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Abstract

Challenges remain in providing interpretable explanations for neural network decision-making
in explainable AI (xAl). Existing methods like Integrated Gradients produce noisy maps,
and LIME, while intuitive, may deviate from the model’s internal logic. We introduce
a framework that uses hierarchical segmentation techniques for faithful and interpretable
explanations of Convolutional Neural Networks (CNNs). Our method constructs model-based
hierarchical segmentations that maintain fidelity to the model’s decision-making process and
allow both human-centric and model-centric segmentation. This approach can be combined
with various xAI methods and provides multiscale explanations that help identify biases and
improve understanding of neural network predictive behavior. Experiments show that our
framework, xAiTrees, delivers highly interpretable and faithful model explanations, not only
surpassing traditional xAI methods but shedding new light on a novel approach to enhancing
xAl interpretability.

1 Introduction

In modern deep learning applications, especially in healthcare and finance, there is a growing need for
transparency and explanation. Understanding a model’s rationale is crucial before relying on its predictions.
This need arises from biases present at various stages of model development and deployment. While some
biases help in learning data distribution (Goyal & Bengio, 2022), others may indicate data imbalance, incorrect
correlations, or prejudices in data collection.

Explainable Artificial Intelligence (xAI) provides methods that clarify models’ decision-making processes
with different levels of interpretability, which can be described as the measure of how easy it is to understand
an explanation (Gilpin et al., 2018). Providing interpretable explanations is especially important in the
previously mentioned contexts (e.g., health), where humans need to understand models’ decisions.

For this purpose, some xAI methods use object-structure-based visualizations to enhance human interpretation.
They decompose images in ways that mimic human perception, grouping objects by attributes such as
color, texture, and edges (Hubel & Wiesel, 1959). Techniques such as LIME (Ribeiro et al., 2016) and
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Figure 1: One challenge in xAl is achieving a good trade-off between fidelity and interpretability. We propose
using region-based segmentation combined with hierarchies to adapt region size, while providing the flexibility
to use high-fidelity methods for constructing the segmented regions.

KernelSHAP (Lundberg & Lee, 2017) have used this approach effectively, segmenting images into meaningful
parts to improve interpretability. However, the size of the segmented regions affects the information extracted:
small regions can be difficult to interpret, while large regions may overlook fine details. Additionally, using a
segmentation framework may introduce a form of human bias, encouraging the model to attribute importance
to structures that a human might consider relevant. This can aid comprehension but may reduce fidelity
to the model’s actual behavior (Miré-Nicolau et al., 2024), which does not necessarily align with human
reasoning.

On the other hand, methods like Deconvolution (Zeiler & Fergus, 2014), Integrated Gradients
(IG)(Sundararajan et al., 2017), and LRP(Bach et al., 2015), which attribute importance to features (pixels),
aid in understanding deep learning models across various applications (Borys et al., 2023; Dharshini et al.,
2023; Chaddad et al., 2023), serving as better approximations of model behavior (Borys et al., 2023), and
locally explaining decisions. However, they often lack interpretability due to their pixel-level explanations,
which can be difficult for humans to understand (Kim et al., 2018). Different techniques tend to prioritize
either faithfulness to the model’s behavior or human interpretability, making it challenging to balance the
two.

We explore the trade-off between model fidelity and human interpretability in explaining Convolutional Neural
Networks (CNNs) (Figure 1). We introduce zAiTrees, a framework that combines hierarchical segmentation
with region-based explanation methods to produce human-friendly, multiscale visualizations inspired by
Multiscale Interpretable Visualization (Ms-IV) (Rodrigues et al., 2024). Unlike conventional region-based
XAI methods that rely on a fixed segmentation scale, zAiTrees leverages hierarchical segmentation to adapt
region sizes across different levels of abstraction, mitigating the limitations of overly small or excessively
coarse regions.

In addition, we propose a model-based segmentation strategy that uses pixel-wise attribution methods to
approximate the model’s “visual perspective,” enabling the transformation of pixel-level explanations into
coherent region-based interpretations.

To assess whether the proposed hierarchical and model-adaptive design effectively balances model fidelity
and human interpretability, we conduct a series of quantitative evaluations comparing our approach with
six representative explanation techniques, including perturbation-based, heatmap-based, concept-based, and
attribution methods. The evaluation relies on three complementary metrics: occlusion, which measures
the impact of removing regions identified as important; inclusion, which evaluates whether these regions
are sufficient to support correct classification; and a novel metric, Pixel Impact Rate (PIR), designed to
evaluate the specificity of the explanations by penalizing large regions being considered important. Across
these metrics, our framework achieves competitive performance with strong baselines such as XRAI.
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Figure 2: Explanations of six image classes misclassified by VGG-16 or Resnet18 models trained on ImageNet.
We compare well-known xAI method explanations with one configuration of zAiTrees: Tree-Occ. Methods
such as Integrated Gradients are noisy and difficult to interpret. Shapes such as the grades and the fence
seem to be better highlighted by Tree-Occ, which is helpful for interpretation. When compared to highly
interpretable methods like LIME, Tree-Occ avoids the mistake of highlighting the cat when the models predict
classes such as dishwasher, saltshaker, and hamper.

Most importantly, we conduct a qualitative user study in which participants are presented with visual
explanations generated by different explanation methods. The study evaluates, under three distinct bias
scenarios, which methods best support (i) the detection of bias (i.e., determining whether the model is biased)
and (ii) the identification of bias (i.e., understanding the nature of the bias). Across nearly all scenarios and
evaluation questions, our proposed framework achieves the better performance.

The key contributions of this paper include:

1. We propose zAiTrees, a hierarchical segmentation explanation framework that aggregates importance
across multiple spatial scales, enabling humans to better understand and diagnose model bias;

2. We evaluate xAiTrees using several complementary metrics — occlusion, inclusion, and the newly
proposed Pixel Impact Rate (PIR) — to assess both the sufficiency and specificity of explanations;

3. We conduct a human-subject study showing that our explanations more effectively help users detect
and identify biases under multiple bias scenarios.

We organize the paper as follows: in Section 2, we present some prior research on xAl. Section 3 outlines
the preliminary concepts used in our framework, while in Section 4 we provide a detailed explanation of our
methodology. In Section 5 we present and discuss our experimental results. Finally, we conclude and discuss
possible future research directions

2 Related work

Classification problems and xAI: One fundamental task in machine learning is classification. The basic
concept involves working with a training dataset, denoted as DS = (Z;, GT;) i€[1,NbIm]» which consists of pairs
of images Z; and their associated labels GT;. Each label belongs to one of a set of classes represented by
¢ € [1, NbClasses]. The goal is to train a model, denoted as Z, to effectively distinguish between different
classes within the dataset.
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In this configuration, we express = as = = 2551 o Z¢m¢ the combination of two elements: an Z°°, responsible
for converting each input image Z; into a feature vector, and a Z¢/%¥  which analyzes these features to classify
the images. The outcome of this process, referred to as the “logit” for image Z;, is a vector out; € RNbClasses
that signifies the activation levels across various classes. Typically, we apply a Softmaz layer to out; to
determine the class with the highest activation, ideally aligning with the ground truth label GT; for perfect
classification.

Pixel-wise explanations: In neural networks, optimizing the model = involves the backpropagation
process. Exploiting this process, certain explainable Artificial Intelligence (xAI) methods like Integrated
Gradients (Sundararajan et al.; 2017), Guided-Backpropagation (Springenberg et al., 2015), and Deconvolu-
tion (Zeiler & Fergus, 2014) utilize it to identify input features that enhance the response of a specific class,
alming to maximize the value of a particular position in the output vector out;. Consequently, attribution
maps are generated, illustrating pixel-level explanations, as depicted in Figure 2 for Integrated Gradients

(1G).

Region-based explanations: Additional techniques like Sensitivity Analysis (Zeiler & Fergus, 2014),
LIME (Ribeiro et al., 2016), and SHAP (Lundberg & Lee, 2017) utilize occlusions of image regions to assess
the network’s sensitivity to each region within an image. These methods provide explanations at a region
level rather than a pixel level, as illustrated in Figure 2 for LIME. More recently, a region-based technique,
XRAT (Kapishnikov et al., 2019), proposed to combine Integrated Gradients (Sundararajan et al., 2017) and
perturbation-based approaches to generate saliency maps as explanations.

Concept-based explanations: However, many of these techniques focus on explaining individual samples
separately, which limits our understanding of how the model behaves globally across various scenarios. That
is why methods like TCAV (Kim et al., 2018), ACE (Ghorbani et al., 2019), Explanatory graphs (Zhang et al.,
2018), LGNN (Tan et al., 2022), and Ms-IV (Rodrigues et al., 2024) aim to comprehend the overall behavior
of the model. In particular, Ms-IV also considers the impact of occlusions, not on individual predictions, but
on the model’s output space.

Neural-symbolic explanations: Techniques such as DCR (Barbiero et al., 2023), X-NeSyL (Diaz-Rodriguez
et al., 2022), and the approach proposed by (Ngan et al., 2023) adopt neural-symbolic strategies to explain the
decisions of neural networks within specific contexts. These methods enhance transparency by translating low-
level neural activations into high-level concepts, logical rules, or hierarchical structures, making explanations
more aligned with human reasoning. However, this often comes at the cost of increased complexity, as
such approaches may require manually crafted symbolic rules or domain-specific annotations to generate
meaningful explanations.

3 Preliminaries

To ensure a thorough understanding of the sequel, we provide in this section the general techniques and
metrics employed during this work. In subsection A, we provide a brief overview of the selected hierarchical
segmentation techniques, highlighting their significance. In subsection B, we shortly present the occlusion-
based metrics used in the construction of our methodology.

A. Segmentation techniques: As an important step for our framework, we employ image segmentation
algorithms that decompose images into more interpretable structures, enabling better human understanding
and interpretation. We specifically employ hierarchical segmentation techniques due to their capability
to decompose images into multiple levels of detail, from fine to coarse, mirroring how humans naturally
perceive objects: initially observing the overall structure before delving into the finer details. A hierarchical
segmentation algorithm produces a merging tree, that indicates how two given regions merge. In this paper,
we use the tree structures available in the Higra package (Perret et al., 2019; 2018): Binary Partition Tree
(BPT) and Hierarchical watershed. See details in A.1.

B. Occlusion-based metrics: In this work, we use two metrics to generate our segmentation based on the
model explainability: (i) Occlusion, which is the impact of occluding an image region on its classification
output, and (ii) CaOC, which is the intra-class impact of occluding an image region that employs a sliding
metric that ranks images based on the highest activations for a given class. This sliding metric measures
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Figure 3: Our framework zAiTrees operates through four key steps: 1. Generate a segmentation hierarchy
using either the image’s edge map for human-based segmentation or pixel-wise importance based on xAl
techniques for model-based segmentation. 2. Systematically occlude each region of the segmentation to
evaluate its impact on the model’s decision, obtaining an occlusion attribute for each region. 3. Assess
the persistence of the occlusion attribute using a shaping approach (Xu et al., 2015; 2016). 4. Aggregate
the contributions of each region from the highest to the lowest level of the tree to create a comprehensive
multiscale visualization.

Final visualization

the movement in this ranking after occluding a region of the image (detailed in A.2). Although the main
experimentation uses these methods, we present in A.7 a framework’s variation using LIME to show zAiTrees
versatility with other types of xAI techniques. Explanations example in Figure 9.

4 Methodology

In this section, we outline our four-step methodology (Figure 3): (1) hierarchical segmentation, (2) attribute
computation, (3) tree shaping, and (4) hierarchical visualization. In step 1, we convert the data into a
hierarchical representation, creating various regions at different scales in the image. In step 2, we evaluate
some xAl-based attributes (B) on the regions. In step 3, we assess the importance of the region attributes.
Finally, in step 4, we explain how to generate a visualization map from the importance of the attributes.

