

000 SATA-BENCH: SELECT ALL THAT APPLY BENCH- 001 MARK FOR MULTIPLE CHOICE QUESTIONS 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 009 ABSTRACT

010
011 Current large language model (LLM) evaluations primarily focus on single-answer
012 tasks, whereas many real-world applications require identifying multiple correct
013 answers. This capability remains underexplored due to the lack of dedicated evalua-
014 tion frameworks. We introduce SATA-BENCH, a benchmark for evaluating LLMs
015 on Select All That Apply (SATA) questions spanning six domains, including read-
016 ing comprehension, legal reasoning, and biomedicine. Our evaluation of 32 models
017 demonstrates substantial limitations: the strongest model achieves only 75.3%
018 Jaccard Index and 41.8% exact match accuracy. We identify three systematic biases
019 underlying these failures: (i) *unselection bias*: models systematically avoid certain
020 correct answer choices; (ii) *speculation bias*: models include incorrect answers
021 when uncertain; and (iii) *count bias*: models consistently underpredict the number
022 of correct answers. To address these limitations, we propose **Choice Funnel**, a
023 decoding strategy that combines token debiasing with adaptive thresholding and
024 abstention handling to guide models toward complete and accurate multi-answer
025 selections. Choice funnel improves the accuracy of the exact match by up to 29%
026 while reducing the inference cost by more than 64% compared to the existing
027 approaches. We release SATA-BENCH and Choice Funnel to encourage the de-
028 velopment of LLMs capable of robust decision-making in realistic multi-answer
029 scenarios.

030 **Data & Code:** github.com/sata-bench/sata-bench

031 **Data & Dataset Card:** huggingface.co/datasets/sata-bench/sata-bench

032 1 INTRODUCTION

033 Large Language Models (LLMs)
034 have demonstrated remarkable
035 capabilities across diverse
036 natural language processing
037 tasks, with multiple-choice
038 question answering becoming
039 a standard evaluation frame-
040 work (Pezeshkpour & Hruschka,
041 2024; Zheng et al., 2024a).
042 However, current benchmarks
043 assume a single correct answer
044 per question, even though many
045 applications require multiple
046 valid responses, and because
047 they rely on binary scoring that
048 does not penalize speculation,
049 they inadvertently encourage
050 hallucination (Kalai et al., 2025).
051 Consider content moderation
052 systems that must flag posts
053 for several policy violations simultaneously, medical diagnosis tools that identify co-occurring
conditions, or legal research platforms that classify documents under multiple relevant statutes. These
scenarios represent Select All That Apply (SATA) tasks, where success depends not on choosing

Document The role of the attention focus in the visual information processing underlying saccadic adaptation . Three experiments were performed to determine how an error signal for driving saccadic adaptation is derived from visual information processing. The first experiment demonstrated that an intrasaccadic displacement of a visual background does not influence saccadic adaptation when a small foveal target is used. The second experiment showed that when a different type of target, a 4.8 deg annulus, is used an intrusaccadic background shift influences the adaptive process. The third experiment showed that the size of the saccade target determines the size of the attention focus around the time of a saccade. These findings suggest that the attention focus selects the visual information used for a trans-saccadic comparison in order to generate the error signal...	SATA Question Given the above article, which MeSH (Medical Subject Headings) root categories can be assigned to it? A. Geographical B. Chemicals and Drugs C. Organisms D. Anatomy E. Diagnostic and Therapeutic Techniques and Equipment F. Information Science G. Health Care H. Phenomena and Processes I. Diseases J. Disciplines and Occupations K. Anthropology, Education, Sociology, and Social Phenomena L. Humanities M. Named Groups N. Psychiatry and Psychology Please select all choices that apply. First reason step by step. You must focus on the paragraph.
Correct Answers: C, D, H, N Responses: GPT-4o: D, H, N	Gemini: C, D, H, J, N Claude 3.7: D, E, H, N DeepSeek: E, H, N

Figure 1: Representative example of an LLM failure on a SATA (Select All That Apply) question. Models often miss valid answers due to unselection, count, and speculation biases. Gemini speculates in this question while GPT-4o underselects. Other models may have unselection bias over C.

054 the single best option but on accurately identifying the complete set of correct answers. Despite
055 their prevalence in real-world applications, SATA tasks remain underexplored in LLM evaluation,
056 leaving a gap between benchmark performance and practical utility with direct implications for
057 trustworthiness and safety. Existing evaluations overestimate model reliability by rewarding
058 speculation, whereas SATA-specific metrics directly penalize speculative behavior.

059 To address this gap, we introduce SATA-BENCH, a comprehensive benchmark containing over
060 10,000 human-validated questions across six domains: reading comprehension, toxicity detection,
061 news categorization, biomedicine, legal classification, and event analysis. Unlike existing multi-label
062 classification datasets that often include dozens of possible labels and assume bag-of-words features,
063 SATA-BENCH provides natural-language multiple-choice questions with 3–15 options and 2–10
064 correct answers, together with metrics that evaluate option-order effects, abstention behavior, and
065 other phenomena unique to LLMs.

066 Our evaluation of 32 state-of-the-art models (including both proprietary LLMs and open-source
067 alternatives) reveals substantial limitations in multi-answer reasoning. Even the best-performing
068 model achieves only 41.8% exact match accuracy, missing the full correct set in nearly 60% of
069 questions. Figure 1 illustrates a representative failure where models correctly identify some valid
070 answers but systematically avoid others. We identify three systematic biases¹ underlying these
071 failures: *unselection bias*, where models consistently avoid certain answer positions regardless of
072 content; *count bias*, where models underestimate the total number of correct answers; and *speculation*
073 *bias*, where models include incorrect options when uncertain rather than abstaining (Kalai et al.,
074 2025). To mitigate these issues, we propose *Choice Funnel*, a decoding algorithm that combines token
075 debiasing, adaptive thresholding, and abstention handling. Beyond evaluation, SATA-BENCH serves
076 as both a benchmark and a diagnostic platform, revealing systematic failure modes and enabling
077 algorithmic advances such as Choice Funnel.

078 **Our Contributions.** The primary contributions of this paper are:

- 079 1. *SATA-BENCH Data Curation*: We curate a high-quality, diverse benchmark dataset explicitly
080 designed to challenge LLMs on multi-answer tasks. SATA-BENCH contains more than 10K
081 human-validated questions with multiple domains, varying difficulty levels, multiple correct
082 answers, and carefully constructed distractors. In addition, we provide readability, confusion, and
083 similarity analyses to ensure clarity, diversity, and task complexity across six domains.
- 084 2. *Comprehensive Evaluation*: We conduct the largest-to-date evaluation of 32 proprietary and
085 open-source LLMs on SATA questions, revealing that even the strongest models achieve only
086 41.8% exact match accuracy and 75.3% Jaccard Index.
- 087 3. *Bias Diagnosis*: We identify and formalize *unselection*, *count*, and *speculation* biases as obstacles
088 to solving SATA questions, and introduce multiple metrics to evaluate these biases.
- 089 4. *Choice Funnel Algorithm*: We introduce a decoding strategy that jointly mitigates these biases
090 through token debiasing, adaptive thresholding, and abstention handling, improving exact match
091 accuracy by up to 29 percentage points while reducing inference cost by 64%.

