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Abstract

We provide full theoretical guarantees for the convergence behaviour of diffusion-based gen-
erative models under the assumption of strongly log-concave data distributions while our
approximating class of functions used for score estimation is made of Lipschitz continuous
functions avoiding any Lipschitzness assumption on the score function. We demonstrate
via a motivating example, sampling from a Gaussian distribution with unknown mean, the
powerfulness of our approach. In this case, explicit estimates are provided for the associated
optimization problem, i.e. score approximation, while these are combined with the corre-
sponding sampling estimates. As a result, we obtain the best known upper bound estimates
in terms of key quantities of interest, such as the dimension and rates of convergence, for
the Wasserstein-2 distance between the data distribution (Gaussian with unknown mean)
and our sampling algorithm. Beyond the motivating example and in order to allow for the
use of a diverse range of stochastic optimizers, we present our results using an L2-accurate
score estimation assumption, which crucially is formed under an expectation with respect to
the stochastic optimizer and our novel auxiliary process that uses only known information.
This approach yields the best known convergence rate for our sampling algorithm.

1 Introduction

Diffusion-based generative models, also known as score-based generative models (SGMs) (Song & Ermon,
2019; Song et al., 2021; Sohl-Dickstein et al., 2015; Ho et al., 2020), have become over the past few years one
of the most popular approaches in generative modelling due to their empirical successes in data generation
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tasks. These models have achieved state-of-the-art results in image generation (Dhariwal & Nichol, 2021;
Rombach et al., 2022), audio generation (Kong et al., 2020) and inverse problems (Chung et al., 2022; Song
et al., 2022; Cardoso et al., 2024; Boys et al., 2024) outperforming other generative models like generative
adversarial networks (GANs) (Goodfellow et al., 2014), variational autoencoders (VAEs) (Kingma & Welling,
2014), normalizing flows (Rezende & Mohamed, 2015) and energy-based methods (Zhao et al., 2017).

SGMs generate approximate data samples from high-dimensional data distributions by combining two dif-
fusion processes, a forward and a backward in time process. The former process is used to iteratively and
smoothly transform samples from the unknown data distribution into (Gaussian) noise, while the associated
backward in time process reverses the noising procedure and generates new samples from the starting un-
known data distribution. A key role in these models is played by the score function, i.e. the gradient of the
log-density of the solution of the forward process, which appears in the drift of the stochastic differential
equation (SDE) associated to the backward process. Since this quantity depends on the unknown data
distribution, an estimator of the score has to be constructed during the noising step using score-matching
techniques (Hyvärinen, 2005; Vincent, 2011). These techniques have the advantage of not suffering from
known problems of traditional pushforward generative models, such as mode collapse (Salmona et al., 2022).

The widespread applicability and success of SGMs have been accompanied by a growing interest in the
theoretical understandings of these models, particularly in their convergence theory e.g. in Block et al.
(2020); De Bortoli et al. (2021); Bortoli (2022); Lee et al. (2022); Yang & Wibisono (2022); Kwon et al.
(2022); Liu et al. (2022); Oko et al. (2023); Lee et al. (2023); Chen et al. (2023a;d); Li et al. (2024); Pedrotti
et al. (2024); Conforti et al. (2025); Benton et al. (2024), with further works appearing after the first version of
our preprint e.g. in Tang & Zhao (2024); Strasman et al. (2025); Mimikos-Stamatopoulos et al. (2024). At its
core, this new generative modeling approach combines optimisation and sampling procedures – specifically,
the approximation of the score and the creation of new samples, which make its theoretical analysis both an
interesting and a rich challenge.

Some of the recent advances in the study of the theoretical properties of SGMs concentrate around the
sampling procedure by assuming suitable control for the score estimation procedure. For instance, the
analysis in Lee et al. (2022); Chen et al. (2023d) assumes that the score estimate is L2-accurate, meaning
that the L2 error between the score and its estimate is small, and provides estimates in total variation (TV)
distance. Under the same assumption, the more recent contribution in Conforti et al. (2025) establishes non-
asymptotic bounds in Kullback Leibler (KL) divergence by assuming finite relative Fisher of data distribution
with respect to a Gaussian distribution.

The main drawback of the aforementioned L2-accurate (and in some cases L∞-accurate) score estimation
assumption is that the corresponding expectation is given with respect to density of the solution of the
forward process, which depends on the unknown data distribution.

Our approach introduces a novel auxiliary process that relies solely on known information and uses the density
of the solution of this process in the L2-accurate score estimation. To further highlight the powerfulness
of our approach, we present a motivating example on the case of sampling from a Gaussian distribution
with unknown mean. Full theoretical estimates for the convergence properties of the SGM are provided
in Wasserstein-2 distance, while our choice of stochastic optimizer for the score approximation is a simple
Langevin-based algorithm. Our estimates are explicit and contain the best known optimal dependencies
in terms of dimension and rate of convergence (Theorem 1). To the best of the authors’ knowledge, these
are the first such explicit results with transparent dependence on the parameters involved in the sampling
and optimization combined procedures of the diffusion models. By connecting the diffusion models with
the theoretical guarantees of machine learning optimizers via standard stochastic calculus tools, the results
in Theorem 1, together with the bounds achieved in the more general setting in Theorem 10, provide the
theoretical justification for the empirical success of the diffusion models.

We close this introductory section by highlighting some other, alternative approaches which were recently
developed. One may consult Yang & Wibisono (2023) for an approach based on the assumption that the
score estimation error has a sub-Gaussian tail. This is a stronger assumption than L2-accurate. In Chen
et al. (2023b), non-asymptotic bounds in TV and Wassertein distance of order 2 are derived when the data
distribution is supported on a low-dimensional linear subspace. Finally, convergence guarantees in TV were
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developed in Chen et al. (2023c) for the probability flow ordinary differential equation (ODE) implementation
of SGMs under the L2-accurate score estimate assumption.

Notation. Let (Ω, F ,P) be a fixed probability space. We denote by E[X] the expectation of a random variable
X. For 1 ≤ p < ∞, Lp is used to denote the usual space of p-integrable real-valued random variables. The
Lp-integrability of a random variable X is defined as E[|X|p] < ∞. Fix an integer M ≥ 1. For an RM -valued
random variable X, its law on B(RM ), i.e. the Borel sigma-algebra of RM is denoted by L(X). Let T > 0
denotes some time horizon. For a positive real number a, we denote its integer part by ⌊a⌋. The Euclidean
scalar product is denoted by ⟨·, ·⟩, with | · | standing for the corresponding norm (where the dimension of the
space may vary depending on the context). Let R>0 := {x ∈ R| x > 0}. Let f : RM → R be a continuously
differentiable function. The gradient of f is denote by ∇f . For any integer q ≥ 1, let P(Rq) be the set of
probability measures on B(Rq). For µ, ν ∈ P(RM ), let C(µ, ν) denote the set of probability measures ζ on
B(R2M ) such that its respective marginals are µ and ν. For any µ and ν ∈ P(RM ), the Wasserstein distance
of order 2 is defined as

W2(µ, ν) =
(

inf
ζ∈C(µ,ν)

∫
RM

∫
RM

|x − y|2 dζ(x, y)
) 1

2

.

2 Technical Background

In this section, we provide a brief summary behind the construction of score-based generative models (SGMs)
based on diffusion introduced in Song et al. (2021). The fundamental concept behind SGMs centers around
the use of an ergodic (forward) diffusion process to diffuse the unknown data distribution πD ∈ P(RM ) to a
known prior distribution and then learn a backward process to transform the prior to the target distribution
πD by estimating the score function of the forward process. In our analysis, we focus on the forward process
(Xt)t∈[0,T ] given by an Ornstein-Uhlenbeck (OU) process

dXt = −Xt dt +
√

2 dBt, X0 ∼ πD, (1)

where (Bt)t∈[0,T ] is an M -dimensional Brownian motion and we assume that E[|X0|2] < ∞. The process 1
is chosen to match the forward process in the original paper (Song et al., 2021), which is also referred to
as Variance Preserving Stochastic Differential Equation. The noising process 1 can also be represented as
follows

Xt
a.s.= mtX0 + σtZt, mt = e−t, σ2

t = 1 − e−2t, Zt ∼ N (0, IM ), (2)

where a.s.= denotes almost sure equality and IM denotes the identity matrix of dimension M . Under mild
assumptions on the target data distribution πD (Haussmann & Pardoux, 1986; Cattiaux et al., 2023), the
backward process (Yt)t∈[0,T ] = (XT −t)t∈[0,T ] is given by

dYt = (Yt + 2∇ log pT −t(Yt)) dt +
√

2 dB̄t, Y0 ∼ L(XT ), (3)

where {pt}t∈[0,T ] is the family of densities of {L(Xt)}t∈(0,T ] with respect to the Lebesgue measure, B̄t is an
another Brownian motion independent of Bt in 1 defined on (Ω, F ,P). However, the sampling is done in
practice from the invariant distribution of the forward process, which, in this case, is a standard Gaussian
distribution. Therefore, the backward process 3 becomes

dỸt = (Ỹt + 2 ∇ log pT −t(Ỹt)) dt +
√

2 dB̄t, Ỹ0 ∼ π∞ = N (0, IM ). (4)

Here, we have Ỹ0
a.s.= ZT . Since πD is unknown, the score function ∇ log pt in 3 cannot be computed exactly.

To address this issue, an estimator s(·, θ∗, ·) is learned based on a family of functions s : [0, T ]×Rd×RM → RM

parametrized in θ, aiming at approximating the score of the ergodic (forward) diffusion process over a fixed
time window [0, T ]. In practice, the functions s are neural networks and in particular cases like the motivating
example in Section 3.1, the functions s can be wisely designed. The optimal value θ∗ of the parameter θ is
determined by optimizing the following score-matching objective

Rd ∋ θ 7→ E

[∫ T

0
|∇ log pt(Xt) − s(t, θ, Xt)|2 dt

]
. (5)
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To account for numerical instability issues for training and sampling at t = 0 as observed in practice in Song
et al. (2021, Appendix C) and for the possibility that the integral of the score function in 5 may diverge
when t = 0 (see Appendix A), a discretised version of the score-matching optimization problem is usually
considered

minimize Rd ∋ θ 7→ U(θ) :=
∫ T

ϵ

κ(t)
T − ϵ

∫
RM

|∇ log pt(x) − s(t, θ, x)|2 pt(x) dx dt, (6)

where ϵ > 0 and κ : [0, T ] → R>0 is a weighting function. The score-matching objective U in 6 can be
rewritten via denoising score matching (Vincent, 2011) as follows

U(θ) = E[κ(τ)|σ−1
τ Z + s(τ, θ, mτ X0 + στ Z)|2] + C, (7)

where the expectation is over τ ∼ Uniform([ϵ, T ]), X0 ∼ πD and Z ∼ N (0, IM ), and where C ∈ R is a constant
independent of θ (see Appendix A for the derivation with the OU representation 30). The stochastic gradient
H : Rd × Rm → Rd of 6 deduced using 7 is given by

H(θ, x) = 2κ(t)
M∑

i=1

(
σ−1

t z(i) + s(i)(t, θ, mtx0 + σtz)
)

∇θs(i)(t, θ, mtx0 + σtz), (8)

where x = (t, x0, z) ∈ Rm with m = 2M + 1. As contribution to this analysis, we introduce an auxiliary
process (Y aux

t )t∈[0,T ] containing the approximating function s depending on the (random) estimator of θ∗

denoted by θ̂, for t ∈ [0, T ],

dY aux
t = (Y aux

t + 2 s(T − t, θ̂, Y aux
t )) dt +

√
2 dB̄t, Y aux

0 ∼ π∞ = N (0, IM ). (9)

The process 9 will play an important role in the derivation of the nonasymptotic estimates in Wasserstein
distance of order two between the target data distribution and the generative distribution of the diffusion
model. Indeed, it connects the backward process 4 and the numerical scheme 11, which facilitates the analysis
of the convergence of the diffusion model (see Appendix C.2 and Appendix D.2 for more details). For this
reason, we introduce a sequence of stepsizes {γk}k∈{0,...,K} such that

∑K
k=0 γk = T . For any k ∈ {0, . . . , K},

let tk+1 =
∑k

j=0 γj with t0 = 0 and tK+1 = T . Let γk = γ ∈ (0, 1) for each k = 0, . . . , K. The discrete
process (Y EM

k )k∈{0,...,K+1} of the Euler–Maruyama approximation of 9 is given, for any k ∈ {0, . . . , K}, as
follows

Y EM
k+1 = Y EM

k + γ(Y EM
k + 2 s(T − tk, θ̂, Y EM

k )) +
√

2γ Z̄k+1, Y EM
0 ∼ π∞ = N (0, IM ), (10)

where {Z̄k}k∈{0,...,K+1} is a sequence of independent M -dimensional Gaussian random variables with zero
mean and identity covariance matrix. We emphasize that the approximation 10 is the one chosen in the
original paper Song et al. (2021). Finally, the continuous-time interpolation of 10, for t ∈ [0, T ], is given by

dŶ EM
t = (Ŷ EM

⌊t/γ⌋γ + 2 s(T − ⌊t/γ⌋γ, θ̂, Ŷ EM
⌊t/γ⌋γ)) dt +

√
2 dB̄t, Ŷ EM

0 ∼ π∞ = N (0, IM ), (11)

where L(Ŷ EM
k ) = L(Y EM

k ) at grid points for each k ∈ {0, . . . , K + 1}.

3 Main Results

Before introducing the main assumptions of the paper, we present a motivating example.

3.1 A Motivating Example: Full Estimates for Multivariate Gaussian Initial Data with Unknown Mean

In this section, we consider the case where the data distribution follows a multivariate normal distribution
with unknown mean and identity covariance, i.e., X0 ∼ πD = N (µ, Id) for some unknown µ ∈ Rd with M = d.
We show that, by using diffusion models, we are able to generate new data from an approximate distribution
that is close to πD. More precisely, we provide a non-asymptotic convergence bound with explicit constants
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in Wasserstein-2 distance between the law of the diffusion model and πD, which can be made arbitrarily
small by appropriately choosing key parameters on the upper bound. In this example, the estimation of the
score function reduces to the estimation of the unknown mean by the methods of convex optimization with
optimal dependence of the dimension combined with the most efficient sampling method for high-dimensional
Gaussian data.

In this setting by using 1, we can derive the score function given by

∇ log pt(x) = −x + mtµ, (12)

which can be approximated using

s(t, θ, x) = −x + mtθ, (t, θ, x) ∈ [0, T ] × Rd × Rd. (13)

To obtain an approximated score, i.e., to obtain an optimal value of θ in 13, we opt for a popular class of
algorithms called stochastic gradient Langevin dynamics (SGLD) to solve the optimisation problem 6. In
addition, we choose the weighting function κ(t) = σ2

t as in Song & Ermon (2019) and we set ϵ = 0 in 6.
Using the approximating function 13 in 8, we can obtain the following expression for the stochastic gradient

H(θ, x) = 2σ2
t

d∑
i=1

(
σ−1

t z(i) + (−mtx
(i)
0 − σtz

(i) + mtθ
(i))
)

mtei

= 2σ2
t mt

(
σ−1

t z − mtx0 − σtz + mtθ
)

,

(14)

where x = (t, x0, z) ∈ Rm with m = 2d + 1 and ei denotes the unit vector with i-th entry being 1. Fixing
the so-called inverse temperature parameter β > 0, the associated SGLD algorithm is given by

θλ
0 := θ0, θλ

n+1 = θλ
n − λH(θλ

n, Xn+1) +
√

2λ/β ξn+1, n ∈ N0, (15)

where λ > 0 is often called the stepsize or gain of the algorithm, (ξn)n∈N0 is a sequence of standard Gaussian
vectors and

(Xn)n∈N0 = (τn, X0,n, Zn)n∈N0 , (16)

is a sequence of i.i.d. random variables generated as follows. For each n ∈ N0, we sample τn from
Uniform([0, T ]) such that L(τn) = L(τ), sample X0,n from πD = N (µ, Id) such that L(X0,n) = L(X0),
and sample Zn from N (0, Id) such that L(Zn) = L(Z). In addition, we consider the case where θ0, (ξn)n∈N0 ,
and (Xn)n∈N0 in 15 are independent and we have E[H(θ, Xn+1)] = ∇U(θ).