1. Hierarchical segmentation:

Intuitively, any hierarchical segmentation algorithm works by iteratively merging first the pixels, then the
regions, according to a similarity criterion. In this paper, we test two ways for measuring the similarity:
human-based and model-based.

o The human-based approach relies on the Structured Edge Detection (SED) algorithm (Dollar & Zitnick,
2014), which captures complex edge patterns and produces precise edge maps, in accordance with human
intuition.

o The model-based approach uses a visual representation of the image’s pixels most influential in a model’s
decision. Although less intuitive for humans, this approach helps to understand how the model reasons.
We test pixel-wise explainable AT methods: Integrated Gradients (IG) (Sundararajan et al., 2017), Guided-
Backpropagation (Springenberg et al., 2015), Input x Gradient (Shrikumar et al., 2017), and Saliency (Si-
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Figure 4: The hierarchy aids to discriminate similar important regions. Example of the method’s behavior
with the same structure inside and outside a hierarchy. The cat’s eyes were replicated outside the cat’s
face. However, the importance of each region is the combination of the importance of each hierarchy part.
Therefore, the cat’s eyes inside the face (an important hierarchy region) score higher, as evidenced by the
lighter regions in the right image.

monyan & Zisserman, 2015) (all from Captum framework). The methods were chosen because of their
availability (in frameworks like Captum) and for their higher fidelity as pixel-wise importance attribution
based on gradients (Miré-Nicolau et al., 2024).

Using such a similarity criterion, we obtain a hierarchical segmentation, which can be represented as a tree
T, completing the first step of our pipeline. See Figure 3, first column.

2. Attribute computation: The segmentation tree generated in the previous step provides many segments.
We assess the model’s response on each segmented region in the tree, for all regions large enough. We apply
a metric to evaluate the occlusion impact caused by each region. These occlusion scores reveal the influence
of each segmented regions on the model’s output. The metric employed to assess the impact of regions can
be any occlusion-based metric. See Figure 3, second column.

3. Tree shaping: To assess the importance of the nodes’ attributes, it is not enough to simply take
the regions with the highest attributes: there are different levels of the hierarchy to be analyzed. Instead,
we rely on a process called shaping (Xu et al., 2015; 2016). The main idea is to look at the undirected,
vertices-weighted graph G, whose vertices are the node of T, whose edges are formed by the parent-children
relationship in T, and whose weights are the attributes of the nodes. We now look at the level-sets of G. A
vertex of G (a node of T) is important according to its persistence in the level sets of G. More precisely, a
connected component is born when a local maximum of the attribute appear; when two connected components
merge, one of the two maxima disappear, and the time of life of this maximum is its persistence. We can
compute such persistence by building a new tree T’ on G, T’ is the tree of all the connected component of
the upper-level sets of G. The persistence of a node of T is easily computed on T’ by computing the length
of the branch it belongs to. We refer to Xu et al. (2015; 2016) for more details. See Figure 3, third column.

4. Construction of the hierarchical visualization: With T’ from the previous step, we now produce a
visualization of the important regions. Using the persistence of a node directly for visualization can yield
conflicting results for interpretation. Consider an example where we want to generate explanations for a model
that classifies images of dogs. The persistence might indicate that eyes are the primary features for correct
classification. If the image under scrutiny shows a dog with its owner, the persistence might erroneously
highlight the eyes of both the human and the dog as relevant, which is misleading since only the dog’s eyes
should matter (in an ideal, unbiased model). To avoid such effect, we recursively sum the persistence of
each node from the root to the leaves of T’. This ensures that smaller segments inherit the importance
of their parent nodes. In our example, if the parent segment of the eyes is the entire face, the dog’s face
carries importance for the model’s decision, while the human face does not. By adding the dog’s facial region
information to the eye segments, we ensure the dog’s eyes are prioritized over the human eyes and, therefore,
become more prominent in the explanation. This process aggregates the importance of various scales of the
image into the pixels, resulting in a hierarchical, multi-scale, visualization. We show an example in Figure 4.
We use this aggregated persistence as the final score for each region of the hierarchical segmentation. We
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Figure 5: Our quantitative experiments aim to answer the question: Is the explanation faithful? In (1), we
occlude the selected important regions and evaluate the impact using the Pixel Impact Rate (PIR) based
on the model’s response. In (2), we evaluate the inclusion of only the important regions by analyzing their
Softmax and Accuracy Information Curves.

select a minimum importance score, and retain the regions accordingly. We superpose the retained region on
the original image to generate the Final visualization (Figure 3, fourth column).

5 Experiments and results

We evaluated the methods using two architectures, VGG-16 (Simonyan & Zisserman, 2015) and ResNet18 (He
et al., 2016), trained on three datasets: Cat vs. Dog (Cukierski, 2016) (RGB images size 224x224), CIFAR-
10 (Krizhevsky, 2009; Krizhevsky et al., 2009) (RGB images size 32x32), and ImageNet (Deng et al.; 2009)
(RGB images). Explanations were generated for 512 images from the Cat vs. Dog dataset, 10,000 images
from the CIFAR-10 dataset, and 100,000 images from the ImageNet test set. A detailed description of the
methods’ parameters and datasets is provided in A.3, A.4 and A.5. We organize our experiments and results
into two categories: quantitative and qualitative analysis. In the quantitative analysis, we conduct a series
of experiments utilizing the metrics discussed in Section 3 to assess the impact of image region occlusion
of various explainable frameworks. During our qualitative analysis, we do a more subjective examination,
evaluating the human interpretability of the explanations generated by the models. The experiments were
conducted on GPU (NVIDIA Quadro RTX 8000 48GB). We discuss some limitations in ?7.

5.1 Quantitative evaluations

We selected state-of-the-art region-based methods as baseline (B) to be compared: Occlusion, Grad-CAM,
LIME, Ms-TV, and XRAI (configuration of each method in A.4). Although ACE presents good concept-based
explanations, we only use it in the human evaluation experiments because, as a global explanation method,
it is not directly comparable to the local ones in these quantitative experiments (more details in A.G).
We compare the baseline methods with different configurations of our proposed methodology, showing its
adaptability (all the configurations in A.3 and A.5). This is done to explore variations, including different sizes
of minimal regions in the visualizations, pixel weights for graph construction in segmentation, and methods
for generating hierarchical segmentation. We show eight of them here compared to the baseline methods.
When we refer to Tree-CaOC or TreeW-CaOC, we mean the human-based segmentation (edges’ map)
using Watershed area and CaOC as occlusion metric. When we refer to IG-Tree-Occ or IG-TreeW-Occ,
we mean the model-based segmentation (using Integrated Gradients (IG) attributions) using Watershed area
and Occ (simple occlusion — Equation (1)) as occlusion metric. When we refer to BP-TreeB-Occ, we mean
the model-based segmentation (using Guided Backpropagation (BP) attributions) using BPT and Occ as
occlusion metric. In the results, we refer to configurations using watershed as group C1 and using BPT as
group C2.

In C1, we present results for minimal regions of 500 pixels (Cat vs. Dog and ImageNet) and 64 pixels
(CIFAR-10), utilizing edges and Integrated Gradients (IG) as pixel weights, and the watershed-by-area
hierarchical segmentation. This configuration was selected for its stability across different minimal region
sizes in the datasets, and its visualizations were used for human evaluation. While C2 presents results
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Table 1: Percentage of images with the original class changed after the exclusion of selected explanation
regions. We test two configurations of our methodology (C1 and C2 — other configurations in Supplementary
Materials) against four region-based baseline methods, Occlusion, Grad-CAM, LIME, Ms-1V, and XRAI,
in two architectures, VGG-16 and ResNet18, and datasets, Cat vs. Dog, CIFAR10, and ImageNet. We
expect higher percentage of class change (Ch.) when the region is excluded. Same column shows images
maintaining the original class when the output was reduced, and Total is the sum of class change (Ch.) and
class reduction (Same). We compare the each method to the best configuration (BP-TreeB-Occ) showing
the p-score in brackets (Mcnemar test).

Cat vs. Dog Cifar10 Tmagenet

% of images VGG ResNet VGG ResNet VGG ResNet
Ch. Same  Total Ch, Same  Total _ Ch. Same  Total Ch, Same  Total | Ch. Same Total  Ch. Same _ Total
Occlusion 005(0.0)  0.93(00) 0.98 0.06 (0.0) 089 (0.0) 095 026(00) 060(0.0) 086  030(00) 062(00) 092]0.39(0.0) 060(0.0) 0.99] 039(0.0) 059 (0.0) 0.98
Grad-CAM 0.07(00)  0.82(0.0) 089 0.13 (0.0) 0.83(0.0) 096  014(00) 042(0.0) 056 090 (00)  0.09(0.0) 099 | 025(00) 065(0.0) 090 J0G8(OO)] 030 (0.0) 0.98
B LIME 0.07 (0.0) 083 (00)  0.90 0.07 (0.0) 0.76 (0.0) 083 [0.84 (0.0)  0.14 (0.0) 0.98 0.82(2.45) 0.16(0.17) 0.98 | 034(00) 061(0.0) 095 0.38(0.0) 055(0.0) 093
Ms-TV 0.06(00) 076 (0.0)  0.82 0.07 (0.0) 0.66 (0.0) 073 030(00)  042(0.0) 072 033(00) 047 (0.0) 080 | 0.44 (0.0) 0.49 (0.0)  0.93 0.48 (0.0) 043 (0.0) 091
XRAT 0.04(0.0)  085(00) 089 | 0.06 (0.0) 0.79 (0.0) 085 052 (0.0)  0.35(0.0) 0.87  0.50 (0.0) 040 (0.0) 0.90 | 0.41 (0.0) 052 (0.0) 093 0.45 (0.0) 046 (0.0) 091
TreeW-CaOC 0.16 (0.0) 043 (205)  0.64 022 (0.0)  041(015) 063 012(0.0) 016(00) 028  015(0.0) 0.19(289) 034 | 023(0.0) 051(00) 074] 0.26(0.0) 046(0.0) 072
c1| TreeW-Oce 031 (0.0) 063 (324 094 035 (13-11) 060 (0.01) 095 060 (0.0) 015(00) 075  060(00) 0.15(0.0) 065 | 0.40 (0.0) 056 (0.0) 0.96 0.44 (0.0) 051 (0.0) 0.95
1G-TreeW-CaOC 029 (0.0) 046 (00)  0.75 0.21(0.0) 045 (761-13) 0.6 0.20 (0L0) 029 (0.0) 049 023 (0.0) 033(038) 056 | 0.26(0.0) 052(00) 078 | 030 (0.0) 046(00) 0.6
IG-TreeW-Occ | 0.43 (1.7-11) 054 (5.3-10)  0.97 0.32 (1.14-13) 0.61 (2.3-14)  0.93 | 0.73 (0.0) 0.21 (0.0)  0.94 0.73 (0.0) 0.22 (0.0) 0.95 | 0.43 (0.0) 0.53 (0.0) 0.96 0.48 (0.0) 0.48 (0.0) 0.96
TreeB-CaOC 0.35 (0.0) 039 (01) 0.74 027(0.0)  042(0.09) 069 015(00) 026 (0.0) 041 0.17 (0.0)  031(00) 048 | 0.23(0.0) 049 (00) 072 ] 0.25(0.0) 044(00)  0.69
& TreeB-Occ 0:51(3:9:8)] 0.44(006) 095  0.41(20-6) 052 (0.28) 0.93 [081(0:0)] 012 (0.0) 0.93 [076/(0:0)] 017 (0.0) 093 [[0BT(0:0)] 0.33 (0.0) 0.95 [0:60/(0:0)] 0.35 (0.0) 0.95
BP-TreeB-CaOC | 0.56 (5.7-6)  0.32 (0.001)  0.88  0.39 (2.2-16) 039 (45-7) 078  0.09 (0.0) 034 (1L7-9) 043  011(00) 039 (0.03) 050 | 0.11(0.0) 036(0.0) 047 0.0 (0.0) 031 (0.0) 041
BP-TreeB-Occ  |[IINOGS] 035 0.98 0.55 037 0.2 [INOES] 010 0.98 [110:80(0:0) 0.16  0.96 |JOSENO0N 016 (00)  0.87 _ 013 (0.0) 087

for minimal regions of 200 pixels (Cat vs. Dog and ImageNet) and 4 pixels (CIFAR-10), using edges and
Guided Backpropagation (BP) as pixel weights, and the BPT tree. This configuration yielded the highest
performance. In A.5, we provide comprehensive results for other configurations. Here, we propose four main
quantitative evaluations, (i and ii) inspired by feature removal (Covert et al., 2021) and (iii and iv) inspired
by Performance Information Curves (PICs) (Kapishnikov et al., 2019): (i) Exclusion of important regions; (ii)
Inclusion of important regions; (iii) Softmax Information Curve (SIC); and (iv) Accuracy Information Curve
(AIC). For (i) and (ii), we used the McNemar test (McNemar, 1947) to compare each method with the best
configuration and determine whether there were statistically significant differences between the results. We
show the main idea of this evaluation in Figure 5, and the details are discussed below:

Exclusion of important regions: Given that each region-based explainable AI (xAI) method identifies
important regions that explain the prediction of a model, we performed occlusion of these regions, in order to
measure the impact of each selection. For methods that assign scores to regions, we masked the 25% highest
scores (this excludes LIME, which inherently provides information to directly mask each region — a detailed
explanation is included in A.6).

