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Abstract

Recent studies have revealed that neural networks learn interpretable algorithms
for many simple problems. However, little is known about how these algorithms
emerge during training. In this article, I study the training dynamics of a small
neural network with 2-dimensional embeddings on the problem of modular addition.
I observe that embedding vectors tend to organize into two types of structures:
grids and circles. I study these structures and explain their emergence as a result of
two simple tendencies exhibited by pairs of embeddings: clustering and alignment.
I propose explicit formulae for these tendencies as interaction forces between
different pairs of embeddings. To show that my formulae can fully account for
the emergence of these structures, I construct an equivalent particle simulation
where I show that identical structures emerge. I discuss the role of weight decay
in my setup and reveal a new mechanism that links regularization and training
dynamics. To support my findings, I also release an interactive demo available at
https://modular-addition.vercel.app/|

1 Introduction

Mechanistic interpretability aims at reverse-engineering the inner workings of trained neural networks
and explaining their behavior in terms of interpretable algorithms. Recent work in this field was very
successful in uncovering the algorithms learned by neural networks on simple problems. [Zhong et al.
[2023]] showed that transformers learn to solve modular addition by forming circular structures in the
embedding space and applying one of two simple algorithms: a “Clock” algorithm (resembling the
way humans read the clock) and a “Pizza” algorithm (unfamiliar, but interpretable; also encountered
in this article). |Charton| [2024] showed that transformers learn to compute the greatest common
divisor by identifying the prime factors of the numeric base from the last digits of each number.
Quirke and Barez|[2024]] uncovered that transformers break down the multi-digit addition task into
parallel, digit-specific streams, using different algorithms for various digit positions.

However, it remains an open problem to provide a similarly high degree of interpretability for the
training dynamics that lead to the emergence of these algorithms. Currently, the most successful
approach to understanding the learning process is by uncovering hidden progress measures that
increase abruptly during training [Barak et al.,[2022]. For example, by constructing two progress
measures for the problem of modular addition, [Nanda et al.| [2023]] find that training of neural
networks on modular addition can be split into three phases: memorization, circuit formation, and
cleanup. While insightful, such methods provide only a high-level description of the training process,
without offering a clear explanation of the underlying optimization dynamics. A better understanding
of neural networks could lead to Al systems that are more interpretable, more efficient, and more
reliable [Doshi-Velez and Kiml 2017, |Olah et al., 2020].
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2 My contribution

In this article, I study the training dynamics of a small neural network on the problem of modular
addition. My architecture consists in a simplified single-layer transformer with constant attention and
2-dimensional embeddings. My contributions are the following.

Grids and circles I show that embedding vectors tend to organize themselves into circular and
grid-like structures, as depicted in Figure 1. The emergence of circular and grid-like structures is
consistent with the findings of Zhong et al.|[2023]], | Gromov]| [2023]] and [Liu et al.|[2022]]. T show
that grids and circles play a key role in the generalization performance of the model. I also show
that weight decay plays a crucial role in the emergence of circular structures and in reducing grid
imperfections.
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Figure 1: Embedding vectors self-organize into grids (left) and circles (right).

Clustering and alignment 1 show how grids and circles facilitate accurate classification for
the subsequent layers by grouping “pair sums” (outputs of the constant attention). I propose an
explanation for the emergence of the grids and circles as a result of two simple phenomena: clustering
and alignment. I propose explicit formulae for both phenomena as interaction forces between two
different pairs of embeddings.

Particle simulation To prove that my proposed formulae can fully account for the emergence of
grids and circles, I construct a particle simulation where particles correspond to embedding vectors
and forces correspond to gradients. Forces are computed using only my proposed formulae for
clustering and alignment. In this simulation, I show that the particles self-organize into the same
structures as the embeddings in the trained transformer: circles, grids, and imperfect grids.

I also contribute to the understanding of weight decay by discussing its role in my particular setup in
Appendix [C] I also release an interactive demo to allow the readers to explore the training dynamics
and particle simulations for themselves: https://modular-addition.vercel.app/.

3 Architecture

In this article, I study a simplified single-layer transformer with constant attention. A similar setup
has been previously used by Liu et al.[[2022],Zhong et al.[[2023]] and |[Hassid et al.| [2022].

