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Abstract
We propose Score-of-Mixture Training (SMT),
a novel framework for training one-step genera-
tive models by minimizing a class of divergences
called the α-skew Jensen–Shannon divergence.
At its core, SMT estimates the score of mixture
distributions between real and fake samples across
multiple noise levels. Similar to consistency mod-
els, our approach supports both training from
scratch (SMT) and distillation using a pretrained
diffusion model, which we call Score-of-Mixture
Distillation (SMD). It is simple to implement, re-
quires minimal hyperparameter tuning, and en-
sures stable training. Experiments on CIFAR-10
and ImageNet 64×64 show that SMT/SMD are
competitive with and can even outperform exist-
ing methods.

1. Introduction
Fast and efficient sampling is a key characteristic sought
after in modern generative samplers. For many years, gen-
erative adversarial networks (GANs) (Goodfellow et al.,
2014) set the benchmark for high-quality one-step genera-
tive sampling. However, due to the inherent training insta-
bilities associated with discriminator training, attention has
recently shifted toward diffusion-based generative models
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Karras et al.,
2022b). These models trade-off sampling efficiency for
more stable training and significantly improved downstream
sample quality through iterative sampling.

More recently, the diffusion distillation approach has been
studied as an appealing option to significantly reduce the
number of sampling steps. Early work (Luhman & Luhman,
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2021; Salimans & Ho, 2022; Meng et al., 2023; Berthelot
et al., 2023) focused on training a student model with a lower
sampling budget by condensing multiple teacher denoising
steps into one. The most recent works on distillation im-
prove performance further by leveraging a pretrained model
for distribution matching via minimization of the reverse KL
divergence (Luo et al., 2024a; Yin et al., 2024b;a; Salimans
et al., 2024; Xie et al., 2024). While attractive, distillation
approaches necessitate a pretrained diffusion model which
adds a significant overhead on the required compute.

As yet another alternative, consistency models (Song et al.,
2023; Song & Dhariwal, 2024b) and their variants (Kim
et al., 2024) have been proposed for training few-step gener-
ative models from scratch by simulating the trajectories of
the induced probability flow ODE (Song et al., 2020) of a
diffusion process. While consistency models have demon-
strated promising results in both distillation and training
from scratch, training is sensitive to the choice of noise
schedule and distance measure (Geng et al., 2025).

In this paper, we tackle the problem of training high-quality
one-step generative models more directly, i.e., without sim-
ulating an iterative reverse diffusion process for sampling
or leveraging a pretrained diffusion model during training.
Starting from first principles of statistical divergence mini-
mization, we show that a high-quality one-step generative
model can be trained from scratch in a stable manner, via
the multi-noise-level denoising score matching (DSM) tech-
nique (Vincent, 2011) used in diffusion models. We em-
phasize that we do not require a simulation of the reverse
diffusion process in our framework.

The proposed framework achieves the best of several worlds:
(1) a new, simple statistical divergence minimization frame-
work without probability paths of ODE (like GAN), (2)
stable training using denoising score matching (like diffu-
sion models), (3) training from scratch without a pretrained
diffusion model (like consistency models), and (4) near
state-of-the-art one-step image generative performance (like
GAN and consistency models). We also demonstrate that the
proposed method can be extended to distill from a pretrained
diffusion model, and can achieve performance similar to
state-of-the-art methods for the same. See Table 1 for the
overview of comparison.
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Table 1. Comparison of different generative modeling techniques capable of high-quality sample generation.

Generative models Training idea Generation Training
stability

Require
pretrained model?

GAN minimizing JSD, with discriminator one-step unstable N

Diffusion models training multi-noise-level denoisers via DSM multi-step stable N
Diffusion distillation (mostly) minimizing reverse KLD (in DMD) {one,few}-step stable Y

Consistency distillation simulating trajectories of probability flow ODE {one,few}-step stable Y
Consistency training unstable N

Score-of-Mixture Training (ours) minimizing {α-JSD}α∈[0,1] with multi-noise-level
training & scores of mixtures via DSM one-step stable N

Score-of-Mixture Distillation (ours) Y

The rest of the paper is organized as follows: In Sec. 2
we introduce the necessary background and related works
central to our proposed method. In Sec. 3 we introduce our
novel one-step generative modeling approach and in Sec. 4
we detail how our framework can be modified to perform
diffusion distillation. We describe practical implementation
details in both the latter sections and present experimental
results in Sec. 5. We conclude with remarks in Sec. 6. Proofs
and training details are deferred to Appendix.

2. Preliminaries and Related Work
In one-step generative modeling, we wish to align the gen-
erated sample distribution qθ(x) :=

∫
δ(x− gθ(z))q(z) dz

with the true data distribution p(x). Here, gθ : Z → X is
a parametric neural sampler which is also often called an
implicit generative model that transforms samples from a
base measure q(z). In this section, we review some popular
methods for training generative models, which will serve as
preliminaries for our framework. More detailed discussion
on the literature is deferred to Appendix B.

Generative Adversarial Networks. The most prominent
approach in training implicit generative models is the gener-
ative adversarial network (GAN) (Goodfellow et al., 2014).
In its most standard and widely used form, it alternates
between the gradient steps of discriminator and generator
training, which are

min
ψ

Ep(x)[sp(−ℓψ(x))] + Eqθ(x)[sp(ℓψ(x))], (1)

min
θ

Eqθ(x)[sp(−ℓψ(x))], (2)

respectively, where sp(y) := log(1 + ey) denotes the soft-
plus function.1 Here, we will call ℓψ(x) the discriminator,
which is supposed to capture the log density ratio log p(x)

qθ(x)
.2

This so-called adversarial training can be understood as min-

1The generator loss Eqθ(x)[sp(−ℓψ(x))] in the second line
is the so-called non-saturating version, while the original GAN
generator loss Eqθ(x)[−sp(ℓψ(x))] is referred to as saturating.

2Note the one-to-one correspondence between the standard
definition of discriminator Dψ(x) :=

exp(ℓψ(x))

1+exp(ℓψ(x))
∈ [0, 1].

imizing the Jensen–Shannon divergence (JSD) with the help
of discriminator, via the variational characterization of JSD.

Despite the popularity of GANs, training them is notoriously
difficult. Although various techniques have been proposed
to regularize the GAN objective—through alternatives to
JSD (Nowozin et al., 2016; Arjovsky et al., 2017; Mao
et al., 2017), novel regularizers (Miyato et al., 2018), and
specialized network architectures (Karras et al., 2021; Brock
et al., 2019; Sauer et al., 2022)—the discriminator training
remains unstable. This has sparked increasing interest in
developing new objectives for training generative models
which we briefly discuss below.

Diffusion Models. Diffusion models or score-based gener-
ative models (Sohl-Dickstein et al., 2015; Ho et al., 2020)
are state-of-the-art generative models that are based on the
principles of thermodynamic diffusion. Given a forward
stochastic differential equation (SDE) process

dxt = f(xt, t)dt+ g(t)dwt,

where f(xt, t) is the drift function, g(t) is the diffusion func-
tion, and wt represents a Brownian noise process, diffusion
models simulate the reverse (generative) process, which is
also an SDE

dxt = [f(xt, t)− g(t)2∇xt log p(xt)]dt+ g(t)dw̄t.

An equivalent deterministic probability flow ODE with the
same marginals as the SDE can also be used in practice:

dxt =
(
f(xt, t)−

1

2
g(t)2∇xt log p(xt)

)
dt.

Thus, to generate samples, diffusion models are trained to
learn the score of the data distribution at multiple noise
levels σt via denoising score matching (DSM) (Vincent,
2011), i.e., by minimizing

LDSM(θ) = Ep(x)q(z)p(t)
[
w(t)∥sθ(xt; t)− s(xt |x)∥2

]
,

where p(t) denotes a distribution over different noise lev-
els, xt := x + σtϵ, ϵ ∼ N (0, I), and s(xt|x) :=
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∇xt log p(xt|x). It is easy to show that sθ(xt; t) =
∇xt log p(xt) using Tweedie’s formula (Robbins, 1956).
Sampling can then be achieved by Langevin dynamics (Song
& Ermon, 2019; Song et al., 2020) or via black-box ODE
solvers (Karras et al., 2022b; Lu et al., 2022b;c).

Diffusion Distillation. In practical applications, running
a diffusion model for multiple steps to generate a single
sample can be prohibitively expensive. Distilling few-step
generative models from a high-quality pretrained diffusion
model has thus become popular (Luo et al., 2024a; Yin et al.,
2024b;a; Salimans et al., 2024; Xie et al., 2024). To learn
the generator’s parameters, most, if not all, approaches aim
to minimize the reverse Kullback–Leibler divergence (KLD)
DKL(qθ∥p) averaged across multiple noise levels:

Davg
KL(qθ∥p) := Eqθ(x)p(t)q(ϵ)[log qθ(xt)− log p(xt)].

To update the parameters via gradient descent, the gradient
of this divergence is computed as

∇θDavg
KL(qθ∥p) (3)

= Eq(z)p(t)q(ϵ)[∇θgθ(z)(sqθ (xt; t)− sp(xt; t)) |x=gθ(z)],

where sqθ and sp are the noisy scores of the fake and true
samples, respectively. In the distillation setup, a pretrained
diffusion model is plugged in as a close proxy to the true
noisy score sp(xt; t), while the fake noisy score sqθ (xt; t)
is trained along with the generator to assist the training.

Consistency Models. Distillation approaches often rely on
pretrained score models and may use expensive regularizers
to address issues like mode collapse and improve sample
quality (Yin et al., 2024b; Salimans et al., 2024). In contrast,
consistency models (Song et al., 2023; Song & Dhariwal,
2024b), which can be trained from scratch, are trained to
simulate the underlying probability flow ODE and ensure
each sample along the trajectory maps to the origin. Con-
sistency training, however, can be unstable and is known to
sensitive to the noise schedule and distance function (Geng
et al., 2025). Additionally, the architecture for consistency
models need to be carefully chosen, as the approach relies
on a single-sample approximation of Tweedie’s formula,
which is only valid when noise levels are closely spaced.

3. Training from Scratch
In this section, we introduce our new framework, Score-
of-Mixture Training (SMT). We describe how to efficiently
train one-step generative models from scratch, i.e.,, without
a pretrained diffusion model. In Sec. 4, we explain how the
framework can be adapted to leverage a pretrained diffusion
model when available, referring to this variant as Score-of-
Mixture Distillation (SMD).

The key ingredient of this framework is distribution match-
ing using a new family of statistical divergences (Sec. 3.1),

whose gradient can be approximated by estimating the
score of mixture distributions of real and fake distributions
(Sec. 3.3), hence the name Score of Mixture Training. We
adopt the concept of multi-noise level learning from diffu-
sion models and propose multi-divergence minimization for
stable training (Sec. 3.2). A practical implementation of our
method is described in Sec. 3.4, followed by details of the
training procedure in Sec. 3.5.

3.1. Minimizing α-Skew Jensen–Shannon Divergences

The crux of the new framework lies in minimizing a class of
statistical divergences between p(x) and qθ(x) defined as

D(α)
JSD(qθ, p) :=

1

α
DKL(qθ ∥ αp+ (1− α)qθ)

+
1

1− αDKL(p ∥ αp+ (1− α)qθ)

for some α ∈ (0, 1), which we call the α-skew Jensen-
Shannon divergence (α-JSD) (Nielsen, 2010). This diver-
gence belongs to f -divergences (Csiszár et al., 2004).

Interestingly, α-skew JSD naturally interpolates between the
forward Kullback–Leibler divergence (KLD) DKL(p ∥ qθ)
(when α→ 0), the standard definition of JSD (when α = 1

2 ),
and the reverse KLD DKL(qθ ∥ p) (when α→ 1). In contrast
to the forward KLD and reverse KLD, the α-skew JSD with
α ∈ (0, 1) is well-defined even when there is a support
mismatch in p and qθ, which may be the case especially in
the beginning of training.

