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Abstract: Shared autonomy is an enabling technology that provides users with
control authority over robots that would otherwise be difficult if not impossible to
directly control. Yet, standard methods make assumptions that limit their adop-
tion in practice—for example, prior knowledge of the user’s goals or the objective
(i.e., reward) function that they wish to optimize, knowledge of the user’s policy,
or query-level access to the user during training. Diffusion-based approaches to
shared autonomy do not make such assumptions and instead only require access to
demonstrations of desired behaviors, while allowing the user to maintain control
authority. However, these advantages have come at the expense of high computa-
tional complexity, which has made real-time shared autonomy all but impossible.
To overcome this limitation, we propose Consistency Shared Autonomy (CSA), a
shared autonomy framework that employs a consistency model-based formulation
of diffusion. Key to CSA is that it employs the distilled probability flow of ordi-
nary differential equations (PF ODE) to generate high-fidelity samples in a single
step. This results in inference speeds significantly than what is possible with previ-
ous diffusion-based approaches to shared autonomy, enabling real-time assistance
in complex domains with only a single function evaluation. Further, by interven-
ing on flawed actions at intermediate states of the PF ODE, CSA enables varying
levels of assistance. We evaluate CSA on a variety of challenging simulated and
real-world robot control problems, demonstrating significant improvements over
state-of-the-art methods both in terms of task performance and computational ef-
ficiency. Our code is available at https://ripl.github.io/CSA-website
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1 Introduction
Shared autonomy is a collaborative control paradigm where a human operator and an autonomous
agent jointly control a robotic system to achieve common objectives [1, 2, 3, 4, 5]. By complement-
ing human intuition with machine precision, shared autonomy enhances performance, ensures safety,
and reduces operator workload. This is particularly valuable in complex control scenarios where it
enables a human pilot to provide high-level input while the robotic copilot autonomously manages
low-level motion corrections to maintain safety and operational efficiency [6, 7, 8, 9, 10, 11].

Traditionally, shared autonomy algorithms have assumed the existence of a fixed set of known goals
from which the user’s goal is be inferred at test time based on their input [12, 13, 14, 15]. While
effective in some settings, these approaches struggle in unstructured and semi-structured settings
where the space of goals is not well defined. Recent advancements in generative modeling, particu-
larly diffusion probabilistic models that have revolutionized domains such as image, audio, and 3D
generation [16, 17, 18, 19, 20, 21, 22, 23, 24], offer a promising avenue to address these challenges
by framing shared autonomy as sampling from a learned distribution over actions [25, 1, 26].

In shared autonomy specifically, diffusion-based methods have demonstrated effectiveness in sta-
bilizing user actions without explicit assumptions regarding the goal space. For instance, Yoneda
et al. [1] introduced partial diffusion with noise injection to maintain user intention, and Yin et al.
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Figure 1: A visualization of the result of using our proposed Consistency Shared Autonomy (CSA)
algorithm in comparison to the state-of-the-art DDPM-based shared autonomy baseline on three
challenging control tasks.

[27] utilized motion gradients as denoising guidance for context-rich manipulation tasks. However,
deploying diffusion models in real-time robotics applications remains challenging due to the com-
putational cost of the diffusion process. Diffusion-denoising probabilistic models (DDPMs) [16]
solve a reverse-time stochastic differential equation (SDE) through a denoising process, however
this process typically requires hundreds of steps. This can lead to high time complexity for gen-
eration/inference, which precludes real-time deployment. Further, DDPMs employed for shared
autonomy are prone to generating samples that may ignore information provided by the user. Thus,
real-time shared autonomy faster generative methods that respect the user’s input.

Consistency models (CM) [28] have emerged as a compelling solution to these concerns. Rather than
iteratively removing noise as in traditional diffusion models, CM directly learns a denoising function
to “jump” efficiently to high-quality results. Leveraging a pretrained ordinary differential equation
(ODE)-based probability flow from EDM models [18], CM effectively distills the complex ODE
flow into rapid, one-step (or few-step) generative processes without sacrificing fidelity. Empirical
successes in image synthesis demonstrate the resulting improvements in efficiency. Notably, Song
et al. [28] demonstrates state-of-the-art image generation performance using significantly fewer sam-
pling iterations compared to standard diffusion methods. Similarly, consistency policies applied in
robotic planning have achieved inference speeds up to 100 times faster than traditional DDPM-based
approaches while maintaining competitive performance [29, 25].

Motivated by the use of partial diffusion as a means of balancing user control with task perfor-
mance [1, 30] and the computational efficiency of ODE-based distillation methods [28], we propose
the Consistency Model for Shared Autonomy (CSA, illustrated in Fig. 1). Unlike contemporary
shared autonomy methods, CSA provides accelerated inference, ensures proximity to nearest ex-
pert actions, and requires minimal training data. We evaluate CSA on a series of simulated and
real-world control tasks, demonstrating its improvements over the previous state-of-the-art.

2 Related Work
Early approaches to shared autonomy assumed prior knowledge of the user’s goal [31, 32] or that it
could be explicitly inferred from user input [33, 12, 13, 14, 15]. Reddy et al. [7] introduced model-
free deep reinforcement learning (RL) for shared autonomy, removing the requirement for known
environment dynamics; subsequent works further developed this approach [8, 34].