093 2 SATA-BENCH DATA CURATION

095 Our objective is to develop a dataset that spans diverse tasks and domains while providing sufficient
096 challenge to reveal differences in LLM capabilities. The curation process consists of three stages:
097 (i) selecting source datasets, (ii) transforming them into SATA format, and (iii) filtering questions
098 for readability, diversity, human validation, and clarity (see Figure 3). We curated SATA-BENCH to
099 include tasks in *Reading Comprehension* (Khashabi et al., 2018), *Text Classification* (News (Pad-
100 manabhan et al., 2016), Events (Event-Classification)), and *Domain Understanding* (Toxicity
101 (Gehman et al., 2020), Biomedicine (PubMed-MeSH, 2021), Laws (Chalkidis et al., 2019)).
102 Detailed dataset descriptions are provided in Appendix A.

103 2.1 SATA TRANSFORMATION

104 We convert each item to a SATA item by first gathering the text, gold labels, and option count. We
105 then enforce an option-to-answer ratio of 2–3 to maintain consistency and difficulty (Thompson &
106

107 ¹We use the term bias to highlight systematic tendencies in prediction (See Appendix Q.2 for mathematical
definitions), not socioeconomic or demographic bias

108 Table 1: Compared to prior benchmarks (Kalai et al., 2025), SATA-BENCH penalizes speculation,
109 spans multiple domains, uses non-binary metrics, and includes multi-stage human annotations.
110 Penalizing speculation means wrong answers receive lower scores than abstaining. Jaccard Index
111 penalizes speculation: if ground truth is A, B and model predicts B, C , $JI(JacardIndex) = 0.33$.
112 if it does not speculate and predicts B , $JI = 0.5$. Thus, this scoring scheme gives a lower score to
113 LLMs that speculate when uncertain.

Benchmark	Scoring method	Binary grading	Penalizing speculation	Human labeling	# Domains
GPQA	Multiple-choice accuracy	Yes	None	Yes	3
MMLU-Pro	Multiple-choice accuracy	Yes	None	Yes	57
IFEval	Programmatic instruction verification	Yes ^a	None	No	1
Omni-MATH	Equivalence grading [*]	Yes	None	Yes	1
WildBench	LM-graded rubric [*]	No	Partial ^c	Partial	Varied
BBH	Multiple-choice / Exact Match	Yes	None	Yes	23
MATH	Equivalence grading [*]	Yes	None	Yes	1
MuSR	Multiple-choice accuracy	Yes	None	Yes	1
SWE-bench	Patch passes unit tests	Yes	None	No	1
HLE	Multiple-choice / equivalence grading [*]	Yes	None	Yes	10+
SATA-BENCH	Jaccard Index / Exact Match	Partial ^b	Yes	Yes	6

^{*} Grading is performed using language models, hence incorrect *bluffs* may occasionally be scored as correct.

^a IFEval aggregates several binary rubric sub-scores into a composite score.

^b Jaccard Index and Precision are not binary grading.

^c Grading rubric (1-10 scale) may award hallucinated responses.

131 Giffin, 2021). Next, we set k to the number of correct answers c , construct the option set with the c
132 gold choices plus $k - c$ distractors sampled from the pool, and finally shuffle the options to mitigate
133 position and label bias.

135 2.2 QUESTION FILTERING

137 From the original SATA questions (characteristics shown in Table 6 in Appendix), we filter them
138 using the following steps (see Figure 3):

139 **Initial Filtering.** To clean the original source data, we eliminated questions with fewer than ten
140 words (Sanderson, 2010; Karunaratna et al., 2024). To ensure each question is understandable and
141 solvable, we excluded those containing ambiguous, vague, or subjective terms (Moore et al., 2024).
142 We also removed contaminated questions to reduce memorization risk, following (Li et al., 2024)
143 (details in Appendix B.1).

144 **Readability.** To ensure SATA-BENCH questions are both understandable and challenging, we
145 assessed readability using the Flesch Reading Ease (FRE) score (Flesch, 1948) and the Gunning
146 Fog Index (GFI) (Gunning, 1952). We retained questions with an FRE score between 20–100 and
147 a GFI score between 6–17, corresponding to 6th-grade through graduate-level difficulty (Kincaid
148 et al., 1975; Gunning, 1952). This step removed unclear or trivial questions while preserving a broad
149 difficulty range.²

150 **Question Similarity.** To avoid redundancy, we measured cosine similarity between TF-IDF
151 representations (Sparck Jones, 1972) of all question pairs, following Zhu et al. (2021). **Cosine similarity**
152 **between each correct option and each distractor option was calculated, producing an $n \times m$ similarity**
153 **matrix. The confusion score for the question is defined as the average cosine similarity across all $n \times$**
154 **m pairs.** We removed questions with at least 80% similarity. We also performed statistical analysis
155 (Appendix B) to confirm the consistency of our label design.

156 **Confusion Score.** SATA difficulty is closely tied to the similarity between correct answers and
157 distractors. We quantified this by computing semantic similarity using ST5-XXL (Ni et al., 2021),
158 which performed best in Muennighoff et al. (2022a). To balance difficulty, we binned questions into

160 ²We additionally computed four other readability measures—Flesch-Kincaid Grade Level (FGL) (Kincaid
161 et al., 1975), Automated Readability Index (ARI) (Kincaid et al., 1975), and Dale–Chall Readability (DCR)
(Dale & Chall, 1948)—which are included in the released dataset.

10 groups by confusion score and sampled 50–300 records from each bin, ensuring SATA-BENCH covers a wide difficulty spectrum. Figures 5 and 6 show the distribution of confusion scores before and after filtering, as well as breakdowns by source dataset.

Human Validation. Human evaluation proceeded in two stages. First, annotators identified and removed questions containing ambiguous content (Appendix B.2) from the pre-filtering dataset, producing 9.5K pre-annotation questions, that could be used for finetuning (Appendix T). In the second stage, three annotators reviewed all sampled questions to correct labeling errors. Questions without unanimous agreement were excluded (Annotator information is mentioned in Appendix B.4). As a result, the final release includes a 1.47K evaluation set (see overall statistics in Table 5). We also validate that correct answers are consistently validated over 95% of the time.(Appendix B.5)

2.3 SATA-BENCH CHARACTERISTICS

SATA-BENCH has the following characteristics: (i) *granular grading*: Multiple correct answers provide a finer understanding than binary true/false; (ii) *diversity*: the dataset spans both knowledge-based and reasoning-driven tasks; (iii) *human validation*: all items are manually reviewed for clarity and correctness, and readability scores ensure coverage from 6th grade through graduate level, with ambiguous or trivial questions removed; (iv) *challenging*: 76% of questions fall within the standard FRE range (60–70), the average GFI corresponds to 13th grade (first-year college), and correct answers and distractors have a mean semantic similarity of 0.24 (skewness = 1.8), clustering around 0.22 with a long tail of harder items (Figure 2).