Feature 1: Multi-Divergence Training. Hence, we pro-
pose to minimize a weighted sum of the α-JSD’s for differ-
ent α’s, as divergences with different α’s exploit different
geometries between two distributions. For example, it is
known that minimizing the forward and reverse KLD leads
to mode-covering and mode-seeking behaviors, respectively,
and we can enforce better support matching behavior by
considering the entire range of α.

To minimize this family of divergences in practice, we con-
sider its gradient expression:

Proposition 3.1. Suppose that Eqθ(x)[∇θ log qθ(x)] = 0.3

Then, we have

∇θD(α)
JSD(qθ, p) (4)

=
1

α
Eq(z)

[
∇θgθ(z)(sθ;0(x)− sθ;α(x))

∣∣∣
x=gθ(z)

]
,

where we define the score of the mixture distribution

sθ;α(x) := ∇x log(αp(x) + (1− α)qθ(x)).
3It is a standard assumption in the literature (Hyvärinen, 2005),

which holds under a mild regularity assumption on the parametric
model qθ(x) so that

∫
∇θqθ(x) dx = ∇θ

∫
qθ(x) dx.
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This proposition suggests that we can update the generator
gθ(z) using this gradient expression, provided that we can
estimate the score of the mixture distribution sθ;α(x).

Feature 2: Amortized Score Model. To implement this
idea, in this paper, we propose to use an amortized score
model (x, α) 7→ sψ(x;α), to approximate the score of
mixture sθ;α(x). Through our experiments we show that
learning the scores of mixture over different α’s using a
single model is effective and helps training. In Sec. 3.3,
we explain how we can train the amortized score model
(x, α) 7→ sψ(x;α) using samples from p(x) and qθ(x).

3.2. Learning with Multiple Noise Levels

To achieve stable training, we opt to minimize the diver-
gence at different noise levels by considering the con-
volved distributions, pt := p ∗ N (0, σ2

t ID) and qθ,t :=
qθ ∗ N (0, σ2

t ID). This idea is widely used in the exist-
ing distillation methods. We borrow the variance-exploding
Gaussian noising process notation from Karras et al. (2022b)
where σt ∈ [σmin, σmax]. As we also integrate over different
α’s, the final objective becomes

Lgen(θ) := Ep(α)p(t)[D
(α)
JSD(qθ,t, pt)], (5)

where we will prescribe the choice of p(α) in Sec. 3.5.
Similar to Eq. (4), the gradient of the divergence at noise
level t can be approximated via the amortized score as

∇θD(α)
JSD(qθ,t, pt) ≈ γψ(θ;α, t) (6)

:= Eq(z)q(ϵ)

[
∇θgθ(z)

sψ(xt; 0, t)− sψ(xt;α, t)

α

∣∣∣
x=gθ(z)

]
,

where the amortized score model sψ(xt;α, t), which is con-
ditioned on the noise level t, is an estimate of sθ;α,t(xt) :=
∇xt log(αp(xt) + (1− α)qθ(xt)). We provide a practical
implementation of the amortized score model as a small
modification of a diffusion model architecture in Sec. 3.4.
We remark in passing that this expression can be understood
as a generalization of the gradient update of Eq. (3) used in
the existing reverse-KLD-based distillation schemes.

Finally, we can then approximate the generator gradient as

∇θLgen(θ) ≈ Ep(α)p(t)[γψ(θ;α, t)].

Importantly, similar to existing distillation methods, the
gradient only involves the output of the score model, but
not its gradient. This is beneficial since such extra gradient
information requires expensive backpropagation through the
score model to the generator (Zhou et al., 2024).

3.3. Estimating Score of Mixture Distributions

Estimating the score of the mixture distribution turns out to
be as simple as minimizing a mixture of the score matching
losses, as stated in the following proposition:

Proposition 3.2. For any α ∈ [0, 1], the minimizer of the
objective function

L(ψ;α) = α Ep(x)[∥sψ(x;α)− sp(x)∥2]
+(1− α) Eqθ(x)[∥sψ(x;α)− sqθ (x)∥2] (7)

satisfies sψ∗(x;α) = sθ;α(x).

Since we train with multiple noise levels, we are interested
in the marginal score of xt = x + σtϵ, ϵ ∼ N (0, I) at
some noise level σt. We can use denoising score matching
(Vincent, 2011) to define an equivalent sample-only objec-
tive to learn the score using Tweedie’s formula. Namely,
to approximate sθ;α,t(x) using the amortized score model
sψ(x;α, t), we can minimize

Lscore(ψ) := Ep(α)p(t)[Lscore(ψ;α, t)],

where

Lscore(ψ;α, t) (8)

:= α Ep(x)q(ϵ)[∥sψ(xt;α, t) + ϵ/σt∥2]
+ (1− α) Eqθ(x)q(ϵ)[∥sψ(xt;α, t) + ϵ/σt∥2].

See Proposition A.1 for a formal statement. In practice, we
parametrize the score model in the form of a denoiser and
reconstruct the score from the denoiser output via Tweedie’s
formula; see Appendix C.1.

Feature 3: Leveraging Real and Fake Samples. We re-
mark that our score learning objective seamlessly utilizes
both real and fake samples throughout the training, helping
the generator better generalize. This is in contrast to some
existing diffusion distillation methods, which introduce ex-
pensive regularizers to integrate real samples, or backpropa-
gate through the pretrained score model (Yin et al., 2024b;a;
Salimans et al., 2024).

3.4. Practical Design of Amortized Score Network

With an additional conditioning scheme to embed auxiliary
information about α in addition to the noise level σt, any
existing diffusion model backbone can be used to param-
eterize the amortized score network sψ(x;α, t). Here, we
describe how we can modify the popular UNet-based score
architectures (Song et al., 2020; Nichol & Dhariwal, 2021;
Karras et al., 2022b) with minimal modifications.

First, drawing from the noise embedding sensitivity analysis
by Song & Dhariwal (2024b), we opt for a Fourier embed-
ding cα with a default scale of 16. This choice ensures that
the embedding is sufficiently sensitive to fluctuations in α,
particularly during the early stage of training.

Then, we concatenate the α-embedding with the embedding
of other auxiliary information (e.g., t and labels) and apply
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a single SiLU (Elfwing et al., 2018) activated linear layer:

cout = silu(Wauxcaux +Wαcα).

The rationale behind this choice is as follows: as training
progresses, the real and fake distributions begin to overlap,
making it natural for the amortized score model to become
less sensitive to α. Thanks to the additional linear layer
Wα after the α-embedding cα, this behavior can be realized
when Wα ≈ 0, when necessary.

3.5. Training

Alternating Training. Our training scheme alternates be-
tween the score estimation with the score matching objective
in Eq. (8), and the generator training with Eq. (6), where
we plug-in sψ(xt;α, t) in place of sθ;α,t(xt). This is sim-
ilar in spirit to GAN training, but the DSM technique in
our framework in place of the discriminator training natu-
rally stabilizes training. The overall training framework is
summarized in Fig. 1 and Alg. 1 in Appendix C.

Initialization. We warm up the generator with a standard
denoising task as in diffusion models for several steps to
better initialize the weights, as we empirically found that
initializing the generator with pretrained weights from a de-
noiser significantly accelerated convergence. The amortized
score network is randomly initialized.

Choice of p(α). The choice of p(α) is crucial in our frame-
work. To train both the generator and score model, we
sample α from a uniform distribution over 1000 equally
spaced points in [0, 1], ensuring a dense enough grid to gen-
eralize to any α. For score training, we further ensure that
25% of the sampled α’s are zero, since this is always used
in our gradient update; see Eq. (6).

Adaptive Weighting. In practice we compute the gradient
with an adaptive weight w(xt,x, α, t) to ensure that the
scale of the gradient for each minibatch sample is roughly
uniform for different values of α and t. Hence, we modify
the generator gradient in Eq. (6) as

γwψ (θ;α, t) := Eq(z)

[
∇θgθ(z)× (9)

{
w(xt,x, α, t)

sψ(xt; 0, t)− sψ(xt;α, t)

α

}∣∣∣
x=gθ(z)

]
,

where the weighting is defined as

w(xt,x, α, t) := wα(xt, t)wDMD(xt,x, t). (10)

Here wDMD is the adaptive noise weighting introduced
by (Yin et al., 2024b) (see Eq. (32) in Appendix B) and
wα(xt, t) is a new weighting inspired by the pseudo-Huber
norm (Song & Dhariwal, 2024a; Geng et al., 2025)

wα(xt, t) := α

√
∥sψ(xt; 0, t)− sψ(xt; 1, t)∥2
∥sψ(xt; 0, t)− sψ(xt;α, t)∥2

.

This weighting still preserves the limiting forward KLD
behavior of the objective as α→ 0 and simplifies to DMD
gradient when α = 1. We empirically show the efficacy
of our adaptive weighting term wα(xt, t) through ablation
studies on the CIFAR-10 dataset in Sec. 5.3; see Fig. 2b.

Regularization with GAN. We empirically found that a
GAN-type regularization can accelerate convergence even
further in the beginning of training. More concretely, we can
train the discriminator ℓψ(xt; t) ≈ log p(x)

qθ(x)
by the GAN

discriminator training in Eq. (1). In our implementation,
we opt to train a discriminator using a variant based on the
α-JSD, as described in Appendix D.2. Given a discriminator
ℓψ(xt; t), we minimize a non-saturating version of the α-
JSD loss (cf. Eq. (2)),

L(α,t)
GAN (θ) = Eqθ(xt)

[
sp
(
−ℓψ(xt; t)− log

α

1− α
)]
. (11)

The derivation can be found in Appendix D.2. Similar to Yin
et al. (2024a), we parameterized the discriminator by a stack
of convolution layers, applied on top of an intermediate
feature of the amortized score network at α = 1/2.

Similar to DMD2 (Yin et al., 2024a), we implement a GAN
discriminator building on top of the score network, with only
a few additional MLP layers. This score-model-dependent
design allows the full model to benefit from the training
stability provided by denoising score matching, while the
GAN discriminator loss only trains the small auxiliary MLP.
(For ImageNet, the generator has 296M parameters and the
discriminator has 18M.) Thus, the discriminator represents a
small fraction of the overall model size and has a negligible
impact on training speed. As a result, our use of the GAN
regularizer is both efficient and stable.

4. Distilling from Pretrained Diffusion Model
In our development so far, we do not assume access to a
pretrained diffusion model. In this section, we show how
a practitioner can train a one-step generative model lever-
aging a pretrained diffusion model, if available, within our
framework. The proposed distillation scheme is comparable
or even outperforms the state-of-the-art distillation schemes.