The input to the model consists of two tokens a and b representing the two numbers to be added,
where a,b € {0,1,..., N —1}. The tokens are embedded into vectors x,, and x;, using an embedding
matrix E € RV*P where D is the embedding dimension. For the scope of this article, I focus on
the case when D = 2 for simplicity and ease of visualization. Then, a constant attention mechanism
is applied to the embeddings. This is equivalent to computing the sum of the embedding vectors.

Then I apply a linear layer of size H with weight matrix W), € R”*P bias vector b, € R, and
ReLU activation. Finally, I apply a linear layer of size N with a weight matrix W, € RY*#H and
bias vector b, € R . The output of the model is the logits of the predicted sum. I don’t use any skip
connections or normalization layers.

We can formalize the model as follows:
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* Inputs: a,b € {0,1,...,N — 1}

* Embeddings: z, = E,, xp = Ej

¢ Constant attention: © = x, + Tp

* Linear layer: h = ReLU(Wjx + by)

* Output layer: o = W,h + b,
I train the model in full batch mode using the Adam optimizer with a learning rate of 0.01 and
decoupled weight decay [Loshchilov and Hutter, [2019] between 0 and 1. I use the cross-entropy loss.

Unless specified, Tuse N = 17 and H = 32. The training set consists of 80% of all N(N + 1)/2
distinct pairs of numbers, chosen randomly. The validation set consists of the remaining 20%.
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Figure 2: Sometimes embedding vectors self-organize into imperfect grids.

4 Grids and circles: the key to successful generalization

In trained models, the embedding vectors tend to be positioned in arithmetic progressions, forming
either grids or circles. I visualize two examples of these structures in Figure [l The validation
accuracy is highest when the embeddings form these structures most clearly. Sometimes, however,
the embeddings self-organize into imperfect grids, as shown in Figure 2] In such cases, the validation
accuracy is lower, but still higher than when the embeddings are not aligned at all. We present more
examples of these structures in Appendix [D}]

To quantify this effect, I devise two simple algorithms: one to detect circles, and another to quantify
the number of grid imperfections in non-circular structures. Both algorithms are explained in detail
in the Appendix [A]

Table 1: Validation accuracy and structures formed by embedding vectors.

Circles Non-Circles
Weight Decay Num Acc Num Acc Grid Imperfections Correlation
0.0 0 - 100 18.2 102.2 £ 6.1 -0.92 [-0.95, -0.88]
0.3 1 774 99 348 72.7+£6.6 -0.90 [-0.93, -0.85]
0.6 12 659 88 516 39.6 +4.0 -0.84 [-0.89, -0.77]
1.0 18 604 82 46.7 31.6£4.0 -0.64 [-0.75, -0.49]

Explanation: 1 train 100 random initializations for 2000 epochs for various values of weight decay.
For each value of weight decay, I report the following: the number of circles and their average validation
accuracy, the number of non-circles and their average validation accuracy, the average number of grid
imperfections for non-circles, and the correlation between the number of grid imperfections and the
validation accuracy of non-circles. For circle detection and grid imperfections, see Appendix [A]

I run multiple experiments for various values of weight decay and measure the average validation
accuracy of circles and non-circles, as well as the correlation between the validation accuracy and the
number of grid imperfections of non-circles. I find that circles consistently have higher validation
accuracy than non-circles. For non-circles, I find a strong negative correlation between the number of
grid imperfections and the validation accuracy.



5 Co-evolution of embeddings and linear layers

In this section, I will model the training process as the co-evolution of two systems: the embeddings
and the subsequent layers. The constant attention mechanism sums the embedding vectors to obtain
r = F, + Ep,. The subsequent layers then act as a classifier, trying to classify this value as
¢ =a+ b (mod N) out of N possible values.
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Figure 3: Embedding vectors (left); classifier formed by the combined linear and output
layers (background, right) and sums of embedding pairs in the training set (markers, right).

5.1 Clustering

As depicted in Figure 3] the pair sums tend to cluster based on their modular sum. I present more
examples in Appendix [F| Let’s try to understand this phenomenon by considering the interaction
between two pair sums z;; = F; + Ej and 1y = Ey, + Ey, where ¢, j, k,l € {0,1,..., N — 1}, and
(i,4) and (k,1) are two distinct pairs of numbers in the training set.