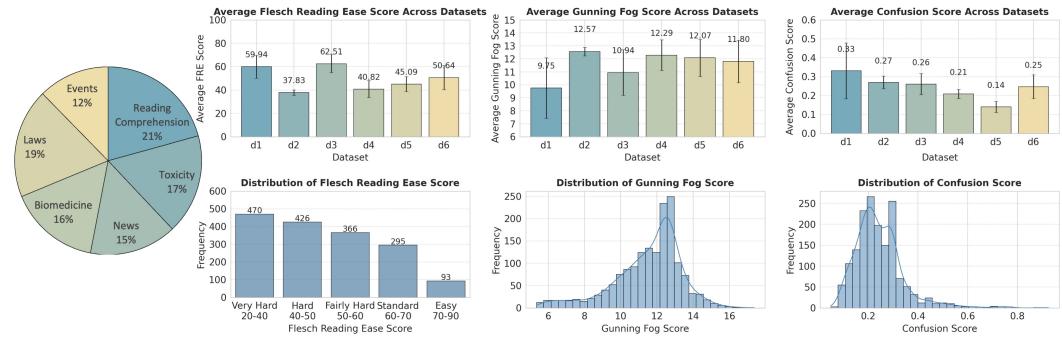


Figure 2: SATA-BENCH Evaluation Dataset Overview. SATA-BENCH covers a diverse set of topics and achieves a balance between readability and difficulty (measured by confusion score). d1: Reading Comprehension, d2: Toxicity, d3: News, d4: Biomedicine, d5: Laws, and d6: Events.

3 EXPERIMENTS

This section presents the experiments conducted to assess the capabilities of LLMs on SATA questions on evaluation set. Our benchmark covers 18 proprietary and 14 open-source models (see Table 8 for details). Because the benchmark spans diverse domains, we adopt a zero-shot evaluation protocol. The system prompt specifies that each question has at least two correct answers, and we instruct the LLM to output the results in JSONL format (Intelligence, 2024; Zhou et al., 2023). **We benchmark different system prompt strategies in the Appendix N.** Furthermore, we employ a CoT prompting strategy following OpenAI & el at (2024). We then extract answers from the JSONL output using exact and fuzzy match. For cases where JSONL extraction fails (fewer than 3%), we use Claude 3 Haiku and human labelers to recover the correct options. However, for smaller models, the JSONL extraction fails in more than 5% of the cases, making this method less reliable. **In these cases, following Hendrycks et al. (2021), we omit CoT and instead rank options using the probability of the first output token.** To calibrate thresholds, we hold out 100 randomly sampled instances from the benchmark and tune each model for the optimal Jaccard Index (Bogatinovski et al., 2022). We then select all options with probabilities above this threshold. This probability-based method applies only to models with accessible token likelihoods. Finally, we also evaluate the performance of non-expert humans on the benchmark (Appendix E).

Evaluation of SATA question responses requires metrics that capture partial correctness , penalize inappropriate selections, and identify bias. We organize our evaluation into three categories:

216
217 Table 2: Performance comparison of 32 different LLMs across various metrics on SATA-BENCH. We
218 highlight the best (**bold**) and second-best (underline) values. Columns labeled [(\uparrow)] indicate higher-
219 is-better; columns labeled [(\downarrow)] indicate lower-is-better. Models with explicit reasoning capabilities
220 are highlighted in *italic*. All numeric values are rounded to two decimal places. We retrieve exact
221 labels for models evaluated using Inference-Based Retrieval + CoT prompting. For models evaluated
222 under Probability-Based Retrieval, we select labels based on token probability thresholds.

Model Name	Performance			Selection Bias			Count Bias	
	JI \uparrow	FPR \downarrow	EM \uparrow	SPD \downarrow	RStd \downarrow	RSD \downarrow	CtDif	CtAcc \uparrow
Inference Based Retrieval + CoT								
<i>O3</i>	73.91	31.58	41.77	0.38	6.79	<u>0.06</u>	-0.39	46.12
GPT 4.1	75.23	40.37	<u>40.49</u>	<u>0.13</u>	<u>5.98</u>	<u>0.06</u>	-0.04	45.52
<i>GPT-OSS 120B</i>	74.28	37.53	40.29	0.19	6.31	0.07	-0.16	<u>47.57</u>
<i>Grok 3 Think</i>	<u>74.40</u>	43.10	39.71	0.30	6.26	0.07	0.06	44.24
GPT 4	74.11	38.42	39.47	0.21	6.63	<u>0.06</u>	-0.20	46.61
<i>Claude 3.7 Think</i>	70.96	35.16	37.92	0.46	18.77	0.34	-0.32	44.48
Claude 3.7	70.98	33.10	37.82	0.49	6.59	0.25	-0.43	43.58
Claude 3 Sonnet	70.72	38.81	36.49	0.36	7.37	0.07	-0.35	48.00
<i>Geimini 2.5 Think</i>	72.58	42.16	36.46	0.12	4.76	<u>0.06</u>	-0.01	43.76
Claude 3.5 Haiku	71.12	50.01	35.89	0.33	7.31	0.35	0.18	42.61
Claude 3 Haiku	70.63	40.84	35.64	0.42	6.24	0.07	-0.22	47.15
Claude 3 Opus	70.15	34.17	35.59	0.62	8.26	0.07	-0.52	44.36
Gemini 2 Flash	70.71	40.79	34.60	0.17	6.14	<u>0.06</u>	-0.23	39.94
GPT 4.1 mini	69.90	37.31	33.46	0.30	6.69	<u>0.06</u>	-0.39	38.61
Nova Pro	68.92	31.64	32.95	0.52	7.92	0.07	-0.55	39.27
Claude 3.5 Sonnet	67.15	34.25	32.22	0.43	8.41	0.09	-0.46	38.55
Llama 3.1 405B	67.18	35.06	30.17	0.33	6.90	0.45	-0.39	36.30
Nova Lite	63.75	39.88	29.11	0.52	9.12	0.45	-0.51	37.39
<i>Deepseek R1</i>	64.49	34.89	28.17	0.94	17.44	0.03	-0.57	33.52
<i>GPT-OSS 20B</i>	60.73	40.90	27.35	0.77	11.05	0.10	-0.53	31.80
Mistral Large V2	57.16	27.23	22.83	1.33	10.89	0.12	-1.10	27.27
Qwen Plus	55.74	24.03	21.12	2.24	10.72	0.11	-1.18	24.85
Nova Micro	55.77	29.28	18.37	1.84	11.10	0.27	-1.09	24.30
Llama 3.2 90B	55.78	23.81	18.30	1.84	11.10	0.27	-1.09	24.30
Llama 3.1 70B	55.59	<u>23.92</u>	17.94	1.81	10.06	0.10	-1.12	22.12
Non-expert Human	45.02	—	17.93	1.46	15.32	1.46	-0.6	34.12
Probability Based Retrieval								
Mistral 8B	46.63	32.21	14.73	11.42	19.47	1.27	-1.35	<u>21.01</u>
Llama3 8B	<u>43.64</u>	30.06	<u>13.82</u>	<u>12.09</u>	17.85	<u>1.09</u>	-1.59	22.00
Bloomz 7B	41.15	57.76	11.27	20.62	29.00	1.51	-0.87	20.09
<i>DeepSeek R1 Distill 8B</i>	40.02	45.33	8.85	13.38	21.62	1.14	<u>-1.29</u>	20.42
Qwen2.5 14B	37.58	17.27	6.30	21.01	18.02	1.06	-2.24	11.93
Phi3 7B	34.57	<u>17.64</u>	2.97	23.22	18.57	<u>1.22</u>	-2.33	7.22
<i>Phi4-mini-reasoning</i>	29.69	26.73	2.12	21.62	13.90	1.59	-2.37	7.35

261 performance metrics that measure correctness and speculation, selection bias metrics that quantify
262 positional preferences, and count bias metrics that assess quantity prediction accuracy. Detailed
263 explanations for all metrics appear in Appendix F.