4.1. How To Leverage Pretrained Diffusion Model

In the distillation setup, we treat the pretrained diffusion
model as the data score sp(xt; t), and thus training the score
of mixture sθ;α(xt; t) using a single, amortized model may
not be the most efficient parameterization. Hence, instead,
we consider the following expression

sθ;α(x) = Dθ;α(x)sp(x) + (1−Dθ;α(x))sqθ (x),
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Fake Image
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Generator Update (Eq. (6)) 
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Generator

<latexit sha1_base64="1O6ZTcWr7xqT5gzAGxQ8iSMt0KQ=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclUSkuiwI4rKCfUATwmQ6aYdOJmHmRimx4I+4caGIW7/EnX/jpO1CWw9cOJxzL3PmhKngGhzn21pZXVvf2Cxtlbd3dvf27cpBWyeZoqxFE5Gobkg0E1yyFnAQrJsqRuJQsE44uir8zj1TmifyDsYp82MykDzilICRArvixQSGYZQPJoEHQwYksKtOzZkCLxN3TqpojmZgf3n9hGYxk0AF0brnOin4OVHAqWCTspdplhI6IgPWM1SSmGk/n0af4BOj9HGUKDMS8FT9fZGTWOtxHJrNIqhe9ArxP6+XQXTp51ymGTBJZw9FmcCQ4KIH3OeKURBjQwhV3GTFdEgUoWDaKpsS3MUvL5P2Wc2t1+q359XG9dOsjhI6QsfoFLnoAjXQDWqiFqLoAT2jV/RmPVov1rv1MVtdseYVHqI/sD5/APOmlOI=</latexit>g✓
<latexit sha1_base64="kya0g3x827cjWOl3hczkO5ExFSs=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0WoIiURqS4LguhGKtgHNKFMppN26EwSZiZCDQE/wY2/4saFIm7duPNvnLQVtPXAhXPPucPce7yIUaks68vIzc0vLC7llwsrq2vrG+bmVkOGscCkjkMWipaHJGE0IHVFFSOtSBDEPUaa3uAs85u3REgaBjdqGBGXo15AfYqR0lLHPHA4Un3PT+5S6EjK4ajHiCVXack6hD/2ZbrfMYtW2RoBzhJ7QopgglrH/HS6IY45CRRmSMq2bUXKTZBQFDOSFpxYkgjhAeqRtqYB4kS6yeimFO5ppQv9UOgKFBypv18kiEs55J6ezFaU014m/ue1Y+WfugkNoliRAI8/8mMGVQizgGCXCoIVG2qCsKB6V4j7SCCsdIwFHYI9ffIsaRyV7Uq5cn1crJ7fj+PIgx2wC0rABiegCi5ADdQBBg/gCbyAV+PReDbejPfxaM6YRLgN/sD4+AaH3J5b</latexit>

z ⇠ N (0, I)
<latexit sha1_base64="Hc/R6hEAedlq3CDzijWfCMtq7DA=">AAACHnicbZDLSgNBEEV7fBtfUZduGoMQN2FGNLoRBEFcKhgjZGLo6dQkTXoedNeIcRjwP9z4K25cKCK40r+x8wKNXmi4nKqmqq4XS6HRtr+sicmp6ZnZufncwuLS8kp+de1SR4niUOGRjNSVxzRIEUIFBUq4ihWwwJNQ9TrHvXr1BpQWUXiB3RjqAWuFwhecoUGN/J4bMGx7fnqbXaeu9qnPOpDRQzrirazhYhuQFUfkLttu5At2ye6L/jXO0BTIUGeN/IfbjHgSQIhcMq1rjh1jPWUKBZeQ5dxEQ8x4h7WgZmzIAtD1tH9eRrcMaVI/UuaFSPv054+UBVp3A8909lbU47Ue/K9WS9A/qKcijBOEkA8G+YmkGNFeVrQpFHCUXWMYV8LsSnmbKcbRJJozITjjJ/81lzslp1wqn+8Wjk7uB3HMkQ2ySYrEIfvkiJySM1IhnDyQJ/JCXq1H69l6s94HrRPWMMJ18kvW5zee8KPY</latexit>

xfake = g✓(z)
<latexit sha1_base64="jM0yM5l2huNt/VBwrrykVcqn44k=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokItVlQRCXFewDmhgm00k7dPJg5kYsISD+ihsXirj1M9z5N07aLrT1wIXDOfdy7z1+IrgCy/o2SkvLK6tr5fXKxubW9o65u9dWcSopa9FYxLLrE8UEj1gLOAjWTSQjoS9Yxx9dFn7nnknF4+gWxglzQzKIeMApAS155oETEhj6QfaQe3CXOSrAARmx3DOrVs2aAC8Se0aqaIamZ345/ZimIYuACqJUz7YScDMigVPB8oqTKpYQOiID1tM0IiFTbjZ5IMfHWunjIJa6IsAT9fdERkKlxqGvO4tz1bxXiP95vRSCCzfjUZICi+h0UZAKDDEu0sB9LhkFMdaEUMn1rZgOiSQUdGYVHYI9//IiaZ/W7HqtfnNWbVw9TuMoo0N0hE6Qjc5RA12jJmohinL0jF7Rm/FkvBjvxse0tWTMItxHf2B8/gCL05dz</latexit>

xfake
t

<latexit sha1_base64="sQHiGd85gIgEKIDSLtb5QGtpEhs=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCq5KIVJcFQVxWsA9oYphMJ+3QyYOZiVBCoBt/xY0LRdz6E+78GydtF9p64MLhnHu59x4/4Uwqy/o2Siura+sb5c3K1vbO7p65f9CWcSoIbZGYx6LrY0k5i2hLMcVpNxEUhz6nHX90XfidRyoki6N7NU6oG+JBxAJGsNKSZx45IVZDP8hk7jmJZA+ZIwMU4BHNPbNq1awp0DKx56QKczQ988vpxyQNaaQIx1L2bCtRboaFYoTTvOKkkiaYjPCA9jSNcEilm01/yNGpVvooiIWuSKGp+nsiw6GU49DXncXFctErxP+8XqqCKzdjUZIqGpHZoiDlSMWoCAT1maBE8bEmmAimb0VkiAUmSsdW0SHYiy8vk/Z5za7X6ncX1cbNZBZHGY7hBM7AhktowC00oQUEJvAMr/BmPBkvxrvxMWstGfMID+EPjM8f4+WYwA==</latexit>

sfake
 

Amortized Score Update (Eq. (8))

<latexit sha1_base64="1O6ZTcWr7xqT5gzAGxQ8iSMt0KQ=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclUSkuiwI4rKCfUATwmQ6aYdOJmHmRimx4I+4caGIW7/EnX/jpO1CWw9cOJxzL3PmhKngGhzn21pZXVvf2Cxtlbd3dvf27cpBWyeZoqxFE5Gobkg0E1yyFnAQrJsqRuJQsE44uir8zj1TmifyDsYp82MykDzilICRArvixQSGYZQPJoEHQwYksKtOzZkCLxN3TqpojmZgf3n9hGYxk0AF0brnOin4OVHAqWCTspdplhI6IgPWM1SSmGk/n0af4BOj9HGUKDMS8FT9fZGTWOtxHJrNIqhe9ArxP6+XQXTp51ymGTBJZw9FmcCQ4KIH3OeKURBjQwhV3GTFdEgUoWDaKpsS3MUvL5P2Wc2t1+q359XG9dOsjhI6QsfoFLnoAjXQDWqiFqLoAT2jV/RmPVov1rv1MVtdseYVHqI/sD5/APOmlOI=</latexit>g✓
<latexit sha1_base64="sQHiGd85gIgEKIDSLtb5QGtpEhs=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCq5KIVJcFQVxWsA9oYphMJ+3QyYOZiVBCoBt/xY0LRdz6E+78GydtF9p64MLhnHu59x4/4Uwqy/o2Siura+sb5c3K1vbO7p65f9CWcSoIbZGYx6LrY0k5i2hLMcVpNxEUhz6nHX90XfidRyoki6N7NU6oG+JBxAJGsNKSZx45IVZDP8hk7jmJZA+ZIwMU4BHNPbNq1awp0DKx56QKczQ988vpxyQNaaQIx1L2bCtRboaFYoTTvOKkkiaYjPCA9jSNcEilm01/yNGpVvooiIWuSKGp+nsiw6GU49DXncXFctErxP+8XqqCKzdjUZIqGpHZoiDlSMWoCAT1maBE8bEmmAimb0VkiAUmSsdW0SHYiy8vk/Z5za7X6ncX1cbNZBZHGY7hBM7AhktowC00oQUEJvAMr/BmPBkvxrvxMWstGfMID+EPjM8f4+WYwA==</latexit>

sfake
 

<latexit sha1_base64="iPNWWNJlUa3hWGDGOzvUcuwscXE=">AAACGHicbVDLSgMxFM3UV62vUZdugkWoIHWmSHVZEEQ3UsE+oK0lk2ba0MyD5I5ShgF/wo2/4saFIm67829MH4K2Hggczjnh3nucUHAFlvVlpBYWl5ZX0quZtfWNzS1ze6eqgkhSVqGBCGTdIYoJ7rMKcBCsHkpGPEewmtM/H/m1eyYVD/xbGISs5ZGuz11OCWipbR43PQI9x40fkjbgpuIeHiuUiPg6yVlHGO4KP5mr5LBtZq28NQaeJ/aUZNEU5bY5bHYCGnnMByqIUg3bCqEVEwmcCpZkmpFiIaF90mUNTX3iMdWKx4cl+EArHewGUj8f8Fj9/SMmnlIDz9HJ0Ypq1huJ/3mNCNyzVsz9MALm08kgNxIYAjxqCXe4ZBTEQBNCJde7YtojklDQXWZ0CfbsyfOkWsjbxXzx5iRbunic1JFGe2gf5ZCNTlEJXaIyqiCKntALekPvxrPxanwYn5NoyphWuIv+wBh+A1usoGE=</latexit>

wt ⇠ N (0, t2I)

Real Dataset
<latexit sha1_base64="5uzyHNuiN3QKF61A3JRltNTVc2Y=">AAACAnicbVDLSsNAFL3xWesr6krcDBbBVUlEqsuCIC4r2Ac0MUymk3bo5MHMRCwh6MJfceNCEbd+hTv/xknbhbYeuHA4517uvcdPOJPKsr6NhcWl5ZXV0lp5fWNza9vc2W3JOBWENknMY9HxsaScRbSpmOK0kwiKQ5/Ttj+8KPz2HRWSxdGNGiXUDXE/YgEjWGnJM/edEKuBH2Qy95xEstvMkQGi9yr3zIpVtcZA88SekgpM0fDML6cXkzSkkSIcS9m1rUS5GRaKEU7zspNKmmAyxH3a1TTCIZVuNn4hR0da6aEgFroihcbq74kMh1KOQl93FgfLWa8Q//O6qQrO3YxFSapoRCaLgpQjFaMiD9RjghLFR5pgIpi+FZEBFpgonVpZh2DPvjxPWidVu1atXZ9W6pePkzhKcACHcAw2nEEdrqABTSDwAM/wCm/Gk/FivBsfk9YFYxrhHvyB8fkDSsmYcA==</latexit>

sext
 

<latexit sha1_base64="Ie9XlXDKNWQS32wasmtlYz+ZX6I=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WNBEI8V7Ae0oUy2m3bpZrPsboQSCv4FLx4U8erv8ea/cdP2oK0PBh7vzTAzL5ScaeN5305hbX1jc6u4XdrZ3ds/KB8etXSSKkKbJOGJ6oSoKWeCNg0znHakohiHnLbD8U3utx+p0iwRD2YiaRDjULCIETRWaveQyxGW+uWKV/VmcFeJvyAVWKDRL3/1BglJYyoM4ah11/ekCTJUhhFOp6VeqqlEMsYh7VoqMKY6yGbnTt0zqwzcKFG2hHFn6u+JDGOtJ3FoO2M0I73s5eJ/Xjc10XWQMSFTQwWZL4pS7prEzX93B0xRYvjEEiSK2VtdMkKFxNiE8hD85ZdXSeui6teqtfvLSv32aR5HEU7gFM7Bhyuowx00oAkExvAMr/DmSOfFeXc+5q0FZxHhMfyB8/kD7L+Puw==</latexit>↵

