-and-Point (PnP) [130]. 1337

16



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

To integrate this into our pipeline, we use their published1338
checkpoint but modify the input formulation–while the ini-1339
tial image remains identical to our real camera’s view, the1340
goal image is taken from the last frame of a generated video1341
rather than being physically captured. We then use PnP1342
on the predicted point tracks along with the initial depth1343
image to estimate the object’s rigid motion across frames,1344
thereby defining the end-effector trajectory. We use in-1345
terpolation between consecutive poses because Track2Act1346
generates only a sparse set of frames, and denser sam-1347
pling is needed for smooth trajectory estimation and execu-1348
tion. However, we do not include Track2Act’s closed-loop1349
residual policy correction, focusing solely on open-loop 6D1350
object-pose estimation and execution. This adaptation al-1351
lows us to directly evaluate how well a vision-based, open-1352
loop approach generalizes to our setting without additional1353
corrections.1354

Gen2Act [14]: Gen2Act introduces a video-conditioned1355
policy learning framework that first generates a human1356
video using a video generation model from a scene im-1357
age and a task description. The system then extracts object1358
tracks using BootsTAP [28], and trains a policy using be-1359
havior cloning with an auxiliary track prediction loss and1360
offline robot demonstrations. At inference, Gen2Act only1361
uses the generated video and the learned policy to predict1362
robot actions.1363

Our approach presents a simplified adaptation of this1364
framework that removes the need for behavior cloning, and1365
offline demonstrations. Instead of using the extracted tracks1366
as an auxiliary loss, we directly process them for pose esti-1367
mation. To recover 3D object positions, we leverage an ini-1368
tial depth image corresponding to the scene image, allowing1369
us to obtain depth values for the extracted 2D tracks. We1370
apply RANSAC filtering to remove outlier track points and1371
then use the Perspective-n-Point (PnP) [130] to estimate the1372
object’s 6DoF pose. This adaptation preserves the core idea1373
of leveraging video and track-based signals while eliminat-1374
ing the need for supervised policy learning.1375

AVDC [60]: The AVDC approach models action trajec-1376
tories by synthesizing a task-driven video (using a trained1377
text-conditioned video generation model) and using opti-1378
cal flow from GMFlow [120] to estimate dense pixel cor-1379
respondences. It then reconstructs 3D object motion using1380
an optimization step that refines pose estimates based on1381
the tracked flow and depth information. To improve robust-1382
ness, AVDC also includes a replanning mechanism that re-1383
executes the pipeline when predicted motion stagnates.1384

Since the trained text-conditioned video generation1385
model did not generalize well to our setup, we instead use1386
the same generated video as in other experiments to ensure1387
a fair comparison. While we do not employ AVDC’s re-1388
planning strategy, we predict object poses using a similar1389
optimization framework based on flow and depth informa-1390

tion. 1391

4D-DPM [58]: 4D-DPM is designed to track the 3D mo- 1392
tion of articulated object parts from a single video. It 1393
first constructs a 3D Gaussian splatting [57] representa- 1394
tion of the scene to capture object features, then applies 1395
GARField [59] to cluster the Gaussians into discrete ob- 1396
ject components. In our adaptation, we modify this ap- 1397
proach to operate on entire objects rather than individual 1398
parts. Specifically, we set the clustering parameters to treat 1399
the object as a single entity, ensuring that motion estima- 1400
tion is performed at the object level rather than segmenting 1401
it into multiple parts. This allows us to track and execute 1402
trajectories for the whole object. 1403

F. ReKep Predictions and Executions 1404

Figure 11. Examples of ReKep’s Keypoint Locations. The key-
point placements are often suboptimal, except for sweeping task,
where the keypoints are reasonable.

A detailed example of ReKep’s keypoint and VLM pre- 1405
dictions for pouring task is shown in Fig. 12. The VLM first 1406
predicts to grasp the watering can at keypoint 1. For the 1407
transport phase, it instructs moving keypoint 8 above key- 1408
point 15, while keeping its height above keypoint 7. For the 1409
pouring action, keypoint 8 remains above 15 (to place the 1410
spout over the plant) and above keypoint 4 (to induce tilt- 1411
ing). The resulting robot execution fails. We attribute most 1412
ReKep failures to inaccurate keypoint predictions, as shown 1413