The first idea for the metric was to calculate the impact on the logits after occlusion. However, any kind
of perturbation can affect the logits and not necessarily the classification. In this particular case, since
we are dealing with a classification problem, we consider the class change as the main evidence that an
important image region has been occluded. Therefore, the values from Table 1 Ch. is the percentage of
class changing images, Same is the percentage of images with same class prediction but with reduced logits
(reduced classification certainty), and Total is the percentage of all images with the class negatively impacted
by the removal of important regions (sum of Ch. and Same).

In Table 1, we present results (Ch., Same, Total) for each explainable technique (B — Baseline, C1, and C2 —
our proposition) applied to a network (VGG or ResNet) classifying images from a dataset (Cat vs. Dogs,
Cifarl0, or ImageNet). Higher Ch. values indicate that the identified regions are more class-representative.
High Same values complement Ch., suggesting that the best results are shown by higher Ch. and Same
values. Thus, while Total sums Ch. and Same, the optimal result is reflected by initially higher Ch. and
then higher Same values.

Table 1 shows that baseline methods like Occlusion achieved Total values above 80%, but our C2 config-
urations delivered the best results, particularly for class changes (Ch.). Our methods had over 60% class
changes for Cat vs. Dog images, exceeded 80% for CIFAR-10, and 70% for ImageNet. Among baselines,
LIME and XRAI performed best. The results highlight the superiority of our C1 and C2 configurations in
identifying impactful regions, achieving robust performance across datasets, and providing more accurate
insights into deep neural network interpretability.
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Table 2 presents results from a second experiment addressing reduced precision in explanations where methods
highlight the entire image as important, potentially leading to class changes upon occlusion. To address
this, we propose the Pixel Impact Rate (PIR), a metric that quantifies the per-pixel impact on class
activation during occlusion. Unlike the percentage of class change, PIR distinguishes whether changes are
caused from full or near-full image occlusion(details in A.5 Equation 2). Higher PIR values indicate significant
average impact per pixel, while lower PIR suggests occlusion of larger portions or the entire image (imprecise
explanations). The table summarizes the average (avg) and standard deviation (std) of PIR across networks,
techniques, and datasets.

Table 2: Pixel Impact Rate (PIR) of the chosen regions. The metric is the rate of the impact under occlusion
(difference between the original class output and the output under occlusion) by the number of pixels of
the occlusion mask. We test two configurations of our methodology (C1 and C2 — other configurations in
Supplementary Materials) against four region-based baseline methods, Occlusion, Grad-CAM, LIME, Ms-IV,
and XRAI in two architectures, VGG-16 and ResNet18, and datasets, Cat vs. Dog, CIFAR10, and ImageNet.
We expect higher values, on average, for PIR, meaning each occluded pixel has a high impact.

Cat vs. Dog Cifar10 Imagenet
PIR VGG ResNet | VGG ResNet VGG ResNet
avg std avg std avg std avg std avg std avg std
Occlusion 4.60e-03 | 4.05¢-03 [[1.50e-03| 1.28¢-03 [8.956-02 | 1.43¢-01 | 9:67e-02 | 1.35¢-01 |JiRL6E=02) 1.13c-02 [JSI02E208N 7.03¢-03
Grad-CAM 1.12e-03  1.02e-03 2.76e-04 2.07e-04 6.39e-03  1.34e-02 5.38e-03  1.46e-03 3.05e-03  3.16e-03 1.11e-03  8.02e-04
B LIME 9.03e-04 1.10e-03 3.47e-04 3.89e-04 6.75e-03  3.27e-03 6.41e-03  3.25e-03 2.11e-03  2.50e-03 1.58e-03  1.75e-03
Ms-IV 4.30e-04  4.74e-04 1.83e-04 2.45e-04  1.16e-02 1.44e-02 | 1.18e-02 1.33e-02 9.73e-04  1.10e-03 7.21e-04  7.59e-04
XRAI 1.16e-03  9.92e-04 4.44e-04 6.32e-04 = 2.09e-02 1.77e-02 | 1.92e-02 2.02e-02 3.05e-03  1.09e-02 2.04e-03  5.90e-03
Tree-CaOC 3.61e-04  4.70e-04 1.92e-04 2.86e-04 4.73e-03  1.02e-02 5.56e-03  1.05e-02 1.16e-03  1.60e-03 1.10e-03  1.47e-03
c1 Tree-Occ 3.66e-04 5.30e-04 | 1.69e-04 2.52e-04 9.20e-03  1.32e-02 9.88e-03  1.21e-02 1.10e-03  1.50e-03 1.05e-03  1.39e-03
IG-Tree-CaOC 3.04e-04  3.48e-04 2.26e-04 3.09e-04 9.55e-03  1.30e-02 9.51e-03  1.27e-02 1.54e-03  1.83e-03 1.46e-03  1.66e-03
IG-Tree-Occ 3.10e-04 3.61e-04 | 2.11e-04 3.05e-04  1.69e-02 1.56e-02 | 1.63e-02 1.40e-02 1.52e-03  1.72e-03 1.46e-03  1.58e-03
TreeB-CaOC 2.16e-04  2.91e-04 1.26e-04 2.26¢-04 8.92¢-03  1.90e-02 1.12¢-02  2.09e-02 7.20e-04  1.08e-03 6.76e-04  9.63e-04
Cc2 TreeB-Occ 2.26e-04 3.32e-04 1.03e-04 1.81e-04 1.14e-02 2.06e-02 | 1.15e-02  2.00e-02 5.83e-04  8.19e-04 5.13e-04  7.27e-04

BP-TreeB-CaOC [J5I288508) 3.59¢-02 1.81e-02 3.87e-01 3.52e-01 7.37e-02 [JIEIOEE02) 5.15¢-02
BP-TreeB-Occ  8.64e-04 1.60c-02 | 1.18e-03  8.90e-03 4.34e-01 4.14e-01 | 4.51e-03 | 3.43¢-02 [ 3.25e-03 | 2.35¢-02

In the PIR experiments (Table 2), C2, particularly BP-TreeB-CaOC, achieved the highest average PIR
values, with Occlusion and XRAI also performing well. These methods demonstrated strong region
specificity, enhancing the impact of occluded pixels. However, it is also important to consider the method’s
stability across different images, indicated by a smaller PIR standard deviation (std). While C2 presented
higher PIR, C1 showed greater consistency (smaller std).

Inclusion of important regions: Additional experimentation was conducted to demonstrate a method’s
capability to identify an image region with sufficient information for the original class. The goal of this
experiment is to determine whether the selected important region, when the only one left unoccluded in the
image, can maintain the classification in its expected class. This experiment elucidates the critical role of
these identified regions, providing strong evidence that they indeed contain essential information for accurate
classification. We occluded all regions in the images except for the one selected by each method. We
then calculated the percentage of images that changed class. The results are presented in Table 3. Lower
percentages indicate better performance, as they mean that a smaller percentage of images changed class,
demonstrating that the chosen regions were sufficient to preserve the class for most of the images.

Table 3 demonstrates that both LIME and our configurations (C1, C2) effectively identify regions that
describe a class. However, BP-TreeB-Occ outperformed LIME, with fewer images changing class, indicating
it provides more essential information for class attribution. Additional insights include: Occlusion com-
bined with our methodology yields superior local explanations, and “model”-based segmentation enhances
explanation fidelity. Overall, our method outperformed traditional xAI baselines, including LIME, which still
delivered consistently good results.

SIC/AIC for hierarchy evaluation: As explained in Section 4, the hierarchy of our explanation is
combined by summing up importance regions values. Therefore, to select different hierarchies it suffices to
filter by different scores. In this line, we evaluate our methodology by imposing different thresholds for the
explanations. Inspired by the metrics Softmax Information Curve (SIC) and Accuracy Information Curve
(AIC) proposed by Kapishnikov et al. (2019) we calculated the Softmax and Accuracy curves by including
only selected image regions as model input. To preserve the original data distribution, we integrated these
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Table 3: Percentage of images with the original class changed after the inclusion (exclusively) of this same
regions. We test two configurations of our methodology (C1 and C2 — other configurations in Supplementary
Materials) against five region-based baseline methods, Occlusion, Grad-CAM, LIME, Ms-IV, and XRAI, in
two architectures, VGG-16 and ResNet18, and datasets, Cat vs. Dog, CIFAR10, and ImageNet. We expect
lower when the region in included. We compare each method to the best configuration (BP-TreeB-Occ)
showing the p-score in brackets (Mcnemar test).

% of images Cat vs. Dog Cifar10 Imagenet
VGG ResNet VGG ResNet VGG | ResNet
Occlusion 0.47 (0.0) 0.50 (0.0) 0.89 (0.0) 0.89 (0.0) | 0.99 (0.0)  0.99 (0.0)
Grad-CAM 0.51 (0.0)  0.30 (2.35-5) 0.86 (0.0) 0.0 (0.0) | 0.99 (0.0) | 0.87 (0.0)
B LIME 0.16 (2.02-10)  0.30 (6.44-5) JOEEANOMHNIOHON(26229))| 0.93 (0.0)  0.95 (0.0)
Ms-IV 0.20 (3.11-14) 0.54 (0.0) 0.78 (0.0) 0.81 (0.0) | 0.88 (0.0) 0.92 (0.0)
XRAI 0.32 (0.0) | 0.41 (2.03-14) |  0.70 (0.0) 0.74 (0.0) | 0.96 (0.0)  0.97 (0.0)
Tree-CaOC 0.26 (0.0)  0.32 (3.54-7) 0.80 (0.0) 0.85 (0.0) | 0.96 (0.0)  0.97 (0.0)
i Tree-Occ 0.17 (0.0) 0.23 (0.0)  0.54 (0.0) 0.61 (0.0) | 0.90 (0.0) 0.91 (0.0)
IG-Tree-CaOC 0.41 (8.12-11 0.43 (0.05) 0.84 (0.0) 0.83 (0.0) | 0.98 (0.0)  0.99 (0.0)
IG-Tree-Occ 0.19 (1.37-12) 0.42 (0.0) = 0.68 (0.0) 0.69 (0.0) | 0.92 (0.0) 0.93 (0.0)
TreeB-CaOC 0.16 (1.8-9) 0.22 (0.15) 0.79 (0.0) 0.81 (0.0) | 0.95 (0.0)  0.96 (0.0)
o TreeB-Occ 0.11 (0.0) 0.19 (8.44-7) 0.72 (0.0) 0.74 (0.0)
| BP-TreeB-CaOC 0.38 (3.7-5)  0.28 (0.79)  0.87 (0.02) 0.97 (0.0)  0.98 (0.0)

BP-TreeB-Occ  [IIN00E] 0.18

important regions back into a blurred version of the original image (details in A.5). The regions were selected
based on thresholds of 0.5%, 1%, 2%, 3%, 4%, 5%, 7%, 10%, 13%, 21%, 34%, 50%, and 75% percent, representing
the most significant region values according to each evaluated xAI method. These thresholds, represented
on the x-axis, indicate the percentage of important regions required to affect accuracy and class activations.
Figure 6 shows the results for 1,000 randomly selected images for AIC (due to time consumption restrictions —
time analysis in A.5) from the ImageNet dataset and VGG16 model, with additional results for ResNet18
and the Cat vs. Dog dataset provided in A.5.