Let’s first consider the case when i 4+ j #Z k + [ (mod N). For simplicity, let’s assume that there are
no other pair sums in between x;; and ;. In this case, to classify x;; and xy; correctly, the classifier
must place a decision boundary between them. This decision boundary will create a gradient that
will push z;; and x; away from each other. Moreover, the closer x;; and x; are, the narrower the
decision boundary will have to be, resulting in a stronger gradient and a stronger push. In other words,
the push will be inversely proportional to the distance between the pair sums. I propose the following
formula for the gradient at z;; induced by the pair sum xy;:

Tij — T 1

2 — 2wl i — 2wl

ey

Gijkl = Gr - |

where g, is a repulsion constant. The gradient at xy; is defined analogously: gri«—i; = —gij«ki-

Now, let’s consider the case when i + j = k 4+ [ (mod N). Again, for simplicity, let’s assume
that there are no other pair sums in between x;; and ;. In this case, x;; and x; are likely to be
inside the same classification region. Both pair sums will be attracted towards the point of maximum
classification accuracy, which on average will be the center of the classification region. I will model
this case with a constant gradient towards the other pair sum:

Tij — Ty
Gijehl = —fa  —t— 2
|@ij — @]
where g, is an attraction constant. The gradient at xy; is defined analogously: gii«ij = —gijki-

Similar interactions have been previously studied by Baek et al.|[2024]], |Liu et al.|[2022], and |van
Rossem and Saxe| [2024]).



5.2 Alignment

A different picture emerges when we look at a model where the embeddings form a circle. In Figure[d]
I visualize the embedding vectors, pair sums, and the classification function of a model with circular
embeddings at the end of training. Pair sums are no longer clustered. Rather, they are aligned along
lines that pass through the origin. In this arrangement, the classification regions are skewed and
start from the origin, resembling a pizza. This model corresponds exactly to the “pizza” algorithm
described by Zhong et al.| [2023]].
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Figure 4: Embedding vectors (left); classifier formed by the combined linear and output
layers (background, right) and sums of embedding pairs in the training set (markers, right).

In Table[T] we saw that weight decay plays a crucial role in the emergence of circular structures. To
understand the mechanism behind the alignment, we need to consider that the classification function
is just a sum of ReLU activations of the linear layer.

Weight decay encourages the linear layer to have small weights and biases, which results in linear
functions with small slopes and close to the origin. We explore the precise impact of weight decay on
the magnitude of the weights and biases in Appendix [B] The only aspect that remains completely
unconstrained in the direction of the weight vectors. A weight vector aligned with a specific pair sum
is maximally useful for the classification layer because it outputs the maximum possible value for
that pair sum and the minimum possible value for the other pair sums. Thus, under these conditions,
in order to minimize the training loss, the weight vectors of the linear layer will tend to align with the
pair sums.

We can model this behavior as follows. For a single pair sum zy; = Ex + Ej, let’s consider a linear
function with zero bias (b = 0) and a weight vector of constant norm that is perfectly aligned with
the pair sum (w = f, - H;C%H’ where f, is a constant). After applying the ReLLU activation, the output
becomes zero for all points x that oppose the direction of xy; (i.e., x - z; < 0). For the other points,

the function will have a constant slope of f, in the direction of xy;.

Inspired by this simplified model, I propose the following formula for the gradient at ;; produced by
the pair sum x;:

0, if @i -z <0
Gijert = { far 2y, if @y ag > 0andi+j =k +1 (mod N) 3)
,fa'%, ifz;j-xp >0andi+ j # k+ 1 (mod N)

6 Particle simulation

In this section, I show that my proposed model can fully account for the emergence of the grids
and circles by constructing a particle simulation and showing that particles converge to the same
structures as the embedding vectors in the trained transformer.
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Figure 5: Particles form circles (left), grids (center), and imperfect grids (right).

I model the training dynamics of the embedding vectors using [V particles in a D-dimensinal space
(N =17, D = 2). I denote the position of particle i by z; € RP,i =1,..., N. The position z; of
particle ¢ corresponds to the embedding vector E; of the number ¢ during training.