Throughout this section, we fix

0 < λ ≤ min{E[σ2
τ m2

τ ]/(4E[σ4
τ m4

τ ]), 1/(2E[σ2
τ m2

τ ])}. (17)

Theorem 1 states the non-asymptotic (upper) bounds between the generative distribution of the diffusion
model L(Ŷ EM

K+1) and the data distribution πD. An overview of the proof can be found in Appendix C.2.
Theorem 1. Under the setting described in this section, then, for any T > 0 and γ ∈ (0, 1/2],

W2(L(Ŷ EM
K+1), πD)

≤
√

2e−2T (
√

E [|X0|2] +
√

d)

+ (
√

4/3 + 2
√

33)(e−nλE[σ2
τ m2

τ ]
√

E[|θ0 − θ∗|2] +
√

dCSGLD,1/β +
√

λCSGLD,2)

+ γ(
√

18d +
√

132|θ∗|2),

(18)

where CSGLD,1 and CSGLD,2 are given explicitly in Table 1. In addition, the result in 18 implies that for any
δ > 0, if we choose T > Tδ, β ≥ βδ, 0 < λ ≤ λδ, n ≥ nδ, and 0 < γ < γδ, then

W2(L(Ŷ EM
K+1), πD) < δ,

where Tδ, βδ, λδ, nδ and γδ are given explicitly in Table 1.
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Table 1: Explicit expressions for the constants in Theorem 1.

Constant Full Expression

CSGLD,1 1/E[σ2
τ m2

τ ]

CSGLD,2 4E[σ4
τ m2

τ (σ−1
τ |Z| + mτ |X0| + στ |Z| + mτ |θ∗|)2]/E[σ2

τ m2
τ ]

Tδ 2−1 ln
(

4
√

2
(√

E[|X0|2] +
√

d

)
/δ

)
βδ 144d(

√
4/3 + 2

√
33)2/(δ2E[κ(τ)m2

τ ])

λδ

min
{
E[σ2

τ m
2
τ ]/(4E[σ4

τ m
4
τ ]), 1/(2E[σ2

τ m
2
τ ]), δ

2E[σ2
τ m

2
τ ]

×(576(
√

4/3 + 2
√

33)2E[σ4
τ m

2
τ

(
σ

−1
τ |Z| + mτ |X0| + στ |Z| + mτ |θ∗|

)2
])−1
}

nδ (λE[σ2
τ m2

τ ])−1 ln
(

12(
√

4/3 + 2
√

33)
√

E [|θ0 − θ∗|2]/δ

)
with fixed λ (≤ λδ)

γδ min
{

δ/(4(18d + 132|θ∗|2)1/2), 1/2
}

Remark 2. The result in Theorem 1 achieves the optimal rate of convergence of order one for Euler or
Milstein schemes of SDEs with constant diffusion coefficients. Furthermore, one notes that the dependence
of the dimension on the upper bound in 18 is in the form of

√
d. To the best of the authors’ knowledge,

the result in Theorem 1 is the first convergence bound where the parameters involved in the sampling and
optimization steps of the diffusion models appear explicitly. In the optimization procedure, we use SGLD
algorithm 15 to solve the problem 6. Since the stochastic gradient H in 14 is strongly convex by Proposition
13, it has been proved, for instance in Barkhagen et al. (2021), that, for large enough β > 0, the output of
SGLD is an almost minimizer of 6 when n is large. Thus, in the diffusion model, we set θ̂ = θλ

n indicating
∇ log pt(x) ≈ s(t, θ̂, x) = s(t, θλ

n, x) for large values of n and for all t and x. Crucially, this allows us to use
the established convergence results for SGLD to deduce a sampling upper bound for W2(L(Ŷ EM

K+1), πD) with
explicit constants in 18. Consequently, this bound can be controlled by any given precision level δ > 0 by
appropriately choosing T, β, λ, n and γ.

This motivating example has focused on exploring the convergence of diffusion-based generative models
using a Langevin-based algorithm, specifically SGLD, which is well-known for its theoretical guarantees in
achieving global convergence. However, in the general case discussed in Section 3.2, we do not prescribe a
specific optimizer to choose to minimise the distance between θ̂ and θ∗.

3.2 General Case

In this section, we derive the full non-asymptotic estimates in Wasserstein distance of order two between
the target data distribution πD and the generative distribution of the diffusion model under the assumptions
stated below. As explained in Section 2 (see also Appendix A), it could be necessary in the general setting
to restrict t ∈ [ϵ, T ] for ϵ ∈ (0, 1) in 6. Therefore, we truncate the integration in the backward diffusion at
T − ϵ and run the process (Yt)t∈[0,T −ϵ].

3.2.1 Assumptions for the General Case

In the motivating example in Section 3.1, we have chosen the SGLD algorithm to solve the optimisation
problem 6. Other algorithms, such as ADAM (Kingma & Ba, 2015), TheoPouLa (Lim & Sabanis, 2024)
and stochastic gradient descent (Jentzen et al., 2021), can be chosen as long as they satisfy the following
assumption. Fix ϵ > 0.
Assumption 1. Let θ∗ be a minimiser1 of 6 and let θ̂ be the (random) estimator of θ∗ obtained through
some approximation procedure such that E[|θ̂|4] < ∞. There exists ε̃AL > 0 such that

E[|θ̂ − θ∗|2] < ε̃AL.

1The score-matching optimization problem 6 is not necessarily (strongly) convex.
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Remark 3. As a consequence of Assumption 1, we have E[|θ̂|2] < 2ε̃AL + 2|θ∗|2.

We consider the following assumption on the data distribution.
Assumption 2. The data distribution πD has a finite second moment, is strongly log-concave, and∫ T

ϵ
|∇ log pt(0)|2dt < ∞.

Remark 4. As a consequence of Assumption 2 and the preservation of strong log-concavity under convolu-
tion, see, e.g., Saumard & Wellner (2014, Proposition 3.7), there exists LMO : [0, T ] → (0, ∞] such that for
all t ∈ [0, T ] and x, x̄ ∈ RM, we have

⟨∇ log pt(x) − ∇ log pt(x̄), x − x̄⟩ ≤ −LMO(t)|x − x̄|2. (19)

The function LMO(t) in 19 has a lower bound for all t ∈ [0, T ], which we denote by L̂MO. Moreover,
Assumption 2 with the estimate 19 implies that the processes in 3 and in 4 have a unique strong solution,
see, e.g., Krylov (1991, Theorem 1).

Next, we consider the following assumption on the approximating function s which is used in Remark 12.
Assumption 3.a. The function s : [0, T ] × Rd × RM → RM is continuously differentiable in x ∈ RM . Let
D1 : Rd×Rd → R+, D2 : [0, T ]×[0, T ] → R+ and D3 : [0, T ]×[0, T ] → R+ be such that

∫ T

ϵ

∫ T

ϵ
D2(t, t̄) dt dt̄ <

∞ and
∫ T

ϵ

∫ T

ϵ
D3(t, t̄) dt dt̄ < ∞. For α ∈

[ 1
2 , 1
]

and for all t, t̄ ∈ [0, T ], x, x̄ ∈ RM, and θ, θ̄ ∈ Rd, we have
that

|s(t, θ, x) − s(t̄, θ̄, x̄)| ≤ D1(θ, θ̄)|t − t̄|α + D2(t, t̄)|θ − θ̄| + D3(t, t̄)|x − x̄|,

where D1, D2 and D3 have the following growth in each variable: i.e. there exist K1, K2, and K3 > 0 such
that for each t, t̄ ∈ [0, T ] and θ, θ̄ ∈ Rd,

|D1(θ, θ̄)| ≤ K1(1 + |θ| + |θ̄|), |D2(t, t̄)| ≤ K2(1 + |t|α + |t̄|α),
|D3(t, t̄)| ≤ K3(1 + |t|α + |t̄|α).

By adding a further condition on the gradient of s in Assumption 3.a we are able to achieve the optimal rate
of convergence in Theorem 10 below.
Assumption 3.b. Let s be as in Assumption 3.a and there exists K4 > 0 such that, for all x, x̄ ∈ RM and
for any k = 1, . . . M ,

|∇xs(k)(t, θ, x) − ∇x̄s(k)(t, θ, x̄)| ≤ K4(1 + 2|t|α)|x − x̄|.

Remark 5. Let KTotal := K1 + K2 + K3 + |s(0, 0, 0)| > 0. Using Assumption 3.b, we have

|s(t, θ, x)| ≤ KTotal(1 + |t|α)(1 + |θ| + |x|).

We postpone the proof of Remark 5 to Appendix D.1.
Remark 6. Assumption 3.a and 3.b impose Lipschitz continuity on a family of approximating functions
s(·, ·, ·) with respect to the input variables, t and x, as well as the parameters θ. It is well-known that the
continuity properties of neural networks with respect to t, and x are largely determined by the activation
function at the last layer. For instance, neural networks with activation functions such as hyberbolic tangent
and sigmoid functions at the last layer satisfy the Lipschitz continuity with respect to t and x (Virmaux &
Scaman, 2018; Fazlyab et al., 2019).

For the following assumption on the score approximation, we let θ̂ be as in Assumption 1 and we let
(Y aux

t )t∈[0,T ] be the auxiliary process defined in 9.
Assumption 4. There exists εSN > 0 such that

E
∫ T −ϵ

0
|∇ log pT −r(Y aux

r ) − s(T − r, θ̂, Y aux
r )|2 dr < εSN. (20)
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Remark 7. We highlight that the expectation in Assumption 4 is taken over the auxiliary process 9. This
density is known since the approximating function s and the estimator θ̂ are known. To the best of authors’
knowledge, this is a novelty with respect to previous works (Bortoli, 2022; Chen et al., 2023d; Lee et al., 2022;
2023; Chen et al., 2023a; Conforti et al., 2025; Benton et al., 2024) which consider the unknown density of
the forward process (or its numerical discretization).
Remark 8. Assumption 4 is satisfied, along with Assumption 3.b, for data distributions satisfying Assump-
tion 2, beyond the multivariate Gaussian case discussed in the motivating example. Indeed,

E
∫ T −ϵ

0
|∇ log pT −r(Y aux

r ) − s(T − r, θ̂, Y aux
r )|2 dr

≤ 2 E
∫ T −ϵ

0
|∇ log pT −r(Y aux

r ) − s(T − r, θ∗, Y aux
r )|2 dr

+ 2 E
∫ T −ϵ

0
|s(T − r, θ∗, Y aux

r ) − s(T − r, θ̂, Y aux
r )|2 dr.

(21)

If θ∗ is such that s(t, θ∗, x) = ∇ log pt(x) as in the motivating example in Section 3.1, then the first term
on the right-hand side of 21 vanishes. Otherwise, we expect that the first term on the right-hand side above
to be small. Indeed, by the definition of strong log-concavity, see e.g. Saumard & Wellner (2014, Definition
2.9), we have

∇ log pt(x) = ∇ log(g(x)) + ∇ log(ϕt(x)), (22)

where g is some log-concave function and ϕt is a multivariate Gaussian density. If g is a multivariate logistic
distribution2 (Malik & Abraham, 1973), then its score function is given by

∂

∂xk
log(g(x)) = −1 − (M + 1) − exp(−xk)

1 +
∑M

k=1 exp(−xk)
, −∞ < xk < ∞, k = 1, . . . , M, (23)

while the Hessian of log(g(x)) is bounded (see Appendix B for more details). Therefore, the score function of
the multivariate logistic distribution 23 is Lipschitz, and, as a consequence, ∇ log pt(x) in 22 is still Lipschitz.
Thus, we expect to have a good control on the first term on the right-hand side of 21 since the function s
satisfying Assumption 3.b approximates a Lipschitz score function. In general, there exists a function

c(t, x) := ∇ log pt(x) − s(t, θ∗, x), t > 0, x ∈ RM , (24)

and therefore one has to define a log-concave function g such that the first term on the right-hand side of
21 is small. Clearly, this is a problem specific challenge and it may not always have a good solution. The
second term on the right-hand side of 21 is controlled by Assumption 3.b and Assumption 1 (see Appendix
B for more details).
Remark 9. We conduct a numerical experiment to show the convergence of diffusion-based generative
models under Assumption 1, 2, 3.b and 4. We consider the case where X0 ∼ πD = N (µ, Id) with
µ = (−1.2347, −0.89244) and d = 2. We use SGLD algorithm 15 to solve the optimization problem 7,
with κ(t) = σ2

t , ϵ = 0, T = 2, λ = 5 × 10−5, β = 1012, and n = 4 × 104. At each iteration, 128 mini-batch
samples are used to estimate the stochastic gradient. Then, we generate samples using the Euler-Maruyama
approximation 10 with γ = 10−3 and s given in 13. At each iteration n, we evaluate the quality of 100, 000
generated samples using the Wasserstein distance of order two. In addition, we compute the L2 error between
the score function and the approximated function s with θλ

n, using the auxiliary process as in Assumption
4. Figure 1 (a) demonstrates the error in Assumption 4 vanishes as the generative model converges, where
the degree of convergence is measured by W2(L(Y EM

K ), πD). This empirical observation justifies Assumption
4. Moreover, we explore the relationship between the quality of generated samples and the error using 7 via
denoising score matching in Figure 1 (b).

2The multivariate logistic distribution is an example of elliptical distribution widely used in portfolio risk management (Xiao
& Valdez, 2015; Owen & Rabinovitch, 1983).
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(a) Error with Assumption 4. (b) Error using U(θ) in 7.

Figure 1: The quality of generated samples with respect to (a) the error with Assumption 4 and (b) the
error obtained through denoising score matching using U(θ) in 7.

3.2.2 Full Estimates for the General Case

The main result under the general setting is stated as follows. An overview of the proof can be found in
Appendix D.2.
Theorem 10. Let Assumptions 1, 2, 3.b and 4 hold. Then, there exist constants C1, C2, C3 and C4 > 0
such that for any T > 0 and γ, ϵ ∈ (0, 1),

W2(L(Y EM
K ), πD) ≤ C1

√
ϵ + C2e−2L̂MO(T −ϵ)−ϵ + C3(T, ϵ)

√
εSN + C4(T, ϵ)γα, (25)

where C1, C2, C3 and C4 are given explicitly in Table 4 (Appendix E). In addition, the result in 25 implies
that for any δ > 0, if we choose 0 ≤ ϵ < ϵδ, T > Tδ, 0 < εSN < εSN,δ and 0 < γ < γδ with ϵδ, Tδ, εSN,δ, and
γδ given in Table 4, then

W2(L(Y EM
K ), πD) < δ.

Remark 11. The error bounds in 25 are not as good as the ones provided in Theorem 1 due to the general
form of the approximating function s. We emphasize that the optimal rate of convergence of order α ∈

[ 1
2 , 1
]

for the Euler or Milstein scheme of SDEs with constant diffusion coefficients is achieved using the Lipschitz
continuity on the derivative of s in Assumption 3.b. In the explicit expression of C4 in Table 4, the dependence
of the dimension is O(M) due to numerical techniques from Kumar & Sabanis (2019) used in the proof of
Theorem 10 to achieve the optimal rate of convergence.
Remark 12. If we replace Assumption 3.b with Assumption 3.a in Theorem 10, then the bound 25 becomes

W2(L(Y EM
K ), πD) ≤ C1

√
ϵ + C2e−2L̂MO(T −ϵ)−ϵ + C3(T, ϵ)

√
εSN + C̃4(T, ϵ)γ1/2,

where C1, C2, C3 are the same as in Theorem 10 and C̃4(T, ϵ) contains a better dependence on the dimension,
namely O(

√
M), than the one achieved in Theorem 10, and it is explicitly provided in Table 4 (Appendix E).

