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Abstract: Low-light image enhancement is an important task in computer vision, often
made challenging by the limitations of image sensors, such as noise, low contrast, and
color distortion. These challenges are further exacerbated by the computational demands
of processing spatial dependencies under such conditions. We present a novel transformer-
based framework that enhances efficiency by utilizing depthwise separable convolutions
instead of conventional approaches. Additionally, an original feed-forward network design
reduces the computational overhead while maintaining high performance. Experimental
results demonstrate that this method achieves competitive results, providing a practical
and effective solution for enhancing images captured in low-light environments.

Keywords: image sensor restoration; low-light enhancement; vision transformer

1. Introduction
Image sensors frequently encounter difficulties in low-light environments, including

increased noise and diminished contrast, both of which negatively impact image quality.
Low-light image enhancement (LLIE) plays an important role in computer vision (CV),
focusing on enhancing the illumination—as shown in Figure 1, contrast, quality, and
clarity of images affected by limited visibility and distortions in challenging illuminated
settings [1]. Under low-light conditions, image sensors often struggle with noise and
diminished contrast, which compromise overall image quality. This degradation not only
leads to visually unappealing results but also negatively impacts the functionality of many
CV systems.

Low-light environments are characterized by insufficient illumination levels, which
often introduce other issues like artifacts and noise. These visual defects are determined
by the strong relationship between the colors and the brightness, where the latter can
strongly influence the representation of the chromatic element. As the generic low-light
environment is not a uniform space in terms of the light distribution, multiple methods
have been attempted to demonstrate their ability to enhance images captured under very
different conditions [2,3].

Well-established LLIE techniques, such as gamma correction and histogram equaliza-
tion [1], enhance the illumination factor in images but do not mitigate the other deficiencies
introduced by the absence of light. Other classical CV methods attempt to improve these
techniques by incorporating illumination factors but often result in unwanted artifacts
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and imbalances in the enhanced images [1]. A widely adopted approach leverages cogni-
tive models inspired by Retinex theory [4]. The foundational Retinex algorithm is based
on selecting an appropriate surround function to determine pixel weighting within the
neighborhood of a target pixel, leading to the development of the single-scale Retinex
algorithm [5]. This was later expanded upon with multiscale Retinex algorithms [6,7].

The Retinex theory was first mirrored in the deep learning (DL) approaches through
the use of CNNs which provided the first well-established LLIE solutions. These methods
often struggle to adapt to different light settings, as they rely on a one-to-one mapping in
the enhancement process and tend to underfit in the absence of long training times. On the
other hand, CNNs successfully manage to capture local contexts but struggle to learn the
light patterns represented by long-range dependencies.

Figure 1. Visual representation of a low-light image and its enhanced counterpart, along with their
illumination histograms. We assume illumination to be the maximum value across the channels of
each pixel.

The Transformer’s self-attention mechanism [8], later adapted for Vision Transformers
(ViTs) [9], offers a partial remedy to these limitations in image processing tasks. However,
ViTs face notable drawbacks, including prohibitive computational overhead and resource
inefficiency, stemming from the quadratic scaling of self-attention and the intensive use of
dense and convolutional layers within feed-forward networks (FFNs).

Depthwise separable convolutions (DSCs) have emerged as an innovation design of
CNNs, particularly for applications requiring computational efficiency and reduced model
size. This technique decomposes the standard convolution operation into two distinct
processes: depthwise convolution and pointwise convolution. The primary advantage of
this separation is the significant reduction in the number of parameters and computational
complexity, making it particularly suitable for deployment on resource-constrained devices
such as mobile phones and embedded systems [10].

The challenge of addressing low-light deficiencies has often been met with com-
putationally intensive solutions, characterized by large parameter counts and intricate
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mechanisms. We propose a reimagination of the FFN, which traditionally relies on com-
putationally expensive layers to enhance feature representations. Our work demonstrates
that DSC can serve as an efficient alternative, maintaining performance integrity while
drastically reducing complexity.

Building on the methods and insights presented in [11], we extend this to provide
additional motivation for the proposed approach and contextualize the task further. In ad-
dition, we introduce a qualitative results section to highlight the perceptual appeal of the
enhanced images and conduct an ablation study to justify architectural and training choices.
The key innovations introduced by DepthLux can be summarized as follows:

• Reimagining the structure of the FFN, Depthwise Separable Convolutions (DSCs) are
employed exclusively as a substitute for traditional convolutional and fully connected
layers, significantly enhancing the model’s scalability and computational cost.