The gradient equations from the previous section become “forces” acting on the N particles. Let
(,7) and (k,1) be two distinct pairs of numbers. I denote the sums of their particle positions as
x;j = x; + 5 and & = x5 + 21, respectively. The pair (k,[) will induce an equal force on particles
i and j (obtained by combining equations|[I} [2] and [3):

ga% ifz;; 2 <0andi+j=k+1[(modN)

F—F - g,% ife;j-ap <O0andi+j #Zk+1 (mod N)
J ga'%"‘fﬂufcﬁ ifz;; 2 >0andi+j=k+ 1 (mod N)
gr-%—fm”iﬁ ifz;;-xp >0andi+ j # k+1 (mod N)

The force acting on particles k and [ is defined analogously. I use g, = g, = f, = 1. Forces
are weighted so that interactions between pair sums of different modular sum have the same total
contribution as those between pair sums of the same modular sum. Particles are initialized randomly
according to a normal distribution. At every step of the simulation, the total force acting on each
particle is calculated. The, each particle is moved with a small step in the direction of the total force.
I also scale the particle positions to maintain a constant variance and zero mean. I repeat this process
for 100 steps. No momentum is used.

I observe that the particles self-organize into the same structures as the embeddings in the trained
transformer: circles, grids, and imperfect grids. We visualize a few examples in Figure [5] For
more examples, see Appendix [E} In Table 2] we present the results of running 100 simulations for
various values of f,. We find that the relative frequency of circles and the average number of grid
imperfections are very similar to the results obtained from the transformer experiments. I also find
that increasing f, leads to more circles, which is consistent with my hypothesis that circles emerge
as a result of the alignment force.

Table 2: Results of particle simulations for various values of f,

fo  Number of Circles Number of Grids  Average Grid Imperfections
0.5 0 100 35.5+£3.7
1.0 17 83 36.3£4.8
2.0 56 44 42.9+10.1

7 Conclusion

I have explained the training dynamics of a simplified transformer on the problem of modular addition
in terms of two simple phenomena: clustering and alignment. I have provided strong empirical
evidence for my model using a particle simulation. I have also provided a qualitative argument for
the two phenomena, but further work is needed to fully understand their origin.
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A Algorithms

A.1 Circle detection

To determine whether the embedding vectors form a circle, I simply consider the ratio of the maximum
and minimum distances of the embeddings to the origin. If the ratio is below a certain threshold, I
consider the embeddings to form a circle. I use a threshold value of 1.2. For my setup, I observe that
this simple algorithm is sufficient to detect circles with great accuracy.

Algorithm 1 Check if Embeddings Form a Circle

1: function 1S_CIRCLE(E: embedding matrix)
2: min_norm < min(\/z2 +y? | (z,y) = E;,i € {0,...,N —1})

3: max_norm < max(\/z? + y? | (z,y) = Fy,i € {0,...,N —1})
4: return max_norm/min_norm < 1.2
5: end function

A.2 Grid imperfections

I propose a simple measure to quantify the number of grid imperfections inspired by the following
fact: in a perfect grid, the vector sums of all pairs of embeddings also form a perfect grid where pair
sums are grouped together based on their modular sum.

My measure works as follows. For each pair of embeddings (E;, E;), I find the pair of embeddings
(E), Eq) with the closest vector sum. If the modular sum (¢ + j) mod N is different from the modular
sum (k 4 1) mod N, I consider this pair to be an “imperfection”.

Algorithm 2 Count Grid Imperfections in Embedding

1: function IMPERFECTIONS(E: embedding matrix)
2: N <« len(embed)

3 pairs + {(i,5) |1 €{0,...,N—1},5€{i,...,N —1}}
4: imper fections < 0
5: for all (i, ) € pairs do
6: min_dist < oo
7: match < False
8: for all (k,1) € pairs do
9: if (4, j) = (k,!) then
10: continue
11: end if
12: dist < HEZ+E] — Ey _ElH
13: if dist < min_dist then
14: man_dist < dist
15: match < i+j=k+1 mod N
16: end if
17: end for
18: if not match then
19: imper fections < imper fections + 1
20: end if
21: end for
22: return imper fections

23: end function




B Weight decay and the magnitude of weights and biases

Below I visualize the magnitude of the weights and biases of the linear layer at the end of training for
various values of weight decay. I run 10 random initializations for 2000 epochs with a learning rate
of 0.01. I plot the average absolute value of the weights and biases of the linear layers among the 10
runs in Figure [l We can observe that weight decay strongly limits the magnitude of the weights and
biases, with biases being limited more than weights.
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Figure 6: Average magnitude of the weights and biases of the linear
layer at the end of training for various values of weight decay.