264 **Performance and Speculation Bias Metrics.** We employ four metrics to assess answer correct-
265 ness (Tarekegn et al., 2024a). *Jaccard Index (JI)* measures the intersection-over-union between
266 predicted and gold labels, providing credit for partial matches. A low JI also reflects limited overlap
267 between predicted and gold labels, indicating speculation bias. *False Positive Rate (FPR)* measures
268 the proportion of questions where models select any incorrect option, directly quantifying speculation
269 bias. *Exact Match (EM)* requires the predicted set to exactly match the gold set, representing the most
270 stringent evaluation criterion.

(Un)selection Bias Metrics. To characterize positional preferences, we measure models' tendencies to favor or avoid specific option positions. We use *RStd* (Zheng et al., 2024a) and *RSD* (Croce et al., 2020; Reif & Schwartz, 2024) to quantify selection bias toward particular option IDs. Additionally, we introduce *Selection Probability Divergence (SPD)* to measure unselection bias—the systematic tendency to avoid certain options regardless of content (detailed in Appendix G).

Count Bias Metrics. Models often select fewer options than warranted, necessitating specialized metrics for quantity assessment. We measure: (i) mean signed difference between selected and correct counts (*CtDif*), where negative values indicate under-selection; and (ii) percentage of cases with exact count matches (*CtAcc*) to assess quantity prediction accuracy.

3.1 KEY OBSERVATIONS

SATA-BENCH is challenging and different. 13 models achieve a JI above 70%, but none surpass 42% EM. This shows that while models often identify some correct answers, they fail to consistently recover the full set.

Proprietary models generally achieve higher JI and Precision than open-source ones. Unlike other benchmarks, no single model dominates across all metrics. Notably, larger and more recent models do not always perform better. For instance, Claude 3 Sonnet outperforms Claude 3.5 Sonnet and Claude 3 Opus in exact match, though within the Claude family, larger models consistently have higher precision (e.g., Claude 3 Opus has the highest precision among the Claude 3 variants). According to Anthropic (2024); DeepSeek-AI & el at (2024), these results contrast with performance on single-answer Multi-Choice Question (MCQ) benchmarks such as MMLU (Hendrycks et al., 2021) and ARC (Clark et al., 2018), where larger or newer models typically show clear gains. Large reasoning models (LRMs) are slightly better than their non-reasoning counterparts in JI but failed to reduce selection and count bias. We provide a case study in Appendix R to investigate LRM's behavior.

Models choose too few answers. Nearly all LLMs tend to select fewer answers than required. For example, Llama 3.1 70B selects, on average, one fewer option per question than the correct number. Accordingly, it achieves the highest precision but the lowest Jaccard Index (JI). The tendency to under-select increases as the number of correct answers grows (Figure 11), which in turn depresses JI for questions with many correct choices (Figure 12). Even the best model achieves a CtAcc of only 48%, predicting the correct number of answers in fewer than half of the questions. We hypothesize that this behavior stems from models being primarily trained and evaluated on benchmarks with single correct answers, making them poorly suited for SATA tasks. A t-test confirms this under-selection: the mean of *CtDif* is significantly below 0 (one tailed), with $p = 1.70 \times 10^{-6}$, $t = -5.82$, $DoF = 24$. However, *CtAcc* has improved as with better performed model (See Figure 15).

Models speculate a lot. LLMs also over-select, consistently choosing incorrect options, with all models exceeding a 20% FPR. More than 70% of the models predict at least one incorrect choice more often than they produce exact matches, underscoring their speculating behavior. Interestingly, stronger-performing models tend to speculate more: *FPR and EM are positively correlated ($r = 0.61$, $p = 8 \times 10^{-4}$, $DoF = 23$)* (Figure 14)

This dual trend suggests that as models improve in identifying correct answers, they also become more prone to speculation, highlighting the difficulty of disentangling genuine knowledge from overconfidence in LLM predictions.

Unselection bias exists. Some models exhibit a systematic tendency to avoid selecting certain labels, even when they are correct. When comparing Selection Probability Divergence (SPD) from our benchmark with 1,000 randomly simulated SPDs, Welch's t-test shows that LLMs' SPD is significantly higher than random ($p = 0.0467$, $DoF = 23$, $t = 1.75$). Geimini 2.5 is the best

Table 3: Average performance of three models. The first column shows row numbers for reference.

	Experiment	EM	Precision	RStd	CtDif
1	1/2/3/4	35.50	82.99	10.22	-0.37
2	a/b/c/d	30.69	83.10	11.56	-0.26
3	default	33.00	84.62	7.37	-0.25
4	few shots	28.35	76.61	17.33	-0.42
5	option by option	30.50	86.28	4.81	-0.64
6	option few shots	30.87	85.80	7.93	-0.48
7	with avg count	27.33	76.17	14.90	-0.40
8	with count number	53.95	83.30	3.45	-0.08
9	single choice	45.53	NA	NA	NA

324 performed model in (un)selection bias. However, it still underperforms on label M, with its recall rate
325 6.3% lower than its overall average recall (Figure 10).

326 3.2 ABLATION STUDIES

327 We conducted ablation studies to test different strategies for improving model performance. We report
328 the average results across three models (Llama 3.1 405B, Nova Pro, Claude 3.5 Haiku) selected for
329 diverse profiles in terms of cost, open-source availability, and overall performance. The complete
330 prompts are provided in Appendix H.3.

331 We tested multiple strategies to improve performance, but none produced consistent or significant
332 gains, suggesting that prompting alone is insufficient for enhancing SATA performance.

- 333 • **Changing option symbols.** Replacing the default option IDs (A/B/C/D) with a/b/c/d or 1/2/3/4
334 did not reduce selection bias. While the numeric format slightly improved exact match, it also
335 increased selection bias and reduced precision. Overall, it's ineffective.(rows 1–3, Table 3).
- 336 • **Few-shot prompting.** Providing few-shot examples before test questions produced no meaningful
337 improvements (row 4, Table 3).
- 338 • **Option-by-option prompting.** Inspired by survey methodology (Smyth et al., 2006; Pew Research
339 Center, 2019), we instructed models to evaluate each option individually. However, models still
340 under-selected and showed no overall improvement (rows 5–6, Table 3).