• Competitive results are presented while having fewer model parameters than most of
the current LLIE methods.

• To address the computational bottleneck of the ViT’s self-attention mechanism, a
contraction–expansion strategy is applied, compressing the feature space prior
to attention map computation and restoring it afterward, thereby reducing the
computational overhead.

The paper is organized as follows: Section 1 introduces the research and highlights its
significance. Section 2, titled “Related Work”, provides an overview of the LLIE domain.
In Section 3, “Methods”, we describe the proposed model and its key components. Section 4
presents the results obtained on the LOL dataset [12]. Finally, the paper concludes with an
ablation study in Section 5 and a discussion of future research directions in Section 6.

2. Related Work
LLIE has progressed from traditional CV techniques to advanced DL frameworks, each

focusing on different methods to solve the problem. The early methods relied on histogram
equalization, gamma correction, and physical models that corrected illumination by esti-
mating environmental light and guided filtering [13]. Retinex-based approaches [4,14–16]
addressed illumination correction by decomposing images into two components: a high-
frequency component (reflectance) and a low-frequency component (illumination). These
methods often used mathematical frameworks [17,18], commonly known as Retinex-based
variational methods. However, they frequently overlooked noise and artifacts present in
low-light environments, limiting their practical effectiveness.

The introduction of DL fundamentally shifted the paradigm in LLIE. CNN-based
approaches, exemplified by LLNet [19], pioneered this transformation, followed by ad-
vancements such as EnGAN [20], which employed generative models to directly produce
normal-light images from low-light inputs. Unsupervised methods, such as Zero-DCE [21],
were also introduced, which use differentiable curve estimation and remove the need for
paired data but struggle with color fidelity under extreme conditions.

Wei et al. [12] extended Retinex theory to DL, proposing a decomposition framework
to enhance illumination and reconstruct well-lit images. Despite their progress, these CNN-
driven methods often require complex training procedures and substantial computational
resources. Furthermore, their local receptive fields restrict their ability to model global
interactions and to capture long-range dependencies, a critical requirement for handling
diverse low-light scenarios.

In recent years, Transformers have emerged as a powerful alternative to CNNs, re-
shaping image restoration tasks [22–25]. Unlike CNNs, Transformers such as ViTs [9] utilize
self-attention mechanisms to capture long-range dependencies, providing a significant
advantage in LLIE. Transformer-based models like UFormer [26], Restormer [27], Retinex-



Sensors 2025, 25, 1530 4 of 14

former [28], and LytNet [2] have demonstrated this capability effectively while also proving
that the effectiveness of the Transformer architecture can also be found in computationally
efficient methods. UFormer reimagines the U-Net architecture [29] by substituting convolu-
tions with Transformer blocks while maintaining a hierarchical encoder–decoder structure.
KAN-T [30] introduces an innovative attention mechanism based on Kolmogorov–Arnold
networks and seamlessly integrates it into a Transformer architecture.

Retinexformer further advances this field by leveraging illumination-based repre-
sentations to model non-local interactions in regions with varying lighting conditions.
The presented methods also offer lightweight solutions, with the total number of train-
able parameters ranging from 1.61 million to 26 million. DepthLux, in particular, has
9.75 million parameters, striking a balance between efficiency and performance. This high-
lights the importance of prioritizing computational efficiency in the design of ViTs for
image restoration, ensuring that the models remain practical for real-world applications
without compromising quality.

Computational efficiency has also become a focal point in LLIE research. DSCs, for
instance, offer an elegant solution to reduce computational complexity by splitting stan-
dard convolutions into depthwise and pointwise operations [10,31]. While the depthwise
operation applies a filter per channel, the pointwise convolution combines these outputs
using 1 × 1 convolutions, achieving a balance between efficiency and performance. This
approach not only reduces the number of parameters but also accelerates inference, making
it ideal for real-time applications.

Attention mechanisms have played a pivotal role in advancing LLIE by highlighting
features corresponding to poorly lit regions. However, their high computational cost has
presented challenges. Transformer-based methods address this issue through innovative
strategies such as reducing the dimensions of the attention map to C × C, where C is the
feature depth [27], or employing feature contraction and expansion techniques around
attention computations [2]. These approaches effectively balance performance with efficiency.

The evolution of LLIE methods reflects a continuous effort to bridge the gap between
theoretical advances and practical applications. Traditional methods, while foundational,
lack robustness in real-world scenarios. CNN-based approaches have marked a significant
leap forward but remain constrained by their inability to capture global dependencies.
Transformers, with their self-attention mechanisms, have emerged as a transformative force,
addressing these limitations and paving the way for more sophisticated LLIE frameworks.