C The role of weight decay

Weight decay is a broadly used regularization technique for training state-of-the-art deep networks
[Loshchilov and Hutter, [2019} |[Krogh and Hertz, |1991} |/Andriushchenko et al., |2023]]. Weight decay
penalizes large weights and biases by applying an exponential decay to each parameter () at every
step of the optimization. The decay rate is proportional to the learning rate (\) and the weight decay
coefficient (vy), as shown in the following formula:

9t+l — Ht — )vy@t (4)

Traditionally, weight decay was understood as a form of Lo regularization, improving generalization
by constraining the network capacity [Goodfellow et al.;[2016]]. More recently, a new perspective on
weight decay has emerged, suggesting that it plays a much more important role during training by
changing the training dynamics in a desirable way [Zhang et al.;2018]]. In this section, I combine the
two perspectives by discussing the impact of weight decay on the training dynamics in my setup.

In Sectionfd] we observed that weight decay plays an important role in the successful generalization of
the trained model. I propose the following explanation: weight decay changes the training dynamics
by strengthening the clustering force and by introducing the alignment force. In turn, these forces
facilitate the emergence of grids and circles, which are crucial for the generalization performance of
the model. Below I discuss exactly how weight decay impacts clustering and alignment.

In the case of clustering, my proposed clustering force (Equations [I] and [2)) is highly dependent
on a simplified model of the classification function where the decision boundaries are very wide.
Weight decay enables this by limiting the magnitude of the weights of the linear layer and output
layer, as I show in Appendix [B] Without weight decay, classification boundaries could get arbitrarily
narrow, leading to a clustering force that is very strong in a narrow region, but practically non-existent
elsewhere. In other words, without weight decay, the classifier would overfit to the pair sums and the
embeddings would become stuck in a local minimum.

In the case of alignment, weight decay makes the alignment force (Equation 3 possible by limiting
the magnitude of the biases of the linear layer, as I show in Appendix [B| This forces the ReLU
activations of the linear layer to remain very close to the origin, creating the sort of alignment we have
seen. Without weight decay, biases could get arbitrarily large and there would not be any specific
point around which the alignment could take place.

This represents a very interesting link between regularization and training dynamics. By regularizing
one part of the model, we enable the emergence of desirable training dynamics in another part of the
model. Without weight decay, a layer could overfit to the current state of the other layers, limiting
them from making further progress. This could explain why weight decay is so effective in training
deep learning models [|Andriushchenko et al., [2023]], which consist of many different layers that need
to co-evolve harmoniously during training.

To the best of my knowledge, this link between regularization and training dynamics has not been
previously reported. This opens up interesting new questions for future research, such as provid-
ing theoretical proof for this phenomenon or showing how it takes place in other problems and
architectures.
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D Embedding vectors

Below I visualize the embedding vectors that emerge from several random initializations in the trained
transformer for various values of weight decay, after training for 2000 epochs with a learning rate of
0.01.
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D.2 Weight decay = 0.6
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D.3 Weight decay = 0.3
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D.4 Weight decay = 0.0
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E Particle simulation

Below I visualize several particle arrangements that emerge from different random initializations in
the particle simulation for various values of f, after running the simulation for 100 steps. I maintain
N=171D=2,g, =g, =1.
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F Classifier visualization

Below I visualize the embedding vectors (left) and the classification function formed by the subsequent
layers (right) of several models at the end of training. In the right plot, I also plot the sums of the
embedding vectors of all pairs in the training set (“pair sums”). Models were trained for 2000 epochs
with a learning rate of 0.01 and a weight decay of 0.6.

,,,,,,,,,,,,,

18



G Embedding vectors in 3D and 4D

Below I visualize the embedding vectors that emerge from several random initializations in the trained
transformer with 3-dimensional and 4-dimensional embeddings. I train for 2000 epochs with a weight
decay of 1 and a learning rate of 0.01.

I use three 2D plots to visualize each configuration of embeddings. I project the embeddings onto
pairs of dimensions and plot the resulting 2D projections. It is not possible to visualize 3D and 4D
embeddings directly, but we can still get a sense of their grid-like or circular structure by examining
the 2D projections.

G.1 3-dimensional embeddings
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G.2 4-dimensional embeddings
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