Diffusion model-based action planning has proven powerful in policy learning [25, 35, 29] as well
as shared autonomy. Yoneda et al. [1] propose a partial diffusion mechanism that adds noise to
the user’s action and then employs a partial reverse diffusion process to refine the action towards
the training distribution, thereby preserving the user’s intent (fidelity) while correcting the action
(conformity). However, in such an SDE-based model, the injection of fresh noise at each reverse step
is a double-edged sword: it increases diversity but can push the outcome into undesirable modes.
DexterityGen (DexGen) [27] takes a different approach, forgoing partial diffusion in favor of a user
motion promotion strategy to find a trajectory that aligns with the user’s intention.

2



Despite these advances, both of the above diffusion-based approaches (using either a DDPM or
DDIM formulation) are constrained by iterative inference. In contrast, CSA uses a one-step infer-
ence paradigm that enables microsecond-scale generation, requires only a small amount of training
data, does not rely on explicit user goal prediction, yet is performant in high-precision tasks.

Compared to the standard formulation of diffusion (e.g., DDPM [16]) discussed above, Denois-
ing Diffusion Implicit Models (DDiM) [17] recast the reverse process as a deterministic ordinary
differential equation (ODE). EDM [18] unifies SDE and ODE sampling through improved precon-
ditioning and step weighting. Notably, ODE-based sampling yields samples to their nearest neighbor
along the ideal denoising path, a guarantee that SDE-based diffusion lacks. However, aggressively
reducing the number of steps can still degrade output quality despite faster sampling.

Distillation techniques have been explored to further mitigate inference costs [36, 37]. These ap-
proaches typically involve training an ODE-based teacher model to generate detailed, high-quality
trajectories, followed by training a student model that learns to approximate these trajectories with
fewer intermediate steps. For instance, Consistency Models (CM), proposed by Song et al. [28],
leverage the inherent self-consistency of ODE trajectories. Given two distinct intermediate states
{xu, xv} along the same trajectory, the CM enforces predictions to converge to an identical clean
target x̂0. By optimizing this consistency, CMs facilitate rapid sampling in as few as one or several
inference steps, significantly improving efficiency without sacrificing generation quality.

3 Method

PF ODE Trajectory

Expert Data NoiseTeacher Model
g(an, n) ↦ ̂an−1

Student Model 
f(an, n) ↦ ̂a0

(at, t)
( ̂at−1, t − 1)

( ̂at−1 → ̂a0,0)

(at → ̂a0,0)

min ℒ( ̂at−1 → ̂a0, at → ̂a0)

au ∼ a0 + k ⋅ 𝒩(0,I)
au ≈ ak

ak
f(au, k) ↦ a0

Figure 2: Distillation of PF ODE flow: Select
two distinct states {at, at−1} along the same
trajectory, the CM enforces that predictions
converge to the same target â0.

Underlying our proposed method is the formula-
tion of shared autonomy as a generative process,
whereby we sample actions from a learned expert
distribution that are consistent with user’s latent in-
tent. Diffusion models provide a compelling way to
generate these samples since user-provided actions
can be thought of as noisy inputs that lie on the
trajectory swept via reverse diffusion (we refer the
reader to Appendix 7.1 for a discussion of probabil-
ity flow ODEs). This is the approach that we adopt
here. However, as we have previously discussed, the
computational cost of this reverse diffusion process
precludes real-time operation critical to shared au-
tonomy.

Rather than relying on many sequential denoising steps, CSA uses consistency-model distillation
to collapse the entire ODE-based diffusion trajectory into a single, efficient step. Concretely, we
first train a high-fidelity teacher diffusion model by solving the PF ODE iteratively, a process that
produces reliable samples but requires dozens or more solver steps. During distillation, we then
train a student model to learn a direct mapping from the teacher’s initial noisy input all the way to
its final clean output. In effect, the student “jumps” over the intermediate flow trajectory in one shot,
approximating the teacher’s multi-step refinement with a single forward pass (or very few steps)
while retaining comparable sample quality.

3.1 Training Phase
We train our CSA model by first integrating state prediction into the EDM framework to serve as a
teacher model. Subsequently, the consistency model (CM)–based denoiser CSA distills ODE-flow
knowledge from this teacher to perform one-step denoising, substantially accelerating inference.

Teacher Model Training data consists of state-action-next state transitions (s, a, sn), where s is
the current state, a is the expert action, and sn is the next state.

We preprocess the state into two conditions, cond1 = s and cond2 = sn−s
∥sn−s∥2

, where the latter mea-
sures the direction in which the state is changing as an indication of near-term user intent. During
training, we may condition solely on {cond1} or jointly on {cond1, cond2}. Following the EDM
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Figure 3: Training Process of EDM (teacher) model.
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Figure 4: Training Process of CSA (student) model.

framework, we employ the Karras sampler [18] to partition a noise schedule {σ0, . . . , σt}.1 At noise
step t, we obtain a perturbed action at by injecting noise σt · z, z ∼ N (0, 1). The hyperparameters
{cin, cout, cskip} are functions of the noise σt (Appendix 7.4). We use the joint conditional denoiser
D(·) to remove noise (Fig. 3). The model embeds all conditions {Cond1,Cond2, t} using the same
hidden dimension as the action embedding, sums them, and then passes them into a three-layer MLP
to predict the output O. Each layer incorporates conditioning embeddings via residual connections.