3. Methods
Our approach demonstrates that standard convolutions, commonly employed in most

LLIE ViTs, can be efficiently replaced with depthwise separable convolutions (DSCs), yielding
minimal performance degradation while significantly reducing model parameters. Based
on a conventional transformer framework as illustrated in Figure 2, DepthLux represents
a paradigm shift in the traditional design of feed-forward networks (FFNs) by introducing
the Depthwise Separable Illumination Block (DSIB). Additionally, it aims to optimize the
self-attention mechanism through the Performance-Optimized Attention Block (POAB).
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Figure 2. The architecture of DepthLux introducing a conventional Transformer architecture enhanced
with the POAB and the DSIB.

3.1. Depthwise Separable Illumination Block

The innovation introduced in the Depthwise Separable Illumination Block (DSIB),
which forms the core of DepthLux’s FFNs, lies in its exclusive reliance on DSCs. This
design choice plays a pivotal role in achieving the computational efficiency of the model.
To illustrate, consider a convolution operation with a kernel of size Dk × Dk, M input
channels, and N output channels. A standard convolution requires Dk × Dk × M × N
multiplications, as each output channel computes a weighted sum over the entire input
space. In contrast, a depthwise separable convolution significantly reduces this complexity
by factorizing the operation into two distinct steps: (1) a depthwise convolution, which
applies a single convolutional filter to each input channel independently, and (2) a pointwise
convolution, which combines these filtered outputs across channels. As a result, the total
number of multiplications required by a DSC is reduced to Dk × Dk × M + M × N, a
substantial improvement over standard convolutions. Letting xm represent the input
channels, k the convolution kernel, kdepthwise and kpointwise the depthwise and pointwise
convolution kernels, and yn the output, we can compare the functionality of the convolution
and the DSC as follows:

Convolution: yn =
M

∑
m=1

(xm ∗ k), ∀n ∈ {1, . . . , N}, (1)

DS Convolution: yn =
M

∑
m=1

((
xm ∗ kdepthwise

)
∗ kpointwise

)
, ∀n ∈ {1, . . . , N}, (2)

The integration of the 3 × 3 kernel, kdepthwise ∈ R3×3 for depthwise convolutions
(DWConv), alongside the 1 × 1 kernel, kpointwise ∈ R1×1, for pointwise convolutions (PW-
Conv), enables a comprehensive extraction of features across varying spatial scales while
maintaining computational efficiency. The parallel configuration of depthwise separable
convolutions (DSCs) at the onset of the DSIB (illustrated in Figure 3) is explicitly designed
to model diverse, multiscale illumination patterns. This architecture enables the extraction
of rich illumination features across various scales, which are subsequently aggregated
through the summation of the feature maps:

F′
in =

2

∑
i=1

DSC(i)
(

DSC(i)(Fin)
)

, F′
in ∈ RH×W×C. (3)
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Figure 3. DSIB, which represents the feed-forward section of our proposed Transformer, exclusively
uses DSC (left). POAB is built to reduce the computational complexity of the model by contracting
and then expanding the feature space (right).

The fused map is further processed and refined through another set of DSC, which
extracts the most relevant information. To transmit information to future layers, we employ
a skip connection originating from Fin ∈ RH×W×C, which is concatenated (Equation (4))
with the output processed using multiple DSCs:

Fout = [Fin, DSC(DSC(F′
in))], Fout ∈ RH×W×2C (4)

DepthLux introduces the innovative application of the Gaussian Error Linear Unit
(GELU) activation following each stage of the DSC. By modulating inputs according to
their magnitude and alignment with the Gaussian distribution mean, GELU ensures the
preservation of nuanced features even in noise-contaminated settings, offering a distinct
advantage over traditional activation functions:

DSC(Fin) = GELU(PWConv(GELU(DWConv(Fin)))) (5)

3.2. Performance-Optimized Attention Block

Figure 3 provides a schematic representation of the POAB block. The proposed
methodology aims to establish that models with a significantly reduced computational
overhead can achieve performance levels comparable to state-of-the-art approaches. This
concept is exemplified within the attention module.