Although this relaxation achieves the same dependence on the data dimension as in the motivating example
in Theorem 1, it leads to a worse rate of convergence of order 1/2.

4 Related Work and Comparison

We describe assumptions and results of various existing works in our notation and framework to facilitate
the comparisons with our results which are provided in 2-Wasserstein distance. Beyond being theoretical
relevant, the choice of the use of this metric is motivated by its applications in generative modeling. A
popular performance metric currently used to examine the quality of the images produced by generative
models is the Fréchet Inception Distance (FID) which was originally introduced in Heusel et al. (2017). This
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metric measures the Fréchet distance between the distribution of generated samples and the distribution of
real samples, assuming Gaussian distributions, which is equivalent to the Wasserstein distance of order two.
Our results provided under this metric are therefore also relevant for practical applications.

We can classify the previous approaches based on their assumptions on two key quantities: (i) score ap-
proximation error and (ii) assumptions on the data distribution. Based on these approaches, we give a brief
overview of some of the most relevant recent contributions in the field.

4.1 Score Approximation Assumptions

The early work of De Bortoli et al. (2021) requires an L∞-bound on the score approximation, which is in
contrast with the L2 nature of the score-matching optimization problem 6. Most of the recent analysis of
score-based generative models, see, e.g., Chen et al. (2023d); Lee et al. (2022; 2023); Chen et al. (2023a);
Conforti et al. (2025); Benton et al. (2024), have considered assumptions (in L2) on the absolute error of the
following type, i.e. for any k ∈ {0, . . . , N − 1}, there exists ε > 0

E
[
|∇ log ptk

(Xtk
) − s(tk, θ̂, Xtk

)|2
]

≤ ε, (26)

where the expectation is taken with respect to the unknown {pt}t∈[0,T ] and θ̂ is a deterministic quantity. In
Chen et al. (2023a); Conforti et al. (2025); Benton et al. (2024), the assumption 26 is written in integral
(averaged) form. In Lee et al. (2023), the bound in 26 is not uniform over t, i.e. εt := ε

σ4
t

and this allows
the score function to grow as 1

σ2
t

as t → 0. The authors in Conforti et al. (2025) use the relative L2-score
approximation error such as

E
[
|2∇ log p̃tk

(Xtk
) − s̃(tk, θ̂, Xtk

)|2
]

≤ ε E
[
|2∇ log p̃tk

(Xtk
)|2
]

, (27)

where the expectation is with respect to the unknown density of the law of Xt against the Gaussian dis-
tribution π∞(x), i.e. p̃t(x) := pt(x)/π∞(x), and s̃(t, θ, x) in 27 is the approximating function for the score
function of p̃t. A pointwise assumption in Bortoli (2022), given by

|∇ log pt(x) − s(t, θ̂, x)| ≤ C(1 + |x|)/σ2
t , (28)

for C ≥ 0, is considered under the manifold (compact) setting. The assumption 28 takes into account the
explosive behaviour of the score function as t → 0. In an attempt to obtain a weaker control than 28, the
assumption Bortoli (2022, A5) is used, namely

E
[
|∇ log pT −tk

(Y EI
k ) − s(T − tk, θ̂, Y EI

k )|2
]

≤ C2E
[(

1 + |Y EI
k |2

)]
/σ4

T −tk
. (29)

We note that, unlike 26 and 27, the expectation in 29 is taken with respect to the algorithm Y EI
k given by the

exponential integrator (EI) discretization scheme3, which has known density. However, the bounds of Bortoli
(2022, Theorem H.1) in Wasserstein distance of order one derived under this assumption scale exponentially
in problem parameters such as the diameter of the manifold M and the inverse of the early stopping time
parameter ϵ, i.e. exp(O(diam(M)2/ϵ)). Furthermore, an assumption similar to 29 is considered in a very
recent and concurrent result4 Gao et al. (2023):

sup
k=1,...,K

(
E
[
|∇ log pT −(k−1)η(Y EI

k ) − s(T − (k − 1)η, θ̂, Y EI
k )|2

])1/2
≤ ε,

where η > 0 is the stepsize and T = Kη with K ∈ N.

We emphasize that the existing results in the literature do not take the expectation with respect to the
stochastic optimizer θ̂. This, together with the use of our novel auxiliary process 9 that uses only known
information, allows us to deduce state-of-the-art bounds in the Wasserstein distance of order two in the
following sense. The bounds scale polynomially in the data dimension M , i.e. O(

√
M) as shown in Theorem

1 and Remark 12, and achieve the optimal rate of convergence: of order one in Theorem 1 and of order
α ∈

[ 1
2 , 1
]

in Theorem 10.
3This analysis can be extended to the Euler-Maruyama numerical scheme in Y EM

k 10.
4The concurrent paper Gao et al. (2023) appeared few days earlier when the first draft of this work was made available

online.
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4.2 Assumptions on the Data Distribution

The vast majority of the results available in the literature are in KL divergence and TV distance. For two
general data distributions µ and ν, there is no known relationship between their KL divergence and their
W2. However, for strongly log-concave data distributions, a bound on the Wasserstein distance of order
two in terms of KL divergence follows from an extension of Talagrand’s inequality Gozlan & Léonard (2010,
Corollary 7.2).

Some convergence results in different metrics can be deduced under the following types of assumptions.
Convergence bounds in Wasserstein distance of order one with exponential complexity has been obtained
in Bortoli (2022) under the so-called manifold hypothesis, namely assuming that the target distribution
is supported on a lower-dimensional manifold or is given by some empirical distribution. Moreover, the
results in TV distance in Lee et al. (2022) and in KL divergence Yang & Wibisono (2023) assumed that
the data distribution satisfies a logarithmic Sobolev inequality and the score function is Lipschitz resulting
in convergence bounds characterized by polynomial complexity. By replacing the requirement that the
data distribution satisfies a functional inequality with the assumption that πD has finite KL divergence
with respect to the standard Gaussian and by assuming that the score function for the forward process
is Lipschitz, the authors in Chen et al. (2023d) managed to derive bounds in TV distance which scale
polynomially in all the problem parameters. By requiring only the Lipschitzness of the score at the initial
time instead of the whole trajectory, the authors in Chen et al. (2023a, Theorem 2.5) managed to show,
using an exponentially decreasing then linear step size, convergence bounds in KL divergence with quadratic
dimensional dependence and logarithmic complexity in the Lipschitz constant. In the work by Benton et al.
(2024), the authors provide convergence bounds in KL divergence that are linear in the data dimension, up
to logarithmic factors, using early stopping and assuming finite second moments of the data distribution. A
careful examination of Benton et al. (2024, Proof of Theorem 1 and Corollary 1) reveals that the authors
still require the uniqueness of solutions for the backward SDE 3. For instance, either measurability and
boundedness of the drift (Stroock & Varadhan, 1997) or integrability of the drift (Röckner & Zhao, 2023)
should be imposed if the uniqueness of weak solutions is considered. Therefore, additional conditions on the
score function, depending on the type of uniqueness of solutions considered, are still needed in their bounds
in Theorem 1 and Corollary 1.

Assuming the finiteness of the second moment of the data distribution and using an EI discretization scheme
with constant and exponentially decreasing step sizes, the authors in Conforti et al. (2025, Corollary 2.4)
derive a KL divergence bound with early stopping, which scales linearly in the data dimension up to loga-
rithmic factors. In terms of dependence of the data dimension, this bound is slightly worse than the bound in
W2 provided in Remark 12, which does not include the logarithmic dependence of M . Bounds in KL without
early stopping have been derived in Conforti et al. (2025) for data distributions with finite Fisher information
with respect to the standard Gaussian distribution. The bounds in Conforti et al. (2025, Theorem 2.1 and
2.2) scale linearly in the Fisher information when an EI discretization scheme with constant step size is used
and logarithmically in the Fisher information when an exponential-then-constant step size Conforti et al.
(2025, Theorem 2.3) is chosen. We note that Conforti et al. (2025, Theorem 2.1 and 2.2) cannot achieve the
optimal rate of convergence of Theorem 1 in the motivating example.

We summarise the results of Chen et al. (2023a); Benton et al. (2024); Conforti et al. (2025) and compare
them to ours in Table 2 and Table 3, making the distinction based on whether the early stopping rule is
applied. In addition, a careful examination of Chen et al. (2023a, Proof of Theorem 2.2) reveals that the
authors require the uniqueness of solutions for the backward SDE 3. For instance, when strong solutions are
considered, this implies that the score function should be (at least) monotone in the space variable, and a
suitable integrability condition in t (similar to our Assumption 2) is still needed to guarantee uniqueness of
the solution (see, e.g., Krylov (1991, Theorem 1)). For weak solutions, we refer to the discussion of Benton
et al. (2024, Proof of Theorem 1 and Corollary 1) above.

We emphasize that in Theorem 10, we do not assume the score function to be Lipschitz continuous with
a uniformly bounded Lipschitz constant. This is particularly useful for future work in nonconvex set-
tings, where the upper bound estimates will be independent of the (potentially large) Lipschitz constant
of the score function, which could otherwise hide additional dimensional dependencies. The requirement
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∫ T

ϵ
|∇ log pt(0)|2dt < ∞ in Assumption 2 is weaker than the Lipschitz assumption on the score function, but

it is still difficult to verify in practical applications.

As pointed out in Chen et al. (2023d, Section 4), some type of log-concavity assumption on the data distri-
bution is needed to derive polynomial convergence rates in 2-Wasserstein distance. This justifies the need for
our Assumption 2. The concurrent result Gao et al. (2023) has a similar assumption. For completeness, we
also mention that the results in the same metric, which have appeared after the first version of our preprint
on arXiv (e.g., Tang & Zhao (2024); Strasman et al. (2025)), continue to assume strong log-concavity of the
data distribution.

Table 2: Summary of previous bounds without early stopping and our result in Theorem 1. Bounds expressed
in terms of the number of steps required to guarantee an error of at most δ in the stated metric. The relative
Fisher information of the target πD against standard Gaussian measure π∞ is denoted by FI(πD|π∞). All
the bounds assume that πD has finite second moments.

Optimization
problem
solved

Regularity condi-
tion

Metric Complexity Reference

No ∀t, ∇ log pt L-
Lipschitz

√
KL(L(Ŷ EI

K+1)||πD) Õ
(

ML2

δ

)
Chen et al.
(2023a, The-
orem 2.1)

No Conforti et al.
(2025, H2), i.e.
FI(πD|π∞) < ∞

√
KL(L(Ŷ EI

K+1)||πD) Õ

(√
M+E[|X0|2]

δ log2(L)
)

,

with L := M−1FI(πD|π∞)

Conforti
et al. (2025,
Theorem
2.3)

Yes πD ∼ N (µ, IM ) W2(L(Ŷ EM
K+1), πD) Õ(

√
M
δ ) Theorem 1
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Table 3: Summary of previous bounds with early stopping and our results in Remark 12. The results in Chen
et al. (2023a, Theorem 2.2), Benton et al. (2024, Theorem 1), and Conforti et al. (2025, Corollary 2.4) are
stated for the smoothed version of the data, denoted by πϵ

D and using the score approximation assumption
26 with ε. Therefore, an additional error should be added to their bounds, as the distance between πϵ

D and
πD scales with

√
M in W2 (see Appendix D.2).

Assumption on the
data

Metric Error bound Reference

Finite second mo-
ments of πD and
26. See Section
4.2 for conditions
on ∇ log pt for the
uniqueness of Yt.

√
KL(L(Ŷ EI

K )||πϵ
D)

√
(E[|X0|2] + M)e−T +

√
Tε + M(T +

log ϵ−1)/
√

N , (+ additional bounds between
πϵ

D and πD)

Chen et al.
(2023a, The-
orem 2.2)

Finite second mo-
ments of πD and
26. See Section
4.2 for conditions
on ∇ log pt for the
uniqueness of Yt.

√
KL(L(Ŷ EI

K )||πϵ
D) √

ε +
√

Õ(M/N) +
√

Me−2T , (+ additional
bounds between πϵ

D and πD)
Benton et al.
(2024, Theo-
rem 1)

Finite second mo-
ments of πD and 26.

√
KL(L(Ŷ EI

K )||πϵ
D)

√
(E[|X0|2] + M)e−T +

√
Tε + [c[(M +

E[|X0|2])(log(M+E[|X0|2])+log(ϵ−1)+1)]]1/2,
with c, ϵ ∈ (0, 1/2] (+ additional bounds be-
tween πϵ

D and πD)

Conforti
et al. (2025,
Corollary
2.4)

Assumption 2 and
Assumption 4.

W2(L(Ŷ EM
K ), πD) O(

√
M)

√
ϵ + O(

√
M)e−2L̂MO(T −ϵ)−ϵ +

O(e(1+ζ−2L̂MO)(T −ϵ))√εSN +
O(

√
MeT 2α+1

T 2α+1ε̃
1/2
AL )γ1/2

Remark 12
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Appendix

A Objective Function via Denoising Score Matching

In this section, we show that the objective function U in 6 can be written into 7 using denoising score
matching (Vincent, 2011) and the OU representation

Xt
d= mtX0 + σtZ, mt = e−t, σ2

t = 1 − e−2t, Z ∼ N (0, IM ), (30)

where d= denotes equality in distribution. We start by noticing that∫
RM

⟨∇ log pt(x), s(t, θ, x)⟩ pt(x) dx

=
∫
RM

⟨∇pt(x), s(t, θ, x)⟩ dx

=
∫
RM

〈
∇x

∫
RM

p0(x̃)pt|0(x|x̃) dx̃, s(t, θ, x)
〉

dx

=
∫
RM

〈∫
RM

p0(x̃)pt|0(x|x̃)∇x log(pt|0(x|x̃)) dx̃, s(t, θ, x)
〉

dx

=
∫
RM

∫
RM

pt,0(x, x̃)
〈
∇x log(pt|0(x|x̃)), s(t, θ, x)

〉
dx dx̃,

(31)

where pt|0 is the density of the transition kernel associated with 1 and pt,0 is the joint density of Xt and X0.
Using 31 in the objective function given in 6 and the OU representation 30, we have

U(θ) =
∫ T

ϵ

κ(t)
T − ϵ

∫
RM

(
|∇ log pt(x)|2 − 2⟨∇ log pt(x), s(t, θ, x)⟩ + |s(t, θ, x)|2

)
pt(x) dx dt

=
∫ T

ϵ

κ(t)
T − ϵ

∫
RM

∫
RM

(
|∇ log pt(x)|2 − 2

〈
∇x log(pt|0(x|x̃)), s(t, θ, x)

〉
+ |s(t, θ, x)|2

)
pt,0(x, x̃) dx dx̃ dt

=
∫ T

ϵ

κ(t)
T − ϵ

∫
RM

∫
RM

|∇x log pt|0(x|x̃) − s(t, θ, x)|2pt,0(x, x̃) dx dx̃ dt

+
∫ T

ϵ

κ(t)
T − ϵ

∫
RM

|∇ log pt(x)|2pt(x) dx dt

−
∫ T

ϵ

κ(t)
T − ϵ

∫
RM

∫
RM

|∇x log pt|0(x|x̃)|2pt,0(x, x̃) dx dx̃ dt

= E[κ(τ)|σ−1
τ Z + s(τ, θ, mτ X0 + στ Z)|2] +

∫ T

ϵ

κ(t)
T − ϵ

∫
RM

|∇ log pt(x)|2pt(x) dx dt

−
∫ T

ϵ

κ(t)
T − ϵ

∫
RM

∫
RM

|∇x log pt|0(x|x̃)|2pt,0(x, x̃) dx dx̃ dt.