— LIME, AUC=0.671
XRAI, AUC=0.691
m— Grad-CAM, AUC=0.490
Ms-IV, AUC=0.565
Occlusion, AUC=0.579
TreeB-Occ, AUC=0.473
m— TreeW-Occ, AUC=0.490
m——_BP-TreeB-Occ, AUC=0.800
— |G-TreeW-Occ, AUC=0.564
s TreeB-CaOC, AUC=0.600
TreeW-CaOC, AUC=0.562
= BP-TreeB-CaOC, AUC=0.887
1G-TreeW-Ca0OC, AUC=0.583

— LIME, AUC=0.761
XRAI, AUC=0.780
m— Grad-CAM, AUC=0.608
Ms-IV, AUC=0.660
Occlusion, AUC=0.699
TreeB-Occ, AUC=0.598
m— TreeW-Occ, AUC=0.614
mm— BP-TreeB-Occ, AUC=0.859
m— |G-TreeW-Occ, AUC=0.668
s TreeB-CaOC, AUC=0.678
TreeW-CaOC, AUC=0.647
m— BP-TreeB-CaOC, AUC=0.903
1GTreeW-Ca0C, AUC=0.660

a) : " ) u i N b)

Figure 6: Softmax (a) and Accuracy (b) when including regions filtered by different percentage thresholds of
most important scores. We evaluate each threshold as a hierarchy level in eight configurations of zAiTrees
(C1 and C2), in a bottom-up approach (from smaller highly important regions to the bigger structures). We
compare these configurations to the baselines: LIME, XRAI, Grad-CAM, Ms-1V, and Occlusion, by filtering
the maps using the same threshold. The curves are averaged across 1,000 randomly selected images from
Imagenet dataset. AUC values are included in the graphs. BP-TreeB-Occ and BP-TreeB-CaOC considerably
surpassed the other curves. However, we notice a good early behavior of the methods except for Grad-CAM,
Ms-IV and Occlusion.

Based on Figure 6, the methods BP-TreeB-CaOC, BP-TreeB-Occ, XRAI, and LIME achieved the highest
AUC scores, in that order. When considering more restrictive levels of the hierarchy (using 0.5% and
1.0% thresholds), most methods—except for Grad-CAM, Ms-IV, and Occlusion—performed well. 2AiTrees
configurations, along with LIME and XRAI, effectively identified the most important regions, with C2
slightly outperforming C1. However, C2’s greater variation in PIR results (Table 2) suggested that it
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Is the explanation interpretable?

Cat vs. Dog classification @

Model

_—

Bias 3: all cats appear with humans

Bias 3 explanation

(i) Detection: it is not a cat!
(ii) Identification:it is the human!
What is important?

No Bias: it is a cat!

Unknown: explanaition not clear

Figure 7: The objective of this qualitative experiment is to evaluate the interpretability of the methods
under biased conditions. We ask participants to identify what appears to be the important part in each
explanation, and we categorize their responses as follows: (i) the participant detected the presence of a bias,
(ii) the participant identified the bias, (iii) the bias was not detected, or (iv) the explanation was unclear
(unknown).

often highlighted larger regions, diluting per-pixel impact. To support qualitative experiments and simplify
human analysis, we chose the C1 group to minimize region size. For human analysis, we did not filter the
explanations, but we indicated the hierarchy levels by region brightness, making distinctions clear.

5.2 Qualitative analysis

As qualitative experiments, we want to visually evaluate the explanations for different interpretability tasks.
In this section, we perform experiments to (i) identify reasons for misclassification of images, and (ii) evaluate
explanations through the human interpretation of biased-trained networks.

Comparison of misclassified images: We searched for examples that were misclassified by models (VGG-16
and Resnet18) trained on ImageNet (Deng et al., 2009). Figure 2 shows the explanations generated by
Integrated Gradients, Grad-CAM, Occlusion, LIME, and Tree-Occ (500 pixels minimal region) of six images
incorrectly classified. In Figure 2, the first column displays classes (such as chime, fence, dishwasher, among
others) alongside examples of misclassified images. These images should have been classified as cat or dog.
We then apply methods used in previous quantitative comparisons to generate visual explanations for why
these images were misclassified. The figure illustrates that methods like Integrated Gradients, Grad-CAM,
and Occlusion (Occ) may cause confusion in precisely identifying what caused the misclassification and
may lead to poor human interpretation (we properly evaluate this in next experiment Human evaluation
in bias analysis). Although LIME and our proposed Tree-Occ method can pinpoint interesting regions,
the Tree-Occ method better illustrates the motivation behind misclassified results, as evident in the last
column. For instance, in the fence example, it highlights the diamond pattern found on fences, while in the
dishwasher example, it focuses solely on the sink region, disregarding the cat. Considering the hierarchical
characteristic of our methodology, we can perform a deeper analysis of the explanations by selecting regions
by the percentage of importance to be visualized. Examples in A.G.

Human evaluation in bias analysis: As previously mentioned, we used the configuration C1 for human-
interpretation evaluation (Figure 7). We trained three Resnet18 models subjected to data bias: (a) Bias 1 —
a model trained with dogs and only cats on cushions; (b) Bias 2 — a model with cats and only dogs with
grids; (c) Bias 3 — and a model with dogs and only cats with humans (details of validation accuracy and
visualizations in A.G). We presented the same five image visualizations (from corrected classified images by
the biased class) for the baseline methods and the methods from C1. We intended to verify if: (i) humans
can detect the wrong focus given based on a class prediction (Detection); and (ii) humans can recognize
which was the cause of the bias (Identification).

To test (i) and (ii), for each Bias (a,b, or ¢) type we produce for each of the xAI methods an explanation
image. By presenting five image explanations (the same images) for each of the xAI methodologies, we asked
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volunteers, based on the explanations provided, what they think the highlighted regions referred to (generated
explanations and extra experiments in A.().

Table 4: Human evaluation assessed bias detection and identification using five image explanations from
biased datasets: (1) dogs with only cats on cushions, (2) cats with only dogs on grids, and (3) dogs with only
cats and humans. Metrics included bias detection (Detection (i)), bias identification (Identification (ii)),
misunderstanding of explanations (Not identified), and focus on animals (Animal). Higher detection and
identification rates were desired, with lower misunderstanding rates. Concept-aware methods like Ms-1V,
ACE, and Tree-CaOC performed better, with Tree-CaOC using human-based segmentation achieving the
best results across all biased datasets.

IG Grad-CAM Occ LIME Ms-IV ACE Tree-Occ Tree-CaOC IG-Tree-Occ IG-Tree-CaOC
Detection (i) | 244 0.0 31.7 146 3817 00 195 12.5 0.0
Bias 1 | Identification (ii) | 12.2 0.0 97 73[146 00 2.4 0.0 0.0
No bias 415 97.6 317 488 414 70.0  56.1 26.3 52.5 87.5
Unknown 34.1 24 366 366 268 300 244 26.3 35.0 12.5
Detection (i) 7.3 0.0 00 73 244 58150 56.4 42.1 29.2
Bias 2 | Identification (ii) | 2.4 0.0 00 73 195 43.9  41.0 34.2 26.8
No bias 81.1 100.0 866 61.0 488 24 128 105 23.7 34.1
Unknown 12.2 0.0 171 31.7 268 39.0 308 31.6 34.2 36.6
Detection (i) | 35.0 171 43.9 [51.2 293 938  41.1 50.0
Bias 3 | Identification (ii) | 19.5 122 324 36.6 171 49 103 -—225-
No bias 29.3 708 293 49 244 269 7.7 5.2 2.5 2.5
Unknown 36.6 122 268 439 463 634 513 385 475 425

Table 4 presents the results of evaluating 41 individuals from diverse continents (South America, Europe, and
Asia), fields (Human, Biological, and Exact sciences), and levels of Al expertise (ranging from no knowledge
to expert, with over half being non-experts). We show some participants’ statistics in A.6. The experiment
aims to identify effective methods for revealing trained-with biases. For each xAI method (IG, Grad-CAM,
Oce, LIME, Ms-IV, ACE, Tree-Occ, Tree-CaOC, IG-Tree-Oce, IG-Tree-CaOC) used to explain biases (1,
2, and 3), we show the percentage of participants who detected, identified, or did not identify the bias in
the explanation. Detection indicates perceiving the xAI explanation as either background or reflecting the
bias, while Identification denotes successful interpretation of the explanation as the induced bias. Not
Identification refers to being unable to interpret the explanation. Higher percentages in the Identification
row are desirable. If not, we prioritize high values in the Detection row. Lower values in the Not Identification
or Animal rows indicate clearer human interpretation of our trained-with bias.

Table 4 shows that IG and Grad-CAM struggled with interpretability, leading to many Not identified or
Animal responses, indicating unclear explanations for imposed biases. Methods leveraging contextual or
global explanations, such as Ms-1V, ACE, Tree-CaOC, and IG-Tree-CaOC, achieved better detection and
identification results due to their global approach to model knowledge. However, this was not always enough
for humans to provide a complete interpretation of the model’s knowledge. Tree-CaOC, combining global
metrics (CaOC) and human-based segmentation, consistently achieved the best results for all three Bias
categories, highlighting its superiority in enhancing human interpretability.

6 Limitations

The computational time is a limitation when using time-expensive methods to attribute region scores, such
as LIME. We show the time comparison including the baseline methods in A.5 Table 15. That is why we
limited our analysis to Tree-Occ and Tree-CaOC.

The analysis was limited to a specific task and dataset: classification of cats and dogs. Applying the method
to other tasks, such as representation learning, or to different modalities, such as text, requires adaptations,
which are discussed in Section A.7.

The proposed version of zAiTrees framework is dependent on the base methods used. Therefore, by using an
edge-based segmentation method, we will not obtain a semantic-based explanation, ¢.e., the final technique
will inherit the limitations of the base methods. Future works will be focused on semantic segmentation.
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7 Conclusion

In this paper, we present a framework, zAiTrees, aimed at integrating multiscale region importance in
model predictions, providing more faithful and interpretable explanations. Our approach outperforms
traditional xAT methods like LIME, especially in identifying impactful and precise regions, in datasets such
as Cat vs. Dog, CIFAR-10, and ImageNet. Qualitative analysis demonstrates that our Tree-Occ method
better elucidates misclassification motivations and provides clearer, hierarchical interpretations of model
predictions. Techniques like Tree-CaOC, merging global-aware metrics with human-based segmentation, excel
in detection and identification tasks, achieving superior results in human interpretability. In summary, our
framework delivers highly interpretable and faithful model explanations, significantly aiding in bias detection
and identification, and demonstrating its effectiveness in the field of explainable AI. Therefore, potentially
aiding to reduce the societal negative impact that could be generated by deep learning models in high-risk
decision-making process.

Reproducibility Statement

We release the code at https://github.com/CarolMazini/reasoning_with_trees/ and detail our experi-
mental setup and disclose all hyperparameters in the Appendix.
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A Appendix

A.1 A. Segmentation techniques

As an important step for our framework, we employ segmentation techniques so we can decompose images,
based on specific attributes, into more interpretable structures, enabling better human understanding and
interpretation. We specifically employ hierarchical segmentation techniques due to their capability to
decompose images into multiple levels of detail, mirroring how humans naturally perceive objects: initially
observing the overall structure before delving into the finer details.
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Figure 8: An example of a hierarchical segmentation tree, where the root represents the entire image and
each subsequent level recursively divides it into an increasing number of subregions, reaching the leaf nodes
that correspond to individual pixels.

Trees: A tree is an acyclic graph, consisting of nodes that connect to zero or more other nodes. It starts with
a “root” node that branches out to other nodes, ending in “leaves” with no children. In image representation,
the root node represents the entire image, and each leaf represents a pixel, resulting in as many leaves as
pixels. The structure between the root and leaves groups pixels into clusters at each level based on similarity
metrics, with each level abstracting the one below. Using a segmentation tree, we can make cuts at various
levels to obtain different numbers and sizes of segmented regions. We present an example in Figure 8.