The input feature tensor Fin ∈ RH×W×C is first reduced in resolution by a factor of
four through a 3 × 3 convolution, producing a condensed representation:

Fdown = conv3 × 3down(Fin), Fdown ∈ RH/4×W/4×C/2

Following this compression, the fundamental self-attention components—query (Q), key
(K), and value (V)—are computed via fully connected layers as described in Equation (6):

Q = WQ · Fdown; K = WK · Fdown; V = WV · Fdown (6)

The attention mechanism responsible for capturing long-range dependencies can be
formally expressed as follows, where dim represents the number of output channels used
in the computation process of Q, K, and V:

Attn = Softmax

(
QK⊤
√

dim

)
V, Attn ∈ RH/4×W/4×C (7)

Upon calculating the attention map, the feature space is restored to its original dimen-
sions using a 3 × 3 transposed convolution:

Attnout = conv3 × 3up(Attn), Attnout ∈ RH×W×C (8)
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To preserve spatial information during the attention map computation, the input
feature tensor Fin ∈ RH×W×C is routed through a skip connection, ensuring its integration
into deeper layers. This tensor is subsequently concatenated with the attention output
Attnout ∈ RH×W×C which is expanded as formalized in Equation (8). The resulting fea-
ture map undergoes layer normalization, which aligns the feature distributions to ensure
stability and consistency across channels.

The expansion–contraction strategy helps reduce the computational cost of the atten-
tion mechanism. By downsampling Fin ∈ RH×W×C to Fdown ∈ RH/4×W/4×C/2, we also
reduce the depth of the features, optimizing the attention mechanism. While this leads
to some information loss, fully mitigating it would require quadrupling the number of
output channels to maintain the number of elements between the input feature map and
the downsampled map. However, this would result in an additional 42 million parameters,
which would significantly increase the model’s complexity.

4. Results
4.1. Implementation Details

The architecture adopts a standard transformer-based design, comprising three
encoder–decoder pairs and a bottleneck block that serves as both a refinement module
and a bridge between the encoding and decoding phases. The dimensional settings for
the encoders and their respective decoders are specified as [64, 128, 256], where each value
represents the embedding size, which determines the number of features in each layer.
The bottleneck block operates with a fixed embedding size of 256, maintaining consis-
tency in feature representation at the network’s deepest level. In addition, the transformer
follows a U-Net structure: after each encoder, a downsampling operation reduces the
spatial resolution to capture higher-level features, and before each decoder, an upsam-
pling step is applied to restore the resolution. This arrangement ensures that the network
effectively integrates the global context with local detail during both the encoding and
decoding processes.

4.2. Training Details

DepthLux is tailored to handle a diverse range of images affected by insufficient
illumination. To rigorously evaluate its performance, experiments are conducted on three
benchmark datasets: LOL-v1, LOL-v2 real [32], and LOL-v2 synthetic [32]. Performance is
measured using the Peak Signal-to-Noise Ratio (PSNR) and the Structure Similarity Index
Measure (SSIM) [33], as shown in Table 1. These datasets represent the current standard for
assessing state-of-the-art methods in LLIE. The framework used for the implementation is
TensorFlow, and the training is performed on a Nvidia 3090 GPU using image patches sized
256 × 256 pixels. Data augmentation strategies, such as random cropping and flipping, are
employed to enrich the training dataset and enhance model generalization.

The optimization process leverages the Adam optimizer, configured with β1 = 0.9
and β2 = 0.999. To further guide the training towards superior image restoration quality, a
loss function based on PSNR as described in [2] is adopted. This loss function emphasizes
the reconstruction of high-fidelity images and is detailed in Equation (9):

LPSNR = 40 − PSNR(predicted, ground truth) (9)
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Table 1. Results on LOL-v1 and LOL-v2 datasets and parameter counts of different models. Red,
blue, and green metrics represent first, second, and third places, respectively.

Methods Param (M)
LOL-v1 LOL-v2-R LOL-v2-S

PSNR SSIM PSNR SSIM PSNR SSIM

SID [34] 7.76 14.35 0.436 13.24 0.442 15.04 0.610
DeepUPE [35] 1.02 14.38 0.446 13.27 0.452 15.08 0.623

RF [36] 21.54 15.23 0.452 14.05 0.458 15.97 0.632
DeepLPF [37] 1.77 15.28 0.473 14.10 0.480 16.02 0.587
UFormer [26] 5.29 16.36 0.771 18.82 0.771 19.66 0.871

RetinexNet [12] 0.62 16.77 0.462 18.37 0.723 17.13 0.798
IPT [23] 115.31 16.27 0.504 19.80 0.813 18.30 0.811