17



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

in Fig. 11. In the lid image, there is no keypoint at the han-1414
dle of the lid. In the placing task, keypoints cluster around1415
pan corners. For the sweeping task, the keypoints are gen-1416
erally well-placed, and executions succeeded. Because the1417
initial keypoints are suboptimal, downstream VLM predic-1418
tions are also inaccurate.1419

def stage1_subgoal_constraint1(end_effector, keypoints):
"""Align the end-effector with the watering can handle (keypoint 1)."""
handle_point = keypoints[1]
cost = np.linalg.norm(end_effector - handle_point)
return cost

def stage3_subgoal_constraint1(end_effector, keypoints):
"""The watering can spout (keypoint 8) needs to be 10cm above the 
center of the plant (keypoint 15)."""
spout = keypoints[8]
plant = keypoints[15]
offsetted_point = plant + np.array([0, 0, 0.1])  # 10cm above the plant
cost = np.linalg.norm(spout - offsetted_point)
return cost

def stage3_subgoal_constraint2(end_effector, keypoints):
"""The watering can spout (keypoint 8) must be tilted below the base (keypoint 4) to pour."""
spout = keypoints[8]
base = keypoints[4]
# Ensure spout is lower than base
cost = max(0, spout[2] - base[2])
return cost

def stage2_path_constraint1(end_effector, keypoints):
"""The robot must still be grasping the watering can handle (keypoint 1)."""
return get_grasping_cost_by_keypoint_idx(1)

def stage2_path_constraint2(end_effector, keypoints):
"""The watering can must stay upright to avoid spilling (spout above base)."""
spout = keypoints[8]
base = keypoints[7]
# Ensure spout is not lower than base
cost = max(0, spout[2] - base[2])
return cost

def stage2_subgoal_constraint1(end_effector, keypoints):
"""The watering can spout (keypoint 8) needs to be 10cm above the 
center of the plant (keypoint 15)."""
spout = keypoints[8]
plant = keypoints[15]
offsetted_point = plant + np.array([0, 0, 0.10])  # 10cm above the plant
cost = np.linalg.norm(spout - offsetted_point)
return cost

def stage3_path_constraint1(end_effector, keypoints):
"""The robot must still be grasping the watering can handle (keypoint 1)."""
return get_grasping_cost_by_keypoint_idx(1)

def stage3_path_constraint2(end_effector, keypoints):
"""The watering can spout (keypoint 8) is directly above the plant (keypoint 15) 
in x-y plane."""
spout = keypoints[8]
plant = keypoints[15]
cost = np.linalg.norm(spout[:2] - plant[:2])
return cost

Figure 12. ReKep’s output for the pouring task and the re-
sulting robot execution (top-right). The VLM predictions on the
generated keypoints lead to failed execution.

G. Limitation of Tracking with Point Tracks1420

All point tracks fail under extreme rotations, as initially vis-1421
ible points often become occluded. This is a fundamen-1422
tal limitation of any correspondence-based tracking method1423
that relies solely on visible surface features. We show this1424
failure in Fig. 13. As the object rotates, most initial points1425
are lost, resulting in insufficient 2D-3D correspondences to1426
solve a stable PnP problem. This degrades pose estima-1427
tion quality, leading to large drift or abrupt jumps in esti-1428
mated object motion. Such instability cascades into robot1429

Gen2Act with BootsTAP Gen2Act with Cotracker3 RIGVid

Figure 13. Gen2Act with BootsTAP, CoTracker, and RIGVid.
Blue points denote the tracked points used for PnP; red points rep-
resent the reprojected 3D points. For a good PnP solution, these
should align, as seen in the first frame. For Gen2Act, the blue
points drift significantly from the red ones in later frames, indicat-
ing failure in pose estimation due to tracking loss, which leads to
failed robot execution.

execution errors, often causing the robot to fail at the task 1430
altogether. As a result, both variants of Gen2Act—despite 1431
stronger tracking backbones like CoTracker—still fail un- 1432
der large out-of-plane rotations. In contrast, RIGVid’s 1433
model-based 6D tracking handles these situations more ro- 1434
bustly, as it uses full-object geometry and SE(3) filtering to 1435
maintain stable trajectories. 1436

H. Additional Robustness Examples 1437

Robot approaches grasp Fault grasp rotates the object Robot corrects the faulty grasp Successful Execution

Human pushes object Recovery Human pushes again Recovery & Successful Execution
t

Figure 14. Additional examples of RIGVid’s robustness. In the
top row, RIGVid recovers from a faulty initial grasp by reorienting
the object before continuing execution. In the bottom row, it cor-
rects for external disturbances on the object when a human pushes
the object mid-execution, realigning and successfully completing
the task.