341 With additional information, two strategies improved performance and provided insight into why
342 models struggle:

- 343 • **Providing the number of correct answers.** To assess how much error stems from uncertainty
344 about the number of valid options, we explicitly told models how many correct answers each
345 question contained. This increased exact match by 20.95 points and reduced selection bias (RStd).
346 However, giving only the average number of correct answers across the dataset reduced performance
347 (rows 7–8, Table 3).
- 348 • **Decomposing into single-choice tasks.** For a question with three correct and six incorrect options,
349 we converted it into three separate single-choice questions (one correct + six incorrect each). We
350 redefined exact match as the proportion of original questions where all expanded items were
351 answered correctly. This raised performance by **12.53%** (row 9, Table 3), showing that SATA
352 questions are much harder for LLMs than single-choice ones.

353 Together, these results suggest that while models can often identify individual correct answers, their
354 lack of awareness of how many answers to select is a key failure mode, highlighting the need for
355 specialized decoding strategies.

356 4 IMPROVING PERFORMANCE ON SATA QUESTIONS

357 This section focuses on improving performance in open-source models, which expose token-level
358 logits that proprietary models do not. Section 3 shows that straightforward probability-based methods
359 for leveraging token logits perform poorly in SATA: thresholds are hard to calibrate and lead to low
360 exact-match accuracy, they do not correct positional bias (SPD up to 23.22 in Table 2), and they
361 cannot abstain under uncertainty, causing high false-positive rates. These failures are closely tied to
362 three systematic biases—speculation, unselection, and count bias—which we show further degrade
363 LLM performance on SATA-BENCH.

364 To address **unselection bias**, we can draw from prior research on token debiasing methods (Choi
365 et al., 2024; Zheng et al., 2024a) in the MCQ setting, where selection bias is attributed to the *a*
366 *priori* probability mass assigned by the model to specific option IDs. These methods propose various
367 techniques to capture and remove such biases. We hypothesize that these techniques can be adapted to
368 mitigate unselection bias in SATA tasks. To address **speculation bias**, we want to design a mechanism
369 to encourage LLMs to abstain rather than speculate under uncertainty. To address **count bias**, we can
370 consider retrieving the predicted probabilities of option IDs and select options whose probabilities
371 exceed a predefined threshold. However, because SATA-BENCH includes a large option set, the
372 probability distribution decays rapidly, with most options receiving near-zero probability mass beyond
373 the first few choices. This makes it challenging to establish a reliable threshold. Converting SATA
374 questions into multiple binary classification problems helps but significantly increases inference cost.

375 These observations also explain why naive extensions of traditional greedy selection or fixed prob-
376 ability thresholding, which are common in selective prediction and multi-label output, perform

378 poorly in SATA. Such methods do not explicitly correct positional bias, lack a principled way to set
 379 model-specific thresholds, and offer no mechanism to abstain when the model is uncertain. As a
 380 result, they exhibit low exact-match accuracy and high false-positive rates in our experiments (see
 381 Table 3).

382 **Choice Funnel Algorithm.** With the above consideration, we propose a decoding method called
 383 *Choice Funnel* (Algorithm 1) tailored to solve SATA problems. This approach first adds an auxiliary
 384 option “None of the Above,” then selects the option with the highest *debiased token probability* and
 385 removes it from the option set. The process repeats iteratively until one of two stopping conditions is
 386 met: (i) the model selects “None of the Above” or (ii) the probability of the next option falls below a
 387 predefined confidence threshold.

388 The addition of an auxiliary option is inspired
 389 by recent research that LLMs exhibit biases simi-
 390 lar to those observed in human responses (Choi
 391 et al., 2024; Eckman et al., 2024a), aiming
 392 to reduce LLM speculation. While “I don’t
 393 know” (*idk*) being the most common option
 394 used to improve survey data quality (Schuman
 395 & Presser, 1996) and have been suggested in
 396 recent LLM research (Kalai et al., 2025), *NOTA*
 397 consistently outperforms *idk* (see ablation study
 398 in Appendix M.1).

399 The intuition behind the second stopping condi-
 400 tion comes from our finding that output probabili-
 401 ties correlate with the number of correct options
 402 the model considers: the highest token probabili-
 403 ty tends to be lower at the beginning of itera-
 404 tions, when the model treats multiple options as
 405 equally plausible. Later in the process, relatively
 406 higher probability is assigned to the final remain-
 407 ing correct option in the set. We also show that
 408 Choice Funnel achieves the best performance
 409 when both stopping conditions are used together
 (see ablation study in Appendix M.3).

410 Regarding the choice of *DebiasingFunction* in
 411 Algorithm 1, Choice Funnel is flexible and can
 412 incorporate any token debiasing method proven
 413 effective in MCQ settings. We demonstrate one such method in Section 4. See ablation study on
 414 each sub-component in Appendix M.2. Finally, the inference cost of Choice Funnel, measured by the
 415 number of model forward passes, scales linearly with the number of *correct* labels rather than the
 416 number of *total* labels. *This makes the method especially efficient when correct labels constitute only*
 417 *a small fraction of the option set.*

418 **Experimental Setup.** In our experiments we adapted the PriDe algorithm (Zheng et al., 2024a) as
 419 *DebiasingFunction* in Algorithm 1 due to its label-free design and computational efficiency. It works
 420 by first estimating the model’s prior bias toward specific option ID tokens (e.g., A, B, C) through
 421 random permutations of option contents in a small subset of test samples (10% of the data in our
 422 experiments). We then use this estimated prior to adjust the prediction distribution on the remaining
 423 samples, thereby separating the model’s inherent positional and token biases from its task-specific
 424 predictions. Because the original PriDe algorithm was designed for standard single-answer MCQ
 425 tasks, we modified it to better fit the SATA setting (see Appendix K).

426 We evaluate the performance of Choice Funnel against **three baseline methods** that rely on first-
 427 token probabilities: (i) using the first-token probability with a fixed threshold, as defined in Section 3
 428 (referred to as *first token*); (ii) applying PriDe debiasing on top of the first-token method (Zheng et al.,
 429 2024a), current best-performed method in terms of speed and accuracy in solving MCQs. (referred to
 430 as *first token debiasing*); and (iii) converting each option into an individual binary yes/no question
 431 (referred to as *yes/no*). Other advanced calibration methods cannot generalize to SATA or require an

Algorithm 1: Choice Funnel

Input : LLM π_θ , SATA problem \mathcal{T} , option set \mathcal{O} ,
NOTA stop option, τ confidence threshold

Initialize the selected option set
 $\mathcal{R} \leftarrow \emptyset$

while $\mathcal{O} \neq \emptyset$ **do**

- # Generate prompt with available options
 $\mathbf{P} \leftarrow \text{MakeSATAPrompt}(\mathcal{T}, \mathcal{O})$
- # Get first token probability distribution and apply
 token debiasing
 $p \leftarrow \text{DebiasingFunction}(\pi_\theta(\cdot|\mathbf{P}))$
- # Select option with highest probability
 $o \leftarrow \arg \max_{o \in \mathcal{O}} p(o)$
- # 1. stop when “None of the above” is selected
if $o = \text{NOTA}$ **then**
 | **break**
- end**
- $\mathcal{R} \leftarrow \mathcal{R} \cup \{o\}$
- # 2. stop when the confidence threshold is reached
if $p(o) > \tau$ **then**
 | **break**
- end**
- if** $\text{length}(\mathcal{R}) = 1$ **then**
 | $\mathcal{O} \leftarrow \mathcal{O} \cup \{\text{NOTA}\}$
- end**
- $\mathcal{O} \leftarrow \mathcal{O} \setminus \{o\}$

end

Output : \mathcal{R}

extensive dataset to fine-tune the model. In this study, we use standardized prompts (Appendix H) and experiment with seven LLMs from Table 20 that fall under the Probability-Based Retrieval category (details in Appendix L). For each model, we compute the metrics reported in Table 20 and additionally report an *InfCost* metric to capture the number of model forward passes required for each method.