Sparse [32] 2.33 17.20 0.640 20.06 0.816 22.05 0.905
EnGAN [20] 8.64 17.48 0.652 18.64 0.677 16.57 0.734
RUAS [38] 0.003 18.23 0.720 18.37 0.723 16.55 0.652
FIDE [39] 8.62 18.27 0.665 16.85 0.678 15.20 0.612

DRBN [40] 2.21 19.86 0.834 20.13 0.830 23.22 0.927
KinD [41] 8.03 20.87 0.799 17.54 0.669 16.26 0.591

Restormer [27] 26.13 22.43 0.823 19.94 0.827 21.41 0.830
MIRNet [42] 5.90 24.14 0.842 20.36 0.782 21.94 0.846
SNR-Net [43] 4.01 24.61 0.842 21.48 0.849 24.14 0.928
LLFlow [44] 37.68 25.13 0.872 26.20 0.888 24.81 0.919

Retinexformer [28] 1.61 25.16 0.845 22.80 0.840 25.67 0.930
LLFormer [45] 24.55 25.76 0.823 26.20 0.819 28.01 0.927

LL-SKF [46] 39.91 26.80 0.879 28.45 0.905 29.11 0.953

DepthLux (Ours) 9.75 26.06 0.793 26.16 0.794 28.69 0.920

To address the challenges posed by local minima during the training of deep neural
networks, a learning rate decay strategy is implemented. In particular, a cosine annealing
schedule is employed, gradually reducing the learning rate from 2 × 10−4 to 1 × 10−6 over
the course of training. This scheduling mechanism is designed to promote more stable
convergence and improve the overall performance of the model.

4.3. Results Discussion

From a quantitative point of view, DepthLux achieves an competitive result which
ranks the method second and third on the three tested datasets in terms of PSNR. We
achieve an improvement of 9.7 dB against Uformer [26], 3.63 dB against Restormer [27],
and 8.58 dB against EnGAN [20], while being 71%, 74%, and 62% more efficient than
LLFormer [44], LLFlow [45], and Restormer [27], respectively, in terms of parameter count.
However, some limitations in both performance and computational efficiency remain.
These issues are highlighted by the gap with LL-SKF [46] across all three tested datasets,
as well as the minimal 0.04 dB difference between DepthLux and both LLFormer [44] and
LLFlow [45] on the LOL-v2 real datasets.

The qualitative results in Figure 4 demonstrate that DepthLux effectively enhances
images without introducing artifacts or color distortions, unlike SNR and LLFlow. This
highlights its ability to preserve natural image quality while improving visibility. However,
due to the design trade-offs made in the POAB block to enhance computational efficiency,
a slight graininess can be observed in the enhanced images. While this effect is minimal, it
represents a compromise between performance and efficiency.
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Figure 4. Qualitative results on the LOL dataset [12] comparing DepthLux with other SOTA
LLIE methods.

4.4. Scaling Considerations

The results presented confirm that DepthLux achieves parameter efficiency by replac-
ing conventional convolutions with DSC. In the current architecture, employing standard
convolutions within the FFN yields a total of 26,402,980 trainable parameters. Substitut-
ing these with DSC reduces this count drastically to 9,754,780. To further support this
assertion, we evaluate DepthLux’s scalability, examining how varying model sizes impact
parameter count when using DSC versus traditional convolutions. This is accomplished by
modulating a scaling factor that governs layer dimensions throughout the network.

The parameter growth trend for models utilizing standard convolutions follows a
significantly steeper gradient compared to those employing DSC as depicted by their respec-
tive curves. This pronounced difference underscores the enhanced scalability of DepthLux.

5. Ablation Study
We conduct an ablation study on the LOL-v1 dataset to demonstrate the effectiveness

of our proposed framework, and utilize PSNR to measure performance. The ablation study
focuses on activation function and loss function variants. The results of the study can be
found in Table 2.



Sensors 2025, 25, 1530 10 of 14

Table 2. Ablation experiments on activation functions and loss functions. Red metrics represent the
best results.

(a) The Effect of Different Activation Functions Used in the DSC. (b) Impact of Different Loss Functions on Performance.

Activation PSNR Loss Function PSNR

No Activation 25.70 L1 25.71
ReLU 25.98 SSIM 25.86

PReLU 26.00 L2 26.01
GELU 26.06 LPSNR 26.06

To provide further justification for our selection of the loss function in training this
model, we conduct a series of experiments comparing the performance of DepthLux when
trained using different loss functions. Specifically, we evaluate the model’s performance
with three loss functions: L1 loss, L2 loss, and our proposed LPSNR loss function.