Examples of RIGVid’s robustness are shown in Fig. 14. 1438
In the first row, the robot initially grasps the object, but due 1439
to a misaligned grasp, the object rotates unexpectedly. The 1440
robot compensates by rotating the object back to the cor- 1441
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rect orientation and then resumes the planned trajectory, ul-1442
timately completing the task successfully. In the bottom1443
row, a human perturbs the object during execution while it1444
is held by the robot. RIGVid detects the resulting change in1445
the relative transformation and automatically re-aligns the1446
object before continuing. When the human intervenes a sec-1447
ond time, RIGVid again corrects the deviation, ultimately1448
leading to successful task completion.1449

I. Errors from Depth Estimation1450

0

20

40

60

80

100

Generated Videos with Predicted Depth Real Videos with Predicted Depth Real Videos with Real Depth

Pour Water Lift Lid Place Spatula Sweep Trash

Figure 15. Impact of Depth Estimation Errors on RIGVid per-
formance. Errors in monocular depth estimation result in worse
performance of generated and real videos. RIGVid achieves per-
fect success across all tasks with real videos and real depth.

In Fig. 15, we isolate the impact of depth estimation1451
errors. Robot executions on real videos with real depth1452
(captured using an RGBD camera) achieve a 100% suc-1453
cess rate, whereas executions from real videos with gen-1454
erated depth result in 85% average success. Similarly, ex-1455
ecutions from Kling V1.6-generated videos with generated1456
depth also achieve 85% success, suggesting that the primary1457
source of error lies in monocular depth estimation. Upon1458
inspection, we observe two common undesirable behaviors1459
in the predicted depth: inaccurate depth values and tempo-1460
ral flickering. An example of inaccurate depth is shown in1461
Fig. 16. In the generated video, when the spatula is brought1462
close to the camera, the depth changes by only 6.8 cm,1463
which is visibly inconsistent with the video and likely much1464
smaller than the real-world change. Inaccuracies also oc-1465
cur in real videos, as shown in the figure—the head of the1466
spatula is estimated to be far from the camera, despite ap-1467
pearing close, revealing another failure mode in monocular1468
depth estimation. An illustration of flickering is shown in1469
Fig. 17. Although the position of the watering can relative1470
to the camera remains nearly unchanged across three con-1471
secutive frames, the estimated depth varies significantly. In1472
particular, the zoomed-in region on the right shows the can1473
appearing much whiter than on the left, indicating a sub-1474
stantial change in predicted depth. The average depth of the1475
can changes from 40.1 cm to 38.2 cm–a 1.9 cm difference1476
over just 0.066 seconds–which is physically implausible for1477
the generated video. We find similar flickering behavior in1478
real videos as well, where the depth changes from 43.2 cm1479
to 40.9 cm in the given example–a 2.3 cm difference.1480

(a) Generated Video

Avg Depth: 58.6 cm Avg Depth: 51.8 cm

(b) Real Video

Avg Depth: 59.2 cm Avg Depth: 62.1 cm

Figure 16. Errors in Monocular Depth Estimation. In the gen-
erated video (top), the depth of the spatula changes only slightly
despite a large visual change. In the real video (bottom), the spat-
ula’s head is predicted to lie farther away, contradicting the visual
appearance.

J. Choice between MegaPose and Foundation- 1481

Pose 1482

We compare the stability of trajectories obtained from 1483
MegaPose [63] and FoundationPose [117] by computing the 1484
translational and rotational RMS jitter. For each method, 1485
we apply a Gaussian smoothing filter (σ = 2 frames) to the 1486
raw SE(3) pose sequences, compute the residual between 1487
the original and smoothed trajectories, and then calculate: 1488

jittertrans =

√√√√ 1

N

N∑
t=1

∥∆tt∥2, jitterrot =

√√√√ 1

N

N∑
t=1

θ2t , 1489

where ∆tt is the translational residual at frame t, and θt is 1490
the angular magnitude (in radians) of the relative rotation 1491
R−1

smoothRraw, converted to degrees. We average these met- 1492
rics over ten pouring trajectories extracted from generated 1493
videos. 1494

MegaPose yields an average translational RMS jitter 1495
of 0.0045m and rotational RMS jitter of 37.47°, whereas 1496
FoundationPose achieves 0.0029m translational and 14.31° 1497
rotational jitter. These results demonstrate that Foundation- 1498
Pose produces significantly smoother and more stable tra- 1499
jectories. Additionally, it allows for real-time tracking dur- 1500
ing the execution, allowing us to make RIGVid robust to 1501
external disturbances. 1502
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(a) Generated Video

Avg Depth: 40.1 cm Avg Depth: 38.227 cm

(b) Real Video

Avg Depth: 43.275 cm Avg Depth: 40.969 cm

Figure 17. Flickering in Depth Prediction. We show three
consecutive frames of the video and its corresponding predicted
depth. The depth of the watering can change noticeably across
frames—appearing significantly whiter in the third frame despite
minimal actual motion. We observe this behavior in both gener-
ated and real videos.