<latexit sha1_base64="iPNWWNJlUa3hWGDGOzvUcuwscXE=">AAACGHicbVDLSgMxFM3UV62vUZdugkWoIHWmSHVZEEQ3UsE+oK0lk2ba0MyD5I5ShgF/wo2/4saFIm67829MH4K2Hggczjnh3nucUHAFlvVlpBYWl5ZX0quZtfWNzS1ze6eqgkhSVqGBCGTdIYoJ7rMKcBCsHkpGPEewmtM/H/m1eyYVD/xbGISs5ZGuz11OCWipbR43PQI9x40fkjbgpuIeHiuUiPg6yVlHGO4KP5mr5LBtZq28NQaeJ/aUZNEU5bY5bHYCGnnMByqIUg3bCqEVEwmcCpZkmpFiIaF90mUNTX3iMdWKx4cl+EArHewGUj8f8Fj9/SMmnlIDz9HJ0Ypq1huJ/3mNCNyzVsz9MALm08kgNxIYAjxqCXe4ZBTEQBNCJde7YtojklDQXWZ0CfbsyfOkWsjbxXzx5iRbunic1JFGe2gf5ZCNTlEJXaIyqiCKntALekPvxrPxanwYn5NoyphWuIv+wBh+A1usoGE=</latexit>

wt ⇠ N (0, t2I)

Real Image

<latexit sha1_base64="jP6rlbuJAveSeasvrdaOZe81jc0=">AAACG3icbVBNS8NAEN34bf2KevSyWAQFKUkRFbwIgnjwoGBVaGqZbDd26WYTdidiCQV/hhf/ihcPingSPPhv3LQ9+PVg4PHeDDPzwlQKg5736YyMjo1PTE5Nl2Zm5+YX3MWlc5NkmvEaS2SiL0MwXArFayhQ8stUc4hDyS/CzkHhX9xwbUSizrCb8kYM10pEggFaqelWAwWhhGaQGkGDGLDNQObHvas8MBHlt9hbL6w9GoBM27BJcaPplr2K1wf9S/whKZMhTprue9BKWBZzhUyCMXXfS7GRg0bBJO+VgszwFFgHrnndUgUxN428/1uPrlmlRaNE21JI++r3iRxiY7pxaDuL681vrxD/8+oZRruNXKg0Q67YYFGUSYoJLYKiLaE5Q9m1BJgW9lbK2qCBoY2zZEPwf7/8l5xXK/52Zft0q7x/eDeIY4qskFWyTnyyQ/bJETkhNcLIPXkkz+TFeXCenFfnbdA64gwjXCY/4Hx8AbWEoZs=</latexit>

r Lext( ;↵, t)

<latexit sha1_base64="4HBtkVCKoP8QXlS6XztNEFC8l2s=">AAACG3icbVDLSsNAFJ34tr6qLt0MFkFBSiKightBEJcKVoWmlpvpTTs4k4SZG7GEgp/hxl9x40IRV4IL/8ak7cLXgQuHc+5l5pwgUdKS6346I6Nj4xOTU9Olmdm5+YXy4tK5jVMjsCZiFZvLACwqGWGNJCm8TAyCDhReBNeHhX9xg8bKODqjboINDe1IhlIA5VKzvOVroE4QZn4btIZe00+svMp8G3K8pd66Tx0k2Oc+qKQDm5w2Ss1yxa26ffC/xBuSChvipFl+91uxSDVGJBRYW/fchBoZGJJCYa/kpxYTENfQxnpOI9BoG1k/W4+v5UqLh7HJJyLeV79fZKCt7eog3yyS2N9eIf7n1VMK9xqZjJKUMBKDh8JUcYp5URRvSYOCVDcnIIzM/8pFBwwIyussSvB+R/5Lzreq3k5153S7cnB0N6hjiq2wVbbOPLbLDtgxO2E1Jtg9e2TP7MV5cJ6cV+dtsDriDCtcZj/gfHwByvGhoA==</latexit>

�ext
 (✓;↵, t)

<latexit sha1_base64="NuWlsmzXJtkldpyf7/NTtrUDLzs=">AAACYnicbVHPa9swFJbdrmvdrUvXY3cQDRs7jGCXke5YGJQeW2jaQpQFWX52RGTJSM+jwRj2R+6yQ2/7K3aqnAS2tX0g8fG9H5/ep7RS0mEc/wrCjc0XWy+3d6LdV6/33vT23147U1sBI2GUsbcpd6CkhhFKVHBbWeBlquAmnX/t8jffwTpp9BUuKpiUvNAyl4Kjp6Y9zRTkyFRquYCIpVBI3XAlCw1ZG31gJcdZmjd37RS/NczlNOdzaCljz+W8sGojBjr7O4JZWcyQ2ZXAtNePB/Ey6FOQrEGfrONi2rtnmRF1CRqF4s6Nk7jCScMtSqHAj68dVFzMeQFjDzUvwU2apS8tfe+ZjObG+qORLtl/OxpeOrcoU1/Z7eIe5zryE+1uNEa558rGNeZfJo3UVY2gxUozrxVFQzu/aSYtCFQLD7iw0j+bihn3ZqD/lc6P5PH2T8H18SAZDoaXn/unZz9WzmyTQ3JEPpKEnJBTck4uyIgI8pP8CTaCzeB3GIX74cGqNAzWbh6Q/yJ89wB5Ibml</latexit>(
xfake

t

xreal
t

)
<latexit sha1_base64="YSGEkFya2cDVd41LZ+Nd+jTDlKU="></latexit>(
sext
 (xfake

t ;↵, t)

sext
 (xreal

t ;↵, t)

)

<latexit sha1_base64="XzmsZrV5bHteCgxQbZZYyfdV2Dg="></latexit>(
s (xfake

t ; 0, t)

s (xfake
t ;↵, t)

)
<latexit sha1_base64="ujUR4QIFee/Lsotnzd6UXtSy/O4="></latexit>⇢
0
↵

�

Figure 1. Overview of SMT. Top: To update the generator, we compute the gradient of the α-JSD on noisy fake samples with the frozen
amortized score model using Eq. (6). Bottom: The amortized score model is updated by computing the score of the mixture distribution
on both fake and real noisy samples, and then updating the weights using the gradient in Eq. (8).

where

Dθ;α(x) :=
αp(x)

αp(x) + (1− α)qθ(x)

= σ
(
log

p(x)

qθ(x)
+ log

α

1− α
)
.

See Proposition A.2 for a formal statement. In words,
we can express the score of mixture sθ;α(x) as a mixture
of scores sp and sqθ , where the weight is (Dθ;α(x), 1 −
Dθ;α(x)). This suggests that instead of an amortized mod-
eling of the score of mixture, we can use an alternative
parameterization,

sexpψ (x;α) := Dψ(x;α)sp(x) + (1−Dψ(x;α))s
fake
ψ (x),

where

Dψ(x;α) := σ
(
ℓψ(x) + log

α

1− α
)
.

Here, we can parameterize the discriminator x 7→ ℓψ(x) in
the same way as we do for the GAN discriminator.

We can extend this to multiple noise levels easily. Hence,
an alternative parameterization for sθ;α(xt; t) is

sexpψ (xt;α, t) := Dψ(xt;α, t)sp(xt; t) (12)

+ (1−Dψ(xt;α, t))s
fake
ψ (xt; t),

where

Dψ(xt;α, t) := σ
(
ℓψ(xt; t) + log

α

1− α
)
. (13)

Plugging this explicit score model into Eq. (8), we can learn
both the fake score model sfakeψ and the discriminator ℓψ at
different noise levels.

Corollary 4.1. Let α ∈ [0, 1] be fixed and σt be some fixed
noise level. Then, the minimizer of the objective function

Lexp(ψ;α, t) (14)

:= α Ep(x)q(ϵ)[∥sexpψ (xt;α, t) + ϵ/σt∥2]
+ (1− α) Eqθ(x)q(ϵ)[∥sexpψ (xt;α, t) + ϵ/σt∥2]

satisfies

sfakeψ∗ (x; t) = sqθ (x; t) and ℓψ∗(xt; t) = log
p(xt)

qθ(xt)
.

We remark that this new regression objective in Eq. (14) pro-
vides a new way to compute the log density ratio, as an alter-
native to the GAN training (see Eq. (1)). In Appendix D.3,
we establish a connection between this objective for training
a discriminator to an existing GAN discriminator objective
in the literature.

With this new, explicit parameterization, we can approxi-
mate the gradient expression in Eq. (6) as

∇θD(α)
JSD(qθ,t, pt)

≈ γexp
ψ (θ;α, t) (15)

:= Eq(z)

[
Dψ(xt;α, t)×

∇θgθ(z)
sfakeψ (xt; t)− sp(xt, t)

α

∣∣∣
x=gθ(z)

]
.

4.2. Implementation and Training

Model Architectures. We can leverage any existing
diffusion model architectures directly for the fake score
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sfakeψ (xt; t). We parametrize the discriminator ℓψ(xt; t) sim-
ilar to the noise-conditional discriminator in our training
from scratch setting (see Sec. 3.5). The difference is that we
can train the discriminator by minimizing the DSM loss in
Eq. (14) naturally, without an additional GAN loss. When
training the generator, we plug in this approximate log den-
sity ratio into Eq. (11) to regularize the generator updates.

Training. We also train in an alternating fashion. Since
we have access to a pretrained score model, we use this
to initialize the weights of both the generator and the fake
score model. We utilize the same sampling distribution for
α as in our training from scratch setup (see Sec. 3.5). The
procedure is summarized in Fig. 4 and Alg. 2 in Appendix C.

5. Experiments
In this section, we first present results on the ImageNet
64 × 64 dataset. We then demonstrate the competitive-
ness of our method on the CIFAR-10 dataset and con-
duct a series of ablation studies. We measure performance
through sample quality as measured by the Fréchet Incep-
tion Distance (FID) (Heusel et al., 2017). The exact hy-
erparameters, training configurations used and additional
results, including an example training dynamics and la-
tent interpolation, can be found in Appendix E. Our imple-
mentation can be found at https://github.com/tkj516/
score-of-mixture-training.

5.1. Class-conditional ImageNet 64x64 Generation

Experimental Setup. We trained class-conditional one-
step generative models on ImageNet 64× 64 (Deng et al.,
2009), experimenting with both distillation and training
from scratch. In both cases, we used the ADM architecture
(Nichol & Dhariwal, 2021) as the base score model archi-
tecture, and the discriminator ℓψ(xt; t) was implemented
as a stack of convolution layers operating on the bottleneck
feature from the score network, similar to DMD2 (Yin et al.,
2024a). For training from scratch, we augmented the
score architecture using an α-embedding as described in
Sec. 3.4. The total number of parameters of the amortized
score model remained unchanged otherwise. As a warmup
stage, we pretrained the generator on the dataset using a
standard diffusion denoising objective for 40k steps to ini-
tialize the weights. For distillation, we used a pretrained
diffusion model from (Karras et al., 2022b).

Results. We evaluated our method against several published
baselines for both training from scratch and distillation. As
shown in Table 2, when trained from scratch, our gener-
ator with 296M parameters outperforms both consistency
training and its improved variant (Song et al., 2023; Song
& Dhariwal, 2024a), with a much smaller training budget
(200k iterations with batch size of 40 vs. 800k iterations

with batch size of 512). Our model also competes favorably
with iCT-deep, despite using a generator with half the num-
ber of parameters: FID of 3.23 with 296M parameters (ours)
vs. 3.25 with 592M parameters (iCT-deep). We observed
stable training throughout, without requiring extensive hy-
perparameter tuning or special noise schedule adjustments
as in consistency training, as visualized in Fig. 2a. We also
surpass the ECT model (Geng et al., 2025) of similar size
and training budget that includes several modifications to
induce stability in consistency training. Samples generated
using our method can be found in Fig. 3 and Appendix E.

In the distillation setting, our model achieves a competitive
FID of 1.48, outperforming several baselines. Notably, we
outperform consistency distillation methods, such as mul-
tistep consistency distillation (Heek et al., 2024), despite
using only a fraction of the model size (256M parameters
against 1200M parameters). Our model also surpasses con-
sistency trajectory models (CTM) (Kim et al., 2024), which
ensure consistency between random points along the PF
ODE trajectory, by simulating the reverse diffusion sam-
pler for an arbitrary number of steps per minibatch, thus
resulting in high computational cost.