O = Fθ(cin · at, t, cond1,Optional(cond2)) (1a)
D = cout ·O + cskip · at (1b)

A learnable adaptive weighting model λ(·) is introduced to track the loss in EDM LEDM(θ) =
E(t,a,at|a)[dist(λ(σ

t), a,D(·))] , where

L = dist(λ(σt), a,D(·)) = eλ(σ
t) · ∥(a−D(cin, cout, cskip, a

t, t, cond1, cond2))∥2 − λ(σt) (2)

We use conditional loss and joint conditional loss to track the training metric of {cond1} and
{cond1, cond2} situation, during loss compute we drop out the Cond2 with a probability γ.

LEDM(θ) = (1− γ)Ljoint−cond + γLcond (3)

EDM model inference also employs a discretized numerical solver; as a result, its recursive process
remains slow.
Forward model At inference, the true next state sn cannot be observed without executing the
predicted action â. To overcome this, we concurrently train a forward model Φ(s, a) 7→ ŝn, imple-
mented as an MLP with normalization layers.
Student Model As visualized in Fig. 2, the distilling training strategy involves find-
ing two samples {ai, aj}, i, j ∈ {0, . . . , T} on the same PF ODE trajectory, learning
a student denoiser f(at, t, ot) 7→ â0, where ot denotes all other conditions including
{ctin, ctout, ctskip, cond1, cond2, σt}. We denote the process of denoising {ai, aj} as f(ai, i, oi) 7→
âi0, f(aj , j, oj) 7→ âj0. Since the trajectory is a deterministic ODE flow, they should trace back
to the same starting point. Then, we can formulate the objective as one of minimizing the distance
between them , i.e., minMSE(âi0, âj0).

1Throughout the paper, we use superscripts to denote diffusion steps. In Fig. 3, we label these as noise steps
(which are the same as diffusion time steps) to avoid ambiguity.
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Figure 6: Environment Setting

In practice, we choose i = j − 1 and use t and t− 1 in the following expression. The challenge lies
in sampling at and at−1 from the same flow. We start from expert action a0, inject noise σt · z to
get at. To get at−1 on the same flow we will use the teacher model g(·) (pretrained EDM denoiser)
with a Huen solver: g(at, t, ot) 7→ ât−1. The loss function can now be defined as:

LCSA(θ) = MSE
(
f(at, t, ot), f(ât−1, t− 1, ot−1)

)
(4)

3.2 Inference
Unlike previous methods [1, 29, 25], the inference phase of CSA does not start from Gaussian noise
nor inject noise to the user sample. Given the user’s action au, we assume au ∼ N (a, σt) where
t is a hyperparameter determines at which step of the ODE flow the user’s action corresponds to
(Fig. 5b). We define α = t

T which is controlling the amount of noise we assume, this regulates
the balance between the fidelity and the conformity of the generated actions. Using the pretrained
forward model, we can get a next state estimation based on user action au and current state s,
Φ(au, s) 7→ ŝn, providing a short term user intention. Process {s, ŝn} to {cond1, cond2} serve
as condition for CSA model. Then we will use One-step Sampler to partition the total noise into
T segments, choose noise step t and the noise level σt that matches au. Finally apply CM noiser
f(au, t, ot) 7→ â0 to finish the one step denosing. We refer to the model conditioned solely on
{cond1} as CSA, and the variant conditioned on {cond1, cond2} as CSA†. We show that CSA†

preserves the user’s intent and thereby broadens the effective inference “sweet spot.”

4 Experiments
We evaluate the performance of our proposed CSA model in simulation on a several continuous
control tasks as well as through real-robot experiments.

4.1 Evaluation Tasks

We consider the following four continuous control domains as a means of comparing CSA to a
contemporary DDPM-based baseline. Appendix 7.5 provides further experimental details.

(a) Lunar Lander: The Lunar Lander environment (Fig. 6a) is a two-dimensional, continuous-
control task adopted from Open AI Gym [38] that requires landing a spacecraft on a fixed landing
pad. An episode ends when it lands safely, crashes, drifts off course, or when the episode times out
after 1000 steps.
(b) Peg Insertion: Peg Insertion (Fig. 6b) tasks a robotic arm with inserting a 10 cm long, 2 cm
radius peg into a hole that affords only 1 cm of clearance. The poses of the peg and the target box
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are randomized at the start of each episode. Success is declared when the peg tip enters the hole
more than 1.5 cm; otherwise the episode terminates after 200 steps.
(c) Charger Plug Insertion: Charger Plug Insertion (Fig. 6c) tightens the tolerance further: a dual-
peg charger must slide into its receptacle with only 0.5 mm of clearance. The poses of the charger
and socket are randomized for each episode, and the agent again controls the end-effector using
compact kinematic and visual inputs. An episode is determined to be successful if the plug is
inserted within 5 mm and 0.2 radians of its target pose. Episodes are terminated upon success, when
there is a high-impact collision, or if they time out after 300 steps.
(d) Real Peg Insertion: Real Peg Insertion (Fig. 6d) is performed with a UR5 robot arm equipped
with a Robotiq 3-Finger gripper. The task involves inserting either a red square peg or a blue cylinder
peg into its corresponding hole, with clearance tolerances of 5 mm and 4.5 mm, respectively.
(e) Fluid Carrying: Real Robot Fluid Carrying (Fig. 6e) uses the same robotic setting as Real Peg
Insertion. The task aims to assist user to move a cup full with soybeans to one of the three potential
target based on user’s intent smoothly. Any spillage will consider as a failure case.