K. Comparing Video Generative Models1503

To further assess video quality, we report VBench++ [50]1504
metrics in Table 2 and explain them below. The numbers in1505
the table are scaled 100× for easier interpretation. We col-1506
lect these metrics on 40 randomly selected and unfiltered1507
videos per model, 10 for each of the four tasks. Kling1508
v1.6 outperformed the other models on most metrics but1509
performed similarly or worse in video-text consistency and1510
dynamic degree. Human evaluations discussed in Sec. 4.21511
suggest that the video-text consistency and I2V subject con-1512
sistency are not reliable indicators of whether a generated1513
video correctly follows a given command. Sora scored high1514
on dynamic degree, likely due to its tendency to drastically1515
alter the scene, resulting in exceptionally large motions.1516
Generated videos from these models and their correspond-1517
ing metrics are shown in Fig. 18 and further details on these1518
metrics can be found the next section.1519

VBench++ Metric Definitions:1520

• Subject Consistency. Subject consistency describes 1521
whether subjects’ appearance remain consistent, which is 1522
computed by DINOv1 [20] similarities across video frames. 1523
• Background Consistency. Background temporal consis- 1524
tency by CLIP [98] similarities across frames. 1525
• Motion Smoothness. Evaluates smoothness of videos by 1526
utilizing video frame interpolation model AMT [70]. 1527
• Dynamic Degree. Describes whether the video contains 1528
large motions as a binary metric. 1529
• Aesthetic Quality. Human perceived artistic and beauty 1530
value such as photo-realism, layout and color harmony. 1531
• Imaging Quality. Assesses the presence of distortion in 1532
a video, such as noisiness, blurriness, and over-exposure. 1533
• Video-Text Consistency. Text-to-video alignment score 1534
calculated by ViCLIP [115]. 1535
• I2V Subject Consistency. Similarity between subjects 1536
in input image and each video frame, as well as similarity 1537
between consecutive frames. Features are extracted from 1538
DINOv1 [20]. 1539

Metrics Video Generation Models Human
DemosKling V1.6 Kling V1.5 Sora

Subject Consistency 96.34 91.66 83.09 94.91
Background Consistency 96.64 93.97 89.34 95.00
Motion Smoothness 99.68 99.57 99.06 99.51
Dynamic Degree 52.5 57.5 70.0 80.0
Aesthetic Quality 51.75 49.77 46.22 49.30
Imaging Quality 72.80 71.48 68.68 72.52
Video-Text Consistency 22.01 22.61 21.42 21.57
I2V Subject Consistency 97.88 95.96 89.09 97.89

Table 2. Video generation quality metrics for real human
demonstration videos and different models. Higher values in-
dicate better quality. Kling v1.6 performs comparably to or sur-
passes other models on most metrics.
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VT Const:  0.245
I2V Subj. Const: 0.9965
Subj. Const: 0.965

VT Const : 0.217
I2V Subj. Const : 0.995
Subj. Const : 0.975

VT Const : 0.208
I2V Subj. Const : 0.964
Subj. Const : 0.969

VT Const : 0.267  
I2V Subj. Const :  0.887
Subj. Const :  0.808

VT Const : 0.221
I2V Subj. Const : 0.792
Subj. Const :  0.746

Kling AI v1.6

Kling AI v1.5

VT Const :  0.231
I2V Subj. Const : 0.989
Subj. Const : 0.982

VT Const :  0.244
I2V Subj. Const : 0.989
Subj. Const : 0.936 

SORA

VT Const : 0.208 
I2V Subj. Const : 0.930
Subj. Const :  0.915

VT Const : 0.218
I2V Subj. Const : 0.977
Subj. Const : 0.839

VT Const : 0.195
I2V Subj. Const : 0.978
Subj. Const : 0.731

VT Const : 0.201
I2V Subj. Const : 0.865
Subj. Const : 0.965

VT Const : 0.188
I2V Subj. Const : 0.955
Subj. Const : 0.951

Figure 18. Qualitative Comparison of Different Video Generative Models. Videos generated by three models are shown in evenly
sampled frames. We show VBench++ [50] metrics including video-text consistency, image-to-video subject consistency, and subject
consistency.
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Figure 19. Qualitative comparison of video generation.
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