Binary Partition Tree (BPT): A Binary Partition Tree (BPT) is a data structure in which each node
represents a region of the image. Similarly, the tree starts with a root node representing the entire image and
branches out through a series of binary splits until reaching the leaf nodes, representing the individual pixels.
Different from the tree, in which a node could have multiple splits, in the BPT each split, divides a region
into two smaller sub-regions based on a criterion.

Watershed: This algorithm (Cousty et al., 2008) constructs a hierarchical segmentation tree based on a
minimum-spanning forest rooted in the local minima of an edge-weighted graph. In this context, local minima
are points in the graph where the surrounding edge weights are higher, representing the lowest values in
their neighborhood. These minima serve as starting points for the segmentation. The algorithm iteratively
merges regions beginning from these local minima, guided by the edge weights that indicate dissimilarity
between adjacent pixels. By progressively combining these regions, the algorithm builds the segmentation
tree, effectively capturing the hierarchical structure of the image.

16



Published in Transactions on Machine Learning Research (01/2026)

Figure 9: Explanation obtained using Tree-LIME — zA¢Trees combined to LIME instead of occlusion to score
regions. We show here the adaptability of the framework to different xAI techniques. Due to the high time
consumption of Tree-LIME (A.5 Table 15), we present some preliminary results in A.7.

A.2 B. Occlusion-based metrics:

Here, we discuss the metrics used to generate our segmentation based on the model explainability (block B
in Figure 3). We present two metrics: (i) Occlusion, which is the impact of occluding an image region on its
classification output, and (ii) CaOC which is the intra-class impact of occluding an image region. For (i), we
assess how the output of a model changes when an image region is occluded. For (ii), we employ a sliding
metric that ranks images based on the highest activations for a given class. We then measure the movement
in this ranking after occluding a region of the image, determining the intra-class impact of the occlusion.

Occlusion: Let us say we have a model = producing an output out; for an image Z;. By concealing portions
of this image, creating a new image Ii., we obtain a different model output outi.. The significance of the
occluded area concerning a particular class c is assessed by comparing the outputs:

out; . — out:C . (1)

If there is a significant difference, it indicates that the model strongly relies on this region for class activation,
meaning that these regions have a high impact on the model’s decision.

CAOC: In the Ms-IV method, introduced by Rodrigues et al. (Rodrigues et al., 2024), CaOC employs
rankings to assess how occlusions affect the model’s output space. A ranking is a sequence of objects ordered
according to a specific criterion, from the object most aligned with it to the least aligned. Suppose the
criterion is to maximize class c. In that case, the first index ¢ in this sequence represents the object (in our
case, the image Z;) with the highest activation for class ¢ in the output out;. If we define a function argsort
to obtain the indices of an ordered sequence of objects, we can derive the sequence of image indices that
maximize class c: Seq, = argsort (out_, decreasing), with out_ . the vector of outputs for class ¢ of a set of

input images (Ii)ie[LNb]m] .

CaOC computes an initial ranking Seq, for a subset of images DS’ C DS, and then a subsequent rank-
ing Seq., after occluding one region of image Z; € DS’. The significance of this occluded image region
for the model is determined by the difference in the positions of this image in the rankings given by
|positi0n (Seqi7c,Ii) — position (Seq;’c, 7;) ’ .

This metric aims to assess the impact of occluding image regions not only against the original output out;
but also against the outputs of a range of images. Incorporating the model’s output space into the analysis
ensures that explanations consider the broader context (global model’s behavior). Hence, we can characterize
it as globally aware, even when explaining a single sample.

Although the main experimentation uses these methods, we present in A.7 a framework’s variation using
LIME to show zAiTrees versatility with other types of xAl techniques. Explanations example in Figure 9.
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A.3 Tested framework’s configuration

We tested four different sizes of minimal region for filtering the initial segmentation. For Cat vs. Dog and
ImageNet datasets: 200, 300, 400, and 500 pixels. For CIFAR-10: 4, 16, 32 and 64 pixels.

For the model-based segmentation and datasets Cat vs. Dog and CIFAR10, we tested four xAl techniques to
generation the initial graph G on Figure 3: Integrated Gradients (IG), Guided-Backpropagation (BP), Input
X Gradient (I X G), and Saliency (S). Given the number of images (time of computation), for ImageNet
dataset we tested only Integrated Gradients (IG), Guided-Backpropagation (BP).

We tested three algorithms to construct the hierarchical segmentation: Binary Partition Tree (BPT),
Watershed with Area, and Watershed with Volume.

We tested two different occlusion based metrics to obtain the impact of regions used to shape the hierarchical
tree: CaOC and OCC.

When we refer to Tree-CaOC or TreeW-CaOC, we mean the human-based segmentation (edges’ map)
using Watershed area and CaOC as occlusion metric. When we refer to IG-Tree-Occ or IG-TreeW-Occ,
we mean the model-based segmentation (using Integrated Gradients (IG) attributions) using Watershed area
and Occ (simple occlusion — Equation (1)) as occlusion metric. When we refer to BP-TreeB-Occ, we mean
the model-based segmentation (using Guided Backpropagation (BP) attributions) using BPT and Occ as
occlusion metric.

A.4 Parameters of the baseline methods

For Grad-CAM method, we used the last convolutional layer of each architecture with layer Grad-CAM from
captum framework. For Occlusion (from Captum framework) we used, for Cat vs. Dog and ImageNet, step
of 3x7x7 and sliding window of 3x14x14. Since CIFARI10 is much smaller, the step was 3x2x2 and sliding
window of 3x4x4. For LIME, we used the standard configuration for Cat vs. Dog and ImageNet (Quickshift
kernel size of 4) and, Quickshift kernel size of 2 for CIFAR10. All the other methods followed the standard
configuration. For Ms-IV, we used the original configuration from the paper (Rodrigues et al., 2024). For
XRAI, we used the original implementation (Kapishnikov et al.; 2019) of the fast version.

A.5 Quantitative evaluations

Models’ description: Table 5 shows the number of images in train and validation sets for Cat vs. Dog
and CIFAR10 datasets. We also include the train and validation accuracies for the models ResNet18 and
VGG-16 used in the quantitative evaluations.

Cat vs. Dog models were trained with initial weights from ImageNet, learning rate le — 7, cross-entropy loss,
the Adam optimizer, and early stop in 20 epochs of non-improving validation loss.

CIFAR10 models were adapted to receive 32x32 input images, and they were trained with initial weights
from ImageNet, learning rate le — 2, cross-entropy loss and the stochastic gradient descent optimizer (code
from Phan (2021)).

The ImageNet models used the pre-trained weights from the PyTorch implementation.

Table 5: Number of images and accuracy on train and validation sets for ResNet18 and VGG-16 models. We
train the models with two different dataset: Cat vs. Dog and CIFAR10.

Train Val.
Num. images Acc. (%) | Num. images Acc. (%)
ResNetl18 98.21 97.86
Cat vs. Dog ‘ VGG-16 19,891 99.04 5,109 98.61
ResNet18 99.56 92.53
CIFARI10 { VGG-16 50,000 99.84 10,000 93.54
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Table 6: Percentage of images with the original class changed after the exclusion of selected explanation
regions for Cat vs. Dog dataset. Highlighted in blue are the configurations presented in the main paper. We
tested hierarchies constructed by filtering out smaller regions than 200, 300, 400 and 500 pixels, segmentation
based on Edges, Integrated Gradients (IG), Guided-Backpropagation (BP), Input X Gradients (I X G) and
Saliency. We tested three different strategies to for the first hierarchical segmentation: BPT, watershed with
area attribute, and watershed with volume attribute. Same column shows images maintaining the original
class when the output was reduced, and Total is the sum of class change (Ch.) and class reduction (Same).

Cat vs. Dog
VGG ResNet
Edges I1G BP IXG Saliency Edges IG BP IXG Saliency

[Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same | Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same

CaOC 0.35 0.39 0.32 0.15  0.56 0.32 0.26 0.12  0.46 0.38 | 0.27 0.42  0.12 0.29 0.39 0.39 0.10 0.21 0.28 0.43
Occ 0.51 0.44 0.33 0.23  0.63 0.35 0.27 0.19 0.64 0.35 | 0.41 0.52  0.17 0.34  0.55 0.37 0.13 0.30 0.39 0.55
CaOC 0.15 0.48 0.23 0.45 0.21 0.46 0.22 0.46 0.15 0.49 | 0.20 0.44 0.18 0.45 0.16 0.50 0.17 0.46 0.17 0.46
Occ 0.30 0.66 0.42 0.55 0.41 0.56 0.42 0.55 0.31 0.62 | 0.34 0.61 0.31 0.63 0.32 0.64 0.30 0.63 0.31 0.63
CaOC 0.18 0.48 0.16 0.49 0.12 0.46 0.18 047 0.13 0.50 | 0.18 0.44  0.17 0.46 0.12 049 0.17 0.45 0.18 0.45
Occ  0.33 0.64 0.33 0.61 031 0.64 037 0.57  0.32 0.63 | 0.33 0.62  0.29 0.65  0.25 0.69  0.30 0.65  0.32 0.64
CaOC 0.36 0.38  0.22 0.07  0.56 0.30 0.17 0.07  0.46 0.38 | 0.28 041 0.07 0.19 0.39 0.37  0.06 0.13  0.30 0.41
Occ 0.50 0.46 0.23 0.13  0.61 0.34 0.17 0.11  0.58 0.41 | 0.41 0.53  0.09 0.27 0.48 0.39 0.07 0.20 0.38 0.53
CaOC 0.16 0.49 0.25 0.43 0.22 045 0.24 0.46 0.15 0.50 | 0.20 0.42  0.20 0.44 0.17 047 0.18 0.47 0.19 0.45
Occ  0.30 0.65 0.43 0.53  0.42 0.55 0.42 0.55 0.31 0.63 | 0.35 0.59  0.30 0.63 0.32 0.62  0.30 0.63 0.31 0.62
CaOC 0.17 0.51 0.18 0.49 0.15 0.43 0.19 0.48 0.14 0.51 | 0.20 0.41 0.18 0.44 0.12 0.48 0.18 0.45 0.18 0.44
Occ 0.32 0.63 0.34 0.60 0.30 0.64 0.36 0.57  0.32 0.61 | 0.34 0.61 0.29 0.64 0.26 0.69 0.30 0.64 0.32 0.63
CaOC 0.36 0.39 0.15 0.05 0.51 0.29 0.10 0.05 0.43 0.40 | 0.29 042 0.04 0.16  0.35 0.37  0.04 0.11  0.29 0.41
Occ 0.47 0.48 0.15 0.09 0.54 0.37 0.10 0.08 0.51 0.47 | 0.41 0.52  0.06 0.23  0.42 0.39  0.05 0.14  0.36 0.55
CaOC 0.16 0.49 0.26 0.46  0.25 0.43 0.24 0.46 0.17 0.50 | 0.21 0.41  0.20 0.44 0.18 0.46  0.20 0.46 0.21 0.42
Occ  0.30 0.64 0.43 0.53 0.42 0.54  0.42 0.55 0.31 0.62 | 0.34 0.61  0.32 0.61 0.32 0.61  0.30 0.63  0.31 0.63
CaOC 0.18 0.49 0.20 047 0.16 0.45 0.22 045 0.16 0.50 | 0.21 0.40 0.19 0.45 0.13 047 0.19 0.42  0.20 0.44
Occ 0.33 0.63  0.35 0.60 0.30 0.64 0.38 0.57  0.31 0.62 | 0.34 0.61  0.30 0.64 0.25 0.69 0.29 0.63  0.33 0.63
CaOC 0.35 0.40 0.11 0.04 045 0.29 0.07 0.03  0.40 0.42 | 0.30 0.41  0.04 0.13  0.31 0.34  0.04 0.11  0.29 0.42
Occ 045 0.49 0.2 0.06 0.49 0.36  0.07 0.04 047 0.49 | 0.41 0.51  0.04 0.17  0.38 0.38 0.04 0.11 037 0.54
CaOC 0.16 0.48 0.29 0.46  0.26 0.42  0.25 0.47 0.18 0.48 | 0.22 0.41 0.21 0.45 0.20 0.46  0.20 0.46 0.21 0.42
Occ 0.31 0.63 0.43 0.54 0.41 0.55 0.41 0.54 0.31 0.63 | 0.35 0.60 0.32 0.61 0.34 0.61 0.30 0.62 0.30 0.66
CaOC 0.19 0.48 0.20 047 0.16 0.44 0.22 045 0.18 0.51 | 0.22 0.39  0.20 0.46 0.14 047 0.18 0.43 0.22 0.43
Occ 0.33 0.63 0.34 0.61 0.29 0.66 0.38 0.56  0.32 0.60 | 0.33 0.61  0.30 0.64 0.25 0.68 0.29 0.64 0.32 0.63

% of images

BPT

200 ‘Watershed area

Watershed volume

BPT

300 ‘Watershed area

Watershed volume

BPT

400 ‘Watershed area

‘Watershed volume

BPT

500 ‘Watershed area

Watershed volume

Exclusion of important regions: Given that each region-based explainable AI (xAI) method identifies
important regions in an image to explain the prediction of a model, we performed occlusion of these regions
to measure the impact of each selection and evaluate the methods.