4.2 Data Collection

Training the assistive policy requires an oracle operator to provide expert transitions (st, at, st+1).
We use Soft Actor-Critic (SAC) [39] algorithm to train expert policy for Lunar Lander and Peg Inser-
tion, and Proximal Policy Optimization (PPO) [40] combined with curriculum learning (CL) to train
the expert for Charger Plug Insertion, relaxing the success check to 1.8 cm then gradually shrinking
down to 5 mm to get an expert for this high precision task [41]. After we get the expert policy,
we apply rejection sampling to collect transits only from successful episodes. All three simulation
experiments, regardless of hardness, are trained with 200K transitions. For the Real Peg Inser-
tion task, demonstrations are collected by experienced human teleoperators using a Meta Quest 3
VR controller. We collected 180 demonstrations for a total of 62K transitions in the same form
of (st, at, st+1). This process takes 1 hour with 2 operators. For Fluid Carrying task, we used a
scripted motion planner to collect 150 rollouts for a total of 90K transitions in around 50 minutes.

4.3 Surrogate Pilots

While CSA does not require access to a pilot (real or surrogate) for training, we use surrogate pilots
in order to scale the number of evaluations. Building off previous work [7, 8, 1], we define four
different surrogates noisy, laggy, noised, and slow as corrupted versions of an expert policy π.

Noisy (st, g) =

{
aet , if p ≥ ϵ
art , if p < ϵ

Laggy (st, g) =

{
aet , if p ≥ ϵ
aet−1, if p < ϵ

Noised (st, g) = aet + N(0, ϵ) Slow (st, g) = (1− ϵ) · aet

where ϵ ∈ [0, 1] is a flaw parameter that determines the amount of corruption, the subscript t is the
timestep (in episode), aet is an expert action, art is a random action, st is the state and g refers to
goal. We evaluate four surrogates under different flaw levels ϵ with 10 random seeds and 30 rollouts
each. We provide the parameter ϵ values in the Appendix 7.3 Table 4.

4.4 Evaluation Results

Simulation Result: Given that our method is a goal-excluded, state-conditional shared control
model, we compare against the SDE-based DDPM baseline of [1], adopting their forward diffusion
ratio as α to trade off fidelity and conformity. Figures 7 and 8 show that in the low-dimensional
Lunar Lander task, CSA achieves performance on par with the baseline, while in the higher-
dimensional Peg Insertion task , CSA substantially outperforms it—where the DDPM policy yields
under a 10% gain under noise.

In the high-precision Charger Plug Insertion task, we tested the DDPM baseline across ten noise
schedules (βmax∼Unif[0.01, 0.25]) and observed zero successful runs, underscoring its acute sen-
sitivity to schedule tuning and the associated computational cost. By contrast, CSA attains robust
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Figure 7: Lunar Lander Noised Simulation Result
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(b) CSA
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Figure 8: Peg Insertion Noisy Simulation Result
Actor Method Success Rate (%) ↑ Crash Rate (%) ↓ NFE Inference Time (ms) ↓

Laggy

Surrogate 40.00 ± 4.16 52.66 ± 4.92 – –
DDPM 75.67 ± 9.30 14.67 ± 6.32 24 13.62 ± 0.22
CSA 87.67 ± 5.89 6.67 ± 4.16 1 0.92 ± 0.04
CSA† 91.00 ± 3.87 5.00 ± 3.24 1 1.22 ± 0.30

Noisy

Surrogate 26.00 ± 6.44 6.67 ± 3.85 – –
DDPM 55.67 ± 7.86 4.67 ± 3.58 24 17.67 ± 1.49
CSA 85.00 ± 8.05 2.67 ± 3.44 1 1.79 ± 0.24
CSA† 89.00 ± 4.17 2.33 ± 2.25 1 2.03 ± 0.35

Noised

Surrogate 16.67 ± 8.46 0.00 ± 0.00 – –
DDPM 73.67 ± 10.71 10.43 ± 2.11 24 18.60 ± 1.51
CSA 94.33 ± 4.46 0.00 ± 0.00 1 1.94 ± 0.25
CSA† 94.67 ± 3.91 0.67 ± 1.41 1 1.82 ± 0.59

Slow

Surrogate 75.33 ± 7.57 18.33 ± 5.93 – –
DDPM 92.67 ± 4.09 3.00 ± 2.92 14 10.44 ± 0.07
CSA 80.33 ± 5.32 11.33 ± 6.13 1 1.72 ± 0.27
CSA† 79.00 ± 6.10 12.67 ± 6.81 1 1.77 ± 0.24

Table 1: Lunar Lander Performance

success across all tasks with a single hyperparameter setting, eliminating per–task noise tuning and
saving considerable time.