(32)

We emphasize that we may choose to restrict t ∈ [ϵ, T ] with ϵ ∈ (0, 1) to prevent the divergence of the
integrals on the right-hand side of 32.

B Additional Discussions about Assumption 4

In this section, we provide additional details about Remark 8, in which we used the multivariate logistic
distribution (Malik & Abraham, 1973)

g(x) = M ! exp
(

−
M∑

k=1
xk

)(
1 +

M∑
k=1

exp(−xk)
)−(M+1)

, k = 1, . . . , M, −∞ < xk < ∞,
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and derived its score function in 23. The Hessian of log(g(x)) is

∂2

∂x2
k

log(g(x)) = −(M + 1)
(

exp(−xk)
(1 +

∑M
k=1 exp(−xk))

− exp(−2xk)
(1 +

∑M
k=1 exp(−xk))2

)
,

∂2

∂xk∂xj
log(g(x)) = −(M + 1)

(
exp(−xk) exp(−xj)

(1 +
∑M

k=1 exp(−xk))2

)
, j, k = 1, . . . , M, j ̸= k,

(33)

Since the Hessian 33 is bounded, we can conclude that the score function of the multivariate logistic distri-
bution defined in 23 is Lipschitz continuous. By using the same arguments as in Remark 8, we can conclude
that ∇ log pt(x) defined in 22 is Lipschitz.

Using Assumption 3.b and Assumption 1, we have

E
∫ T −ϵ

0
|∇ log pT −r(Y aux

r ) − s(T − r, θ̂, Y aux
r )|2 dr

≤ 2E
∫ T −ϵ

0
|∇ log pT −r(Y aux

r ) − s(T − r, θ∗, Y aux
r )|2 dr + 2K2

2

∫ T −ϵ

0
(1 + 2|T − r|α)2 E[|θ̂ − θ∗|2] dr

≤ 2E
∫ T −ϵ

0
|∇ log pT −r(Y aux

r ) − s(T − r, θ∗, Y aux
r )|2 dr + 4K2

2(T − ϵ)(1 + 4T 2α)ε̃AL < εSN,

where the error of the first term on the right-hand side above is expected to be small since the Lipschitz
∇ log pt(x) is approximated by the function s satisfying Assumption 1. This satisfies Assumption 4.

In addition, we remark that the motivating example in section 3.1 is a special case of the general setting.
Indeed, Assumption 1 is satisfied due to Lemma 14 with θ̂ = θλ

n being the nth-iterate of the SGLD algorithm
14 and θ∗ := µ. Assumption 2 is satisfied by the score function 12. Assumption 3.b is satisfied by the
approximating function 13 with d = M , α = 1, D1(θ, θ̄) := |θ̄|, D2(t, t̄) := e−t, D3(t, t̄) := 1, for any θ,
θ̄ ∈ Rd, t, t̄ ∈ [0, T ] and K1 = K2 = K3 = K4 = 1. Furthermore, both functions satisfy Assumption 4 with
d = M . Indeed, by Assumption 1 with θ∗ = µ, we have

E
∫ T −ϵ

0
|∇ log pT −r(Y aux

r ) − s(T − r, θ̂, Y aux
r )|2 dr

≤ 2 E
∫ T −ϵ

0
|∇ log pT −r(Y aux

r ) − s(T − r, θ∗, Y aux
r )|2 dr

+ 2 E
∫ T −ϵ

0
|s(T − r, θ∗, Y aux

r ) − s(T − r, θ̂, Y aux
r )|2 dr

= (e−2ϵ − e−2T ) E[|θ̂ − θ∗|2] < (e−2ϵ − e−2T )ε̃AL < εSN.

C Proofs of the Results for the Multivariate Gaussian Initial Data with Unknown
Mean

In this section, we provide the proof of Theorem 1. We start by introducing the results which will be used
in the proof of Theorem 1.

C.1 Preliminary Estimates

We provide the results for the SGLD algorithm 15 with λ given in 17, β > 0, CSGLD,1 and CSGLD,2 given in
Table 1, as well as for the auxiliary process 9, the discrete process 10, and the continuous-time interpolation
11 with s given in 13 and γ ∈ (0, 1/2].
Proposition 13. For any θ, θ̄ ∈ Rd and x ∈ Rm,

|H(θ, x) − H(θ̄, x)| = 2σ2
t m2

t |θ − θ̄|,
⟨H(θ, x) − H(θ̄, x), θ − θ̄⟩ = 2σ2

t m2
t |θ − θ̄|2.
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Proposition 13 is derived from the definition of the stochastic gradient 14.

The proof of the following lemmas are postponed to Section C.3.
Lemma 14. For any n ∈ N0,

E
[
|θλ

n − θ∗|2
]

≤ (1 − 2λE[σ2
τ m2

τ ])nE
[
|θ0 − θ∗|2

]
+ dCSGLD,1/β + λCSGLD,2.

As a consequence of Lemma 14, we derive the following corollary.
Corollary 15. For any n ∈ N0,

E
[
|θλ

n|2
]

≤ 2e−2nλE[σ2
τ m2

τ ]E
[
|θ0 − θ∗|2

]
+ 2dCSGLD,1/β + 2λCSGLD,2 + 2|θ∗|2.

Lemma 16. It holds that
sup
t≥0

E
[
|Y aux

t |2
]

≤ Caux,

where Caux := (8/3)(e−2nλE[σ2
τ m2

τ ]E
[
|θ0 − θ∗|2

]
+ dCSGLD,1/β + λCSGLD,2 + |θ∗|2) + 2d.

Lemma 17. It holds that
sup
k∈N

E
[
|Y EM

k |2
]

≤ CEM,

where CEM := 3d + 20(e−2nλE[σ2
τ m2

τ ]E
[
|θ0 − θ∗|2

]
+ dCSGLD,1/β + λCSGLD,2 + |θ∗|2).

Lemma 18. For any 0 < γ ≤ 1/2, one obtains that

sup
t≥0

E
[
|Ŷ EM

t − Ŷ EM
⌊t/γ⌋γ |2

]
≤ γCEMose,

where CEMose := 8d + 56(e−2nλE[σ2
τ m2

τ ]E
[
|θ0 − θ∗|2

]
+ dCSGLD,1/β + λCSGLD,2 + |θ∗|2).

Lemma 19. It holds that
sup
t≥0

E
[
|Ŷ EM

t |2
]

≤ ĈEM,

where ĈEM := 18d + 128(e−2nλE[σ2
τ m2

τ ]E
[
|θ0 − θ∗|2

]
+ dCSGLD,1/β + λCSGLD,2 + |θ∗|2).

C.2 Proof of the Main Result in the Motivating Example

Proof of Theorem 1. We derive the non-asymptotic estimate for W2(L(Ŷ EM
K+1), πD) using the splitting

W2(L(Y EM
K+1), πD) ≤ W2(πD, L(YtK+1)) + W2(L(YtK+1), L(ỸtK+1))

+ W2(L(ỸtK+1), L(Y aux
tK+1

)) + W2(L(Y aux
tK+1

), L(Y EM
K+1)).

(34)

Since tK+1 = T , we have W2(πD, L(YtK+1)) = 0. We provide upper bounds on the error made by approximat-
ing the initial condition of the backward process Y0 ∼ L(XT ) with Ỹ0 ∼ π∞, i.e. W2(L(YtK+1), L(ỸtK+1)), the
error made by approximating the score function with s, i.e. W2(L(ỸtK+1), L(Y aux

tK+1
)), and the discretisation

error, i.e. W2(L(Y aux
tK+1

), L(Y EM
K+1)), separately.

Upper bound on W2(L(YtK+1), L(ỸtK+1)). Applying Itô’s formula and using 3 and 4 with the score
function given in 12, we have, for any t ∈ [0, T ],

d|Yt − Ỹt|2 = 2⟨Yt − Ỹt, Yt − Ỹt + 2(∇ log pT −t(Yt) − ∇ log pT −t(Ỹt))⟩dt

= −2|Yt − Ỹt|2dt.
(35)

Integrating and taking expectation both sides in 35 yields

E[|Yt − Ỹt|2] = E[|Y0 − Ỹ0|2] − 2
∫ t

0
E[|Ys − Ỹs|2]ds

≤ e−2tE[|Y0 − Ỹ0|2].
(36)
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Using 36, the representation 2 with ZT
d= Ỹ0 and 1 − σt ≤ mt, we have

E[|YtK+1 − ỸtK+1 |2] ≤ e−2tK+1E[|Y0 − Ỹ0|2]

= e−2tK+1E[|mT X0 + (σT − 1)Ỹ0|2]
≤ 2e−4tK+1

(
E[|X0|2] + d

)
.

(37)

Using 37, we have

W2(L(YtK+1), L(ỸtK+1)) ≤
√

E[|YtK+1 − ỸtK+1 |2]

≤
√

2e−2T (
√
E [|X0|2] +

√
d).

(38)

Upper bound on W2(L(ỸtK+1), L(Y aux
tK+1

)). Applying Itô’s formula and using the process 4 with the score
function 12 and the process 9 with the approximating function 13, we have, for any t ∈ [0, T ],

d|Ỹt − Y aux
t |2 = 2⟨Ỹt − Y aux

t , Ỹt − Y aux
t + 2(∇ log pT −t(Ỹt) − s(T − t, θ̂, Y aux

t ))⟩dt

= −2|Ỹt − Y aux
t |2dt + 4⟨Ỹt − Y aux

t , mT −t(µ − θ̂)⟩dt.
(39)

Integrating and taking expectation on both sides in 39 and using that the minimiser θ⋆ = µ, we have

E[|Ỹt − Y aux
t |2] = −2

∫ t

0
E[|Ỹs − Y aux

s |2]ds + 4
∫ t

0
E[⟨Ỹs − Y aux

s , mT −s(θ∗ − θ̂)⟩]ds. (40)

Differentiating both sides of 40 and using Young’s inequality, we obtain

d
dt

E[|Ỹt − Y aux
t |2] = −2E[|Ỹt − Y aux

t |2] + 4E[⟨Ỹt − Y aux
t , mT −t(θ∗ − θ̂)⟩]

≤ −E[|Ỹt − Y aux
t |2] + 4e−2T e2tE[|θ∗ − θ̂|2],

which implies that
d
dt

(etE[|Ỹt − Y aux
t |2]) ≤ 4e−2T e3tE[|θ∗ − θ̂|2].

Integrating both sides and using Lemma 14 yields

E[|Ỹt − Y aux
t |2]

≤ (4/3)e−2T (e2t − e−t)E[|θ∗ − θ̂|2]

≤ (4/3)e−2(T −t)(e−2nλE[σ2
τ m2

τ ]E[|θ0 − θ∗|2] + dCSGLD,1/β + λCSGLD,2).

(41)

Using 41, we have

W2(L(ỸtK+1), L(Y aux
tK+1

)) ≤
√
E[|ỸtK+1 − Y aux

tK+1
|2]

≤
√

4/3(e−2nλE[σ2
τ m2

τ ]E[|θ0 − θ∗|2] + dCSGLD,1/β + λCSGLD,2)1/2.
(42)

Upper bound on W2(L(Y aux
tK+1

), L(Ŷ EM
K+1)). Applying Itô’s formula and using the processes 9 and 11 with

the approximating function s given in 13, we have, for any t ∈ [0, T ],

d|Y aux
t − Ŷ EM

t |2 = 2⟨Y aux
t − Ŷ EM

t , Y aux
t − Ŷ EM

⌊t/γ⌋γ⟩dt

+ 4⟨Y aux
t − Ŷ EM

t , s(T − t, θ̂, Y aux
t ) − s(T − ⌊t/γ⌋γ, θ̂, Ŷ EM

⌊t/γ⌋γ)⟩dt

= −2⟨Y aux
t − Ŷ EM

t , Y aux
t − Ŷ EM

⌊t/γ⌋γ⟩dt

+ 4⟨Y aux
t − Ŷ EM

t , (mT −t − mT −⌊t/γ⌋γ)θ̂⟩dt.

(43)
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Integrating both sides and taking expectation in 43 yields

E
[
|Y aux

t − Ŷ EM
t |2

]
= −2

∫ t

0
E
[
|Y aux

s − Ŷ EM
s |2

]
ds − 2

∫ t

0
E
[〈

Y aux
s − Ŷ EM

s , Ŷ EM
s − Ŷ EM

⌊s/γ⌋γ

〉]
ds

+ 4
∫ t

0
E
[〈

Y aux
s − Ŷ EM

s , (mT −s − mT −⌊s/γ⌋γ)θ̂
〉]

ds.

(44)

Differentiating both sides in 44, using Young’s inequality and mT −t − mT −⌊t/γ⌋γ ≤ γmT −t, we have

d
dt

E[|Y aux
t − Ŷ EM

t |2] = −2E[|Y aux
t − Ŷ EM

t |2] − 2E
[〈

Y aux
t − Ŷ EM

t ,
√

2
∫ t

⌊t/γ⌋γ

dBs

〉]

− 2E
[〈

Y aux
t − Ŷ EM

t ,

∫ t

⌊t/γ⌋γ

(−Ŷ EM
⌊s/γ⌋γ + 2mT −⌊s/γ⌋γ θ̂)ds

〉]
+ 4E[⟨Y aux

t − Ŷ EM
t , (mT −t − mT −⌊t/γ⌋γ)θ̂⟩]

≤ −E[|Y aux
t − Ŷ EM

t |2] − 2E
[〈

Y aux
t − Ŷ EM

t ,
√

2
∫ t

⌊t/γ⌋γ

dBs

〉]
+ 2γ2E[(−Ŷ EM

⌊t/γ⌋γ + 2mT −⌊t/γ⌋γ θ̂)2] + 8γ2e−2(T −t)E[|θ̂|2]

≤ −E[|Y aux
t − Ŷ EM

t |2] − 2E
[〈

Y aux
t − Ŷ EM

t ,
√

2
∫ t

⌊t/γ⌋γ

dBs

〉]
+ 4γ2E[|Ŷ EM

⌊t/γ⌋γ |2] + 24γ2E[|θ̂|2].

(45)

We derive an upper bound for the second term on the right-hand side in 45. Using Cauchy-Schwarz inequality,
Itô formula applied to tBt and Young’s inequality, we have

− 2E
[〈

Y aux
t − Ŷ EM

t ,
√

2
∫ t

⌊t/γ⌋γ

dBs

〉]

= −2E
[〈

(Y aux
t − Y aux

⌊t/γ⌋γ) − (Ŷ EM
t − Ŷ EM

⌊t/γ⌋γ),
√

2
∫ t

⌊t/γ⌋γ

dBs

〉]

= −2E
[〈∫ t

⌊t/γ⌋γ

(−Y aux
s + 2mT −sθ̂)ds,

√
2
∫ t

⌊t/γ⌋γ

dBs

〉]

+ 2E
[〈∫ t

⌊t/γ⌋γ

(−Ŷ EM
⌊s/γ⌋γ + 2mT −⌊s/γ⌋γ θ̂)ds,

√
2
∫ t

⌊t/γ⌋γ

dBs

〉]

= 2E
[〈∫ t

⌊t/γ⌋γ

(Y aux
s − Ŷ EM

⌊s/γ⌋γ)ds,
√

2
∫ t

⌊t/γ⌋γ

dBs

〉]

= 2E
[〈∫ t

⌊t/γ⌋γ

(Y aux
s − Y aux

⌊s/γ⌋γ)ds,
√

2
∫ t

⌊t/γ⌋γ

dBs

〉]

= 2E
[〈∫ t

⌊t/γ⌋γ

∫ s

⌊s/γ⌋γ

(−Y aux
ν )dνds,

√
2
∫ t

⌊t/γ⌋γ

dBs

〉]

+ 2E
[〈∫ t

⌊t/γ⌋γ

√
2
∫ s

⌊s/γ⌋γ

dBνds,
√

2
∫ t

⌊t/γ⌋γ

dBs

〉]
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≤ 2
√

2

E

∣∣∣∣∣
∫ t

⌊t/γ⌋γ

∫ s

⌊s/γ⌋γ

(−Y aux
ν )dνds

∣∣∣∣∣
2
1/2E

∣∣∣∣∣
∫ t

⌊t/γ⌋γ

dBs

∣∣∣∣∣
2
1/2

+ 4E
[〈

t

∫ t

⌊t/γ⌋γ

dBs −
∫ t

⌊t/γ⌋γ

sdBs,

∫ t

⌊t/γ⌋γ

dBs

〉]

≤
√

2γ5/2
(

sup
t≥0

E
[
|Y aux

t |2
]

+ d

)
+ 2dγ2.