Except for LIME, which proposes a ranking of the most important image segments, the methods we used as a
baseline provide values for measuring the importance of pixels, which in visualization is similar to regions or
segmentation for humans. However, if we select all the positive importance values provided by these methods,
we are likely to cover a large part of the image. By selecting regions with only the top 25% higher values, we
reduce the size of the mask. In fact, different datasets and models will show different visualization behaviors,
so we chose to define a high threshold that is fixed (not specific to a single dataset) and common to all
methods in order to have a fair comparison. Therefore, for methods that assign scores to regions, we masked
the 25% highest scores.

We present, in Tables 6, 7, and 8, the complete experiments of different configurations of our framework for
the datasets Cat vs. Dog, CIFAR10, and ImageNet respectively.

PIR values: To address the issue of unhelpful explanations resulting from methods selecting the entire
image as important, potentially leading to class changes upon occlusion, we introduce a novel metric termed
Pixel Impact Rate (PIR). The idea of PIR is to evaluate the impact per pixel/per image:

OUti,classiorig - OUti.,classiorig
PIR(exp;) = 2
(exp;) num_ pizels_exp 2)

where exp; is the explanation or image 4, out; ciass orig is the original logit corresponding to the analyzed

class, out™

iclass_orig 1 the logit after the perturbation, and num_ pizels exp is the number of occluded
pixels.

This metric quantifies the impact on class activation per occluded pixel. Complementing the percentage of
class change, PIR distinguishes whether changes are primarily caused by complete or near-complete occlusion
of the image. Higher PIR values indicate that each occluded pixel has a significant average impact, suggesting
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Table 7: Percentage of images with the original class changed after the exclusion of selected explanation
regions for CIFAR10 dataset. Highlighted in blue are the configurations presented in the main paper. We
tested hierarchies constructed by filtering out smaller regions than 4, 16, 32 and 64 pixels, segmentation
based on Edges, Integrated Gradients (IG), Guided-Backpropagation (BP), Input X Gradients (I X G) and
Saliency. We tested three different strategies to for the first hierarchical segmentation: BPT, watershed with
area attribute, and watershed with volume attribute. Same column shows images maintaining the original
class when the output was reduced, and Total is the sum of class change (Ch.) and class reduction (Same).

CIFAR10
VGG ResNet
Edges 1G BP IXG Saliency Edges IG BP IXG Saliency
Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same | Ch. Same Ch. Same Ch. Same Ch. Same Ch. Same
CaOC | 0.15 0.26 0.08 0.34  0.09 0.34 0.06 0.34 0.18 0.37 | 0.17 0.31  0.09 0.40 0.11 0.39 0.08 0.40 0.19 0.42
Occ 0.81 0.12 091 0.08 0.88 0.10 0.91 0.07 0.85 0.14 | 0.76 0.17 0.83 0.13  0.80 0.16 0.82 0.14 0.81 0.18
CaOC | 0.16 0.34 027 0.32  0.27 0.33 027 0.33  0.26 0.33 | 0.18 0.40 0.24 0.37 024 0.37 0.25 0.37 025 0.36
Occ 0.72 022 0.74 0.23 0.75 022 0.76 022 0.73 0.24 | 0.70 0.25 0.74 024 0.73 0.25 0.76 023 0.74 0.25
CaOC | 0.16 0.34  0.26 0.33  0.27 0.33  0.26 0.34 0.26 0.34 | 0.18 0.40 0.24 0.37  0.23 0.38 0.25 0.37  0.24 0.37
Occ 0.73 0.21 0.73 0.24  0.72 0.25 0.75 0.23  0.72 0.25 | 0.71 0.24  0.74 0.25 0.72 0.26 0.75 0.23  0.74 0.25

% of images

BPT

4 ‘Watershed area

‘Watershed volume

BPT CaOC | 0.08 0.11  0.07 0.11  0.09 0.17  0.05 0.09 0.18 0.31 | 0.12 0.12  0.09 0.14 0.11 0.20 0.07 0.11  0.21 0.38

Occ 0.55 0.09 0.70 0.07 0.78 0.10 0.63 0.06 0.79 0.17 | 0.55 0.09 0.64 0.09 0.69 0.13  0.57 0.09 0.76 0.21

16 Watershed area CaOC | 0.16 0.33  0.22 0.35 0.22 0.35 0.22 0.35 0.22 0.35 | 0.18 0.39 0.25 0.38 023 0.39 0.25 0.37 0.25 0.37
Occ 0.71 0.21 0.75 0.22  0.75 0.22  0.76 0.21 0.72 0.24 | 0.70 0.24 0.75 024 0.74 0.25 0.76 023 0.74 0.24

Watershed volume CaOC | 0.16 0.33  0.22 0.35 0.21 0.36 023 0.34 0.22 0.35 | 0.19 0.39 0.24 0.38 0.22 0.40  0.26 0.37 025 0.37
Occ 0.72 021 0.73 0.24 0.72 024 0.75 022 0.72 024 | 0.71 0.24 0.74 024 0.71 0.27  0.75 023 0.74 0.24

CaOC | 0.03 0.03  0.04 0.04 0.07 0.09 0.03 0.03 0.16 0.17 | 0.07 0.05 0.07 0.05 0.10 0.11  0.06 0.04 0.18 0.22

P Occ 0.39 0.03  0.44 0.05 0.62 0.09 0.40 0.03  0.70 0.15 | 0.40 0.04 0.44 0.05 0.56 0.09 0.38 0.05 0.70 0.18

CaOC | 0.15 0.28 0.21 0.36  0.19 0.37  0.20 0.36  0.21 0.35 | 0.18 0.34 0.23 0.40 0.21 0.41 0.23 0.40 0.23 0.40
Occ 0.69 0.20 0.75 022 0.74 022 0.75 0.21 0.72 0.24 | 0.68 022 0.74 0.23 0.73 0.25 0.75 0.23 0.73 0.25
CaOC | 0.16 0.29 0.20 0.36  0.19 0.37  0.20 0.36  0.21 0.35 | 0.18 0.34 0.23 0.40 0.21 0.41 0.23 0.40 0.23 0.40
Occ 0.70 0.20 0.72 0.24 0.70 0.25 0.74 022 0.72 0.24 | 0.69 022 0.73 0.25 0.69 0.28 0.75 0.23 0.73 0.25
CaOC | 0.01 0.00 0.02 0.01  0.04 0.04 0.01 0.01  0.07 0.05 | 0.04 0.02 0.05 0.02 0.08 0.05 0.04 0.02 0.11 0.08
Occ 0.25 0.00 0.23 0.02 0.42 0.05 0.19 0.01  0.50 0.06 | 0.27 0.02 0.25 0.02 0.38 0.05 0.21 0.02 0.53 0.07
CaOC | 0.12 0.16 0.20 0.29 0.18 0.27  0.20 0.28 0.22 0.30 | 0.15 0.19 0.23 0.33 0.21 0.34 0.22 0.34 022 0.36
Occ 0.60 0.15 0.73 0.21 0.73 0.21 0.75 0.20 0.70 0.23 | 0.60 0.15 0.73 022 0.72 0.23 0.74 022 0.70 0.25
CaOC | 0.12 0.16  0.19 0.31 0.18 0.30 0.20 029 0.21 0.28 | 0.15 0.18 0.22 0.36 0.21 0.37 0.22 0.35 0.22 0.34
Occ 0.60 0.14  0.71 0.22  0.68 023 0.73 0.21  0.70 0.22 | 0.60 0.15 0.71 0.24  0.67 0.27 0.73 0.23 0.71 0.24

32 Watershed area

‘Watershed volume

BPT

64 Watershed area

‘Watershed volume

that concealing larger portions or the entire image leads to lower PIR, indicating less precision in the concealed
area.

Tables 9, 10, and 11 display for each network, and tested configurations of our framework, the average (avg)
and standard deviation (std) of PIR, for the datasets Cat vs. Dog, CIFAR10, and ImageNet respectively.

Inclusion of important regions: Additional experimentation was conducted to demonstrate a method’s
capability to identify an image region with sufficient information for the original class. The goal of this
experiment is to determine whether the selected important region, when the only one left unoccluded in the
image, can maintain the classification in its expected class. This experiment elucidates the critical role of
these identified regions, providing strong evidence that they indeed contain essential information for accurate
classification. We occluded all regions in the images except for the one selected by each method. We then
calculated the percentage of images that changed class. We present the results from the three datasets, Cat
vs. Dog, CIFAR10, and ImageNet, and all the tested framework configurations in Tables 12, 13, and 14,
respectively. Lower percentages indicate better performance, meaning that a smaller percentage of images
changed class, demonstrating that the chosen regions were sufficient to preserve the class for most of the
images.

SIC and AIC for hierarchy evaluation: Inspired by the metrics Softmax Information Curve (SIC) and
Accuracy Information Curve (AIC) proposed by Kapishnikov et al. (2019) we calculated the Softmax and
Accuracy curves by including only selected image regions as model input. We used the parameters from
the original paper: maintaining 10% of the original pixels and using linear interpolation to generate the
blur. We used the thresholds of 0.5%, 1%, 2%, 3%, 4%, 5%, 7%, 10%, 13%, 21%, 34%, 50%, and 75% percent,
representing the most significant region values according to each evaluated xAI method. Instead of using the
image entropy values as the x-axis we used the thresholds. Figure 10 presents the curves for the mean of
1,000 randomly selected ImageNet images, and Figure 11 presents the results for 512 analyzed images from
the Cat vs. Dog dataset.
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Table 8: Percentage of images with the original class changed after the exclusion of selected explanation
regions for Imagenet dataset. Highlighted in blue are the configurations presented in the main paper. We
tested hierarchies constructed by filtering out smaller regions than 200, 300, 400 and 500 pixels, segmentation
based on Edges, Integrated Gradients (IG), and Guided-Backpropagation (BP). We tested three different
strategies to for the first hierarchical segmentation: BPT, watershed with area attribute, and watershed with
volume attribute. Same column shows images maintaining the original class when the output was reduced,
and Total is the sum of class change (Ch.) and class reduction (Same).

