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Abstract

The analysis of facial kinematics, a critical class of behavioral biosignals, is funda-
mental to understanding social cognition. Progress has been hampered by the lack
of large-scale, diverse datasets needed to train robust and generalizable models for
face detection and facial landmark estimation (FLE). We introduce PrimateFace, a
resource designed to overcome this bottleneck. It consists of a large-scale dataset
of over 260,000 images spanning more than 60 primate genera, and a suite of
pretrained models. Models trained on PrimateFace achieve high cross-species
performance, from tarsiers to gorillas, and demonstrate remarkable generalization
to human data, validating the benefits of pre-training on taxonomically diverse data.
We showcase how PrimateFace serves as an essential front-end for diverse down-
stream applications, including quantifying social gaze in human infants, enabling
multimodal analysis of vocalizations, and powering the data-driven discovery of
behavioral repertoires. PrimateFace provides a standardized platform for extracting
and analyzing behavioral biosignals, empowering scalable, data-driven studies of
behavior.

1 Introduction

Faces are essential conduits for conveying information critical to social animals, with relevance to
psychology, neuroscience, evolutionary biology, and conservation. Among the many signals the brain
and body produce, facial movements are a particularly high-dimensional and information-rich stream
of data. The primary challenge lies in reliably quantifying this signal by transforming raw video
into a structured, continuous kinematic biosignal—a process fundamental to decoding the intricate
dynamics of social behavior.

While deep learning has driven progress in human facial analysis, powered by massive datasets like
WIDERFace (Yang and others|[2016]]) and COCO-WholeBody (Jin and others|[2020]]), equivalent
tools for non-human primates remain limited (Bala and others|[[2020], Carugati et al.|[2025]]). Existing
approaches are typically trained on small, taxonomically narrow datasets, leading to specialized
models that fail to generalize across the immense morphological heterogeneity of the primate order
(Schofield and others|[2023])).
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Figure 1: PrimateFace dataset provides a diverse foundation for cross-species analysis.

This diversity, coupled with the limitations of labor-intensive manual coding methods like the Facial
Action Coding System (FACS) (Waller et al.| [2020]], has made large-scale, comparative studies of
behavior computationally intractable. A foundational resource—a large-scale, taxonomically diverse
pretraining dataset—is required to learn truly generalizable representations.

Here, we introduce PrimateFace, a foundational resource designed to address this challenge and
accelerate research in behavioral biosignal analysis. Our contributions are threefold:

1. We constructed the largest and most taxonomically diverse dataset of annotated primate faces,
designed for pretraining models that learn generalizable representations.

2. We developed a suite of pretrained models and demonstrate that their powerful generalization
properties stem from pre-training on taxonomically diverse data.

3. We showcase the utility of PrimateFace as a front-end for diverse scientific applications, from
cross-species behavioral analysis to automated individual recognition.

2 A Cross-Species Dataset for Pretraining

The foundation of our resource is a large-scale, taxonomically diverse dataset curated specifically for
pretraining generalizable models, comprising over 260,000 images of more than 60 primate genera.
We prioritized taxonomic breadth, spanning all six primate superfamilies, from Lemuroidea to
Hominoidea (Figure T)). Exposing models to this diversity is critical for learning the invariant features
that define a primate face, forcing the model to move beyond species-specific traits and develop a
more fundamental understanding of primate facial structure, which is the key to generalization.

The annotations in PrimateFace are designed to transform unstructured pixel data into structured,
analyzable biosignals Every face is annotated with a bounding box and a standardized
68-point landmark configuration. When applied to video, models trained on this data produce a
continuous time-series of landmark coordinates — a high-dimensional kinematic biosignal that serves
as the input for downstream analysis.

3 Generalization Properties of Models Trained on PrimateFace

We trained several computer vision models, including models from the OpenMMLab ecosystem,
DeepLabCut (Mathis and others| [2018]]), SLEAP (Pereira and others|[2022]]) and Ultralytics (e.g.,
[Zhang and others|[2025]]) and evaluated their generalization properties.
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Figure 2: PrimateFace accelerates and enables diverse research applications.