(46)

Substituting 46 into 45 yields

d
dt

E[|Y aux
t − Ŷ EM

t |2] ≤ −E[|Y aux
t − Ŷ EM

t |2] +
√

2γ5/2 sup
t≥0

E[|Y aux
t |2]

+
√

2dγ5/2 + 2dγ2 + 4γ2E[|Ŷ EM
⌊t/γ⌋γ |2] + 24γ2E[|θ̂|2].

Thus,
d
dt

(etE[|Y aux
t − Ŷ EM

t |2]) ≤ etγ2
(√

2 sup
t≥0

E[|Y aux
t |2] + 3d + 4E[|Ŷ EM

⌊t/γ⌋γ |2] + 24E[|θ̂|2]
)

. (47)

Integrating both sides in 47 and using Lemma 16, Lemma 17 and Corollary 15, yield

E[|Y aux
t − Ŷ EM

t |2]

≤
√

2γ2(2d + (8/3)(e−2nλE[σ2
τ m2

τ ]E[|θ0 − θ∗|2] + dCSGLD,1/β + λCSGLD,2 + |θ∗|2))

+ 3dγ2 + 4γ2(3d + 20(e−2nλE[σ2
τ m2

τ ]E[|θ0 − θ∗|2] + dCSGLD,1/β + λCSGLD,2 + |θ∗|2))

+ 48γ2(e−2nλE[σ2
τ m2

τ ]E[|θ0 − θ∗|2] + dCSGLD,1/β + λCSGLD,2 + |θ∗|2)

≤ 18dγ2 + 132γ2(e−2nλE[σ2
τ m2

τ ]E[|θ0 − θ∗|2] + dCSGLD,1/β + λCSGLD,2 + |θ∗|2).

(48)

By using 48, we have

W2(L(Y aux
tK+1

), L(Ŷ EM
K+1))

≤
√
E[|Y aux

tK+1
− Ŷ EM

tK+1
|2]

≤ γ(18d + 132(e−2nλE[σ2
τ m2

τ ]E[|θ0 − θ∗|2] + dCSGLD,1/β + λCSGLD,2 + |θ∗|2))1/2.

(49)

Final upper bound on W2(L(Ŷ EM
K+1), πD). Substituting 38, 42, 49 into 34 yields

W2(L(Ŷ EM
K+1), πD)

≤
√

2e−2T (
√
E [|X0|2] +

√
d)

+
√

4/3(e−2nλE[σ2
τ m2

τ ]E[|θ0 − θ∗|2] + dCSGLD,1/β + λCSGLD,2)1/2

+ γ(18d + 132(e−2nλE[σ2
τ m2

τ ]E[|θ0 − θ∗|2] + dCSGLD,1/β + λCSGLD,2 + |θ∗|2))1/2

≤
√

2e−2T (
√
E [|X0|2] +

√
d)

+ (
√

4/3 + 2
√

33)(e−2nλE[σ2
τ m2

τ ]E[|θ0 − θ∗|2] + dCSGLD,1/β + λCSGLD,2)1/2

+ γ(18d + 132|θ∗|2)1/2.

(50)

The bound for W2(L(Ŷ EM
K+1), πD) in 50 can be made arbitrarily small by appropriately choosing parameters

including T, β, λ, n and γ. More precisely, for any δ > 0, we first choose T > Tδ with Tδ given explicitly in
Table 1 such that √

2e−2T (
√
E [|X0|2] +

√
d) < δ/4. (51)
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Next, we choose β ≥ βδ and 0 < λ ≤ λδ with βδ and λδ given explicitly in Table 1, and, in the case where
λ = λδ, we choose n ≥ nδ with nδ given explicitly in Table 1 such that

(
√

4/3 + 2
√

33)(e−2nλE[σ2
τ m2

τ ]E[|θ0 − θ∗|2] + dCSGLD,1/β + λCSGLD,2)1/2

≤ (
√

4/3 + 2
√

33)
√

d/(βE[σ2
τ m2

τ ])

+ (
√

4/3 + 2
√

33)(4λE[σ4
τ m2

τ (σ−1
τ |Z| + mτ |X0| + στ |Z| + mτ |θ∗|)2]/(E[σ2

τ m2
τ ]))1/2

+ (
√

4/3 + 2
√

33)e−nλE[σ2
τ m2

τ ]
√
E[|θ0 − θ∗|2]

≤ δ/12 + δ/12 + δ/12 = δ/4.

(52)

Finally, we choose 0 < γ < γδ with γδ given explicitly in Table 1 such that

γ(18d + 132|θ∗|2)1/2 < δ/4. (53)

Using 51, 52 and 53 in 50, we obtain W2(L(Ŷ EM
K+1), πD) < δ.

C.3 Proof of the Preliminary Results

We provide the proofs of the results of Appendix C.1.

Proof of Lemma 14. By 15, we have for any n ∈ N0,

|θλ
n+1 − θ∗|2 =

∣∣∣θλ
n − θ∗ − λH(θλ

n, Xn+1) +
√

2λ/β ξn+1

∣∣∣2
=
∣∣θλ

n − θ∗∣∣2 + 2
〈

θλ
n − θ∗, −λH(θλ

n, Xn+1) +
√

2λ/β ξn+1

〉
+
∣∣∣−λH(θλ

n, Xn+1) +
√

2λ/βξn+1

∣∣∣2
=
∣∣θλ

n − θ∗∣∣2 − 2λ
〈
θλ

n − θ∗, H(θλ
n, Xn+1) − H(θ∗, Xn+1)

〉
− 2λ

〈
θλ

n − θ∗, H(θ∗, Xn+1)
〉

+ 2
√

2λ/β
〈
θλ

n − θ∗, ξn+1
〉

+ λ2 ∣∣H(θλ
n, Xn+1)

∣∣2
− 2λ

√
2λ/β

〈
H(θλ

n, Xn+1), ξn+1
〉

+ (2λ/β) |ξn+1|2 .

(54)

Taking conditional expectation on both sides in 54 yields

E
[
|θλ

n+1 − θ∗|2 | θλ
n

]
=
∣∣θλ

n − θ∗∣∣2 − 2λE
[〈

θλ
n − θ∗, H(θλ

n, Xn+1) − H(θ∗, Xn+1)
〉

| θλ
n

]
+ 2λ2E

[∣∣H(θλ
n, Xn+1) − H(θ∗, Xn+1)

∣∣2 | θλ
n

]
+ 2λ2E

[
|H(θ∗, Xn+1)|2 | θλ

n

]
+ 2λd/β.

Recall that 0 < λ ≤ min{E[σ2
τ m2

τ ]/(4E[σ4
τ m4

τ ]), 1/(2E[σ2
τ m2

τ ])}. Using Proposition 13 and the stochastic
gradient 14, we have

E
[
|θλ

n+1 − θ∗|2 | θλ
n

]
≤
(
1 − 2λE

[
σ2

τ m2
τ

])
|θλ

n − θ∗|2 + 2λd/β

− 2λE
[
σ2

τ m2
τ

]
|θλ

n − θ∗|2 + 8λ2E
[
σ4

τ m4
τ

] ∣∣θλ
n − θ∗∣∣2

+ 8λ2E
[
σ4

τ m2
τ

(
σ−1

τ |Z| + mτ |X0| + στ |Z| + mτ |θ∗|
)2
]

≤
(
1 − 2λE

[
σ2

τ m2
τ

])
|θλ

n − θ∗|2 + 2λd/β

+ 8λ2E
[
σ4

τ m2
τ

(
σ−1

τ |Z| + mτ |X0| + στ |Z| + mτ |θ∗|
)2
]

.

This implies that

E
[
|θλ

n+1 − θ∗|2
]

≤
(
1 − 2λE

[
σ2

τ m2
τ

])n+1 E
[
|θ0 − θ∗|2

]
+ dCSGLD,1/β + λCSGLD,2.
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Proof of Lemma 16. Applying Itô’s formula and using the process 9 with s given in 13, we have, for any
t ∈ [0, T ],

d|Y aux
t |2 = −2|Y aux

t |2dt + 2⟨Y aux
t , 2mT −tθ̂⟩dt + 2⟨Y aux

t ,
√

2dBt⟩ + 2ddt.

Integrating both sides and taking expectation, we have

E
[
|Y aux

t |2
]

= −2
∫ t

0
E
[
|Y aux

s |2
]

ds + 2
∫ t

0
E[⟨Y aux

s , 2mT −sθ̂⟩]ds + E
[
|Y aux

0 |2
]

+ 2dt.

Then, differentiating both sides, we have

d
dt

E
[
|Y aux

t |2
]

= −2E
[
|Y aux

t |2
]

+ 2E[⟨Y aux
t , 2mT −tθ̂⟩] + 2d

≤ −E
[
|Y aux

t |2
]

+ 4m2
T −tE[|θ̂|2] + 2d,

which, by rearranging the terms, yields

d
dt

(etE
[
|Y aux

t |2
]
) ≤ 4e−2T e3tE[|θ̂|2] + 2det.

Integrating both side and using Corollary 15, we obtain

E
[
|Y aux

t |2
]

≤ e−t(E
[
|Y aux

0 |2
]

+ (4/3)e−2T (e3t − 1)E[|θ̂|2] + 2d(et − 1))
≤ d(2 − e−t) + (4/3)e−2T (e2t − e−t)E[|θ̂|2]

≤ 2d + e−2(T −t)(8/3)(e−2nλE[σ2
τ m2

τ ]E[|θ0 − θ∗|2] + dCSGLD,1/β + λCSGLD,2 + |θ∗|2).

Proof of Lemma 17. Using the process 10 with the approximating function s given in 13, we have

|Y EM
k+1|2 = |Y EM

k + γ(−Y EM
k + 2mT −kθ̂)|2 + 2γ|Z̄k+1|2

+ 2⟨Y EM
k + γ(−Y EM

k + 2mT −kθ̂),
√

2γZ̄k+1⟩.
(55)

Taking conditional expectation on both sides in 55, using the independence of Y EM
k and Z̄k+1, Young’s

inequality and 0 < γ ≤ 1/2, we obtain

E
[
|Y EM

k+1|2 | Y EM
k

]
= |Y EM

k |2 + 2⟨Y EM
k , γ(−Y EM

k + 2mT −tk
θ̂)⟩

+ γ2|Y EM
k |2 + 4γ2m2

T −k|θ̂|2 − 2γ2⟨Y EM
k , 2mT −tk

θ̂⟩ + 2γd

= (1 − 2γ)|Y EM
k |2 + 4γ2m2

T −k|θ̂|2 + 2γd

+ γ2|Y EM
k |2 + 2γ(1 − γ)⟨Y EM

k , 2mT −kθ̂⟩

≤ (1 − γ)|Y EM
k |2 + 4γ(γ + 2)m2

T −k|θ̂|2 + 2γd

− γ|Y EM
k |2 + γ2|Y EM

k |2 + (γ/2)|Y EM
k |2

≤ (1 − γ)|Y EM
k |2 + 4γ(γ + 2)|θ̂|2 + 2γd.

Thus,
E
[
|Y EM

k+1|2
]

≤ (1 − γ)k+1d + 10|θ̂|2 + 2d. (56)

Using Corollary 15 in 56 yields

E
[
|Y EM

k |2
]

≤ (1 − γ)kd + 2d + 20(e−2nλE[σ2
τ m2

τ ]E
[
|θ0 − θ∗|2

]
+ dCSGLD,1/β + λCSGLD,2 + |θ∗|2).
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Proof of Lemma 18. Using the process 11 with the approximating function s given in 13, Lemma 17, Corol-
lary 15 and γ ∈ (0, 1/2], we have, for any t ∈ [0, T ],

E
[
|Ŷ EM

t − Ŷ EM
⌊t/γ⌋γ |2

]
= E

∣∣∣∣∣
∫ t

⌊t/γ⌋γ

(−Ŷ EM
⌊s/γ⌋γ + 2mT −⌊s/γ⌋γ θ̂)ds +

√
2
∫ t

⌊t/γ⌋γ

dBs

∣∣∣∣∣
2


≤ γ2E
[∣∣∣−Ŷ EM

⌊t/γ⌋γ + 2mT −⌊t/γ⌋γ θ̂
∣∣∣2]+ 2dγ

≤ 2γ2E
[
|Ŷ EM

⌊t/γ⌋γ |2
]

+ 8γ2E
[
|θ̂|2
]

+ 2dγ

≤ 6γ2d + 40γ2(e−2nλE[σ2
τ m2

τ ]E
[
|θ0 − θ∗|2

]
+ dCSGLD,1/β + λCSGLD,2 + |θ∗|2)

+ 16γ2(e−2nλE[σ2
τ m2

τ ]E
[
|θ0 − θ∗|2

]
+ dCSGLD,1/β + λCSGLD,2 + |θ∗|2) + 2dγ

≤ γCEMose,

where CEMose = 8d + 56(e−2nλE[σ2
τ m2

τ ]E
[
|θ0 − θ∗|2

]
+ dCSGLD,1/β + λCSGLD,2 + |θ∗|2).

Proof of Lemma 19. Applying Itô’s formula to the process 11 with the approximating function s given in
13, we have, for any t ∈ [0, T ],

d|Ŷ EM
t |2 = 2⟨Ŷ EM

t , −Ŷ EM
⌊t/γ⌋γ + 2mT −⌊t/γ⌋γ θ̂⟩dt + 2⟨Ŷ EM

t ,
√

2dBt⟩ + 2ddt

= −2|Ŷ EM
t |2dt + 2⟨Ŷ EM

t , Ŷ EM
t − Ŷ EM

⌊t/γ⌋γ⟩dt + 2⟨Ŷ EM
t , 2mT −⌊t/γ⌋γ θ̂⟩dt

+ 2⟨Ŷ EM
t ,

√
2dBt⟩ + 2ddt.

Integrating both sides and taking expectation, we have

E
[
|Ŷ EM

t |2
]

= −2
∫ t

0
E
[
|Ŷ EM

s |2
]

ds + 2
∫ t

0
E
[
⟨Ŷ EM

s , Ŷ EM
s − Ŷ EM

⌊s/γ⌋γ⟩
]

ds

+ 2
∫ t

0
E
[
⟨Ŷ EM

s , 2mT −⌊s/γ⌋γ θ̂⟩
]

ds + E
[
|Ŷ EM

0 |2
]

+ 2dt.