Imagenet
VGG ResNet
Edges 1G BP Edges 1G BP
Ch. Same Ch. Same Ch. Same | Ch. Same Ch. Same Ch. Same
CaOC | 0.23 0.49 0.00 0.02 0.11 0.36 | 0.25 0.44 0.01 0.04 0.10 0.31
Occ 0.57 0.38 0.35 0.01 0.71 0.16 | 0.60 0.35 0.50 0.02 0.74 0.13
CaOC | 0.26 0.51 0.27 0.51 0.27 0.51 | 0.27 0.45 0.31 0.45 0.30 0.45
Occ 0.42 0.55 0.44 0.54 0.45 0.52 | 0.48 0.50 0.50 0.47 0.52 0.46
CaOC | 0.26 0.51 0.26 0.51 0.25 0.52 | 0.28 0.46 0.31 0.44 0.28 0.46
Occ 0.44 0.54 0.39 0.59 0.38 0.60 | 0.49 049 047 0.51 045 0.53
CaOC | 0.22 0.46  0.00 0.01 0.10 0.30 | 0.24 042 0.01 0.02 0.09 0.25
Occ 0.55 0.38 0.20 0.01 0.64 0.17 | 0.58 0.35 0.32 0.01 0.65 0.13
CaOC | 0.24 0.51 0.27 0.52 0.26 0.51 | 0.27 045 0.31 0.45 0.29 0.45
Occ 0.41 0.56 0.43 0.54 0.44 0.53 | 0.46 0.51 0.50 0.48 0.51 0.46
CaOC | 0.24 0.51 0.26 0.52 0.25 0.52 | 0.27 0.46 0.30 0.45 0.28 0.46
Occ 0.42 0.54 0.38 0.59 0.37 0.61 | 0.47 0.49 0.46 0.51 043 0.54
CaOC | 0.21 0.42 0.00 0.01 0.09 0.25 | 0.23 0.38 0.00 0.02 0.08 0.21
Occ 0.54 0.37 0.13 0.00 0.58 0.16 | 0.57 0.34 0.22 0.01 0.59 0.13
CaOC | 0.24 0.51 0.26 0.52 0.25 0.52 | 0.26 0.46 0.31 0.46 0.29 0.46
Occ 0.40 0.56 0.43 0.54 0.44 0.53 | 0.45 0.51 0.49 0.48 0.50 0.47
CaOC | 0.24 0.51 0.25 0.52 0.24 0.52 | 0.26 0.46 0.30 0.46 0.27 0.46
Occ 0.42 0.54 0.38 0.59 0.36 0.61 | 0.46 0.50 0.45 0.52  0.42 0.55
CaOC | 0.21 0.38 0.09 0.00 0.08 0.22 | 0.22 0.35 0.16 0.01 0.07 0.18
Occ 0.52 0.35 0.00 0.01 0.53 0.16 | 0.55 0.33  0.00 0.01 0.53 0.12
CaOC | 0.23 0.51 0.26 0.52 0.25 0.52 | 0.26 0.46 0.30 0.46 0.29 0.46
Occ 0.40 0.56 0.43 0.53 0.44 0.53 | 0.44 0.51 0.48 0.48 0.50 0.47
CaOC | 0.23 0.51 0.25 0.52 0.24 0.53 | 0.26 0.46 0.29 0.46 0.27 0.47
Occ 0.41 0.54 0.37 0.59 0.36 0.60 | 0.46 0.50 0.44 0.52  0.42 0.55

% of images

BPT

200 ‘Watershed area

‘Watershed volume

BPT

300 ‘Watershed area

‘Watershed volume

BPT

400 ‘Watershed area

‘Watershed volume

BPT

500 ‘Watershed area

‘Watershed volume
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Table 12: Percentage of images with the original class changed after the inclusion (exclusively) of selected
explanation regions for Cat vs. Dog dataset. Highlighted in blue are the configurations presented in the main
paper. We tested hierarchies constructed by filtering out smaller regions than 200, 300, 400 and 500 pixels,
segmentation based on Edges, Integrated Gradients (IG), Guided-Backpropagation (BP), Input X Gradients
(I X G) and Saliency. We tested three different strategies to for the first hierarchical segmentation: BPT,
watershed with area attribute, and watershed with volume attribute. We expect smaller rate values of class
change.

Cat vs. Dog

% of images VGG ResNet
Edges IG BP IX G Saliency | Edges IG BP IX G Saliency
BPT CaOC 0.16 0.49 038  0.49 037 | 022 045 028  0.47 0.35
Occ 011 0.18 004 024 0.11 019 040 018  0.43 0.31
CaOC 0.30 045 039  0.46 042 | 034 047 043 045 0.49
B R Gehe s Occ 022 022 026 024 0.31 0.30 049 041 0.49 0.52
Watorshed volume | C20C 0.27 044 043 050 045 | 034 047 049  0.46 0.50
Occ 0.24 030 036 028 029 | 030 050 046 047 0.50
BPT CaOC 019 049 037 049 036 | 022 049 028 049 0.30
Occ 010 027 005  0.35 010 | 017 046 022 048 0.25
CaOC 0.30 043 039 044 043 | 033 046 040  0.44 0.47
- [ NESEEELE R 018 020 025 024 029 | 024 046 040  0.43 0.47
Watershed volume | C2OC 0.28 045 043 045 045 | 031 046 046 045 0.46
Occ 021 029 034 027 029 | 025 049 045 045 0.45
BPT CaOC 021 049 039 049 036 | 022 050 020 050 0.29
Occ 010 0.34 007  0.40 0.11 018 048 025  0.49 0.27
Ca0C 026 041 038 044 042 | 031 047 038 044 0.46
| viElesies| e Occ 017 019 021 0.22 0.29 0.24 043 036  0.40 0.45
Watershed volume | C20C 027 044 043 046 045 | 033 047 043 047 0.46
Occ 019 026 030 028 028 | 022 047 041 0.44 0.43
BPT CaOC 0.20 0.49 041 0.49 0.35 | 022 050 0.31 0.50 0.29
Occ 0.08 0.38 0.11 0.43 012 | 016 049 029  0.50 0.26
CaOC 0.26 041 037 044 0.41 0.32 043 035 041 0.46
S| REEelt e Occ 017 019 022 0.22 0.28 0.23 042 0.32 0.40 0.42
Watorshed volume | C20C 0.25 045 042  0.44 042 | 032 044 042 045 0.45
Occ 019 028 0.31 0.26 029 | 022 045 037  0.42 0.41
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Table 13: Percentage of images with the original class changed after the inclusion (exclusively) of selected
explanation regions for CIFAR10 dataset. Highlighted in blue are the configurations presented in the main
paper. We tested hierarchies constructed by filtering out smaller regions than 4, 16, 32 and 64 pixels,
segmentation based on Edges, Integrated Gradients (IG), Guided-Backpropagation (BP), Input X Gradients
(I X G) and Saliency. We tested three different strategies to for the first hierarchical segmentation: BPT,
watershed with area attribute, and watershed with volume attribute. We expect smaller rate values of class
change.

CIFAR10

% of images VGG ResNet
Edges IG BP IX G Saliency | Edges IG BP I X G Saliency
BPT CaOC 0.79 0.86 0.87 0.87 0.86 0.81 0.86 0.86 0.87 0.86
Occ 044 0.38 0.45 0.30 0.66 0.561 0.46 0.53 0.41 0.70
4 Watershed area CaOC 0.80 0.89 0.88 0.89 0.88 0.83 0.88 0.87 0.88 0.88
Occ 0.55 0.81 0.81 0.81 0.81 0.59 0.81 0.79 0.80 0.80
Watershed volume CaOC 0.80 0.89 0.88 0.89 0.88 0.83 0.88 0.88 0.88 0.88
Occ 0.53 0.82 0.82 0.81 0.80 0.58 0.81 0.80 0.81 0.79
BPT CaOC 0.83 0.85 0.86 0.87 0.83 0.86 0.86 0.85 0.87 0.83
Occ 0.54 0.41 0.43 0.44 0.60 0.61 0.51 0.54 0.54 0.63
16 Watershed area CaOC 0.80 0.87 0.87 0.87 0.87 0.83 0.87 0.86 0.87 0.87
Occ 0.54 0.77 0.76 0.77 0.77 0.59 0.78 0.76 0.77 0.77
Watershed volume CaOC 0.80 0.87 0.87 0.87 0.86 0.83 0.87 0.87 0.87 0.86
Occ 0.563 0.78 0.78 0.77 0.76 0.58 0.78 0.77 0.77 0.76
BPT CaOC 0.87 0.87 0.87 0.88 0.83 0.89 0.88 0.85 0.89 0.81
Occ 0.62 0.59 0.52 0.62 0.61 0.68 0.64 0.60 0.68 0.62
392 Watershed area CaOC 0.80 0.85 0.85 0.86 0.85 0.83 0.85 0.85 0.86 0.86
Occ 0.563 0.73 0.73 0.73 0.74 0.59 0.74 0.72 0.74 0.74
Watershed volume CaOC 0.79 0.86 0.85 0.86 0.85 0.83 0.85 0.85 0.86 0.85
Occ 0.52 0.75 0.75 0.74 0.72 0.58 0.75 0.75 0.75 0.73
BPT CaOC 0.89 0.89 0.88 0.89 0.86 0.90 0.89 0.87 0.90 0.86
Occ 0.71 0.74 0.66 0.77 0.67 0.75 0.77 0.72 0.79 0.69
64 Watershed area CaOC 0.80 0.84 0.83 0.85 0.83 0.85 0.83 0.82 0.84 0.83
Occ 0.564 0.68 0.67 0.68 0.71 0.61 0.69 0.67 0.68 0.71
Watershed volume CaOC 0.80 0.84 0.84 0.85 0.83 0.84 0.83 0.83 0.83 0.83
Occ 0.54 0.71 0.73 0.70 0.69 0.61 0.71 0.72 0.70 0.69
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Table 14: Percentage of images with the original class changed after the inclusion (exclusively) of selected
explanation regions for Imagenet dataset. Highlighted in blue are the configurations presented in the main
paper. We tested hierarchies constructed by filtering out smaller regions than 200, 300, 400 and 500 pixels,
segmentation based on Edges, Integrated Gradients (IG), and Guided-Backpropagation (BP). We tested
three different strategies to for the first hierarchical segmentation: BPT, watershed with area attribute, and
watershed with volume attribute. We expect smaller rate values of class change.

Imagenet

% of images VGG ResNet
Edges IG BP | Edges IG BP
BPT CaOC 0.95 1.00 0.97 0.96 1.00 0.98
Occ 072 0.69 0.51 0.74 057 0.50
CaOC 0.98 0.99 0.98 0.98 0.99 0.99
B Occ 0.92 093 091 0.93 094 0.90
CaOC 0.98 0.99 0.9 0.98 0.99 0.99
it Y Occ 091 097 097 0.92 096 0.96
BPT CaOC 0.94 1.00 0.97 0.95 1.00 0.98
Occ 072 082 0.55 0.74 0.72 0.55
CaOC 0.97 098 0.98 0.98 0.99 0.98
o etesled A Occ 0.92 093 0.90 0.92 094 0.90
CaOC 0.97 0.99 0.9 0.97 0.99 0.9
etizsbedl solune. 091 0.96 0.96 091 0.96 0.96
BPT CaOC 094 1.00 0.97 0.95 1.00 0.98
Occ 0.73 0.88 0.59 0.75 0.81 0.60
CaOC 0.97 098 0.97 0.97 0.99 0.98
L | e Eres Occ 0.91 093 0.90 0.92 093 0.89
CaOC 0.97 0.99 0.98 0.97 0.99 0.9
e o 0.90 096 0.96 0.91 096 0.96
BPT CaOC 0.94 092 0.8 0.94 086 0.98
Occ 0.74 1.00 0.63 0.75 1.00 0.63
CaOC 0.96 098 0.97 0.97 0.99 0.98
| Vietenaied e Occ 0.90 0.92 0.89 091 0.93 0.89
CaOC 0.96 098 0.98 0.97 0.99 0.98
el velane RO 0.89 0.96 0.96 0.90 0.96 0.96
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Figure 10: Softmax (a,c) and Accuracy (b,d) when including regions filtered by different percentage thresholds
of most important scores, for VGG16 (a,b) and ResNet-18 (c,d) models. We evaluate each threshold as a
hierarchy level in eight configurations of zAiTrees (C1 and C2), in a bottom-up approach (from smaller
highly important regions to the bigger structures). We compare these configurations to the baselines: LIME,
XRAI, Grad-CAM, Ms-1V, and Occlusion, by filtering the maps using the same threshold. The curves
are an aggregation by the average of 1,000 randomly selected images from Imagenet dataset. AUC values
are included in the graphs. BP-TreeB-Occ and BP-TreeB-CaOC considerably surpassed the other curves.
However, we notice a good early behavior of the methods except for Grad-CAM, Ms-IV and Occlusion.
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Figure 11: Softmax (a,c) and Accuracy (b,d) when including regions filtered by different percentage thresholds
of most important scores, for VGG16 (a,b) and ResNet-18 (c,d) models. We evaluate each threshold as a
hierarchy level in eight configurations of xAiTrees (C1 and C2), in a bottom-up approach (from smaller
highly important regions to the bigger structures). We compare these configurations to the baselines: LIME,
XRAI, Grad-CAM, Ms-1V, and Occlusion, by filtering the maps using the same threshold. The curves are an
aggregation by the average of 512 images from Cat vs. Dog dataset. AUC values are included in the graphs.
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Time analysis: Table 15 shows the execution times to explain an image (averaged from 100 randomly
selected cat vs. dog images). Tree-Occ is a much faster option for providing explanations than SOTA methods
such as XRAI. However, the execution time of the xAiTrees framework is related to the choice of scoring
method used to assign importance to regions (CaOC, Occ, or LIME), therefore methods such as LIME that
take more time to generate explanations will increase the time of xAiTrees, as shown in the Tree-LIME
example.