As detailed in Section 3.2, the CSA† variant further preserves user intent at large α by conditioning
on the predicted next state. In Fig. 7b, 7c and Fig. 8b, 8c, its success rate remains flat beyond the
optimal noise ratio, obviating the need for meticulous noise-ratio selection during inference.

Real Robot Result: We measure the effectiveness of our assistive policy through human user
experiments in the Real Peg Insertion environment and Fluid Carrying.

For Real Peg Insertion, we recruited 10 participants (6 identified as male, 3 as female, 1 prefer not
to say, with an average age of 25.9).2 We presented participants with two unidentified copilots, one
being our assistive policy CSA† and the other being direct teleoperation (i.e., no assistance). 3.

2None of the participants were co-authors or otherwise involved in this research.
3DDPM was not included as a baseline in the real-robot experiments because its performance proved ex-

tremely sensitive to hyperparameters; despite extensive tuning, we were unable to find any setting that yielded
stable convergence on this task.
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Peg Insertion Charger Plug Insertion

Pilot Copilot Success Rate(%) ↑ NFE Inference Time(ms) ↓ Success Rate(%) ↑ NFE Inference Time(ms) ↓

Laggy

None 39.33 ± 10.16 – – 22.00 ± 7.57 – –
DDPM 55.00 ± 8.35 9 5.25 ± 0.42 0.00 ± 0.00 – –
CSA 56.33 ± 12.22 1 1.00 ± 0.19 29.00 ± 10.89 1 1.35 ± 0.37
CSA† 45.67 ± 8.61 1 1.02 ± 0.16 22.33 ± 6.30 1 1.01 ± 0.06

Noisy

None 24.00 ± 4.66 – – 17.00 ± 4.57 – –
DDPM 28.33 ± 7.07 4 2.72 ± 0.59 0.00 ± 0.00 – –
CSA 71.67 ± 8.92 1 1.04 ± 0.15 36.67 ± 8.31 1 1.34 ± 0.41
CSA† 69.33 ± 7.83 1 1.18 ± 0.31 56.67 ± 5.67 1 1.04 ± 0.12

Noised

None 20.00 ± 7.03 – – 31.67 ± 9.06 – –
DDPM 40.00 ± 8.16 9 5.12 ± 0.15 0.00 ± 0.00 – –
CSA 69.00 ± 8.90 1 1.18 ± 0.15 70.00 ± 8.89 1 1.59 ± 0.33
CSA† 58.00 ± 8.34 1 1.29 ± 0.20 60.67 ± 7.50 1 1.71 ± 0.40

Slow

None 29.67 ± 8.38 – – 29.33 ± 5.40 – –
DDPM 29.33 ± 4.10 – – 0.00 ± 0.00 – –
CSA 59.67 ± 12.32 1 0.99 ± 0.18 36.33 ± 10.12 1 1.25 ± 0.36
CSA† 35.00 ± 7.58 1 1.09 ± 0.22 50.33 ± 8.23 1 1.25 ± 0.37

Table 2: Peg Insertion and Charger Plug Insertion

Copilot Square Peg Cylinder Peg Peg Overall Fluid Carrying

SR (%) ↑ Time (s) ↓ SR (%) ↑ Time (s) ↓ SR (%) ↑ Time (s) ↓ SR (%) ↑ Time (s) ↓

None 60.0 25.9 73.3 30.4 66.7 28.4 53.3 59.9
CSA† (ours) 73.3 22.6 93.3 24.3 83.3 24.1 83.3 39.6

Table 3: Real Peg Insertion and Fluid Carrying performance w/ and w/o our CSA† copilot.

At the beginning of the experiment, we allowed the participant to practice with both copilots for two
trials. In the subsequent testing phase, every participant controlled the robot arm to insert the square
peg and the cylinder peg three times each with one randomly chosen copilot, and then repeated this
process with the other copilot. Participants provided their user actions au through a handheld Quest3
VR controller and viewed the scene only through a side-mounted camera feed, thereby removing
normal binocular depth cues. Any trial that exceeded the 60-second limit or triggered an emergency
stop due to excessive contact force was marked as a failure.

We consider both the quantitative and qualitative performance of our assistive policy CSA†. Quan-
titatively, Table 3 compares the average success rate(SR) and the average completion time with and
without our assistive policy, showing that providing participants with our assistive policy improved
their success rate and reduced the completion time. For Fluid Carrying, similarly, every participant
are required to move the cup to these three targets on their own order. Any spillage will be consider
as failure, more details in Appendix 7.5. For qualitative result, we provided it in Appendix 7.6.