Key Observations. Choice Funnel consistently outperforms all three baselines across all seven models in EM, SPD, and CtAcc (Table 4). *Choice Funnel reduces unselection bias, speculation bias, and count bias*—compared to the *first token* baseline, it achieves an average 56.2% reduction in SPD, 36.4% improvement in JI, and 154.6% improvement in CtAcc, and a 277.5% gain in Exact Match (EM) performance. While reasoning models also show improvements with Choice Funnel, we exclude them from aggregate calculations since their exceptionally low baselines would inflate relative gains. Against the strongest baseline, the *yes/no* approach, *Choice Funnel* delivers a 29.9% improvement in EM while reducing model forward passes by 64.5% through its early stopping mechanism, demonstrating scalable inference efficiency. A t-test confirms that Choice Funnel significantly outperforms both *yes/no* and *first token debiasing* on EM and CtAcc, **with a maximum p-value of 0.0079 and t statistics of 4.92**. Although our models’ parameter sizes (7B–14B) limit direct comparison to much larger proprietary systems, Choice Funnel’s performance on the *phi3-small* model still surpasses that of larger models such as Llama-90B and Mistral-Large V2 (Table 20), underscoring the effectiveness of our method. Each component of Choice Funnel is essential (Appendix M) and it performs well across larger models (Appendix M.4) and black-box settings (Appendix M.2).

Table 4: Performance of various models on SATA-BENCH using different decoding methods. *Choice Funnel* achieves consistently stronger results, effectively reducing selection and count bias compared to three baseline methods. The best values in each column are shown in **bold**. Columns labeled [\uparrow] indicate higher-is-better, while columns labeled [\downarrow] indicate lower-is-better. All values are rounded to two decimal places.

Model Name	EM \uparrow	Recall \uparrow	JI \uparrow	SPD \downarrow	CtAcc \uparrow	InfCost \downarrow
Mistral-8B + <i>first token</i>	14.73	53.23	46.63	11.42	0.21	1650
Mistral-8B + <i>first token debiasing</i>	8.91	37.97	34.27	152.23	0.14	2534
Mistral-8B + <i>yes/no</i>	16.48	55.91	48.80	12.88	0.21	15517
Mistral-8B + <i>choice funnel</i>	20.24	55.78	52.56	8.50	0.27	4803
Phi3-7B + <i>first token</i>	2.97	35.67	34.57	23.22	0.07	1650
Phi3-7B + <i>first token debiasing</i>	1.76	28.24	27.47	175.24	0.05	2534
Phi3-7B + <i>yes/no</i>	25.45	72.40	60.03	1.39	0.30	15517
Phi3-7B + <i>choice funnel</i>	29.27	70.24	61.85	3.47	0.38	6339
Qwen2.5-14B + <i>first token</i>	6.30	38.76	37.58	21.01	0.12	1650
Qwen2.5-14B + <i>first token debiasing</i>	4.61	31.49	30.36	154.26	0.09	2534
Qwen2.5-14B + <i>yes/no</i>	25.64	60.56	56.18	2.76	0.31	15517
Qwen2.5-14B + <i>choice funnel</i>	27.82	67.07	61.12	3.80	0.35	6005
Bloomz-7B + <i>first token</i>	11.27	50.80	41.15	20.62	0.20	1650
Bloomz-7B + <i>first token debiasing</i>	7.09	38.41	32.05	149.17	0.15	2534
Bloomz-7B + <i>yes/no</i>	11.93	42.67	29.40	17.78	0.13	15517
Bloomz-7B + <i>choice funnel</i>	20.18	54.90	46.15	9.82	0.32	5440
Llama3-8B + <i>first token</i>	13.82	47.37	43.64	12.09	0.22	1650
Llama3-8B + <i>first token debiasing</i>	7.58	32.28	30.38	151.74	0.14	2534
Llama3-8B + <i>yes/no</i>	14.85	65.61	51.43	1.91	0.23	15517
Llama3-8B + <i>choice funnel</i>	19.88	56.19	50.36	7.75	0.33	4975
Phi4-mini-reasoning + <i>first token</i>	2.12	30.82	29.69	21.62	0.07	1650
Phi4-mini-reasoning + <i>first token debiasing</i>	1.27	25.74	24.51	156.16	0.07	2534
Phi4-mini-reasoning + <i>yes/no</i>	4.36	81.59	45.24	7.09	0.10	15517
Phi4-mini-reasoning + <i>choice funnel</i>	18.42	54.84	49.14	3.30	0.27	6003
DeepSeek-R1-Distill-Llama-8B + <i>first token</i>	8.85	45.81	40.02	13.38	0.20	1650
DeepSeek-R1-Distill-Llama-8B + <i>first token debiasing</i>	5.45	31.12	28.48	134.36	0.14	2534
DeepSeek-R1-Distill-Llama-8B + <i>yes/no</i>	0.12	89.51	40.19	27.96	0.01	15517
DeepSeek-R1-Distill-Llama-8B + <i>choice funnel</i>	14.36	45.56	42.87	12.37	0.21	4630

5 RELATED WORK

SATA Benchmark. Most multiple-choice (MCQ) benchmarks assume a single correct answer and therefore cannot evaluate an LLM’s ability to select multiple correct options. **Multi-label classification**

(MLC) is related in that multiple labels may apply to an instance, but it differs fundamentally from the SATA question format. MLC is a classification paradigm with a fixed label set, where models score each label independently—typically using sigmoid outputs and thresholding—whereas SATA questions present a small, semantically interdependent set of natural-language options and require the model to jointly reason over these options and explicitly choose the correct subset.

Existing MLC datasets (Kowsari et al., 2017; Katakis et al., 2008; Charté et al., 2015; Demszky et al., 2020) are primarily designed for document or text classification. They often involve from dozens to hundreds of labels (including some in the extreme multi-label classification regime) or hierarchical taxonomies, and are typically modeled with high-dimensional sparse text features (e.g., bag-of-words or tf–idf) rather than as natural-language option sets (Liu et al., 2022). These characteristics make them poorly aligned with evaluating natural-language reasoning over an explicitly presented option set. Other MLC benchmarks focus on domain-specific tasks such as newswire topic categorization (Lewis et al., 2004), emotion analysis (Demszky et al., 2020), legal precedent treatment classification (Demir & Canbaz, 2025), or music style understanding (Zhao et al., 2019), further limiting their relevance to general-purpose SATA-style reasoning. Recent LLM-focused MLC work (Ma et al., 2025) examines how to adapt LLMs to traditional MLC pipelines but similarly does not study how models solve SATA-style questions.