Our experiments confirm that pretraining on the taxonomically diverse PrimateFace dataset yields
models with remarkable generalization. When evaluated on the challenging COCO-WholeBody-Face
human benchmark in a zero-shot setting, our PrimateFace-trained model achieves a Normalized Mean
Error NME) of 0.061, performing competitively with specialist models trained exclusively on human

data (0.053 NME)

This generalization is notably asymmetric; a model trained only on human data exhibits a substantial
performance degradation when evaluated on our diverse primate dataset (0.122 NME vs. 0.029 NME)
(Figure A.3). This result illustrates the benefit of our approach: pretraining on morphologically
diverse data yields general representations that transfer broadly, whereas narrow pretraining
results in specialized models that fail to generalize.

4 Downstream Applications Enabled by PrimateFace

To demonstrate the utility of PrimateFace as a foundational resource, we present its application in
five distinct biosignal analysis and scientific automation domains. In[Figure 2] we showcase these
use cases, ranging from A. lemur face tracking in the wild; B. rapid face recognition of macaque
monkeys; C. vocal-motor coupling analysis of a Howler Monkey’s vocalizations; D. social gaze
analysis in human infants; and E. unsupervised identification of facial action motifs. Below, we detail
these applications.

4.1 Scientific Automation: Automated Time-Stamping.

Manually logging individual presence in video is a time-consuming bottleneck in observational
research. PrimateFace’s cross-species detectors automate this critical step. Our pipeline processes
video frame-by-frame to effectively compress days of raw footage into concise visualizations of
individual visibility over time, enhancing the efficiency of longitudinal monitoring.

4.2 Scientific Automation: Rapid Individual Recognition.

Building individual recognition systems is historically labor-intensive. PrimateFace automates the
critical front-end steps of detection and alignment. Using our models, a pipeline to detect, align, and
generate embeddings for a classifier was executed on a public dataset of 62 macaques in under an
hour, achieving 0.858 top-1 accuracy. This demonstrates how PrimateFace enables researchers to
rapidly create accurate ID systems for large cohorts without specialized development.

4.3 Cross-Signal Analysis: Vocal-Motor Coupling of Howler Monkey’s Howl.

Understanding vocal communication requires coordinating facial movements and sound. We applied
our FLE model to extract a continuous kinematic biosignal of mouth aperture from video of a howling
howler monkey. Aligning this with the acoustic biosignal (the spectrogram’s temporal envelope)
allows for the quantification of precise coupling between mouth motion and vocal output, enabling a
more mechanistic understanding of vocal production.

4.4 Cross-Species Generalization: Quantifying Social Gaze in Human Infants.

Analyzing joint attention in developmental psychology is notoriously labor-intensive. Our resource’s
demonstrated cross-species generalization allows us to apply PrimateFace models "off-the-shelf" to
human data. We use our robust face detector to track interacting infants, which then serve as inputs
to a specialized gaze estimation model (Ryan and others|[2024]]). This pipeline enables automated,
objective, and scalable quantification of fine-grained behavioral synchrony.

4.5 Cross-Subject, Data-Driven Discovery of Facial Action Motifs.

Traditional ethological approaches rely on pre-defined behavioral categories that may miss subtle
patterns. PrimateFace’s precise landmark tracking enables ’behavioral syllable’ discovery from
facial kinematics. Using a pipeline inspired by traditional unsupervised approaches (Berman and
others|[2014]]), we automatically identified over 80 recurrent movement patterns from high-resolution



macaque video, discovering both stereotyped movements (e.g., lip-smacking) and subtle, previously
unobserved sex-specific differences in communication repertoires.

5 Discussion

Here, we introduced PrimateFace, a foundational resource for the analysis of facial kinematics as a
behavioral biosignal. We have shown that pretraining models on a large-scale, taxonomically diverse
dataset is a critical step towards overcoming the generalization failures of previous species-specific ap-
proaches. This work provides the first empirical proof of a *taxonomic scaling’ principle for building
foundation models for behavior, where generalization scales with morphological heterogeneity.

The implications of this resource extend across multiple fields, including primatology, anthropology,
psychology, and neuroscience. For example, a major challenge is building neural decoders that
generalize across individuals, due to high inter-subject variability in neural recordings.

Our ongoing ablation studies, such as leave-one-superfamily-out cross-validation, will further probe
the properties of taxonomic scaling. Our model’s limitations also define key next steps: as a 2D
system, it cannot fully disentangle expression from pose, motivating the development of 3D models.
Furthermore, performance correlates with taxonomic density, highlighting the need for continued,
targeted data collection for the most morphologically unique genera. Finally, we are exploring
modern image generation models to augment PrimateFace with synthetic data.