5 Conclusion

We present CSA, a model-free shared autonomy framework that leverages an ODE-based, distilling
diffusion model with partial diffusion to realize one-step denoising collaborative control. Without
any explicit goal prediction, CSA relies solely on goal-excluded expert demonstrations to “flash
back” each user action to its nearest expert distribution—ensuring smooth trajectory corrections
while faithfully preserving the user’s intent. In extensive experiments, CSA outperforms prior meth-
ods on classic 2D hard-control benchmarks (e.g., Lunar Lander) and delivers powerful assistance in
high-dimensional, high-precision tasks such as charger plug insertion—settings where existing ap-
proaches falter due to limited data, hyperparameter sensitivity, or slow inference. Moreover, our
study of the CSA† variant uncovers how implicit short-term intention modeling underlies robust
fidelity maintenance. These results underscore the promise of consistency-model–based shared au-
tonomy for real-time, goal-agnostic assistance in complex control domains.
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6 Limitations

While CSA demonstrates strong performance and real-time responsiveness, several areas invite
deeper exploration. First, our next-state prediction variant CSA† can degrade when the surrogate
noise level (ϵ) becomes large(≥ 0.5) under such conditions the surrogate’s outputs may stray from
rational human behavior, yielding predictions that add little value. Addressing this will likely require
either more robust surrogate models that maintain fidelity across noise regimes or adaptive noise
calibration strategies.

Equally important is understanding how the choice of demonstration data shapes assistive perfor-
mance. Training on “clean,” low-variance expert trajectories may yield highly precise corrections
but risks rejecting safe but unconventional user motions; conversely, embracing a broader, higher-
variance dataset could improve flexibility yet makes it harder to distinguish core expert maneuvers
from benign exploratory actions. Characterizing this trade-off—and developing methods to auto-
matically identify and prioritize “causal” expert patterns—stands as a fertile avenue for future work.

Finally, these two threads converge on the challenge of dynamically tuning the assistance strength
(α) at inference time. An ideal system would gauge the professionalism of each user ac-
tion—perhaps via confidence metrics or learned intent classifiers—and adjust α accordingly, provid-
ing stronger corrections when needed and stepping back when the user demonstrates competence.
We view the development of such context-aware, real-time modulation mechanisms as a highly
promising direction to enhance both performance and user trust in consistency-model–based shared
autonomy.
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[24] Y. Xu, J. Mao, Y. Du, T. Lozáno-Pérez, L. P. Kaebling, and D. Hsu. ” set it up!”: Functional
object arrangement with compositional generative models. arXiv preprint arXiv:2405.11928,
2024.

[25] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion. International Journal of Robotics
Research, 2024.

[26] J. Carvalho, A. T. Le, M. Baierl, D. Koert, and J. Peters. Motion planning diffusion: Learning
and planning of robot motions with diffusion models. arXiv preprint arXiv:2308.01557, 2024.

[27] Z.-H. Yin, C. Wang, L. Pineda, F. Hogan, K. Bodduluri, A. Sharma, P. Lancaster, I. Prasad,
M. Kalakrishnan, J. Malik, et al. DexterityGen: Foundation controller for unprecedented dex-
terity. arXiv preprint arXiv:2502.04307, 2025.

[28] Y. Song, P. Dhariwal, M. Chen, and I. Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

[29] A. Prasad, K. Lin, J. Wu, L. Zhou, and J. Bohg. Consistency policy: Accelerated visuomotor
policies via consistency distillation. In Proceedings of Robotics: Science and Systems (RSS),
2024.

[30] C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon. SDEdit: Guided image
synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073,
2022.

[31] T. Debus, J. Stoll, R. D. Howe, and P. Dupont. Cooperative human and machine perception
in teleoperated assembly. In Proceedings of the International Symposium on Experimental
Robotics (ISER), pages 51–60, 2001.

[32] J. Kofman, X. Wu, T. J. Luu, and S. Verma. Teleoperation of a robot manipulator using a vision-
based human-robot interface. IEEE Transactions on Industrial Electronics, 52(5):1206–1219,
2005.

[33] B. D. Argall. Modular and adaptive wheelchair automation. In Proceedings of the International
Symposium on Experimental Robotics (ISER), pages 835–848, 2015.

[34] W. Tan, D. Koleczek, S. Pradhan, N. Perello, V. Chettiar, V. Rohra, A. Rajaram, S. Srinivasan,
H. S. Hossain, and Y. Chandak. On optimizing interventions in shared autonomy. In Proceed-
ings of the National Conference on Artificial Intelligence (AAAI), pages 5341–5349, 2022.

[35] M. Janner, Y. Du, J. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis. In Proceedings of the International Conference on Machine Learning (ICML), 2022.

[36] C. Meng, R. Rombach, R. Gao, D. Kingma, S. Ermon, J. Ho, and T. Salimans. On distillation
of guided diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 14297–14306, 2023.

[37] T. Salimans and J. Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

[38] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

[39] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. Pmlr, 2018.

11



[40] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[41] B. Tang, M. A. Lin, I. Akinola, A. Handa, G. S. Sukhatme, F. Ramos, D. Fox, and Y. Narang.
Industreal: Transferring contact-rich assembly tasks from simulation to reality. arXiv preprint
arXiv:2305.17110, 2023.