Then, differentiating both sides and using Young’s inequality, yield

d
dt

E
[
|Ŷ EM

t |2
]

= −2E
[
|Ŷ EM

t |2
]

+ 2E
[
⟨Ŷ EM

t , Ŷ EM
t − Ŷ EM

⌊t/γ⌋γ⟩
]

+ 2E
[
⟨Ŷ EM

t , 2mT −⌊t/γ⌋γ θ̂⟩
]

+ 2d

≤ −E
[
|Ŷ EM

t |2
]

+ 2E
[
|Ŷ EM

t − Ŷ EM
⌊t/γ⌋γ |2

]
+ 8E[|θ̂|2] + 2d.

Using Lemma 18, we have

d
dt

(
etE

[
|Ŷ EM

t |2
])

≤ et(2γCEMose + 8E[|θ̂|2] + 2d).

Integrating both sides, using γ ∈ (0, 1/2] and Corollary 15 yields

E
[
|Ŷ EM

t |2
]

≤ e−td + (1 − e−t)(2γCEMose + 8E[|θ̂|2] + 2d)

≤ 18d + 128(e−2nλE[σ2
τ m2

τ ]E
[
|θ0 − θ∗|2

]
+ dCSGLD,1/β + λCSGLD,2 + |θ∗|2).
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D Proofs of the Results in the General Case

In this section, we provide the proof of Theorem 10. We start by introducing the results which will be used
in the proof of Theorem 10.

D.1 Preliminary Estimates for the General Case

Throughout this section, we fix ϵ ∈ (0, 1). The following auxiliary results will be used in the proof of Theorem
10 and their proofs are postponed to Appendix D.3.

We provide an upper bound for the moments of (Ŷ EM
t )t∈[0,T ] defined in 11.

Lemma 20. Let Assumptions 1 and 3.b hold. For any p ∈ [2, 4] and t ∈ [0, T − ϵ],

sup
0≤s≤t

E
[
|Ŷ EM

s |p
]

≤ CEM,p(t),

where

CEM,p(t) := et(3p−1− 2
p +22p−1Kp

Total(1+T αp))

×
(
E
[
|Ŷ EM

0 |p
]

+ 23p−2Kp
Totalt(1 + E[|θ̂|p])(1 + T αp) + 2

p
(pM + p(p − 2))

p
2 t

)
.

The following result provides an estimate for the one step error associated with (Ŷ EM
t )t∈[0,T ] defined in 11.

Lemma 21. Let Assumptions 1 and 3.b hold. For any p ∈ [2, 4] and t ∈ [0, T − ϵ],

E
[
|Ŷ EM

t − Ŷ EM
⌊t/γ⌋γ |p

]
≤ γ

p
2 CEMose,p,

where

CEMose,p := 2p−1(CEM,p(T ) + Kp
Total(1 + T αp)(23p−2CEM,p(T ) + 24p−3(1 + E[|θ̂|p])))

+ (Mp(p − 1))
p
2 .

The following result is a modification of Kumar & Sabanis (2019, Lemma 4.1).
Lemma 22. Let Assumption 3.b hold and let b : [0, T ] × Rd × RM → RM such that

b(t, θ, x) := x + 2s(t, θ, x). (57)

Then, for any x, x̄ ∈ RM , t ∈ [0, T ], θ ∈ Rd, α ∈ [ 1
2 , 1], and k = 1, . . . M ,∣∣∣∣∣b(k)(t, θ, x) − b(k)(t, θ, x̄) −

M∑
i=1

∂b(k)(t, θ, x̄)
∂yi

(xi − x̄i)

∣∣∣∣∣ ≤ K4(1 + 2|t|α)|x − x̄|2.

Lemma 23. Let Assumption 3.b hold and let b be as in 57. Then, one obtains that, for any (t, θ, x) ∈
[0, T ] × Rd × RM and k = 1, . . . M ,

|∇xb(k)(t, θ, x)| ≤ 1 + 2K3(1 + 2|t|α). (58)

D.2 Proof of the Main Result for the General Case

Proof of Theorem 10. We proceed as in the proof of Theorem 1 using the splitting

W2(L(Y EM
K ), πD) ≤ W2(πD, L(YtK

)) + W2(L(YtK
), L(ỸtK

))

+ W2(L(ỸtK
), L(Y aux

tK
)) + W2(L(Y aux

tK
), L(Y EM

K )),
(59)

where the first term on the right-hand side in 59 corresponds to the error made by the early stopping and
the remaining terms have the same interpretation of the corresponding ones in 34.
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Upper bound on W2(πD, L(YtK
)). For any t ∈ [0, T ], note that

1 − mt ≤ σt, σ2
t = 1 − e−2t ≤ 2t. (60)

Recall that tK = T − ϵ. Using the representation of the OU process 2 and the inequalities 60, we have

W2(πD, L(YtK
)) = W2(πD, L(XT −tK

))

≤
√

E [|X0 − XT −tK
|2]

≤
√

2
[
(1 − mT −tK

)
√
E[|X0|2] + σT −tK

√
M
]

≤
√

2σT −tK
(
√

E[|X0|2] +
√

M)

≤ 2
√

ϵ(
√
E[|X0|2] +

√
M).

(61)

Upper bound on W2(L(YtK
), L(ỸtK

)). Using Itô’s formula, we have, for any t ∈ [0, T − ϵ],

d|Yt − Ỹt|2 = 2⟨Yt − Ỹt, Yt + 2∇ log pT −t(Yt) − Ỹt − 2∇ log pT −t(Ỹt)⟩ dt

= 2|Yt − Ỹt|2 dt + 4⟨Yt − Ỹt, ∇ log pT −t(Yt) − ∇ log pT −t(Ỹt)⟩ dt.
(62)

By integrating, taking expectations on both sides in 62, and using Remark 4 with the lower bound L̂MO in
the estimate 19, we have

E[|YtK
− ỸtK

|2] ≤ E[|Y0 − Ỹ0|2] +
∫ tK

0
2(1 − 2L̂MO) E

[
|Yt − Ỹt|2

]
dt

≤ E[|Y0 − Ỹ0|2]e2(1−2L̂MO)tK .

(63)

Using 63, the representation 2 with ZT
d= Ỹ0 and 60, we have

E[|YtK
− ỸtK

|2] ≤ E[|Y0 − Ỹ0|2]e2(1−2L̂MO)tK

= E[|mT X0 + (σT − 1)Ỹ0|2] e2(1−2L̂MO)tK

≤ 2
(
E[|X0|2] + M

)
e2(1−2L̂MO)tK−2T .

(64)

Using 64, we have

W2(L(YtK
), L(ỸtK

)) ≤
√
E[|YtK

− ỸtK
|2]

≤
√

2(
√
E[|X0|2] +

√
M)e−2L̂MO(T −ϵ)−ϵ.

(65)

Upper bound on W2(L(ỸtK
), L(Y aux

tK
)). Using Itô’s formula, we have, for t ∈ [0, T − ϵ],

d|Ỹt − Y aux
t |2 = 2⟨Ỹt − Y aux

t , Ỹt + 2 ∇ log pT −t(Ỹt) − Y aux
t − 2 s(T − t, θ̂, Y aux

t )⟩ dt

= 2|Ỹt − Y aux
t |2 dt + 4 ⟨Ỹt − Y aux

t , ∇ log pT −t(Ỹt) − ∇ log pT −t(Y aux
t )⟩ dt

+ 4 ⟨Ỹt − Y aux
t , ∇ log pT −t(Y aux

t ) − s(T − t, θ̂, Y aux
t )⟩ dt.

(66)
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By integrating and taking the expectation on both sides in 66, and using the Remark 4 with the lower bound
L̂MO in the estimate 19, Young’s inequality with ζ ∈ (0, 1) and Assumption 4, we have

E[|ỸT −ϵ − Y aux
T −ϵ|2] = 2

∫ T −ϵ

0
E[|Ỹs − Y aux

s |2] ds

+ 4
∫ T −ϵ

0
E[⟨Ỹs − Y aux

s , ∇ log pT −s(Ỹs) − ∇ log pT −s(Y aux
s )⟩] ds

+ 4
∫ T −ϵ

0
E[⟨Ỹs − Y aux

s , ∇ log pT −s(Y aux
s ) − s(T − s, θ̂, Y aux

s )⟩] ds

≤
∫ T −ϵ

0
2(1 + ζ − 2L̂MO)E[|Ỹs − Y aux

s |2] ds

+ 2ζ−1
∫ T −ϵ

0
E[|∇ log pT −s(Y aux

s ) − s(T − s, θ̂, Y aux
s )|2] ds

≤
∫ T −ϵ

0
2(1 + ζ − 2L̂MO) E[|Ỹs − Y aux

s |2] ds + 2ζ−1εSN

≤ 2e2(1+ζ−2L̂MO)(T −ϵ)ζ−1εSN.

(67)

Using 67 and tK = T − ϵ, we have

W2(L(ỸtK
), L(Y aux

tK
)) ≤

√
E[|ỸtK

− Y aux
tK

|2]

≤
√

2ζ−1e(1+ζ−2L̂MO)(T −ϵ)√εSN.

(68)

Upper bound on W2(L(Y aux
tK

), L(Y EM
K )). The following bound is derived by modifying Kumar & Sabanis

(2019, Lemma 4.7). For the sake of presentation, let b : [0, T ] × Rd × RM → RM such that

b(t, θ, x) = x + 2s(t, θ, x). (69)

Consequently, (Ŷ EM
t )t∈[0,T ] can be expressed using 69 as

dŶ EM
t = b(T − ⌊t/γ⌋γ, θ̂, Ŷ EM

⌊t/γ⌋γ) dt +
√

2 dB̄t, Ŷ EM
0 ∼ π∞ = N (0, IM ). (70)

Using Itô’s formula, we have, for t ∈ [0, T − ϵ],

d|Y aux
t − Ŷ EM

t |2

= 2⟨Y aux
t − Ŷ EM

t , Y aux
t + 2 s(T − t, θ̂, Y aux

t ) − Ŷ EM
⌊t/γ⌋γ − 2 s(T − ⌊t/γ⌋γ, θ̂, Ŷ EM

⌊t/γ⌋γ)⟩ dt

= 2|Y aux
t − Ŷ EM

t |2 dt + 4⟨Y aux
t − Ŷ EM

t , s(T − t, θ̂, Y aux
t ) − s(T − t, θ̂, Ŷ EM

t )⟩ dt

+ 4⟨Y aux
t − Ŷ EM

t , s(T − t, θ̂, Ŷ EM
⌊t/γ⌋γ) − s(T − ⌊t/γ⌋γ, θ̂, Ŷ EM

⌊t/γ⌋γ)⟩ dt

+ 2⟨Y aux
t − Ŷ EM

t , b(T − t, θ̂, Ŷ EM
t ) − b(T − t, θ̂, Ŷ EM

⌊t/γ⌋γ))⟩ dt.

(71)
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Integrating and taking the expectation on both sides in 71, using Cauchy–Schwarz inequality, Young’s
inequality with ζ ∈ (0, 1), Assumption 3.b and Remark 3, yield

E
[
|Y aux

t − Ŷ EM
t |2

]
= 2

∫ t

0
E
[
|Y aux

s − Ŷ EM
s |2

]
ds + 4

∫ t

0
E
[
⟨Y aux

s − Ŷ EM
s , s(T − s, θ̂, Y aux

s ) − s(T − s, θ̂, Ŷ EM
s )⟩

]
ds

+ 4
∫ t

0
E
[
⟨Y aux

s − Ŷ EM
s , s(T − s, θ̂, Ŷ EM

⌊s/γ⌋γ) − s(T − ⌊s/γ⌋γ, θ̂, Ŷ EM
⌊s/γ⌋γ)⟩

]
ds

+ 2
∫ t

0
E
[
⟨Y aux

s − Ŷ EM
s , b(T − s, θ̂, Ŷ EM

s ) − b(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)⟩

]
ds

≤
∫ t

0
2(1 + ζ + 2K3(1 + 2|T − s|α)) E

[
|Y aux

s − Ŷ EM
s |2

]
ds

+ 2ζ−1
∫ t

0
E
[
|s(T − s, θ̂, Ŷ EM

⌊s/γ⌋γ) − s(T − ⌊s/γ⌋γ, θ̂, Ŷ EM
⌊s/γ⌋γ)|2

]
ds

+ 2
∫ t

0
E
[
⟨Y aux

s − Ŷ EM
s , b(T − s, θ̂, Ŷ EM

s ) − b(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ))⟩

]
ds

≤
∫ t

0
2(1 + ζ + 2K3(1 + 2T α)) E

[
|Y aux

s − Ŷ EM
s |2

]
ds

+ 2ζ−1K2
1 E

[
(1 + 2|θ̂|)2

] ∫ t

0
|s − ⌊s/γ⌋γ|2α ds

+ 2
∫ t

0
E
[
⟨Y aux

s − Ŷ EM
s , b(T − s, θ̂, Ŷ EM

s ) − b(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ))⟩

]
ds

≤
∫ t

0
2(1 + ζ + 2K3(1 + 2T α)) E

[
|Y aux

s − Ŷ EM
s |2

]
ds + 4ζ−1K2

1(1 + 8(ε̃AL + |θ∗|2))γ2αt

+ 2
∫ t

0
E
[
⟨Y aux

s − Ŷ EM
s , b(T − s, θ̂, Ŷ EM

s ) − b(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)⟩

]
ds.

(72)

We proceed estimating the third term on the right-hand side of 72. Using 70, Young’s inequality with
ζ ∈ (0, 1), Lemma 22 and Lemma 21, yields, for any t ∈ [0, T − ϵ]

∫ t

0
E
[
⟨Y aux

s − Ŷ EM
s , b(T − s, θ̂, Ŷ EM

s ) − b(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)⟩

]
ds

=
M∑

k=1
E

[∫ t

0

(
Y aux,(k)

s − Ŷ EM,(k)
s

)(
b(k)(T − s, θ̂, Ŷ EM

s ) − b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

−
M∑

j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj
(Ŷ EM,(j)

s − Ŷ
EM,(j)

⌊s/γ⌋γ )
)

ds

]

+
M∑

k=1
E

∫ t

0

(
Y aux,(k)

s − Ŷ EM,(k)
s

) M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj
(Ŷ EM,(j)

s − Ŷ
EM,(j)

⌊s/γ⌋γ )

 ds


≤ ζ

2

∫ t

0
E
[
|Y aux

s − Ŷ EM
s |2

]
ds

+ 1
2ζ

M∑
k=1

E

[∫ t

0
|b(k)(T − s, θ̂, Ŷ EM

s ) − b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)
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−
M∑

j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

(
Ŷ EM,(j)

s − Ŷ
EM,(j)

⌊s/γ⌋γ

)
|2 ds

]

+
M∑

k=1
E

[∫ t

0

(
Y aux,(k)

s − Ŷ EM,(k)
s

)

×

 M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∫ s

⌊s/γ⌋γ

b(j)(T − ⌊r/γ⌋γ, θ̂, Ŷ EM
⌊r/γ⌋γ) dr

 ds

]

+
M∑

k=1
E

∫ t

0

(
Y aux,(k)

s − Ŷ EM,(k)
s

) M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∫ s

⌊s/γ⌋γ

√
2 dB̄(j)

r

 ds


≤ ζ

2

∫ t

0
E
[
|Y aux

s − Ŷ EM
s |2

]
ds + K2

4
2ζ

∫ t

0
(1 + 2|T − s|α)2 E

[
|Ŷ EM

s − Ŷ EM
⌊s/γ⌋γ |4

]
ds

+
M∑

k=1
E

[∫ t

0

(
Y aux,(k)

s − Ŷ EM,(k)
s

)

×

 M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∫ s

⌊s/γ⌋γ

b(j)(T − ⌊r/γ⌋γ, θ̂, Ŷ EM
⌊r/γ⌋γ) dr

 ds

]

+
M∑

k=1
E

∫ t

0

(
Y aux,(k)

s − Ŷ EM,(k)
s

) M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∫ s

⌊s/γ⌋γ

√
2 dB̄(j)

r

 ds


≤ ζ

2

∫ t

0
E
[
|Y aux

s − Ŷ EM
s |2

]
ds + γ2 K2

4
ζ

t(1 + 4T 2α)CEMose,4

+
M∑

k=1
E

[∫ t

0

(
Y aux,(k)

s − Ŷ EM,(k)
s

)

×

 M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∫ s

⌊s/γ⌋γ

b(j)(T − ⌊r/γ⌋γ, θ̂, Ŷ EM
⌊r/γ⌋γ) dr

 ds

]

+
M∑

k=1
E

∫ t

0

(
Y aux,(k)

s − Ŷ EM,(k)
s

) M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∫ s

⌊s/γ⌋γ

√
2 dB̄(j)

r

 ds

 .