Finally, although face analysis technologies carry risks of misuse, all human data used in our
demonstrations were from licensed stock footage. PrimateFace includes lightweight models that can
be run on consumer-grade devices, making these tools broadly accessible and suitable for on-device
processing. Ultimately, we hope PrimateFace will empower a new generation of scalable, data-driven
studies into the intricate links between brain, body, and behavior.
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Figure A.1: The PrimateFace Ecosystem. An overview of our integrated workflow for building a
foundational resource. The process unifies (A) large-scale data curation, (B) development of models
using multiple open-source frameworks, and (C) a scalable, semi-automated annotation pipeline.
This iterative loop enables the creation of (D) diverse downstream scientific applications.

A.1 PrimateFace Dataset Significance

Prior to PrimateFace, no dataset captured the vast morphological and expressive diversity of primates.
The PrimateFace dataset encompasses over 260,000 images: an extensive aggregation of 200,000+
images sourced and re-annotated from diverse public datasets, augmented by a novel collection
of 60,000 images sampled for taxonomic balance across 60+ primate genera. This effort uniquely
extends coverage across the primate order, including previously underrepresented groups such as
tarsiers, alongside robust representation of the superfamilies: Lemuroidea, Lorisoidea, Tarsioidea,
Ceboidea, Cercopithecoidea, and Hominoidea. PrimateFace captures this taxonomic breadth across a
wide array of ecologically-relevant conditions, including images from wild, captive, and laboratory
environments, depicting a spectrum of naturalistic social interactions, developmental stages from
infancy to adulthood, and diverse facial expressions, all under varied lighting and image quality
(Figure 1). This combination of scale, taxonomic balancing, and contextual richness establishes
PrimateFace as a uniquely versatile dataset, poised to unlock frontiers in the automated quantitative
study of primate facial behavior.

Achieving comprehensive taxonomic coverage across 60+ genera presented a critical sampling
challenge. Traditional random sampling approaches are prohibitively inefficient for taxonomically



imbalanced datasets, often requiring full annotation before capturing sufficient diversity within rare
taxa like tarsiers or aye-ayes. To address this, we leveraged DINOv2 (Oquab and others| [2023]]), a
self-supervised vision transformer that captures semantic visual features, to identify and prioritize
representationally diverse images across the primate order. Images grouped by DINOv2 image
feature embeddings frequently corresponded to distinct genera or species, validating that the approach
captured meaningful visual cross-primate diversity. This allowed strategic sampling that maximized
taxonomic and morphological diversity with minimal annotation overhead.

Empirical validation demonstrated advantages over random sampling in annotation-constrained
scenarios. Across multiple labeling budgets (500-8,000 images), Cascade-RCNN face detectors
trained on DINOv2-sampled subsets achieved 2-4 point improvements in mAP@[.50:.95] over
random sampling, with peak advantage around 500 training images (Figure A.2). This finding
informed our dataset construction strategy: we targeted 500-850 images per genus to maximize
model performance while maintaining taxonomic breadth. While both approaches converged at
larger dataset sizes, DINOv2 sampling provided essential efficiency gains required for taxonomically
diverse, resource-constrained primate research.

This data-driven approach, combined with semi-automated annotation workflows, enabled rapid
labeling of face bounding boxes and facial landmarks. Every primate face received a tight bound-
ing box annotation around the face (typically excluding ears), accompanied by both our novel
48-facial-keypoint scheme optimized for cross-species analysis and the standard 68-keypoint format
for interoperability with existing pipelines. However, designing landmark schemes that capture mor-
phological diversity from prosimian rostra to great ape facial profiles required careful consideration
of existing annotation conventions.

Facial landmark conventions have evolved from rudimentary alignment schemes to increasingly
sophisticated anatomical mappings. Early computer vision approaches relied on sparse 5-keypoint
configurations sufficient for basic face alignment tasks (Baltrusaitis et al.|[2018]]), while human facial
analysis matured around the 68-keypoint standard popularized by datasets like COCO-WholeBody
(Jin and others| [2020]) left to right). Recognizing the unique challenges of non-human
primate morphology, prior work has developed NHP-specific landmark schemes, most notably
DeepLabCut’s 55-keypoint MacaqueFace model in their Model Zoo (Mathis and others| [2018]])
(Figure A.2| second from the right) — a pioneering effort that enabled essential pseudo-labeling for
our annotation pipeline. However, no existing convention adequately captures the morphological
heterogeneity spanning the entire primate order, from pronounced baboon muzzles to flat-nosed
capuchins.