Selection Bias. Prior studies show that LLMs favor certain options based on order or symbols when answering MCQs (Gupta et al., 2024b; Wei et al., 2024; Gupta et al., 2024a), though these analyses focus on single-answer settings. Calibration methods using option priors have been proposed (Zheng et al., 2024a), but their applicability to SATA tasks remains unclear.

Uncertainty and Survey Methodology. Work on *uncertainty quantification* has been extensive (Tarekegn et al., 2024b), but is generally framed for probabilistic classifiers rather than multi-answer reasoning. In our setting, uncertainty manifests as systematic *speculation bias* in LLM predictions. Similarly, survey methodology highlights the role of abstention options such as “I don’t know” or “None of the Above” in reducing respondent bias (Eckman et al., 2024b). Choice Funnel builds on these insights by incorporating abstention to mitigate speculation in SATA tasks.

6 CONCLUSION

We introduced SATA-BENCH, a dataset of over 10K human-validated SATA questions across six domains, and evaluated 32 LLMs. Even the best model achieves only 41.8% exact match accuracy, with failures driven by three systematic biases: unselection, count, and speculation. Although models can often identify individual correct options, our ablation studies show that they lack reliable mechanisms for estimating the correct number of answers. To address these gaps, we proposed *Choice Funnel*, a decoding algorithm that combines token debiasing, adaptive thresholding, and abstention handling. Choice Funnel improves the exact match by up to 29 points while reducing the inference cost by 64%, demonstrating that targeted decoding strategies can mitigate systematic errors in multi-answer reasoning. SATA-BENCH thus provides both a standardized benchmark and a diagnostic platform to analyze the LLM failure modes. We hope it will guide the development of models better suited for real-world applications where partial correctness is insufficient.

ETHICS STATEMENT

Intended Use and Benefits. By diagnosing unselection, speculation, and count biases and proposing a mitigation method (Choice Funnel), this work aims to reduce systematic failure modes that could otherwise yield missed or spurious labels in applications such as content moderation, information extraction, or biomedical tagging. The benchmark is released to facilitate open evaluation and comparative analysis.

Data Provenance and Annotators. SATA-BENCH is constructed from publicly available textual sources, carefully filtered and human-validated for clarity and difficulty. We leverage Amazon Bedrock Guardrails to identify and remove any questions containing personally identifiable information (PII). We follow all source licenses and usage policies and do not collect new PII. An internal ethics review was conducted prior to conducting any human annotation or validation for this research.

Avoiding Harm. The goal of this work is to identify and reduce potential harms from LLMs when working on multi-answer questions. To mitigate such risks, we: (1) center the work on *evaluation*

540 to systematically diagnose where harms arise; (2) report detailed statistics; and (3) propose and
541 benchmark a decoding algorithm that explicitly mitigates these biases.
542

543 REPRODUCIBILITY STATEMENT 544

545 **Dataset.** We describe the SATA transformation process in Section 2.1, the question-filtering pipeline
546 in Section 2.2, and the dataset characteristics in Section 2.3. Complete filtering details—including
547 human validation, redundancy checks, and contamination screening—are provided in Appendix B. A
548 detailed dataset description appears in Appendix A. We release three datasets in the Supplementary
549 Materials: (i) the post-validation set `sata-bench-raw-v2.json` ($\approx 7.98k$ items); (ii) the single-
550 choice subset `sata-bench-single.json` ($\approx 1.57k$ items); and (iii) the human-annotated set
551 `sata-bench-v2.json` ($\approx 1.5k$ items). In total, these releases comprise over 10,000 examples.
552

553 **Evaluation.** Evaluation details are described in Section 3. Computational resources used for
554 evaluation are listed in Appendix D. Exact model versions are reported in Table 8. Inference
555 code is provided in `sata_eval.py` (Supplementary Materials). Human evaluation procedures
556 are documented in Appendix E. All metrics are detailed in Appendix F, with implementations in
557 `metric.py`. All prompts are documented in Appendix H. Our handling of inference errors is
558 described in Appendix I. To reproduce inference and ablation studies, run `bash run.sh`.
559

560 **Choice Funnel.** Choice Funnel is described in Section 4. A detailed description of the benchmarked
561 method appears in Appendix K, with code in `debiasing.py`. The experimental setup is provided
562 in Appendix L. Ablation studies are reported in Appendices M and E. The full Choice Funnel
563 implementation is provided in the `choice_funnel` directory in the Supplementary Materials.
564

565 7 LIMITATIONS 566

567 While SATA-BENCH provides a rigorous framework for evaluating LLMs on SATA questions,
568 several limitations remain. First, our analysis of *biases* (unselection, count, and speculation) is
569 operational rather than philosophical: we define bias as systematic, reproducible deviations from
570 expected multi-answer behavior. Although this framing is consistent with benchmarking practice,
571 further theoretical grounding would strengthen the taxonomy. Second, our proposed Choice Funnel
572 algorithm depends on token-level probabilities, which are not universally accessible in closed-source
573 APIs. This limits its applicability to black-box models. Third, while we evaluated a broad set of 32
574 models, our focus on zero-shot prompting and probability-based decoding may disadvantage smaller
575 open-source models; richer prompting or fine-tuning strategies remain to be explored. Fourth, al-
576 though SATA-BENCH differs fundamentally from multi-label classification benchmarks by requiring
577 natural question–answer reasoning, the boundary between classification and reasoning tasks warrants
578 deeper investigation to avoid overstating novelty. Fifth, we did not fully explore whether advanced
579 reasoning-augmented models (e.g., DeepSeek-R1, OpenAI O1) mitigate SATA-specific biases. Early
580 observations suggest these models still exhibit unselection and speculation tendencies, but a sys-
581 tematic evaluation remains future work. Sixth, choice funnel algorithm improves EM accuracy but
582 often reduces precision. First Token baseline method shows higher precision (77 – 87%) than CF
583 however this is achieved by systematically under-selecting to only 1 option, yielding catastrophically
584 low EM (e.g., 2.12% on Phi4-mini). Seventh, the dataset is only in English, which has limited its
585 scope. Finally, like other benchmarks, SATA-BENCH risks contributing to benchmark fatigue; we
586 emphasize that its purpose is diagnostic rather than purely evaluative, designed to reveal systematic
587 LLM failures in multi-answer reasoning rather than to replace existing benchmarks.
588

589 REFERENCES 590

591 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
592 Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
593 capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024.

594 Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
595 Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, et al. Phi-4-reasoning
596 technical report. *arXiv preprint arXiv:2504.21318*, 2025. URL <https://arxiv.org/abs/2504.21318>. Version 1, submitted on 30 Apr 2025.

594 Anthropic. Claude (version 3.5 sonnet), 2024. URL <https://www.anthropic.com/clause>.
 595 AI language model.
 596

597 Jasmin Bogatinovski, Ljupčo Todorovski, Sašo Džeroski, and Dragi Kocev. Comprehensive compara-
 598 tive study of multi-label classification methods. *Expert Systems with Applications*, 203:117215,
 599 2022.