(73)

We proceed estimating the third and fourth term on the right-hand side of 73, separately.

The third term is estimated using Young’s inequality with ζ ∈ (0, 1), Lemma 23, Remark 5, Remark 3 and
Lemma 20, and for any t ∈ [0, T − ϵ], we obtain that

M∑
k=1

E

[∫ t

0

(
Y aux,(k)

s − Ŷ EM,(k)
s

)

×

 M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∫ s

⌊s/γ⌋γ

b(j)(T − ⌊r/γ⌋γ, θ̂, Ŷ EM
⌊r/γ⌋γ)dr

 ds

]

≤ ζ

2

∫ t

0
E
[
|Y aux

s − Ŷ EM
s |2

]
ds

+ 2γ

ζ
M(1 + 8K2

3(1 + 4T 2α)) E

∫ t

0

∫ s

⌊s/γ⌋γ

M∑
j=1

|b(j)(T − ⌊r/γ⌋γ, θ̂, Ŷ EM
⌊r/γ⌋γ)|2dr ds


30
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≤ ζ

2

∫ t

0
E
[
|Y aux

s − Ŷ EM
s |2

]
ds

+ 4γ

ζ
M(1 + 8K2

3(1 + 4T 2α))

×
∫ t

0

∫ s

⌊s/γ⌋γ

[
(1 + 16K2

Total(1 + T 2α))E[|Ŷ EM
⌊r/γ⌋γ |2] + 32K2

Total(1 + T 2α)(1 + E[|θ̂|2])
]

dr ds

≤ ζ

2

∫ t

0
E
[
|Y aux

s − Ŷ EM
s |2

]
ds

+ γ2

ζ
4M(1 + 8K2

3(1 + 4T 2α))

× t

[
(1 + 16K2

Total(1 + T 2α)) sup
0≤s≤t

E[|Ŷ EM
s |2] + 32K2

Total(1 + T 2α)(1 + 2ε̃AL + 2|θ∗|2)
]

≤ ζ

2

∫ t

0
E
[
|Y aux

s − Ŷ EM
s |2

]
ds

+ t
γ2

ζ
4M(1 + 8K2

3(1 + 4T 2α))

×
[
(1 + 16K2

Total(1 + T 2α))CEM,2(T ) + 32K2
Total(1 + T 2α)(1 + 2ε̃AL + 2|θ∗|2)

]
.

(74)

We proceed with the estimate of the fourth term on the right-hand side of 73. For k = 1, . . . , M , we note

Y aux,(k)
s − Ŷ EM,(k)

s = Y
aux,(k)

⌊s/γ⌋γ − Ŷ
EM,(k)

⌊s/γ⌋γ

+
∫ s

⌊s/γ⌋γ

(b(k)(T − r, θ̂, Y aux
r ) − b(k)(T − r, θ̂, Ŷ EM

r ) dr

+
∫ s

⌊s/γ⌋γ

(b(k)(T − r, θ̂, Ŷ EM
r ) − b(k)(T − r, θ̂, Ŷ EM

⌊r/γ⌋γ)) dr

+
∫ s

⌊s/γ⌋γ

2(s(k)(T − r, θ̂, Ŷ EM
⌊r/γ⌋γ) − s(k)(T − ⌊r/γ⌋γ, θ̂, Ŷ EM

⌊r/γ⌋γ)) dr.

(75)

By using 75, Cauchy–Schwarz inequality, Young’s inequality, Assumption 3.b and Lemma 23, we have

M∑
k=1

E

∫ t

0

(
Y aux,(k)

s − Ŷ EM,(k)
s

) M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∫ s

⌊s/γ⌋γ

√
2 dB̄(j)

r

 ds


=

M∑
k=1

E

∫ t

0

(
Y

aux,(k)
⌊s/γ⌋γ − Ŷ

EM,(k)
⌊s/γ⌋γ

) M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∫ s

⌊s/γ⌋γ

√
2 dB̄(j)

r

 ds


+

M∑
k=1

E

[∫ t

0

(∫ s

⌊s/γ⌋γ

(b(k)(T − r, θ̂, Y aux
r ) − b(k)(T − r, θ̂, Ŷ EM

r )) dr

)

×

 M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∫ s

⌊s/γ⌋γ

√
2 dB̄(j)

r

 ds

]
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+
M∑

k=1
E

[∫ t

0

(∫ s

⌊s/γ⌋γ

(b(k)(T − r, θ̂, Ŷ EM
r ) − b(k)(T − r, θ̂, Ŷ EM

⌊r/γ⌋γ)) dr

)

×

 M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∫ s

⌊s/γ⌋γ

√
2 dB̄(j)

r

 ds

]

+
M∑

k=1
E

[∫ t

0

(∫ s

⌊s/γ⌋γ

2(s(k)(T − r, θ̂, Ŷ EM
⌊r/γ⌋γ) − s(k)(T − ⌊r/γ⌋γ, θ̂, Ŷ EM

⌊r/γ⌋γ)) dr

)

×

 M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∫ s

⌊s/γ⌋γ

√
2 dB̄(j)

r

 ds

]

≤
M∑

k=1
E

[∫ t

0

∫ s

⌊s/γ⌋γ

γ−1/2|b(k)(T − r, θ̂, Y aux
r ) − b(k)(T − r, θ̂, Ŷ EM

r )|dr

× γ1/2

∣∣∣∣∣∣
∫ s

⌊s/γ⌋γ

M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

√
2 dB̄(j)

r

∣∣∣∣∣∣ ds

]

+
M∑

k=1
E

[∫ t

0

∫ s

⌊s/γ⌋γ

|b(k)(T − r, θ̂, Ŷ EM
r ) − b(k)(T − r, θ̂, Ŷ EM

⌊r/γ⌋γ)|dr

×

∣∣∣∣∣∣
∫ s

⌊s/γ⌋γ

M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

√
2 dB̄(j)

r

∣∣∣∣∣∣ ds

]

+
M∑

k=1
E

[∫ t

0

∫ s

⌊s/γ⌋γ

2|s(k)(T − r, θ̂, Ŷ EM
⌊r/γ⌋γ) − s(k)(T − ⌊r/γ⌋γ, θ̂, Ŷ EM

⌊r/γ⌋γ)|dr

×

∣∣∣∣∣∣
∫ s

⌊s/γ⌋γ

M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

√
2 dB̄(j)

r

∣∣∣∣∣∣ ds

]

≤ γ−1

2

M∑
k=1

E

[∫ t

0

∫ s

⌊s/γ⌋γ

|b(k)(T − r, θ̂, Y aux
r ) − b(k)(T − r, θ̂, Ŷ EM

r )|2dr ds

]

+ γ

2

M∑
k=1

∫ t

0
E


∣∣∣∣∣∣
∫ s

⌊s/γ⌋γ

M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

√
2 dB̄(j)

r

∣∣∣∣∣∣
2

ds


+

M∑
k=1

∫ t

0

E(∫ s

⌊s/γ⌋γ

|b(k)(T − r, θ̂, Ŷ EM
r ) − b(k)(T − r, θ̂, Ŷ EM

⌊r/γ⌋γ)|dr

)2
1/2

×

E
∣∣∣∣∣∣
∫ s

⌊s/γ⌋γ

M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

√
2 dB̄(j)

r

∣∣∣∣∣∣
2


1/2

ds

+
M∑

k=1

∫ t

0

E(∫ s

⌊s/γ⌋γ

2|s(k)(T − r, θ̂, Ŷ EM
⌊r/γ⌋γ) − s(k)(T − ⌊r/γ⌋γ, θ̂, Ŷ EM

⌊r/γ⌋γ)| dr

)2
1/2

×

E
∣∣∣∣∣∣
∫ s

⌊s/γ⌋γ

M∑
j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

√
2 dB̄(j)

r

∣∣∣∣∣∣
2


1/2

ds
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≤ E

[∫ t

0

∫ s

⌊s/γ⌋γ

γ−1(1 + 8K2
3(1 + 4T 2α))|Y aux

r − Ŷ EM
r |2dr ds

]

+ 2γ2
M∑

k=1
E

∫ t

0

M∑
j=1

∣∣∣∣∣∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∣∣∣∣∣
2

ds


+ γ1/22(1 + 8K2

3(1 + 4T 2α))1/2

×
M∑

k=1

∫ t

0

[∫ s

⌊s/γ⌋γ

E[|Ŷ EM
r − Ŷ EM

⌊r/γ⌋γ |2] dr

]1/2
E∫ s

⌊s/γ⌋γ

∣∣∣∣∣∣
M∑

j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∣∣∣∣∣∣
2

dr


1/2

ds

+ γ1+α4K1(1 + 8ε̃AL + 8|θ∗|2)1/2
M∑

k=1

∫ t

0

E∫ s

⌊s/γ⌋γ

∣∣∣∣∣∣
M∑

j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∣∣∣∣∣∣
2

dr


1/2

ds

≤ (1 + 8K2
3(1 + 4T 2α))

∫ t

0
sup

0≤r≤s
E
[
|Y aux

r − Ŷ EM
r |2

]
ds + 4γ2tM(1 + 8K2

3(1 + 4T 2α))

+ γ3/22(1 + 8K2
3(1 + 4T 2α))1/2C

1/2
EMose,2

M∑
k=1

∫ t

0

E∫ s

⌊s/γ⌋γ

∣∣∣∣∣∣
M∑

j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∣∣∣∣∣∣
2

dr


1/2

ds

+ γ1+α4K1(1 + 8ε̃AL + 8|θ∗|2)1/2
M∑

k=1

∫ t

0

E∫ s

⌊s/γ⌋γ

∣∣∣∣∣∣
M∑

j=1

∂b(k)(T − s, θ̂, Ŷ EM
⌊s/γ⌋γ)

∂xj

∣∣∣∣∣∣
2

dr


1/2

ds

≤ (1 + 8K2
3(1 + 4T 2α))

∫ t

0
sup

0≤r≤s
E
[
|Y aux

r − Ŷ EM
r |2

]
ds + 4γ2tM(1 + 8K2

3(1 + 4T 2α))

+ [γ22(1 + 8K2
3(1 + 4T 2α))1/2C

1/2
EMose,2 + γ3/2+α4K1(1 + 8ε̃AL + 8|θ∗|2)1/2]

× [tM
√

2(1 + 8K2
3(1 + 4T 2α))1/2].

(76)

Using 73, 74 and 76 in 72, we have

E
[
|Y aux

t − Ŷ EM
t |2

]
≤
∫ t

0
4(1 + ζ + K3(1 + 2T α + 4K3(1 + 4T 2α))) sup

0≤r≤s
E
[
|Y aux

r − Ŷ EM
r |2

]
ds

+ 8γ2tζ−1M(1 + 8K2
3(1 + 4T 2α))

×
[
(1 + 16K2

Total(1 + T 2α))CEM,2(T ) + 32K2
Total(1 + T 2α)(1 + 2ε̃AL + 2|θ∗|2)

]
+ 2γ2tK2

4ζ−1(1 + 4T 2α)CEMose,4 + 8γ2tM(1 + 8K2
3(1 + 4T 2α))

+ γ2αt4ζ−1K2
1(1 + 8(ε̃AL + |θ∗|2))

+ 4[γ2(1 + 8K2
3(1 + 4T 2α))1/2C

1/2
EMose,2 + γ3/2+α2K1(1 + 8ε̃AL + 8|θ∗|2)1/2]

× [tM
√

2(1 + 8K2
3(1 + 4T 2α))1/2].

Thus,

sup
0≤s≤t

E
[
|Y aux

s − Ŷ EM
s |2

]
≤
∫ t

0
4(1 + ζ + K3(1 + 2T α + 4K3(1 + 4T 2α))) sup

0≤r≤s
E
[
|Y aux

r − Ŷ EM
r |2

]
ds
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+ γ2αt2
(

K2
4ζ−1(1 + 4T 2α)CEMose,4 + 4M(1 + 8K2

3(1 + 4T 2α)) + 2ζ−1K2
1(1 + 8(ε̃AL + |θ∗|2))

+ 4ζ−1M(1 + 8K2
3(1 + 4T 2α))

× [(1 + 16K2
Total(1 + T 2α))CEM,2(T ) + 32K2

Total(1 + T 2α)(1 + 2ε̃AL + 2|θ∗|2)]

+ 2[(1 + 8K2
3(1 + 4T 2α))1/2C

1/2
EMose,2 + 2K1(1 + 8ε̃AL + 8|θ∗|2)1/2]

× [M
√

2(1 + 8K2
3(1 + 4T 2α))1/2]

)
≤ 2e4(1+ζ+K3(1+2T α+4K3(1+4T 2α)))tγ2αt

×

(
K2

4ζ−1(1 + 4T 2α)CEMose,4 + 4M(1 + 8K2
3(1 + 4T 2α)) + 2ζ−1K2

1(1 + 8(ε̃AL + |θ∗|2))

+ 4ζ−1M(1 + 8K2
3(1 + 4T 2α))

× [(1 + 16K2
Total(1 + T 2α))CEM,2(T ) + 32K2

Total(1 + T 2α)(1 + 2ε̃AL + 2|θ∗|2)]

+ 2[(1 + 8K2
3(1 + 4T 2α))1/2C

1/2
EMose,2 + 2K1(1 + 8ε̃AL + 8|θ∗|2)1/2]

× [M
√

2(1 + 8K2
3(1 + 4T 2α))1/2]

)
.

(77)

Using 77 and tK = T − ϵ, we have

W2(L(Y aux
tK

), L(Y EM
K ))

≤
√
E
[
|Y aux

tK
− Ŷ EM

tK
|2
]

≤
√

2e2(1+ζ+K3(1+2T α+4K3(1+4T 2α)))(T −ϵ)γα
√

T − ϵ

×

(
K2

4ζ−1(1 + 4T 2α)CEMose,4 + 4M(1 + 8K2
3(1 + 4T 2α)) + 2ζ−1K2

1(1 + 8(ε̃AL + |θ∗|2))

+ 4ζ−1M(1 + 8K2
3(1 + 4T 2α))

× [(1 + 16K2
Total(1 + T 2α))CEM,2(T ) + 32K2

Total(1 + T 2α)(1 + 2ε̃AL + 2|θ∗|2)]

+ 2[(1 + 8K2
3(1 + 4T 2α))1/2C

1/2
EMose,2 + 2K1(1 + 8ε̃AL + 8|θ∗|2)1/2]

× [M
√

2(1 + 8K2
3(1 + 4T 2α))1/2]

)1/2

.