PrimateFace addresses this gap through rich, dual-layered annotations designed to support both
specialized primatological inquiry and broader computer vision applications. The 48-keypoint
configuration far right), derived by combining the most robust landmarks from both
DeepLabCut’s MacaqueFace model and the human 68-keypoint standard, strategically emphasizes
anatomical landmarks that meet three key criteria: 1) consistent visibility across species (excluding
neck nape landmarks often occluded by posture); 2) anatomical precision (omitting COCO-68
chin contours that lack clear anatomical correspondence even in human faces); and 3) universal
applicability, namely the exclusion of discrete pupil landmarks since many primate species lack
clearly visible pupils. This configuration retains valuable detailed landmarks from the COCO-68
standard, particularly the precise mouth contour and nose bridge annotations essential for facial
expression analysis, while ensuring reliable cross-species applicability. Researchers can leverage
subsets of these landmarks for region-specific analyses, such as focusing on periocular keypoints for
eye movement studies or mouth contours for vocal expression analysis (see Scientific Application 3).
The parallel 68-keypoint annotations maintain interoperability with existing human facial analysis
pipelines, creating a unified foundation for developing future cross-species models for primate
behavior analysis. All annotations are exportable to common movement analysis frameworks such
as SLEAP (Pereira and others|[2022]]), DeepLabCut (Mathis and others|[2018]]), OpenMMLab, or
Ultralytics. Researchers are encouraged to contribute data at our community contribution portal
(github.com/KordingLab/PrimateFace).

A.2 Data Curation

Data Sources and Permissions: The PrimateFace dataset contains over 260,000 primate images
spanning humans and non-human primates. Approximately 200,000 images were aggregated and



re-annotated from publicly available scientific datasets and repositories, utilized in accordance with
their respective terms of use and licensing. An additional 60,000 images were obtained through
targeted web searches of publicly accessible primate imagery. Web collection excluded copyrighted
material not explicitly licensed for reuse.

Newly Collected Non-Human Primate Data: The novel collection of 60,000 non-human primate
images, designed to enhance taxonomic balance within PrimateFace, was sourced from existing
internal laboratory archives (where ethical approvals for original data collection were already in place),
from public domain sources, and from collaborator contributions (for which they held relevant IACUC
approvals). Specifically, the high-resolution video data of rhesus macaques (Macaca mulatta) used
for the behavioral syllable discovery demonstration in (Figure 2)) were collected at the University of
Pennsylvania. These procedures were approved by the Institutional Animal Care and Use Committee
(IACUC) of the University of Pennsylvania and were performed in accordance with all relevant
institutional and national guidelines and regulations for the ethical treatment of animals.

Use of Human Imagery for Model Benchmarking and Demonstrations: While the openly released
PrimateFace dataset focuses on non-human primates, human face data was utilized in specific contexts
to demonstrate cross-species model generalization. Our models were benchmarked against standard
human face datasets (WIDERFace(Yang and others| [2016]), COCO-WholeBody-Face (Jin and others
[2020])) — established computer vision benchmarks sourced from public repositories where ethical
considerations and consent were managed by the original data creators. Additionally, the gaze-
following demonstration utilized video of human infants obtained from Adobe stock footage, with no
direct human subject involvement. No human images are included in the distributed PrimateFace
dataset.

Data Release. The PrimateFace dataset comprises re-annotated images from existing publicly avail-
able research datasets and public domain sources. The dataset is intended to advance understanding of
primate behavior and support non-invasive research methodologies that reduce the need for additional
animal studies.

PrimateFace Dataset Construction. All images underwent re-annotation to conform to Primate-
Face’s standardized labeling protocols. Additional images were acquired through systematic web
searches targeting publicly accessible content from academic institutions, research databases, and
zoological society websites. To address taxonomic underrepresentation across the primate order,
approximately 60,000 additional images were curated to achieve balanced representation across 60+
primate genera. This curation process set targets of at least 700 images per genus, with particular
emphasis on prosimian and New World monkey taxa that are typically underrepresented in computer
vision datasets. Image selection prioritized clear facial views, diverse individuals, and varied environ-
mental contexts to maximize training data utility. The resulting PrimateFace dataset encompasses
260,000+ images representing 60+ primate genera. The collection captures diverse real-world condi-
tions including natural habitats, zoological settings, and research contexts from previously published
studies, with varied lighting, age ranges from infants to adults, multiple expressions, and social
interactions (Figure ). This comprehensive scope provides a robust foundation for cross-species
facial analysis.