12



7 Appendix

7.1 Preliminary: Probability Flow ODEs

Diffusion models can be interpreted as discretized numerical solvers for the reverse-time differen-
tial equations that govern a forward diffusion process. A diffusion model is characterized by two
processes. A forward diffusion process is a first-order Markov chain that iteratively adds noise to
a (clean) sample drawn from a data distribution y ∼ pdata(y) A reverse diffusion process serves
to generate samples from the data distribution by reversing this process to denoise a noisy input x.
In the general approach, a neural network D(·) is trained to approximate the instantaneous score
function ∇x log pt(x) as a parameterization of the reverse process. By instantiating the generative
process using the probability-flow (PF) ODE, the general form that describes the evolution of a
sample (forward or backward in time) can be defined as [28, 18]:

dx = −σ̇(t)σ(t)∇x log pt(x;σ(t))dt, (5)

where σ(t) is the desired noise level at time t and in practice setting as t of the EDM model [18] this
paper applies. In the forward process, we represent pt(x;σ) = pdata · N

(
0, σ(t)2I

)
. The denoiser

function D(x;σ) is designed to minimize the L2 error for samples y drawn from pdata(y)

Ey∼pdata En∼N (0,σ2I)∥D(y + n;σ)− y∥22, (6)

where n is the noise. The relationship between D(x;σ) and the score function is given by

∇x log p(x;σ) = (D(x;σ)− x)/σ2. (7)

As stated in Section 2, the ODE training objective consider the nearest target distribution in the
multi-modal scenario. Expanding Eqn. 6 (see Appendix 7.2), the loss becomes

L(D;x, σ) =

∫
Rd

1

Y

Y∑
i=1

N
(
x;yi, σ

2I
)
∥D(x;σ)− yi∥22 dx (8)

Minimizing L(D;x, σ) is equivalent to solving a convex optimization problem, and the closed-form
solution follows as:

D(x;σ) =

∑
iN

(
x;yi, σ

2I
)
yi∑

iN (x;yi, σ2I)
, (9)

The above involves a softmax operation over all target distributions yi that is feasible to noise sample
x, therefor guarantee to choose the nearest neighbor. Fig. 9 shows that SDE based DDPM model
has no guarantee on finding nearest expert, while ODE based model could do this in one step after
distilling.

7.2 Full proof of nearest expert

Let us assume that our training set consists of a finite number of samples {y1, . . . ,yY }. This implies
pdata (x) is represented by a mixture of Dirac delta distributions:

pdata (x) =
1

Y

Y∑
i=1

δ (x− yi)
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Figure 9: Consistency model and DDPM on a 2D example

which allows us to also express p(x;σ) in closed form,

p(x;σ) = pdata ∗ N
(
0, σ(t)2I

)
=

∫
Rd

pdata (x0)N
(
x;x0, σ

2I
)
dx0

=

∫
Rd

[
1

Y

Y∑
i=1

δ (x0 − yi)

]
N

(
x;x0, σ

2I
)
dx0

=
1

Y

Y∑
i=1

∫
Rd

N
(
x;x0, σ

2I
)
δ (x0 − yi) dx0

=
1

Y

Y∑
i=1

N
(
x;yi, σ

2I
)
.

Let us now consider the denoising score matching loss of Eq. 6. By expanding the expectations, we
can rewrite the formula as an integral over the noisy samples x:

L(D;σ) = Ey∼pdata En∼N (0,σ2I)∥D(y + n;σ)− y∥22
= Ey∼pdata Ex∼N (y,σ2I)∥D(x;σ)− y∥22

= Ey∼pdata

∫
Rd

N
(
x;y, σ2I

)
∥D(x;σ)− y∥22 dx

=
1

Y

Y∑
i=1

∫
Rd

N
(
x;yi, σ

2I
)
∥D(x;σ)− yi∥22 dx

=

∫
Rd

1

Y

Y∑
i=1

N
(
x;yi, σ

2I
)
∥D(x;σ)− yi∥22︸ ︷︷ ︸

=:L(D;x,σ)

dx.

The proof is adopted from EDM appendix [18].

7.3 Surrogate hyperparameter choose and performance

In Fig. 10, we can see for noised surrogate, when ϵ = 0.0, the surrogate is actually the expert, and
when ϵ = 0.45 (Fig. 10a) the success rate drop down significantly to 20%, so we choose ϵnoised =
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0.45 for lunar lander environment. Similarly, we can so the same choosing for peg insertion and
charger insertion, table 4 shows the hyperparameter ϵ we use.
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Figure 10: Surrogate performance over different flaw parameter ϵ for lunar lander

Table 4: Surrogate Flaw Parameters

Environment ϵlaggy ϵnoisy ϵnoised ϵslow

Lunar Lander 0.85 0.30 0.45 0.47
Peg Insertion 0.80 0.15 0.20 0.65
Charge Plug Insertion 0.60 0.15 0.10 0.40

7.4 EDM Details

An EDM model is fully specified once the noise schedule {σt}T−1
t=0 is fixed. The schedule assigns

a noise standard deviation σt to each discrete diffusion step t. Throughout this paper we adopt the
default hyperparameters of Karras et al. [18]:

σmin = 0.002, σmax = 80.0, σdata = 0.5, ρ = 7.

Karras ρ-schedule. For T noise levels and index t ∈ {0, . . . , T − 1}, the schedule is

σt =
(
σ1/ρ
max +

t

T − 1

(
σ
1/ρ
min − σ1/ρ

max

))ρ

. (A.1)

Network pre-conditioning coefficients. At any noise level σt, EDM rescales the network input,
skip connection, and output using

ctin =
1√

(σt)2 + σ 2
data

,

ctskip =
σ 2

data

(σt)2 + σ 2
data

,

ctout =
σt σdata√

(σt)2 + σ 2
data

.