We also outperform reverse-KLD methods with similar com-
pute or regularizers such as DMD (Yin et al., 2024b) and
DMD2 (Yin et al., 2024a) with FIDs of 5.60 and 1.51 respec-
tively. We note that on spending significant extra compute,
DMD and DMD2 achieved improved results. For example,
in the DMD framework without any GAN regularization,
the authors simulate the reverse process of a diffusion model
and sample several thousand noise-image pairs to anchor
the generator’s outputs. Each noise-image pair requires
evaluating the diffusion denoiser 256 times for ImageNet
64×64, which is extremely costly in practice. In contrast in
the DMD2 framework the authors adopt a lengthy finetun-
ing stage with GAN regularization of 400k steps to further
improve results.

We did not resort to any of the above techniques and sought
to find an approach that worked best with a single execution
of the training pipeline run for 200k steps.

5.2. Unconditional CIFAR-10 Generation

Experimental Setup. We evaluated our method on the
CIFAR-10 dataset (Krizhevsky et al., 2009) for uncondi-
tional one-step generative modeling, considering both train-
ing from scratch and distillation. In both cases, we em-
ployed a DDPM++ architecture (Song et al., 2020) with
EDM preconditioning (Karras et al., 2022b). The discrimi-
nator again followed the convolutional stack used in DMD2.
For training from scratch, we modified the score model to
incorporate the α-embedding (Sec. 3.4) while maintaining
a similar network size. To mitigate overfitting due to the
dataset’s small size, we enabled dropout with p = 0.13,
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Table 2. Image generation results on ImageNet 64x64 (class-conditional) and
CIFAR-10 32x32 (unconditional). The size of the sampler is denoted by the
number of parameters (# params), and NFE stands for the Number of Function
Evaluations. The best FIDs from each category are highlighted in bold, and our
methods SMT and SMD are highlighted with a blue shade.

ImageNet 64x64 CIFAR-10 32x32

Method # params NFE FID↓ # params NFE FID↓
Training from scratch: Diffusion models

DDPM (Ho et al., 2020) - - - 56M 1000 3.17
ADM (Dhariwal & Nichol, 2021) 296M 250 2.07 - - -
EDM (Karras et al., 2022b) 296M 512 1.36 56M 35 1.97

Training from scratch: One-step models
2-RF + distill (Liu et al., 2022) - - - 56M 1 4.85
CT (Song et al., 2023) 296M 1 13.0 56M 1 8.70
iCT (Song & Dhariwal, 2024a) 296M 1 4.02 56M 1 2.83
iCT-deep (Song & Dhariwal, 2024a) 592M 1 3.25 112M 1 2.51
ECT (Geng et al., 2025) 280M 1 5.51 56M 1 3.60
SMT (ours) 296M 1 3.23 56M 1 3.13

Diffusion distillation
PD (Salimans & Ho, 2022) 296M 1 10.7 60M 1 9.12
TRACT (Berthelot et al., 2023) 296M 1 7.43 56M 1 3.78
CD (LPIPS) (Song et al., 2023) 296M 1 6.20 56M 1 4.53
Diff-Instruct (Luo et al., 2024a) 296M 1 5.57 56M 1 4.53
MultiStep-CD (Heek et al., 2024) 1200M 1 3.20 - - -
DMD w/o reg (Yin et al., 2024b) 296M 1 5.60 56M 1 5.58
DMD2 w/ GAN (Yin et al., 2024a) 296M 1 1.51 56M 1 2.43
MMD (Salimans et al., 2024) 400M 1 3.00 - - -
SiD (Zhou et al., 2024) 296M 1 1.52 56M 1 1.92
SiM (Luo et al., 2024b) - - - 56M 1 2.02
2-RF ++ (Lee et al., 2024) 296M 1 3.07 56M 1 4.31
SMD (ours) 296M 1 1.48 56M 1 2.22

w/ expensive regularizer, simulation or finetuning
CTM (Kim et al., 2024) 296M 1 1.92 56M 1 1.98
DMD w/ reg (Yin et al., 2024b) 296M 1 2.62 56M 1 2.66
DMD2 (finetuned) (Yin et al., 2024a) 296M 1 1.23 - - -

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
training steps ×104

101FI
D

SMT/SMD on ImageNet 64x64
SMT (scratch)
SMD (distillation)

(a) ImageNet 64×64 (scratch and distillation).

2 4 6 8 10 12 14
training steps ×104

101

102

FI
D

SMT on CIFAR10
random ; DMD weighting
random ; our weighting

{0, 1}; our weighting
random ; our weighting + GAN reg

(b) CIFAR-10 with ablation studies (scratch).

Figure 2. FID evolution with training.

as in EDM. In the distillation setting, we initialized the
generator with a pretrained unconditional diffusion model
from (Karras et al., 2022b), using the same UNet backbone
and weights. Distillation performed well without dropout.

Results. The last three columns in Table 2 highlight the per-
formance of our method on CIFAR-10 compared to various
baselines. In our training from scratch setting, despite utiliz-
ing a lower training budget (150k steps with a batch size of
40) than many methods, our approach remains highly com-
petitive. In terms of training budget, the most comparable
baseline is ECT, which we are able to outperform without
requiring excessive design considerations and hyperparame-
ter tuning. Our distillation results are also competitive. In
particular, we outperform Diff-Instruct and DMD2, which
are only based on minimizing the reverse KLD. This cor-
roborates the benefit of our multi-divergence minimization
approach. Image samples can be found in Appendix E.5.

5.3. Ablation Studies

We use the CIFAR-10 dataset to study the effectiveness of
the design choices that we have proposed; see Fig. 2b.

Choice of Adaptive Gradient Weighting. Starting with our
base objective without the GAN regularizer, we tested our
(α, t)-adaptive weighting in Eq. (10). Fig. 2b demonstrates
the benefits of our weighting scheme, compared to the DMD
weight function that only depends on t.

Learning with Single vs. Multiple α’s. The α-JSD re-
duces to the reverse KLD of DMD and other distillation
methods, when α = 1. To test the efficacy with multi-α
learning, we implemented an amortized variant, training
the score model only with α ∈ {0, 1}. Results show that
conditioning on a range of α-values not only minimizes
multiple divergences but also strengthens the α embedding
as a conditioning signal thereby facilitating more accurate
divergence minimization.

Accelerated Convergence with GAN Regularizer. We
finally verify the benefits of our novel GAN-type regularizer
for α-JSD minimization. As demonstrated by the second
and fourth curves in Fig. 2b, the GAN regularizer helps ac-
celerate convergence especially in the beginning of training.

8
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Figure 3. Samples from SMT on ImageNet 64×64. Each row
represents a unique class. Additional samples can be found in
Appendix E.5.

6. Concluding Remarks
In this paper, we show that high-quality one-step generative
models can be trained from scratch and in a stable manner,
without simulating the reverse diffusion process or prob-
ability flow ODE as in diffusion models and consistency
models. The key distinctive idea in our framework is a
new multi-divergence minimization paradigm implemented
by estimating the score of mixture distributions. For stable
training, we borrow multi-level noise learning and denoising
score matching techniques from the diffusion literature. Our
empirical results show that accurate score estimation facili-
tates stable minimization of statistical divergences. We hope
this work offers a fresh perspective on generative modeling
and inspires further research in the field.

Limitations and Future Work. While SMT/SMD achieve
strong empirical performance, there is still room for im-
provement in both architecture and training strategies. De-
spite achieving highly competitive FID scores for one-
step generation from scratch, models capable of few-step
generation—such as consistency models—might further
improve FID with additional iterations.Finally, given the
generality of our framework, we believe these ideas could
extend to other complex modalities, including speech and
audio synthesis. We leave such directions for future work.

Impact Statement
We introduce Score-of-Mixture Training, a simple yet effec-
tive one-step generative modeling framework that requires
minimal design effort and hyperparameter tuning. We hope
its ease of implementation will drive further research into
efficient, state-of-the-art neural sampling. However, we
acknowledge the potential risks of misuse, including the
generation of fake, biased, or misleading content. Our work
focuses on fundamental research using standard machine
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ing generative models are secure and privacy-preserving to
democratize this technology responsibly.
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A. Deferred Statements and Proofs
A.1. Proof of Proposition 3.1

Proof of Proposition 3.1. We can simplify the gradient of each term separately as follows:

∇θDKL(qθ∥αp+ (1− α)qθ) = Eqθ(x)

[
∇θ log

qθ(x)

αp(x) + (1− α)qθ(x)
]
+ Eq(z)

[
∇θgθ(z)(sθ;0(x)− sθ;α(x))

∣∣∣
x=gθ(z)

]
,

∇θDKL(p∥αp+ (1− α)qθ) = −Ep(x) [∇θ log(αp(x) + (1− α)qθ(x))] .

Here, note that in the first expression, we invoke the chain rule: for some function fθ : X → R, we have

∇θfθ(gθ(z)) = (∇θfθ(x))|x=gθ(z) +∇θgθ(z)(∇xfθ(x))|x=gθ(z).

Combining these two terms with the weights, we get the gradient of the α-skew JSD:

∇θD(α)
JSD(qθ, p) =

1

α
∇θDKL(qθ∥αp+ (1− α)qθ) +

1

1− α∇θDKL(p∥αp+ (1− α)qθ)

=
1

α
Eq(z)

[
∇θgθ(z)(sθ;0(x)− sθ;α(x))

∣∣∣
x=gθ(z)

]

− 1

α(1− α) Eαp(x)+(1−α)qθ(x)[∇θ log(αp(x) + (1− α)qθ(x))]

+
1

α
Eqθ(x)[∇θ log qθ(x)]

=
1

α
Eq(z)

[
∇θgθ(z)(sθ;0(x)− sθ;α(x))

∣∣∣
x=gθ(z)

]
.

Here, we use the assumption that Eqθ(x)[∇θ log qθ(x)] = 0.

12
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A.2. Proof of Proposition 3.2

Proof of Proposition 3.2. We can write the objective L(ψ;α) as

L(ψ;α) =
∫ {

(αp(x) + (1− α)qθ(x))∥sψ(x;α)∥2 − 2(αp(x)sp(x) + (1− α)qθ(x))⊺sψ(x;α)
}
dx+ C

=

∫
(αp(x) + (1− α)qθ(x))

∥∥∥sψ(x;α)−
αp(x)sp(x) + (1− α)qθ(x)sqθ (x)

αp(x) + (1− α)qθ(x)
∥∥∥
2

dx+ C ′.

Hence, it is clear that the global minimizer should be

sψ∗(x;α) =
αp(x)sp(x) + (1− α)qθ(x)sqθ (x)

αp(x) + (1− α)qθ(x)

=
α∇xp(x) + (1− α)∇xqθ(x)

αp(x) + (1− α)qθ(x)

=
∇x(αp(x) + (1− α)qθ(x))
αp(x) + (1− α)qθ(x)

= ∇x log(αp(x) + (1− α)qθ(x)).

A.3. Deferred Statements

Proposition A.1. Let α ∈ [0, 1] be fixed and σt be some fixed noise level. Then, the minimizer of the objective function

Lscore(ψ;α, t) := α Ep(x)q(ϵ)[∥sψ(xt;α, t) + ϵ/σt∥2] + (1− α) Eqθ(x)q(ϵ)[∥sψ(xt;α, t) + ϵ/σt∥2] (16)

satisfies
sψ∗(xt;α, t) = sθ;α,t(xt).

Proof. We can write the objective L(ψ;α, t) as

Lscore(ψ;α, t) =

∫∫
(αp(xt) + (1− α)qθ(xt))

∥∥∥sψ(xt;α, t) +
ϵ

σt

∥∥∥
2

dx dϵ.