A.3 PrimateFace pretrained models enable high-performance, cross-species face detection

Accurate face localization across primates represents a fundamental challenge that existing approaches
have yet to solve comprehensively. While existing methods achieve species-specific detection, none
have demonstrated reliable performance spanning the full taxonomic breadth. PrimateFace-trained
detectors address this gap directly, achieving strong face detection across all six primate superfamilies:
Lemuroidea, Lorisoidea, Tarsioidea, Ceboidea, Cercopithecoidea, and Hominoidea. We trained
multiple state-of-the-art object detection architectures on PrimateFace face bounding box data using
default hyperparameters. Models are made available for immediate use through frameworks including
MMDetection and Ultralytics.

A.3.1 PrimateFace detectors outperform human-face and open-vocabulary models on
primate faces

To evaluate the face detectors, we first qualitatively compared PrimateFace-trained detectors against
two alternative strategies: 1) human face detectors applied directly to primate images, and 2) open-
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Figure A.2: Evaluation of Face Detection Models. (A) Qualitative comparison showing the superior
performance of our PrimateFace-trained detector (top row) over a standard human-face detector
(middle) and a zero-shot detector (bottom). (B) Detection performance (mAP) is robust across all six
primate superfamilies. (C) Our PrimateFace-trained model shows strong zero-shot generalization to
the human WIDERFace benchmark, while the human-trained model fails to generalize to our primate
test set.

vocabulary detection models that can be prompted with arbitrary object categories. Open-vocabulary
(or zero-shot) models like GroundingDINO [2025]]) represent an emerging paradigm
in computer vision, using vision-language pretraining to detect objects specified through natural
language prompts (e.g., ‘spider monkey face’) without requiring specialized training. Despite their
impressive performance across many domains, these zero-shot models have yet to solve primate face
detection, likely due to insufficient representation of in-the-wild primate imagery.

Qualitative comparison across these approaches reveals the advantages of our broad cross-species
training approach (Figure A.2). While PrimateFace-trained models consistently detect faces across
diverse primate species, human face detectors fail on many non-human primate images, and the
open-vocabulary GroundingDINO detector shows inconsistent performance when prompted with
"face." Despite the computer vision field’s increasing emphasis on foundation models capable of
zero-shot inference, comprehensive training on morphologically diverse primate facial data remains
essential for reliable interspecific detection.

Beyond qualitative assessment, quantitative evaluation across primate superfamilies confirmed Pri-
mateFace’s species-agnostic performance. Models achieved highest accuracy on Tarsioidea and
lowest on Hominoidea (Figure A.2), though all genera maintained detection performance (mAP
@0.50:0.95) above 0.60, indicating reliable detection across taxa. Notably, even this lowest perfor-
mance remained stable, as demonstrated by our models’ competitive performance on human face
benchmarks. This variation likely reflects differences in data curation and image contexts rather than
inherent face detection difficulty: images of Tarsier monkeys typically feature subjects prominently
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centered with clear facial visibility, whereas Cercopithecoidea and Hominoidea data encompass far
greater diversity — from controlled laboratory settings to challenging naturalistic environments with
variable lighting, poses, and occlusions.

Cross-domain evaluation on WIDERFace (Yang and others| [2016]]) revealed that training on diverse
primate faces creates generalizable detectors. PrimateFace-trained models achieved 0.340 mAP@0.50
on the challenging WIDERFace human benchmark — within 0.05 of models trained specifically on
human faces (0.390 mAP@0.50). In contrast, human-face detectors showed dramatic performance
degradation when applied to primate faces, achieving only 0.585 mAP on our PrimateFace test set
compared to 0.775 mAP for PrimateFace-trained detectors (Figure A.2). This disparity demonstrates
that PrimateFace’s inherent morphological heterogeneity provides a richer training foundation that
transfers effectively across species, while human-centric training captures only a narrow slice of
possible facial variation, suggesting cross-primate variation may provide natural data augmentation
that enhances generalization.
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Figure A.3: Evaluation of Facial Landmark Estimation (FLE) Models. (A) Qualitative com-
parison showing our PrimateFace-trained model (top row) accurately localizes landmarks where
human-specific (middle) and macaque-specific (bottom) models fail. (B) Normalized Mean Error
(NME) is consistently low across superfamilies. (C) Our model generalizes to the human COCO-
WholeBody-Face benchmark with performance competitive to a specialist model. This generalization
is asymmetric, as the human-trained model performs poorly on our primate test set, highlighting the
benefit of diverse pretraining.