(78)

Final upper bound on W2(L(Y EM
K ), πD). Substituting 61, 65, 68, and 78 into 59, we have

W2(L(Y EM
K ), πD)

≤ (
√
E[|X0|2] +

√
M)2

√
ϵ

+
√

2(
√
E[|X0|2] +

√
M)e−2L̂MO(T −ϵ)−ϵ

+
√

2ζ−1e(1+ζ−2L̂MO)(T −ϵ)√εSN

+
√

2e2(1+ζ+K3(1+2T α+4K3(1+4T 2α)))(T −ϵ)γα
√

T − ϵ
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×

(
K2

4ζ−1(1 + 4T 2α)CEMose,4 + 4M(1 + 8K2
3(1 + 4T 2α)) + 2ζ−1K2

1(1 + 8(ε̃AL + |θ∗|2))

+ 4ζ−1M(1 + 8K2
3(1 + 4T 2α))

× [(1 + 16K2
Total(1 + T 2α))CEM,2(T ) + 32K2

Total(1 + T 2α)(1 + 2ε̃AL + 2|θ∗|2)]

+ 2[(1 + 8K2
3(1 + 4T 2α))1/2C

1/2
EMose,2 + 2K1(1 + 8ε̃AL + 8|θ∗|2)1/2]

× [M
√

2(1 + 8K2
3(1 + 4T 2α))1/2]

)1/2

.

(79)

The bound for W2(L(Ŷ EM
K ), πD) in 79 can be made arbitrarily small by appropriately choosing parameters

including ϵ, T, εSN and γ. More precisely, for any δ > 0, we first choose 0 ≤ ϵ < ϵδ with ϵδ given in Table 4
such that the first term on the right-hand side of 79 is

(
√

E[|X0|2] +
√

M)2
√

ϵ < δ/4. (80)

Next, we choose T > Tδ with Tδ given in Table 4 such that the second term on the right-hand side of 79 is
√

2(
√
E[|X0|2] +

√
M)e−2L̂MO(T −ϵ)−ϵ < δ/4. (81)

Next, we turn to the third term on the right-hand side of 79. We choose 0 < εSN < εSN,δ with εSN,δ given
in Table 4 such that √

2ζ−1e(1+ζ−2L̂MO)(T −ϵ)√εSN < δ/4. (82)

Finally, we choose 0 < γ < γδ with γδ given in Table 4 such that the fourth term on the right-hand side of
79 is

√
2e2(1+ζ+K3(1+2T α+4K3(1+4T 2α)))(T −ϵ)γα

√
T − ϵ

×

(
K2

4ζ−1(1 + 4T 2α)CEMose,4 + 4M(1 + 8K2
3(1 + 4T 2α)) + 2ζ−1K2

1(1 + 8(ε̃AL + |θ∗|2))

+ 4ζ−1M(1 + 8K2
3(1 + 4T 2α))

× [(1 + 16K2
Total(1 + T 2α))CEM,2(T ) + 32K2

Total(1 + T 2α)(1 + 2ε̃AL + 2|θ∗|2)]

+ 2[(1 + 8K2
3(1 + 4T 2α))1/2C

1/2
EMose,2 + 2K1(1 + 8ε̃AL + 8|θ∗|2)1/2]

× [M
√

2(1 + 8K2
3(1 + 4T 2α))1/2]

)1/2

< δ/4.

(83)

Using 80, 81, 82 and 83, we obtain W2(L(Ŷ EM
K ), πD) < δ.

D.3 Proof of the Preliminary Results for the General Case

We provide the proofs of Section 3.2 and Appendix D.1.

Proof of Remark 5. Using Assumption 3.b, we have

|s(t, θ, x)| ≤ |s(t, θ, x) − s(0, 0, 0)| + |s(0, 0, 0)|
≤ K1(1 + |θ|)|t|α + K2(1 + |t|α)|θ| + K3(1 + |t|α)|x| + |s(0, 0, 0)|
≤ KTotal(1 + |t|α)(1 + |θ| + |x|),

where KTotal := K1 + K2 + K3 + |s(0, 0, 0)|.

35



Published in Transactions on Machine Learning Research (02/2025)

Proof of Lemma 20. Using Itô’s formula, we have, for any t ∈ [0, T − ϵ] and p ∈ [2, 4],

d|Ŷ EM
t |p = p

〈
|Ŷ EM

t |p−2Ŷ EM
t , Ŷ EM

⌊t/γ⌋γ

〉
dt + p

〈
|Ŷ EM

t |p−2Ŷ EM
t , 2 s(T − ⌊t/γ⌋γ, θ̂, Ŷ EM

⌊t/γ⌋γ)
〉

dt

+ p
〈

|Ŷ EM
t |p−2Ŷ EM

t ,
√

2 dBt

〉
+ p

2 |Ŷ EM
t |p−2(2M) dt + p(p − 2)

2 |Ŷ EM
t |p−4 2|Ŷ EM

t |2dt.
(84)

Integrating and taking expectation on both sides in 84, using Young’s inequality and Remark 5, we have

E
[
|Ŷ EM

t |p
]

= E
[
|Ŷ EM

0 |p
]

+ p

∫ t

0
E
[
⟨|Ŷ EM

s |p−2Ŷ EM
s , Ŷ EM

⌊s/γ⌋γ⟩
]

ds

+ 2p

∫ t

0
E
[
⟨|Ŷ EM

s |p−2Ŷ EM
s , s(T − ⌊s/γ⌋γ, θ̂, Ŷ EM

⌊s/γ⌋γ)⟩
]

ds

+ p(M + p − 2)
∫ t

0
E
[
|Ŷ EM

s |p−2
]

ds

≤ E
[
|Ŷ EM

0 |p
]

+ 3(p − 1)
∫ t

0
E
[
|Ŷ EM

s |p
]

ds +
∫ t

0
E
[
|Ŷ EM

⌊s/γ⌋γ |p
]

ds

+ 2
∫ t

0
E
[
|s(T − ⌊s/γ⌋γ, θ̂, Ŷ EM

⌊s/γ⌋γ)|p
]

ds

+ 2
p

(pM + p(p − 2))
p
2 t + p − 2

p

∫ t

0
E
[
|Ŷ EM

s |p
]

ds

≤ E
[
|Ŷ EM

0 |p
]

+
(

3p − 2 − 2
p

)∫ t

0
E
[
|Ŷ EM

s |p
]

ds +
∫ t

0
E
[
|Ŷ EM

⌊s/γ⌋γ |p
]

ds

+ 2pKp
Total

∫ t

0
(1 + |T − ⌊s/γ⌋γ|α)p E

[
|Ŷ EM

⌊s/γ⌋γ |p
]

ds

+ 22p−1Kp
Total(1 + E[|θ̂|p])

∫ t

0
(1 + |T − ⌊s/γ⌋γ|α)p ds + 2

p
(pM + p(p − 2))

p
2 t

≤ E
[
|Ŷ EM

0 |p
]

+ (3p − 1 − 2
p

+ 22p−1Kp
Total(1 + T αp))

∫ t

0
sup

0≤r≤s
E
[
|Ŷ EM

r |p
]

ds

+ 23p−2Kp
Total(1 + E[|θ̂|p])(1 + T αp)t + 2

p
(pM + p(p − 2))

p
2 t.

Using Grönwall’s inequality, we have

sup
0≤s≤t

E
[
|Ŷ EM

s |p
]

≤ E
[
|Ŷ EM

0 |p
]

+ (3p − 1 − 2
p

+ 22p−1Kp
Total(1 + T αp))

∫ t

0
sup

0≤r≤s
E
[
|Ŷ EM

r |p
]

ds

+ 23p−2Kp
Total(1 + E[|θ̂|p])(1 + T αp)t + 2

p
(pM + p(p − 2))

p
2 t

≤ et(3p−1− 2
p +22p−1Kp

Total(1+T αp))

× (E
[
|Ŷ EM

0 |p
]

+ 23p−2Kp
Totalt(1 + E[|θ̂|p])(1 + T αp) + 2

p
(pM + p(p − 2))

p
2 t).

Proof of Lemma 21. Using 11, Lemma 20 and Remark 5, we have, for any t ∈ [0, T − ϵ] and p ∈ [2, 4],

E
[
|Ŷ EM

t − Ŷ EM
⌊t/γ⌋γ |p

]
≤ γpE

[∣∣∣Ŷ EM
⌊t/γ⌋γ + 2 s(T − ⌊t/γ⌋γ, θ̂, Ŷ EM

⌊t/γ⌋γ)
∣∣∣p]+ E

[∣∣∣∣∣
∫ t

⌊t/γ⌋γ

√
2 dBs

∣∣∣∣∣
p]
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≤ 2p−1γp
(
E
[
|Ŷ EM

⌊t/γ⌋γ |p
]

+ 2p E
[
|s(T − ⌊t/γ⌋γ, θ̂, Ŷ EM

⌊t/γ⌋γ)|p
])

+ γ
p
2 (Mp(p − 1))

p
2

≤ 2p−1γp(CEM,p(t) + 23p−2Kp
Total(1 + T αp)CEM,p(t) + 24p−3Kp

Total(1 + T αp)(1 + E[|θ̂|p]))
+ γ

p
2 (Mp(p − 1))

p
2

≤ γ
p
2 CEMose,p,

where

CEMose,p = 2p−1(CEM,p(T ) + Kp
Total(1 + T αp)(23p−2CEM,p(T ) + 24p−3(1 + E[|θ̂|p]))) + (Mp(p − 1))

p
2 .

Proof of Lemma 22. By the mean value theorem, for any k = 1, . . . , M , we have,

b(k)(t, θ, x) − b(k)(t, θ, x̄) =
M∑

i=1

∂b(k)(t, θ, qx + (1 − q)x̄)
∂yi

(xi − x̄(i)),

for some q ∈ (0, 1). Hence, for a fixed q ∈ (0, 1), we have∣∣∣∣∣b(k)(t, θ, x) − b(k)(t, θ, x̄) −
M∑

i=1

∂b(k)(t, θ, x̄)
∂yi

(xi − x̄i)

∣∣∣∣∣
=

∣∣∣∣∣
M∑

i=1

∂b(k)(t, θ, qx + (1 − q)x̄)
∂yi

(xi − x̄(i)) −
M∑

i=1

∂b(k)(t, θ, x̄)
∂yi

(xi − x̄i)

∣∣∣∣∣
≤

M∑
i=1

∣∣∣∣∂b(k)(t, θ, qx + (1 − q)x̄)
∂yi

− ∂b(k)(t, θ, x̄)
∂yi

∣∣∣∣ |xi − x̄i|.

The proof is completed using Assumption 3.b.

Proof of Lemma 23. At x ∈ RM and for any v ∈ RM , we have, for any k = 1, . . . M ,

⟨∇xs(k)(t, θ, x), v⟩ = lim
h→0

s(k)(t, θ, x + vh) − s(k)(t, θ, x)
h

.

Using Assumption 3.b, we have

|⟨∇xs(k)(t, θ, x), v⟩| ≤ lim
h→0

∣∣∣∣s(k)(t, θ, x + vh) − s(k)(t, θ, x)
h

∣∣∣∣
≤ lim

h→0

|D3(t, t)||x + vh − x|
|h|

≤ K3(1 + 2|t|α)|v|.

(85)

Taking v = ∇xs(k)(t,θ,x)
|∇xs(k)(t,θ,x)| in 85, we have

|∇xs(k)(t, θ, x)| ≤ K3(1 + 2|t|α). (86)

Using 57 and 86, we obtain

|∇xb(k)(t, θ, x)| ≤ 1 + 2|∇xs(k)(t, θ, x)|
≤ 1 + 2K3(1 + 2|t|α).
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E Table of Constants

Table 4 displays full expressions for constants which appear in Theorem 10 and Remark 12.

Table 4: Explicit expressions for the constants in Theorem 10 and Remark 12
.

Constant Dependency Full Expression

C1 O(
√

M) 2(
√

E[|X0|2] +
√

M)

C2 O(
√

M)
√

2
(√

E[|X0|2] +
√

M

)
C3(T, ϵ) O(e(1+ζ−2L̂MO)(T −ϵ))

√
2ζ−1e(1+ζ−2L̂MO)(T −ϵ)

CEM,2(T ) O(MeT 2α+1
T 2α+1ε̃AL)

e
T (4+8K2

Total(1+T 2α))

× (E[|Ŷ EM
0 |2] + 16K2

TotalT (1 + 2ε̃AL + 2|θ∗|2)(1 + T
2α) + 2MT )

CEM,4(T ) O(M2eT 4α+1
T 4α+1)

e
T ( 21

2 +128K4
Total(1+T 4α))

× (E[|Ŷ EM
0 |4] + 1024K4

TotalT (1 + E[|θ̂|4])(1 + T
4α) + 8(M

2 + 4M + 4)T )

CEMose,2 O(MeT 2α+1
T 4α+1ε̃AL) 2(CEM,2(T ) + K2

Total(1 + T
2α)(16CEM,2(T ) + 32(1 + 2ε̃AL + 2|θ∗|2))) + 2M

CEMose,4 O(M2eT 4α+1
T 8α+1) 8(CEM,4(T ) + K4

Total(1 + T
4α)(1024CEM,4(T ) + 8192(1 + E[|θ̂|4]))) + 144M

2

C4(T, ϵ) O(MeT 4α+1
T 4α+1ε̃

1/4
AL )

√
2e

2(1+ζ+K3(1+2T α+4K3(1+4T 2α)))(T −ϵ)
√

T − ϵ

×

(
K2

4ζ
−1(1 + 4T

2α)CEMose,4 + 4M(1 + 8K2
3(1 + 4T

2α))

+ 2ζ
−1K2

1(1 + 8(ε̃AL + |θ∗|2))

+ 4ζ
−1

M(1 + 8K2
3(1 + 4T

2α))

× [(1 + 16K2
Total(1 + T

2α))CEM,2(T )

+ 32K2
Total(1 + T

2α)(1 + 2ε̃AL + 2|θ∗|2)]

+ 2[(1 + 8K2
3(1 + 4T

2α))1/2
C

1/2
EMose,2 + 2K1(1 + 8ε̃AL + 8|θ∗|2)1/2]

× [M
√

2(1 + 8K2
3(1 + 4T

2α))1/2]

)1/2

.

C̃4(T, ϵ) O(
√

MeT 2α+1
T 2α+1ε̃

1/2
AL )

e
(1+(3/2)ζ+2K3(1+2T α))(T −ϵ)

× (ζ
−1/2(T − ϵ)1/2

C
1/2
EMose,2 + 81/2

ζ
−1/2(T − ϵ)1/2K1(1 + 8ε̃AL + 8|θ∗|2)1/2

+ 2ζ
−1/2K3(1 + 2T

α)(T − ϵ)1/2
C

1/2
EMose,2)

ϵδ - δ2/(64(
√

E[|X0|2] +
√

M)2)

Tδ - (2L̂MO)−1
[

ln
(

4
√

2
(√

E [|X0|2] +
√

M

)
/δ

)
− ϵ

]
+ ϵ

εSN,δ - (ζδ2/32)e−2(1+ζ−2L̂MO)(T −ϵ)

γδ -

min

{
(δ/(4

√
2))1/α(T − ϵ)−1/(2α)

e
−(2/α)(1+ζ+K3(1+2T α+4K3(1+4T 2α)))(T −ϵ)

×

(
K2

4ζ
−1(1 + 4T

2α)CEMose,4 + 4M(1 + 8K2
3(1 + 4T

2α))

+ 2ζ
−1K2

1(1 + 8(ε̃AL + |θ∗|2))

+ 4ζ
−1

M(1 + 8K2
3(1 + 4T

2α))

× [(1 + 16K2
Total(1 + T

2α))CEM,2(T )

+ 32K2
Total(1 + T

2α)(1 + 2ε̃AL + 2|θ∗|2)]

+ 2[(1 + 8K2
3(1 + 4T

2α))1/2
C

1/2
EMose,2 + 2K1(1 + 8ε̃AL + 8|θ∗|2)1/2]

× [M
√

2(1 + 8K2
3(1 + 4T

2α))1/2]

)−1/(2α)

, 1

}
.
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