This is a standard minimum mean square estimation (MMSE) problem for which the global minimizer is the conditional
mean,

sψ∗(xt;α, t) = −
1

σt
Eαpt+(1−α)qθ,t [ϵ|xt]

= − 1

σ2
t

Eαpt+(1−α)qθ,t [xt − x|xt]

= − 1

σ2
t

xt +
1

σ2
t

Eαpt+(1−α)qθ,t [x|xt]

= ∇xt log(αp(xt) + (1− α)qθ(xt)).

Here we use that xt = x+ σtϵ and make the connection to the marginal score in the last line using Tweedie’s formula (Rob-
bins, 1956).

Proposition A.2. Let α ∈ [0, 1], sp(x) be the data score, sqθ (x) be the score of the generated samples. Then, the score of
the mixture distribution can be expressed as

sθ;α(x) = Dθ;α(x)sp(x) + (1−Dθ;α(x))sqθ (x), (17)

where

Dθ;α(x) := σ
(
log

p(x)

qθ(x)
+ log

α

1− α
)
, (18)
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Proof. The amortized score can be expressed as

∇x log(αp(x) + (1− α)qθ(x)) =
∇x(αp(x) + (1− α)qθ(x))
αp(x) + (1− α)qθ(x)

=
αp(x)

αp(x) + (1− α)qθ(x)
∇x log p(x) +

(1− α)qθ(x)
αp(x) + (1− α)qθ(x)

∇x log qθ(x)

= D(x;α)∇x log p(x) + (1−D(x;α))∇x log qθ(x).

We can now simplify the scaling factor as

D(x;α) =
αp(x)

αp(x) + (1− α)qθ(x)
= σ

(
log

p(x)

qθ(x)
+ log

α

1− α

)
.

B. Detailed Discussions on Related Work
B.1. Diffusion Models

Prior Work. Sohl-Dickstein et al. (2015) first introduced diffusion probabilistic models (DPMs) as deep variational
autoencoders (Kingma, 2014) based on the principles of thermodynamic diffusion with a Markov-chain variational posterior
that maximizes the evidence lower bound (ELBO). Several years later, Ho et al. (2020) re-introduced DPMs (DDPMs)
with modern neural network architectures and a simplified loss function that set a new state-of-the-art in image generation.
Since then, numerous connections to existing literature in statistics, information theory and stochastic differential equations
(SDEs) have helped bolster the quality of these models. For example, Song & Ermon (2019) illustrate the equivalence
between DDPMs and DSM at multiple noise levels, thus bridging the areas of diffusion-based models and score-based
models. Subsequently, Song et al. (2021b) showed that in continuous time, DPMs can be appropriately interpreted as solving
for the reverse of a noising process that evolves as an SDE while Kingma et al. (2021) demonstrated that continuous-time
DPMs can interpreted as VAEs and that the variational lower bound is invariant to the noise schedule except for its endpoints,
thus bolstering its density estimation capabilities. Following the latter discovery, Kong et al. (2023) show that DPMs can
in-fact be used for exact likelihood computation by leveraging techniques from information theory. To further improve
DPMs, extensive research has gone into the choice of noise schedules, network architectures and loss functions (Nichol
& Dhariwal, 2021; Hoogeboom et al., 2023; Karras et al., 2022a; Kingma & Gao, 2024). Many tangentially discovered
frameworks such as rectified flows (Liu et al., 2023) and conditional normalizing flows trained with Gaussian conditional
flow matching (Lipman et al., 2023), are also particular instances of (Gaussian) diffusion models with specialized noise
schedules and weighted loss functions, as show in (Kingma & Gao, 2024).

Formulation. We take the following unified view in our definition of DPMs as inspired by (Kingma & Gao, 2024) and
(Karras et al., 2022a). Let p(x) be the data distribution and let λ(t) define a variance exploding noise schedule with
distribution p(t) where t ∼ U(0, 1). Under this noise schedule we can define a noisy version of x at noise level σt as

xt := x+ σtϵ where ϵ ∼ N (0, I). (19)

Given noisy samples of data, the diffusion objective can be reduced to a weighted denoising objective,

LDPM(ϵθ) =
1

2
Ep(t)p(x)q(ϵ)

[
w(t)∥ϵ− ϵθ(xt; t)∥2

]
, (20)

where w(t) is a positive scalar-valued weighting function. Note that for the forward process defined in Eq. (19), the
conditional score is s(xt|x) = −ϵ/σt. Thus, Eq. (20) can be interpreted as a weighted denoising score matching loss
(Vincent, 2011) over multiple noise levels,

LDPM(ϵθ) =
1

2
Ep(t)p(x)p(xt|x)

[
w′(t)

∥∥∥∥s(xt |x) +
ϵθ(xt; t)

σt

∥∥∥∥
2
]
, (21)

where w′(t) := σ2
tw(t) and the marginal score estimator is sθ(xt; t) := −ϵθ(xt; t)/σt.

Sampling. It is often beneficial to view DPMs as SDEs (Song et al., 2021b) where the forward process can be expressed as

dxt = f(xt, t)dt+ g(t)dw,

14



Score-of-Mixture Training: Training One-Step Generative Models Made Simple

where w is a standard Wiener process and x0 = x. The time reversal of this process (i.e., the generative process) is known
to follow the reverse SDE,

dxt =
[
f(xt, t)− g2(t)∇xt log p(xt)

]
dt+ g(t)dw̄.

Note that in practice∇xt log p(xt) would be estimated by the score function sθ(xt; t) from a variant of DSM as in Eq. (21).

Sampling can be simulated through techniques such as annealed Langevin dynamics or ancestral sampling (Song et al.,
2021b). While the above reverse SDE is stochastic in nature, there also exists a deterministic process known as the
probability flow ODE that satisfies the same intermediate marginal distributions,

dxt =
[
f(xt, t)−

1

2
g2(t)∇xt log p(xt)

]
dt. (22)

The benefit of the ODE formulation is that it can discretized more coarsely and hence sampling can done in fewer timesteps.
Furthermore, sampling is possible by plugging in the updates from Eq. (22) into black-box ODE solvers, e.g., the Heun 2nd

order solver (Karras et al., 2022a). Sampling can be sped even further if Eq. (22) can be solved exactly. Lu et al. (2022a)
show that the exact solution to Eq. (22) at timestep t given an initial value at timestep s < t is,

xt = xs + 2

∫ σt

σs

σuϵθ (xu;u) dσu. (23)

Various samplers can be derived by approximating the exponentially weighted integral in different ways. For example, the
widely used DDIM sampler (Song et al., 2021a) is an example of a first-order Taylor expansion of the integral term. At the
core of all these algorithms is a score estimator/denoiser, which if learned accurately could improve the quality of samples
produced.

EDM Diffusion Architecture. The EDM preconditioning diffusion model utilizes a base DDPM++ architecture from (Song
et al., 2021b) for CIFAR-10 and the ADM architecture (Nichol & Dhariwal, 2021) for ImageNet 64× 64. The EDM model
uses a noise schedule that is defined as

log σt ∼ N (−1.2, 1.22). (24)

Rather than regressing against the unscaled additive noise as in DSM, EDM regresses against the original sample expressed
in the following form,

x =
σ2

data

σ2
t + σ2

data
xt +

σt · σdata√
σ2
t + σ2

data

g, (25)

where σdata = 0.5. To this end, EDM is parametrized with a denoising neural network,

fθ(xt; t) =
σ2

data

σ2
t + σ2

data
xt +

σt · σdata√
σ2
t + σ2

data

gθ(xt; t), (26)

which is trained by minimizing
min
θ

Ep(x)q(ϵ)p(t)[w̃(t)∥x− fθ(xt; t)∥2],
where

wEDM(t) =
σtσdata√
σ2
t + σ2

data

. (27)

This is equivalent to estimating g by minimizing the objective,

LEDM(gθ) := Ep(x)q(ϵ)p(t)
[
∥g − gθ (xt; t) ∥2

]
. (28)

Using Eq. (24) and Eq. (25) we can show that,

g =

√
σ2
t + σ2

data

σtσdata
x− σdata

σt
√
σ2
t + σ2

data

xt (29)

= −
√
σ2
t + σ2

data

σdata
ϵ+

σt√
σ2
t + σ2

dataσdata
xt. (30)

Therefore, in terms of Eq. (20) the EDM objective boils down to the unified diffusion objective with weighting function,

w(t) =
σ2
t + σ2

data

σ2
data

. (31)
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B.2. Diffusion Distillation

Achieving state-of-the-art generation results on CIFAR-10 and ImageNet 64× 64 using a Heun 2nd order sampler with the
EDM architecture requires 35 and 512 function evaluations (FEs) respectively. The goal of diffusion distillation is to distill a
teacher model into a student model that can achieve high quality signal generation with few FEs.

The earliest works on distillation such as progressive distillation (Salimans & Ho, 2022) and knowledge distillation (Huang
et al., 2023) train a student diffusion model with drastically reduced sampling budget to match the performance of a teacher
model that is simulated in reverse. For example, given a teacher diffusion model parametrized as a denoiser fϕ and a noisy
sample xt, a “clean” target x(k)

ϕ is constructed by running the teacher model for k steps in reverse. The student denoiser fθ
is then optimized by minimizing the loss,

L(ϕ) := Ep(x)p(z)p(t)[w(t)∥fθ(xt; t)− x
(k)
ϕ ∥2].

Knowledge distillation on the other hand conditions the student model on intermediate features from the teacher diffusion
model so as to regularize the learned weights more effectively and retain knowledge from the teacher model. These methods
are expensive as it requires either simulating multiple steps of a teacher diffusion model or additionally probing it for feature
extraction.

More recently a class of new diffusion distillation techniques grounded in reverse KL divergence minimization have gained
popularity as discussed in Sec. 2. Diff-Instruct (Luo et al., 2024a), DMD (Yin et al., 2024b) and DMD2 (Yin et al., 2024a)
all train a one-step generator gθ mapping noise z ∼ N (0, I) to generated samples by updating the generator in the direction
of minimizing the reverse KLD,

∇θDavg
KL(qθ∥p) = Eq(z)p(t)q(ϵ)[∇θgθ(z)(sqθ (xt)− sp(xt)) |x=gθ(z)],

where sp(xt) = ∇xt log p(xt) and sqθ (xt) = ∇xt log qθ(xt). Assuming that the score model was learned using a
parametrization similar to EDM, DMD scales the gradient and uses Tweedie’s formula (Robbins, 1956) to express it in
terms of a pretrained denoiser fϕ and a denoiser for the fake samples fψ ,

∇θLDMD(θ) = Eq(z)p(t)q(ϵ)[wDMD(xt,x, t)∇θgθ(z)(fψ(xt; t)− fϕ(xt; t)) |x=gθ(z)],

where an adaptive weight is used to ensure that the scale of the gradient is roughly uniform across noise levels,

wDMD(xt,x, t) :=
σ2
t

∥x− fϕ(xt; t)∥1
. (32)

To mitigate mode collapse and enhance sample diversity, DMD employs an ODE-based regularizer by simulating the
pretrained diffusion model in reverse. This process generates noise-image pairs, which are then used to further supervise
the generator’s training. However, collecting this dataset becomes prohibitively expensive for high-dimensional samples.
To address this limitation, DMD2 introduces a GAN-based regularizer, which effectively minimizes the Jensen-Shannon
divergence alongside the reverse KLD, or a variant of the forward KLD when implemented in a non-saturating manner. For
further details on GAN training, refer to Appendix D.