A.4 PrimateFace facilitates species-agnostic, accurate facial landmark estimation

Facial landmark localization enables detailed analysis of primate expressions, gaze patterns, and
behavioral kinematics by providing consistent reference points that can be tracked over time in
video sequences. When applied frame-by-frame to videos, these landmarks quantify dynamic facial
movements — such as mouth opening during vocalizations, eye gaze direction, or brow movements
during social interactions — providing objective kinematic measurements for behavioral analysis
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that previously relied on subjective manual assessment. While existing NHP landmark models
like DeepLabCut’s MacaqueFace represent pioneering efforts for individual species, no solution
has achieved reliable landmark estimation spanning the full primate order. PrimateFace-trained
models address this limitation, delivering robust 68-keypoint facial landmark estimation across all six
primate superfamilies using top-down pose estimation architectures that build upon face detection
outputs (Figure A.3). We trained multiple state-of-the-art pose estimation models on the PrimateFace
dataset using default hyperparameters, interoperable with platforms including MMPose, Ultralytics,
DeepLabCut, and SLEAP for seamless integration.

A.4.1 PrimateFace landmarks outperform human and species-specific models across primate
faces

To evaluate landmark estimation performance, we compared PrimateFace-trained models against
human facial landmark models and existing primate-specific approaches. Our models employ a
top-down pose estimation framework that first detects faces and then estimates landmarks within
bounding boxes, enabling flexible integration with other frameworks (e.g., Ultralytics or mmdetec-
tion). For comparison, we evaluated human-face landmark models and DeepLabCut’s species-specific
MacaqueFace model. While MacaqueFace uses a bottom-up approach that directly detects keypoints,
we provided cropped face bounding boxes to optimize its performance, effectively creating simi-
lar input conditions. Across frameworks, top-down models trained on PrimateFace data perform
comparably when using consistent training protocols.

Qualitative comparison of landmark estimation approaches reveals the advantages of cross-species
training (Figure A.3)). PrimateFace models consistently localize facial landmarks across diverse
primate genera, while human-face models show systematic failure modes — particularly misinter-
preting mouth contours as facial boundaries in Cercopithecoidea, leading to cascading errors in
nose and mouth landmark placement (see Fig. 5a, 2nd row, 5th column). Human models com-
pletely fail on morphologically distant species like Lemuroidea, as seen with Daubentonia. The
DeepLabCut MacaqueFace-55 model occasionally performs well but demonstrates the limitations of
species-specific training when applied beyond its target domain.

A.4.2 Facial landmark estimation maintains consistent performance across primate
superfamilies

Quantitative evaluation across primate superfamilies revealed performance patterns reflecting both
data availability and morphological constraints. Models exhibited lowest performance on Tarsioidea
due to limited training data and their distinctive facial morphology — characterized by proportionally
enormous eyes and compressed facial features that differ substantially from other primates Primate-
Face landmark estimators achieved optimal results on Hominoidea and Lemuroidea
Performance variation across genera reflects multiple factors: high-performing genera (Macaca Pan)
benefit from extensive datasets, both within and beyond the laboratory setting, and share more typical
primate facial proportions, while challenging cases (Alouatta, the Howler Monkey) involve rapid
facial movements during vocalizations that stress landmark tracking algorithms. This breakdown
demonstrates the value of taxonomically-informed evaluation and highlights both data collection
priorities and morphological considerations for future dataset expansions.

A4.3 PrimateFace models maintain human facial landmark estimation performance

Cross-domain evaluation on COCO-WholeBody-Face demonstrated the generalization advantages
of morphologically diverse training. PrimateFace-trained models achieved 0.061 normalized mean
error (NME) on human landmark estimation — within 0.008 of human-face baselines (0.053 NME)
(Figure A.3). In contrast, human-face models showed substantial degradation on primate faces (0.122
vs. 0.029 NME on PrimateFace data, delta 0.093). This reinforces that cross-species training provides
feature representations that transfer effectively to humans, while human-centric training fails to
capture broader facial variation.

This holds implications for comparative primatology and translational research. Researchers can
now apply consistent landmark schemes across species for evolutionary studies, employ unified
analysis pipelines for mixed human-NHP datasets, and leverage the growing ecosystem of human
facial analysis tools for non-human primate behavioral research regardless of existing computational
infrastructure.
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