L1 loss minimizes the absolute differences between the predicted and ground truth
values, promoting robustness to outliers. L2 loss focuses on minimizing squared differences,
penalizing larger errors more heavily. The LSSIM loss, defined as

LSSIM = 1 − SSIM(ytarget, ypredicted) (10)

s focuses on preserving the structural similarity between the enhanced and ground truth
images, improving the perceptual quality and structural fidelity. In contrast, our LPSNR loss
directly optimizes the PSNR by aligning the loss function with the evaluation criterion. The
LPSNR loss prioritizes features critical for high-quality reconstructions, leading to superior
performance (0.35 dB compared to L1, 0.2 dB compared to LSSIM, and 0.05 dB compared
to L2).

GELU [47] outperforms no activation (by 0.37 dB), ReLU [48] (by 0.08 dB), and
PReLU [49] (by 0.06 dB) when used in DSC due to its smooth and probabilistic formulation,
which enables better feature discrimination and gradient flow. Unlike ReLU and PReLU,
GELU transitions inputs non-linearly while avoiding abrupt changes or gradient instability.
This smoothness allows DSC to model complex relationships more effectively, improving
feature extraction and stability during training.

6. Conclusions and Future Work
This study establishes that ViTs can effectively utilize DSC as a viable alternative

to traditional convolutional layers. By integrating DSC into the model architecture, the
parameter count is significantly reduced, and computational efficiency is improved, leading
to a more resource-conscious design without compromising performance in LLIE tasks.
Our analysis from Figure 5 shows that DSC achieves an approximate 2.5× reduction in
parameter count compared to standard convolutions, requiring only ~40% of the parameters
needed for similar architectures. The reduced complexity introduced by DSC highlights
its potential as a cornerstone for developing lightweight and scalable ViT architectures,
paving the way for more efficient deployment in real-world applications.

The use of DSC not only reduces computational complexity but also demonstrates
positive results on the LOL-v1 and LOL-v2 datasets as highlighted in the manuscript.
To further expand our evaluation, we plan to include non-uniformly illuminated image
datasets, such as the one provided in [50], in our future work.
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Figure 5. A comparison of the number of parameters and model sizes between models employing
DSCs and those utilizing standard convolutions. The model size values correspond to the parameter
that regulates the layer dimensions.

Future directions will aim to overcome the current framework’s limitations, focusing
on optimizing the trade-off between model size and performance, particularly under
extremely resource-constrained conditions. Research efforts will also explore the integration
of complementary advancements, such as hybrid attention mechanisms that combine the
strengths of different attention paradigms or adaptive depthwise operations tailored to
varying input complexities. These innovations hold promise for further enhancing the
capability and versatility of ViTs, ensuring they remain at the forefront of LLIE solutions
and other computationally demanding tasks.

Author Contributions: Conceptualization, A.B., R.B., C.O., C.A. and C.O.A.; methodology, A.B.,
R.B., C.O., C.A. and C.O.A.; software, A.B. and R.B.; validation, A.B., R.B. and C.O.; formal analysis,
A.B., R.B., C.O., C.A. and C.O.A.; investigation, A.B., R.B., C.O., C.A. and C.O.A.; resources, A.B.,
R.B., C.O., C.A. and C.O.A.; data curation, A.B., R.B., C.O., C.A. and C.O.A.; writing—original draft
preparation, A.B., R.B., C.O., C.A. and C.O.A.; writing—review and editing, A.B., R.B., C.O., C.A.
and C.O.A.; visualization, A.B., R.B., C.O., C.A. and C.O.A.; supervision, C.A. and C.O.A.; project
administration, C.O., C.A. and C.O.A.; funding acquisition, C.A. and C.O.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CV Computer Vision
DW-Conv Depthwise Convolutions
CNN Convolutional Neural Network
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DL Deep Learning
DSC Depthwise Separable Convolutions
DSIB Depthwise Separable Illumination Block
FFN Feed-Forward Network
GELU Gaussian Error Linear Unit
K Self Attention Key
LLIE Low-light Image Enhancement
LN Layer Normalization
POAB Performance-Optimized Attention Block
PReLU Parametric Rectified Linear Unit
PSNR Peak Signal-to-Noise Ratio
PW-Conv Depthwise Convolutions
ReLU Rectified Linear Unit
Q Self-Attention Query
SOTA State of the Art
SSIM Structural Similarity Index Measure
V Self Attention Value
ViT Vision Transformers
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