Several methods build upon the divergence minimization framework by introducing regularizers based on alternative
statistical distance measures. For instance, Moment Matching Distillation (MMD) (Salimans et al., 2024), Score Identity
Distillation (SiD) (Zhou et al., 2024), and Score Implicit Matching (SiM) (Luo et al., 2024b) align the fake score model with
the pretrained score model using a variant of the Fisher divergence:

LFisher(ψ) := Eqθ(x)p(t)q(ϵ)[w
′(t)∥fψ(xt; t)− sg[fϕ(xt; t)]∥2].

Here sg stands for the stop gradient operator. Additionally, both SiD and SiM extend this approach to generator training by
minimizing the Fisher divergence, which requires a computationally expensive gradient calculation through the entire score
model. To address this, they employ statistical approximations to make these gradient computations more practical.

B.3. Consistency Models

Consistency models are a new class of generative models introduced by Song et al. (2023) that learn a consistency function
between all points along the trajectory of the probability flow ODE of a reverse diffusion sampler. Concisely, given points

16



Score-of-Mixture Training: Training One-Step Generative Models Made Simple

along one such trajectory, xt, t ∈ [ϵ, 1], where x1 ∼ N (0, I), the consistency function satisfies,

f(xt, t) =

{
x if t = ϵ

f(xs, s) s ∈ [ϵ, 1]

Given the boundary condition at the origin, the consistency function can be parametrized using a neural network similar to
EDM ,

fθ(xt, t) =
σ2

data

(σt − σϵ)2 + σ2
data

xt +
(σt − σϵ) · σdata√

σ2
t + σ2

data

gθ(xt; t).

Given a noisy sample xt = x + σtϵ, ϵ ∼ N (0, I), first a single step of the probability flow ODE is simulated using the
Euler sampler by running one step of sampling using Eq. (23),

xs = xt + (t− s)t∇xt log p(xt)

This can be computed using either a pretrained score model or via a single sample Monte-Carlo estimate. In the latter setting,
it is important that the timesteps s and t are very close to each other for the approximation to hold. In consistency distillation
a pretrained score model sϕ is available and a single sampling step along the PF-ODE is simulated as

xϕs = xt + (t− s)tsϕ(xt; t).
Then the consistency function is learned by minimizing

LCD(θ) = Ep(x)q(ϵ)p(t)[w(t)d(fθ(xt; t), sg[fθ(x
ϕ
t−∆t; t−∆t)])],

where d is some distance measure, w(t) is some positive weighting function and s = t−∆t, with ∆t some fixed timestep
difference. Song et al. (2023) initially proposed using the LPIPS distance but subsequent works (Song & Dhariwal, 2024a;
Geng et al., 2025) have shown that similar performance can be achieved by using the ℓ2 distance or a pseudo-Huber norm.

Unlike distillation techniques, consistency models can also be trained from scratch. Assume that s = t− δt, δt→ 0. Then,
the sampling step can be approximated using Tweedie’s formula (Robbins, 1956),

xs ≈ xt + (t− s)x− xt
t

= x+ sϵ.

Thus, the consistency function can now be learned by minimizing,

LCT(θ) = Ep(x)q(ϵ)p(t)[w(t)d(fθ(x+ tϵ; t), sg[fθ(x+ (t− δt)ϵ; t− δt)])],
Consistency distillation still lags behind distillation methods based on reverse KL minimization, but consistency training
often demonstrates more impressive results. However, consistency training is still inherently unstable and requires careful
design of both the noise schedule due to limiting nature of δt and distance measure (Song & Dhariwal, 2024a; Geng et al.,
2025). Stabilizing and making this objective simpler is the focus of a lot of current research in the area.

C. Detailed Description of Score-of-Mixture Training and Distillation
C.1. Amortized Denoiser

Modern diffusion architectures such as the EDM architecture (Karras et al., 2022b) are specially designed for denoising
purposes (see Appendix B). Hence, in practice we choose to train an amortized denoiser, fψ(xt;α, t) ≈ Eαpt+(1−α)qθ,t [x|xt],
upon which the amortized score can be recovered using Tweedie’s formula (Robbins, 1956),

sψ(xt;α, t) = −
1

σ2
t

xt +
1

σ2
t

fψ(xt;α, t).

The mixture score matching loss in Eq. (8) can be expressed with this denoiser as

Ldenoise
gen (ψ;α, t) := α Ep(x)q(ϵ)[∥fψ(x;α, t)− x∥2] + (1− α) Eqθ(x)q(ϵ)[∥fψ(x;α, t)− x∥2].

C.2. Score-of-Mixture Training

Here, we present a pseudocode for Score-of-Mixture Training (SMT). See Algorithm 1.
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Algorithm 1 Score-of-Mixture Training

Inputs: Randomly initialized generator gθ, amortized score model sψ, discriminator ℓψ, real dataset D, score training
sub-iterations = 5, learning rates (ηgen, ηscore), GAN regularizer weights (score = µ, gen = λ)

Pretraining: Train gθ with DSM using D
for each pretraining iteration do

Sample mini-batch x ∼ D and add noise xt = x+ σtϵ, ϵ ∼ N (0, I)
Compute DSM loss LDSM(θ) (see Sec. 2)
Update parameters: θ ← θ − ηDSM∇θLDSM(θ)

end for

Training: Alternating updates of gθ and sψ
for each training iteration do

Generator Training: Freeze sψ
Sample mini-batch of fake samples xfake = gθ(z), z ∼ N (0, I)
Sample t ∼ p(t) and α as described in Sec. 3.5
Compute weighted generator gradient γwψ (θ;α, t) from Eq. (9)

Compute GAN regularizer loss L(α,t)
GAN from Eq. (11)

Update parameters:

θ ← θ − ηgen Ep(α)p(t)[w(x
fake
t ,xfake, α, t)γwψ (θ;α, t) + λ∇θL(α,t)

GAN (θ)]

Amortized Score Training: Freeze gθ
for each sub-iteration do

Sample mini-batch of real samples xreal ∼ D
Sample t ∼ p(t) and α
Compute score matching loss Lscore(ψ;α, t) from Eq. (8)
Compute non-saturated discriminator loss Ldisc(ψ) (see Appendix D)
Update parameters:

ψ ← ψ − ηscore∇ψ(Ep(α)p(t)[Lscore(ψ;α, t)] + µLdisc(ψ))

end for
end for

Return: Trained model parameters θ, ψ

C.3. Score-of-Mixture Distillation

We present an overview figure and pseudocode of Score-of-Mixture Distillation in Fig. 4 and Alg. 2. We highlight the
central differences in the distillation training from the training from scratch in Alg. 1.

• The pretrained score model on the real data is available during distillation. Thus, rather than defining an amortized
score model that takes in a conditioning variable for α, we show that we only need to learn a score model on the fake
samples to make the objective simpler (see Proposition A.2). This is more effective as learning the score of multiple
interpolated distributions is a generally more challenging task.

• We can initialize the fake score and generator with the weights from the pretrained model and don’t need to run a
separate pretraining phase as in training from scratch.

• Notice that in amortized score training in the distillation setting there is no explicit GAN loss to learn the discriminator
in Algorithm 2. Learning the discriminator implicit to our proposed parametrization and once learned we can use this
to minimize the skewed divergence via a non-saturating GAN regularizer for generator training.
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Eq. (12)

Amortized Score Model

Generator Update (Eq. (15)) 

Noise

Generator
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Figure 4. Overview of Score-of-Mixture Distillation. Top: To update the generator weights, the fake image is diffused at noise level t
and then used to compute the gradient of the α-skew divergence with the explicitly parametrized amortized score model using Eq. (15).
Bottom: Amortized score model training involves computing the score of the mixture distribution on both fake and real samples diffused
with noise level t and then updating the weights using the gradient of Eq. (14).

Algorithm 2 Score-of-Mixture Distillation

Inputs: Randomly initialized generator gθ, fake score model sfakeψ , discriminator ℓψ, pretrained score model sp, real
dataset D, score training sub-iterations = 5, learning rates (ηgen, ηscore), GAN generator regularizer weight λ

Initialization Initialize sfakeψ and gθ with weights from sp

Training: Alternating updates of gθ and sψ
for each training iteration do

Generator Training: Freeze sfakeψ and ℓψ
Sample mini-batch of fake samples xfake = gθ(z), z ∼ N (0, I)
Sample t ∼ p(t) and α as described in Sec. 3.5
Compute generator gradient γextψ (θ;α, t) from Eq. (15)

Compute GAN regularizer loss L(α,t)
GAN from Eq. (11)

Update parameters:
θ ← θ − ηgen Ep(α)p(t)[γ

ext
ψ (θ;α, t) + λ∇θL(α,t)

GAN (θ)]

Amortized Score Training: Freeze gθ
for each sub-iteration do

Sample mini-batch of real samples xreal ∼ D
Sample t ∼ p(t) and α
Compute score matching loss using explicit parametrization Lext

score(ψ;α, t) from Eq. (14)
Update parameters:

ψ ← ψ − ηscore∇ψ Ep(α)p(t)[Lext
score(ψ;α, t)]

end for
end for

Return: Trained model parameters θ, ψ
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D. On GAN Training
The vanilla GAN is

min
θ

max
ψ
{Ep(x)[logDψ(x)] + Eqθ(x)[log(1−Dψ(x))]}.

Breaking down, the discriminator training is

min
ψ
−Ep(x)[logDψ(x)]− Eqθ(x)[log(1−Dψ(x))]},

and the generator training is
min
θ

Eqθ(x)[log(1−Dψ(x))].

Note that

Dψ(x) =
rψ(x)

1 + rψ(x)
=

1

1 + r−1
ψ (x)

.

Further, the sigmoid logit Cψ(x), i.e., Dψ(x) = σ(Cψ(x)), is log rψ(x). Note that the optimal discriminator for each θ is
D⋆(x) = p(x)

p(x)+qθ(x)
or r⋆(x) = p(x)

qθ(x)
.

The non-saturating versions is training generator based on

min
θ
−Eqθ(x)[logDψ(x))] ≈ Eqθ(x)

[
log

(qθ(x)
p(x)

+ 1
)]
.

The StyleGAN uses the non-saturating loss:

min
ψ

Ep(x)[sp(− log rψ(x))] + Eqθ(x)[sp(log rψ(x))]},

min
θ

Eqθ(x)[sp(− log rψ(x))].

Note that sp(y) := log(1 + ey). Hence, note that

sp(− log rψ(x)) = log(1 + r−1
ψ (x)) = − logDψ(x),

sp(log rψ(x)) = log(1 + rψ(x)) = − log(1−Dψ(x)).

D.1. On the Non-Saturating Generative Loss

The original, saturating version of the generator objective is

min
θ

Eqθ(x)[−sp(log rψ(x))] = Eqθ(x)[− log(1 + rψ(x))],

whose gradient is

∇θ Eq(z)[− log(1 + rψ(gθ(z)))] = Eq(z)

[
−

r′ψ(gθ(z))

1 + rψ(gθ(z))
∇θgθ(z)

]
.

Note that the plug-in reverse KL-divergence loss is

min
θ

Eqθ(x)[− log rψ(x)].

Compared to this, the non-saturating loss has the additional sp(·):

min
θ

Eqθ(x)[sp(− log rψ(x))] = Eqθ(x)[log(1 + rψ(x)
−1)].

This seems to help prevent vanishing gradients. Consider

min
θ

Eqθ(x)[log(τ + rψ(x)
−1)] = Eq(z)[log(τ + rψ(gθ(z))

−1)],
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If τ = 0, it boils down to the plug-in reverse KL divergence, and τ = 1 recovers the non-saturating loss. If we consider a
gradient with respect to θ, we get

∇θ Eq(z)[log(τ + rψ(gθ(z))
−1)] = Eq(z)

[
−

r′ψ(gθ(z))

rψ(gθ(z))(1 + τrψ(gθ(z)))
∇θgθ(z)

]

Here, recall that rψ(x) ≈ p(x)
qθ(x)

is supposed to be small for generated samples x = gθ(z). Therefore, the plug-in loss with
τ = 0 is inherently prone to vanishing gradient.