Table 15: Execution times to explain an image (averaged from 100 randomly selected cat vs. dog images).

Mea'n time LIME XRAI Grad-CAM Oce. Ms-IV TreeB BP-TreeB TreeW IG-TreeW
100 images Occ Occ Occ Occ
vVGe Mean 7.87 11.97 0.009 6.65 0.27 0.60 0.65 0.76 1.31
Avg. 0.82 1.25 0.0002 2.47 0.03 0.08 0.09 0.10 0.08
ResNet Mean 5.64 10.19 0.007 3.41 0.17 0.50 0.57 0.58 0.84
Avg. 0.40 1.36 0.0002 0.03 0.07 0.06 0.05 0.06 0.07
TreeB BP-TreeB TreeW IG-TreeW TreeB BP-TreeB TreeW IG-TreeW
CaOC CaOC CaOC CaOC LIME LIME LIME LIME
N eTe] Mean 0.71 0.81 0.87 1.53 31.91 41.07 49.96 54.98 -
Avg. 0.11 0.11 0.13 0.10 7.56 8.24 11.11 3.25 -
ResNet Mean 0.60 0.68 0.73 1.04 19.44 27.01 31.58 44.46 -
Avg. 0.08 0.08 0.10 0.07 4.75 3.99 6.99 2.90 -
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A.6 Qualitative analysis

Models’ description: Table 16 shows the number of images in the train set for three Cat vs. Dog ResNet18
biased models. For Bias 1 the biased class is composed of only cats on top of cushions. For Bias 2 the
biased class is composed of only dogs next to grades. For Bias 3 the biased class is composed of only cats
with humans. We also include the accuracy percentage per class when predicting a non-biased validation set
composed by 5,109 images.

The biased models were trained with initial weights from Imagenet, learning rate 5e — 7, cross-entropy loss,
the Adam optimizer, and early stop in 20 epochs of non-improving validation loss.

Table 16: Number of images (for a normal and an induced biased class) for training three biased ResNet18
models. We also present the accuracy of the models when predicting each class image from a non-biased
validation dataset (5,109 images).

Acc. orig. val Acc. orig. val

Normal class Bias class

normal (%) bias (%)
Bias 1 138 86.91 69 84.82
Bias 2 85 97.97 56 37.81
Bias 3 161 86.28 46 80.96

Comparison of misclassified images: Considering the hierarchical characteristic of our methodology, we
can perform a deeper analysis of the explanations by selecting regions by the percentage of importance to be
visualized, as shown in Figure 12. In the last level of the dishwasher example, the model seems to focus on
the cat’s dish after having focused on the sink (in the previous level).
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Figure 12: Different visualization levels on the explanation hierarchy. We illustrate a deeper analysis of the
explanations of four images from Figure 2 using Tree-Occ (minimal region size of 500 pixels). We can note the
evolution of the importance in the images’ shapes, for examples: in the hamper image, although the hamper
is the most important, the cat has also an important that disappears at the more selective level (Tree-Occ
0.75); in the dishwasher the initial explanations show the sink as important but at the most selective level,
the cat’s dish is the only one remaining. This analysis can be helpful to understand the reasoning behind
predictions.
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Human evaluation in bias analysis: As mentioned on the paper, we used the configuration C1 for
human-interpretation evaluation compared to baseline techniques: 1G, Grad-CAM, OCC, LIME, Ms-1V, ACE.
We presented the same five image visualizations (from corrected classified images by the biased class) for the
baseline methods and the methods from C1.

The idea was to analyze the impact of the visualizations on people from different backgrounds. We limited
ourselves to people over the age of 18 and recorded their self-identification as expert, non-expert, field of
expertise, and country. We show some statistics of each group of 41 people that participated in our evaluation.

Expertise areas:

o 48.8% of people from computer science;

e 17.1% of people from human sciences;

19.5% of people from life sciences;

9.8% of people from exact sciences (not in Computer Science);

e 4.9% of people from none of the above.
Graduate degree:

e 20.0% of PhDs;
e 32.5% of Masters;
e 30.0% of Bachelor’s degree;

e 17.5% of High school diploma.
AT expertise:

e 22.0% None;

36.6% Basic;

e 9.8% Intermediate;
e 7.3% Advanced;

o 24.4% Expert (working with AT).

We intended to verify if: (i) humans can detect the wrong focus given based on a class prediction (Detection);
and (ii) humans can recognize which was the cause of the bias (Identification).

To test (i) and (ii), for each Bias type we produce for each of the xAI methods an explanation image. By
presenting five image explanations (the same images) for each of the xAI methodologies, we asked volunteers,
based on the explanations provided, what did they think the highlighted regions referred to. The five image
explanations are presented in Figure 13 for each Bias type (1-(a), 2-(b), and 3-(c)).
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Here, we  display the text provided to the volunteers for  this  experiment:
[FORM] Part I - Determining the focus of the images: For each question, we provide two rows of
images:

e The first row displays the original images, each representing a specific class.

e The second row showcases an image for each image from the first row, highlighting the important
parts for the class.

[IMPORTANT] What is a class?

A class refers to a category or type of object, animal, or characteristic depicted in the images. For instance, a
class of cat images would include images featuring cats, while a class of dog images would comprise images
featuring dogs. Similarly, a class of cartoon images would include images characterized by cartoon-like
features. In essence, a class represents a distinct category used to classify and organize images based on their
content or characteristics.

Throughout the questions, our objective is to identify the common important parts present in the images of
the first row, as indicated by the corresponding images in the second row.

If no common important parts are identified for most of the images, the answer should be Not identified.

And for each method visualization:

For the following three questions, the second row of images displays significant image components to the
class of the animal.

What are the significant components of the images highlighted, as depicted in the second row of images?

To test ACE similarly as we did with the other methods, we highlight the top five concepts found (described
as sufficient in the original ACE paper (Ghorbani et al., 2019)) in the same five selected images. However, we
also show the visualizations of the ten most activated images for the top five found concepts in Figure 14.

In our final qualitative experiment, using the same methods as the previous human evaluation, we
presented four image explanation visualizations for non-biased models to determine xAI model prefer-
ences. The images are presented in Figure 15. We presented the following explanation and question:
[FORM] Part II: Choosing the best representation:

For the next questions, you will be asked to answer which image number do you prefer to describe the class
we indicate.

You should choose the image that seems to highlight class features in an easier way to understand.

Which image do you think better shows representative parts of the animal?

For the two first images (Figures 15 (a) and (b)), over 70% preferred Tree-Occ and Tree-CaOC over others.
For the third image (Figure 15 (c)), IG was preferred by 26.5%, followed by Tree-OCC and Occlusion with
20.6%. Grad-CAM was preferred in the fourth image (Figure 15 (d)), with 60.6%, followed by Tree-CaOC
with 18.2%. The visualizations suggest a preference for explanations that highlight the complete concept (cat
or dog) rather than focusing on specific small animals’ regions.

33



Published in Transactions on Machine Learning Research (01/2026)

Original

Eﬂ%ﬂﬁ

[[]

Grad-CAM

ACE

Tree-Occ Tree-MsIV

1G-
Tree-Occ Tree-MsIV

1G-

(a) Cushions

Original

IG

Ms-IV LIME Occ Grad-CAM

ACE

Tree-Occ Tree-Msly 1ree-Occ Tree-MsIV

(¢) Humans

Figure 13: Explanations of visualizations used on our human-based evaluations for bias detection and
identification, of all the ten compared methods: 1G, Grad-CAM, OCC, LIME, Ms-1V, ACE, Tree-MsIV,
Tree-Occ, IG-Tree-Msiv, and IG-Tree-Occ. We showed the same five image explanations for all the methods.
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Figure 14: Original explanations of the top 5 concepts generated by ACE for the three biased models. Instead
of showing the 10 most concepts’ activated images we draw these five top concepts on the 5 selected images
from Figure 13 to have a fairer comparison with the other methods.

A.7 Possible adaptations of the framework

Regarding the adaptability of the framework for using other xAI methods to score regions, we present
in Table 17 preliminary results of the exclusion of important regions experiment (Section 5 and A.5) by
using LIME in the place of Occlusion and CaOC. The results demonstrate Tree-LIME improves the class
change under important regions’ occlusion for the Cat vs. Dog dataset (compared to Table 1). We also
show two image explanations generated by Tree-LIME in Figure 16. We do not include this variation in all
the experiments due to the time consumption (Table 15). However, these preliminary results demonstrate
Tree-LIME can increase the class change (Ch.) reaching higher percentages than the best configuration
presented in the main paper.

Regarding the adaptability of the framework to other tasks such as learning representations, one suggestion
would be calculating the distance between the two learned representations (original and after occlusion) to
attribute regions’ scores instead of verifying the logits different as in classification tasks. The type of distance
applied should be tested. A more sophisticated evaluation of impact (scoring the hierarchy regions) would be
to include a network to quantify the quality of the representation for the task at hand.
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Figure 15: Explanations of visualizations used on our human-based evaluations for preference analysis, of all
the ten compared methods: 1G, Grad-CAM, OCC, LIME, Ms-1V, ACE, Tree-MsIV, Tree-Occ, 1G-Tree-Msiv,
and IG-Tree-Occ. We showed the same five image explanations for all the methods.
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Table 17: Percentage of images with the original class changed after the exclusion of selected explanation
regions. We tested TreeW, IG-TreeW, TreeB, and BP-TreeB combined to LIME (instead of using occlusion
to score regions) in two architectures, VGG-16 and ResNet18, for the Cat vs. Dog dataset. We compare
the results of the four configurations to the best configuration using Occlusion (BP-TreeB-Occ) showing the
p-score in brackets (Mcnemar test). We expect a higher percentage of class change (Ch.) when the region
is excluded. Same column shows images maintaining the original class when the output was reduced, and
Total is the sum of class change (Ch.) and class reduction (Same).

Cat vs. Dog
% of images VGG ResNet

Ch. Same Total Ch. Same Total

TreeW-LIME 0.34 (0.0) 0.64 (0.0) 0.98 | 0.43 (1.2-4) 0.56 (7.2-10) 0.98
IG-TreeW-LIME | 0.45 (2.2-9) 0.54 (2.7-10) 0.99 | 0.43 (2.0-4) 0.55 (2.5-9) 0.98
TreeB -LIME 0.42 (0.01) 0.98 0.35 (0.34) 0.99
BP-TreeB-LIME 0.29 (2.7-10) 0.99 0.21 (2.5-9) 0.98
BP-TreeB-Occ 0.35 0.98 0.37 0.92

Figure 16: Examples of Tree-LIME demonstrating the adaptability of xAiTrees framework.

Concerning other modalities, such as text as input, we could consider a tokenization process as the segmentation.
A first idea would be to define a tokenization algorithm that can learn merge rules and use them to construct
the segmentation tree. Each node in this tree can be considered a segment. Another idea would be to use
grammar rules to define parts of a sentence, such as nouns, verbs, and declinations. However, this approach
would be focused on a specific language.
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