(A.2)

These coefficients stabilise both training and sampling across the wide dynamic range between σmax

and σmin.

Sampling a diffusion time step. Whenever a single training batch requires a noise level, we draw
the index t uniformly from the schedule:

t ∼ U
{
0, . . . , T − 1

}
, σ ← σt.

7.5 Experimental Details

(a) Lunar Lander: Lunar Lander (Fig. 6a) is a 2D continuous control environment adapted from
OpenAI Gym, where the goal is to land a spaceship on a designated landing pad. The action space
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(a) Responses with Assistive Policy (b) Responses with Teleoperation (c) Participant Overall Preference

Figure 11: Human participant qualitative survey result in the Real Peg Insertion task

controls the thrust applied to the left and right engines; to turn left, for example, the agent must
apply slightly more thrust to the right engine than to the left. This indirect control strategy is coun-
terintuitive compared to natural human intuition (e.g., pushing left to move left), making the task
particularly challenging. The state space includes the spaceship’s position, orientation, linear and
angular velocities, ground contact indicators for each leg, and the landing pad location (the lat-
ter provided only to the pilot). An episode terminates when the spaceship successfully lands and
becomes idle, crashes, flies out of bounds, or reaches a timeout of 1000 steps.

(b) Peg Insertion: Peg Insertion (Fig. 6b) is a continuous control environment from ManiSkill, in-
volving a robotic arm tasked with inserting the orange end of an orange-white peg into a hole in a
box. The peg has a fixed half-length of 10 cm and radius of 2 cm, while the box hole radius provides
a 1 cm clearance. At episode start, both peg and box positions and orientations are randomized on
a flat table surface. Actions involve continuous end-effector movements. The state includes robot
joint positions and velocities, end-effector pose, peg pose and dimensions, and the hole’s pose and
radius. Success occurs when the peg’s white end is within 1.5 cm of the hole center. Episodes end
upon success, boundary violation, or reaching a 200-step limit.

(c) Charger Plug Insertion: Charger plug (Fig. 6c) insertion is an advanced version of peg insertion
where a robotic arm must pick up a charger and insert it into a receptacle. The charger has a base
of fixed size and a dual-peg design, with a clearance of 0.5 mm for insertion. At episode start, the
charger and receptacle are randomized in XY position and orientation on the table. Actions control
the robot’s end-effector. The state includes robot joint positions and velocities, end-effector pose,
charger pose, receptacle pose, and goal pose. Success is achieved when the charger is fully inserted
within a 5mm positional tolerance and 0.2 radian angular tolerance. Episodes end upon success,
boundary violation, or reaching a 300-step limit.

(d) Real Peg Insertion: Real Peg Insertion (Fig. 6d) is performed with a UR5 robot arm equipped
with a Robotiq 3-Finger gripper. The task involves inserting either a red square peg or a blue cylinder
peg into its corresponding hole, with clearance tolerances of 5 mm and 4.5 mm, respectively. The
state st includes the current pose of the end-effector and the wrench readings from a wrist-mounted
FT-300 force/torque sensor. The action at is the target end-effector position.

(e) Fluid Carrying: Fluid Carrying (Fig. 6e) is conducted under the same hardware configuration
as the Real Peg Insertion task. In this task, users are required to transport a cup filled with beans
from a fixed starting location to one of three predefined target locations, each measuring 9.5 cm in
diameter. Unstructured Obstacles are positioned between the start and target positions, increasing
the difficulty of the task. Any spillage of beans is considered a failure. The state st is the current pose
of the end-effector and the action at includes the target position and orientation of the end-effector.

16



Environment State Dimension Action Dimension

Lunar Lander (Fig. 6a) 8 2
Peg Insertion (Fig. 6b) 35 8
Charger Plug Insertion (Fig. 6c) 32 8
Real Peg Insertion (Fig. 6d) 9 3
Fluid Carrying (Fig. 6e) 6 6

Table 5: State and Action Dimensions for Each Environment

7.6 Human Participant Qualitative Survey Result

In a qualitative survey, we asked participants to rate how “helpful,” “consistent,” “responsive,” “col-
laborative,” and “trustworthy” each copilot felt, using a five-point Likert scale. They were also asked
which copilot they preferred overall. To avoid bias, we did not reveal which system was our assistive
policy; the survey simply labeled them “Policy A” and “Policy B.”

As shown in Fig. 11, participants rated our assistive copilot higher for being helpful, collabora-
tive, and trustworthy, and the majority preferred it overall. We also received comments such as “The
manipulation and motion are smoother under Policy B (our assistive policy) from the user’s perspec-
tive,” “It felt like I got some assistance during insertion with B,” and “Policy A (direct teleoperation)
is easy to overshoot, especially when moving down.”

17


	Introduction
	Related Work
	Method
	Training Phase
	Inference

	Experiments
	Evaluation Tasks
	Data Collection
	Surrogate Pilots
	Evaluation Results

	Conclusion
	Limitations
	Appendix
	Preliminary: Probability Flow ODEs
	Full proof of nearest expert
	Surrogate hyperparameter choose and performance
	EDM Details
	Experimental Details
	Human Participant Qualitative Survey Result