D.2. GAN-Type Regularization with α-JSD

To train a discriminator for our GAN-type regularization, we opt to use a modified GAN discriminator objective defined as

min
ψ
−αEp(x)[logDψ(x;α)]− (1− α)Eqθ(x)[log(1−Dψ(x;α))].

Similar to the vanilla GAN, the optimal discriminator for each θ and α in this case is

D⋆
ψ(x;α) =

αp(x)

αp(x) + (1− α)qθ(x)

Then,the α-JSD can be approximated as

D(α)
JSD(qθ, p) ≈

1

1− α Ep(x)

[
log

Dψ(x;α)

α

]
+

1

α
Eqθ(x)

[
log

1−Dψ(x;α)

1− α

]
.

Hence, with this approximation, the generator update can be done via

min
θ

1

α
Eqθ(x)

[
log

1−Dψ(x;α)

1− α

]
.

In practice, we can use a weighted non-saturating version of the loss as well,

min
θ
−Eqθ(x)

[
log

Dψ(x;α)

α

]
= min

θ
Eqθ(x)

[
sp

(
−ℓψ(x)− log

α

1− α

)]
+ logα,

where ℓψ(x) = log p(x)
qθ(x)

.

D.3. On Discriminator Training with Mixture Score Matching Loss

In Sec. 4, we plugged in the explicit parameterization

sexpψ (x;α) := Dψ(x;α)sp(x) + (1−Dψ(x;α))s
fake
ψ (x),

to the mixture regression loss in Eq. (7), to train the fake score and the discriminator simultaneously. If we consider an
ideal scenario where we have the perfect score models for both p and q, then all we need to train is the discriminator andthe
mixture regression objective can be interpreted as a discriminator objective. Here we reveal its connection to an instance of
f -GAN discriminator objective.

Let sp(x) and sq(x) be the underlying score functions for p and q, respectively. Then, the explicit parameterization becomes

sexpψ (x;α) = Dψ(x;α)sp(x) + (1−Dψ(x;α))sq(x),

and the mixture regression objective becomes only a function of the discriminator, i.e.,

L(ψ;α) = α Ep(x)[∥sexpψ (x;α)− sp(x)∥2] + (1− α) Eqθ(x)[∥sexpψ (x;α)− sq(x)∥2]
= α Ep(x)[(1−Dψ(x;α))

2∥sp(x)− sq(x)∥2] + (1− α) Eq(x)[Dψ(x;α)
2∥sp(x)− sq(x)∥2]

=

∫ {
αp(x)(1−Dψ(x;α))

2 + (1− α)q(x)Dψ(x;α)
2
}
∥sp(x)− sq(x)∥2 dx.
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Here, we note that the term ∥sp(x) − sq(x)∥2 is common in both expectation, and can be safely dropped to train the
discriminator, which leads to a simplified objective

L′(ψ;α) = α Ep(x)[(1−Dψ(x;α))
2] + (1− α) Eq(x)[Dψ(x;α)

2]

=

∫ {
αp(x)(1−Dψ(x;α))

2 + (1− α)q(x)Dψ(x;α)
2
}
dx.

We note that this is equivalent to the discriminator objective induced by the following f -divergence

Dfα(p ∥ q) := 1−
∫

p(x)q(x)

αp(x) + (1− α)q(x) dx := Dα-LC(p ∥ q),

where fα(r) :=
(1−α)(1−r)
αr+(1−α) is a convex function over [0,∞) for α ∈ (0, 1). For α = 1

2 , this divergence becomes symmetric
in p and q and is known as the Le Cam distance (Le Cam, 2012, p. 47) in the literature (Polyanskiy & Wu, 2019). We thus
call the general divergence for α ∈ (0, 1) the α-Le Cam distance. In the GAN literature, this is known as the LSGAN
objective (Mao et al., 2017).

As we revealed, our discriminator training in distillation can also be done separately using the α-Le Cam-distance-based
objective. However, we conjecture that our score-regression-based end-to-end objective may have benefit, as our primary
goal of discriminator training is to use it in the generator update in the form of an approximate score of mixture. We leave
the further exploration of such alternative methods as a future work.

E. More on Experiments and Additional Results
We present some additional experiments and results in this section. We first provide a more detailed training configuration
for our experiments in Sec. 5 and then evaluate our proposed method on a synthetic swiss-roll dataset in Appendix E.2.
Finally, we present some samples generated from Score-of-Mixture Training and Score-of-Mixture Distillation in Figs. 9-12.

E.1. Training Configuration

We summarize the detailed training configuration in Table 3.

Table 3. Hyperparameters used for training one-step generators with Score-of-Mixture Training and Distillation.

Hyperparameter CIFAR-10 ImageNet 64× 64
Scratch Distillation Scratch Distillation

Generator learning rate 1e-4 5e-5 5e-6 2e-6
Score learning rate 5e-4 5e-5 5e-5 2e-6
Score learning rate decay cosine None cosine None
Batch size 280 280 280 280
Diffusion pretraining steps 15k N/A 40k N/A
Training iterations 150k 150k 200k 200k
Score dropout probability 0.13 0.00 0.00 0.00
Number of GPUs 2 × A100 4× A100 7× A100 7× A100

E.2. Toy Swiss Roll

We tested our proposed framework and ablated various design choices on a synthetic swiss roll dataset. We followed the
dataset setup by Che et al. (2020). We trained models with SMT and SMD and compared this against an amortized version of
reverse KL minimization with DMD weighting (α ∈ {0, 1}) similar to the ablations in Sec. 5.3. Additionally we compared
against non-score-based baselines including the vanilla GAN and Diffusion-GAN (Wang et al., 2023).

Across all experiments, we use the same generator architecture — a two-layer MLP with a hidden dimension of 128 and
leaky ReLU nonlinearity. We train all models for 200k steps on a single NVIDIA 3090 GPU with a batch size of 256. All
score-based methods leverage a learning rate of 1e-5 for the generator and 1e-4 for the amortized score (and discriminator
when applicable) whereas the GAN-based methods use a learning rate of 1e-4 for both generator and discriminator. We use
the AdamW optimizer without any learning rate schedulers.
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(a) Ground Truth (d) SMT (with GAN)

(g) Amortized Reverse KLD

(b) GAN (c) Diffusion-GAN

(e) SMT (No GAN) (f) SMD

Figure 5. Samples produced by generators trained using different methods. All figures are created using 10,000 samples from the
respective generator.

The samples produced are shown in Fig. 5. Notice how the GAN is unable to perfectly cover the entire continuous mode of
the swiss roll. The Diffusion-GAN, a multi-noise level extension of the GAN, covers the mode but also samples from areas
of low density. We found the latter to be sensitive to the chosen noise levels in comparison to the methods based on updating
the generator using the score.

Our results for training from scratch and distillation are presented in Fig. 5d-f. All three methods successfully capture
the modes of the underlying distribution. While the impact of the GAN regularizer is less pronounced than in our high-
dimensional experiments, we observe that enabling it (as in Fig. 5d) reduces the number of samples in low-density regions
compared to Fig. 5e. The distillation results in Fig. 5f appear slightly noisy, likely due to the quality of the pre-trained
score model. This highlights the advantage of training from scratch, as it avoids amplifying existing estimation errors in the
pre-trained model.

In Fig. 5g, we present an ablation result of the α-sampler, by using only α = 1. This corresponds to minimizing reverse
KLD as in DMD and DMD2. Unlike in the high-dimensional setting presented in Fig. 2b, we observe that using the single
α = 1 produces visually plausible samples in this low-dimensional synthetic example. However, our method in Fig. 5d (i.e.,
SMT with GAN regularizer) produces fewer spurious samples compared to Fig. 5g, suggesting the benefit of multiple α
values.

E.3. Image Interpolation

The one-step generator is a mapping between the representation space, which in this case is the space of standard multivariate
Gaussian variables, and the space of images. Thus, to study the representation space we followed the approached in (Song
et al., 2023) and spherically interpolated between two randomly chosen noise instances z0 and z1,

zβ =
sin((1− β)ψ)

sin(ψ)
z0 +

sin(βψ)

sin(ψ)
z1,

where β ∈ [0, 1] and ψ = arccos
(

z⊺
0z1

∥z0∥2∥z1∥2

)
. After interpolating between these two points, the interpolated image can be

obtained as xβ = gθ(zβ) as shown in Figures 6 and 7.

23



Score-of-Mixture Training: Training One-Step Generative Models Made Simple

Figure 6. Visualizing the latent space of the one-step generator trained on ImageNet 64× 64 by interpolating between two noise inputs.
The leftmost and rightmost image in each row correspond to synthesized images with the same class and different noises z0 and z1. All
intermediate images are obtained by applying the generator on a spherical interpolation between these noise instances, demonstrating the
interpretable learned latent space of the generator.

Figure 7. Visualizing the latent space of the one-step generator trained on the CIFAR-10 dataset by interpolating between two noise
inputs. The leftmost and rightmost image in each row correspond to different noises z0 and z1. All intermediate images are obtained by
applying the generator on a spherical interpolation between these noise instances, demonstrating the interpretable learned latent space of
the generator.
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(a) (b)

(c) (d)

Figure 8. SMT training curves on ImageNet 64x64. Plotted in dark blue is the running average trajectory of the different metrics. Both the
loss curves in (a) and (b) are smooth and do not explode. This is further supported by the curves of the respective gradient norms in (c)
and (d), where it is clear the underlying optimization is stable and no gradient explosion occurs. The actual generator loss involved the
gradient of the generator multiplied by the difference of scores. During implementation we let autograd take care of this gradient and the
loss that is calculated pre-autograd is shown in (b).

E.4. Additional Training Curves

To further demonstrate the stable training dynamics of SMT, we provide additional training curves in Figure 8 showing a
consistent decrease in both loss and gradient norm. Notably, at no point do we observe any spikes or instability in either
metric. Since we compute the generator’s gradient directly, the plotted loss in Figure 8b corresponds to the proxy objective
prior to applying automatic differentiation.

E.5. Samples

We present some image samples generated by SMT and SMD in Figs. 9-12.
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Figure 9. One-step generated samples from SMT on CIFAR-10 (unconditional).
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Figure 10. One-step generated samples from SMD on CIFAR-10 (unconditional).
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Figure 11. One-step generated samples from SMT on ImageNet 64×64 (conditional).
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Figure 12. One-step generated samples from SMD on ImageNet 64×64 (conditional).

29


	Introduction
	Preliminaries and Related Work
	Training from Scratch
	Minimizing alpha-Skew Jensen–Shannon Divergences
	Learning with Multiple Noise Levels
	Estimating Score of Mixture Distributions
	Practical Design of Amortized Score Network
	Training

	Distilling from Pretrained Diffusion Model
	How To Leverage Pretrained Diffusion Model
	Implementation and Training

	Experiments
	Class-conditional ImageNet 64x64 Generation
	Unconditional CIFAR-10 Generation
	Ablation Studies

	Concluding Remarks
	Deferred Statements and Proofs
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Deferred Statements

	Detailed Discussions on Related Work
	Diffusion Models
	Diffusion Distillation
	Consistency Models

	Detailed Description of Score-of-Mixture Training and Distillation
	Amortized Denoiser
	Score-of-Mixture Training
	Score-of-Mixture Distillation

	On GAN Training
	On the Non-Saturating Generative Loss
	GAN-Type Regularization with alpha-JSD
	On Discriminator Training with Mixture Score Matching Loss

	More on Experiments and Additional Results
	Training Configuration
	Toy Swiss Roll
	Image Interpolation
	Additional Training Curves
	Samples