600 Faeze Brahman, Sachin Kumar, Vidhisha Balachandran, Pradeep Dasigi, Valentina Pyatkin, Abhilasha
 601 Ravichander, Sarah Wiegreffe, Nouha Dziri, Khyathi Chandu, Jack Hessel, Yulia Tsvetkov, Noah A.
 602 Smith, Yejin Choi, and Hannaneh Hajishirzi. The art of saying no: Contextual noncompliance in
 603 language models, 2024. URL <https://arxiv.org/abs/2407.12043>.

604 Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis, and Ion Androutsopoulos. Large-scale
 605 multi-label text classification on eu legislation, 2019. URL <https://arxiv.org/abs/1906.02192>.

606

607 Francisco Charte, Antonio J. Rivera, María J. del Jesus, and Francisco Herrera. Stackex: A
 608 collection of multi-label datasets from stack exchange forums. *Journal of Multiple-Valued
 609 Logic and Soft Computing*, 25(5):429–448, 2015. URL <https://github.com/yourURL/stackex-datasets>.

610

611 Hyeong Kyu Choi, Weijie Xu, Chi Xue, Stephanie Eckman, and Chandan K. Reddy. Mitigating
 612 selection bias with node pruning and auxiliary options. *arXiv preprint arXiv:2409.18857*, 2024.
 613 URL <https://arxiv.org/abs/2409.18857>.

614

615 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 616 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
 617 2018. URL <https://arxiv.org/abs/1803.05457>.

618

619 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 620 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 621 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

622

623 Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
 624 marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial
 625 robustness benchmark. *arXiv preprint arXiv:2010.09670*, 2020.

626

627 Justin Cui, Wei-Lin Chiang, Ion Stoica, and Cho-Jui Hsieh. Or-bench: An over-refusal benchmark
 628 for large language models, 2025. URL <https://arxiv.org/abs/2405.20947>.

629

630 Edgar Dale and Jeanne S. Chall. A formula for predicting readability. *Educational Research Bulletin*,
 631 27(1):11–20, 28, 1948.

632

633 DeepSeek-AI and Aixin Liu el at. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

634

635 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 636 Qihao Zhu, Shirong Ma, Peiyi Wang, et al. Deepseek-r1: Incentivizing reasoning capability
 637 in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025. URL <https://arxiv.org/abs/2501.12948>. Version 1, submitted on 22 Jan 2025.

638

639 M. Mikail Demir and M Abdullah Canbaz. Validate your authority: Benchmarking LLMs on multi-
 640 label precedent treatment classification. In Nikolaos Aletras, Ilias Chalkidis, Leslie Barrett, Cătălina
 641 Goanță, Daniel Preoțiuc-Pietro, and Gerasimos Spanakis (eds.), *Proceedings of the Natural Legal
 642 Language Processing Workshop 2025*, pp. 172–183, Suzhou, China, November 2025. Association
 643 for Computational Linguistics. ISBN 979-8-89176-338-8. doi: 10.18653/v1/2025.nllp-1.13. URL
 644 <https://aclanthology.org/2025.nllp-1.13/>.

645

646 Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and
 647 Sujith Ravi. Goemotions: A dataset of fine-grained emotions. In *Proceedings of the 58th
 648 Annual Meeting of the Association for Computational Linguistics*, pp. 4040–4054, 2020. URL
 649 <https://aclanthology.org/2020.acl-main.372/>.

648 Stephanie Eckman, Barbara Plank, and Frauke Kreuter. Position: Insights from survey methodology
649 can improve training data. In *Proceedings of the 41st International Conference on Machine*
650 *Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 12268–12283. PMLR,
651 2024a. URL <https://arxiv.org/abs/2403.01208>.

652 Stephanie Eckman, Barbara Plank, and Frauke Kreuter. Position: Insights from survey methodology
653 can improve training data. In *Proceedings of the 41st International Conference on Machine*
654 *Learning*, volume 235, pp. 12268–12283. PMLR, 2024b.

655 EUR-Lex. Content statistics, 2018. URL <http://data.europa.eu/88u/dataset/eur-lex-statistics>. [Data set].

656 Event-Classification. Event-Classification. URL https://huggingface.co/datasets/knowledgator/events_classification_biotech. [Data set].

657 Rudolf Flesch. A new readability yardstick. *Journal of Applied Psychology*, 32(3):221–233, 1948.
658 doi: 10.1037/h0057532.

659 Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. Realtoxic-
660 cityprompts: Evaluating neural toxic degeneration in language models, 2020. URL <https://arxiv.org/abs/2009.11462>.

661 Robert Gunning. *The Technique of Clear Writing*. McGraw-Hill, New York, 1952.

662 Vipul Gupta, David Pantoja, Candace Ross, Adina Williams, and Megan Ung. Changing answer
663 order can decrease mmlu accuracy. *arXiv preprint arXiv:2406.19470*, 2024a.

664 Vipul Gupta, David Pantoja, Candace Ross, Adina Williams, and Megan Ung. Changing answer
665 order can decrease mmlu accuracy. *arXiv preprint arXiv:2406.19470*, 2024b. URL <https://arxiv.org/pdf/2406.19470.pdf>.

666 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
667 Steinhardt. Measuring massive multitask language understanding, 2021. URL <https://arxiv.org/abs/2009.03300>.

668 Amazon Artificial General Intelligence. The amazon nova family of models: Technical report and
669 model card. *Amazon Technical Reports*, 2024.

670 Adam Tauman Kalai, Ofir Nachum, Santosh S. Vempala, and Edwin Zhang. Why language models
671 hallucinate, 2025. URL <https://arxiv.org/abs/2509.04664>.

672 Indunil Karunarathna, C Fernando, U Ekanayake, T Hapuarachchi, P Gunasena, P Aluthge, N Perera,
673 S Gunathilake, Kapila De Alvis, K Gunawardana, et al. Validating mcqs: A critical step in
674 specialist. 2024.

675 Ioannis Katakis, Grigoris Tsoumakas, and Ioannis Vlahavas. Multilabel text classification for
676 automated tag suggestion. In *Proceedings of the ECML/PKDD 2008 Discovery Challenge*, 2008.
677 URL <http://www.kde.cs.uni-kassel.de/ws/dc08/>. This dataset contains 7395
678 BibTeX entries from the BibSonomy social bookmark and publication sharing system, annotated
679 with a subset of the tags assigned by BibSonomy users.

680 Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking
681 beyond the surface:a challenge set for reading comprehension over multiple sentences. In *Proceedings of North American Chapter of the Association for Computational Linguistics (NAACL)*,
682 2018.

683 J. Peter Kincaid, Robert P. Fishburne, Richard L. Rogers, and Brad S. Chissom. Derivation of new
684 readability formulas (automated readability index, fog count and flesch reading ease formula) for
685 navy enlisted personnel. Research Branch Report 8-75, Chief of Naval Technical Training, Naval
686 Air Station Memphis, TN, 1975.

687 Kamran Kowsari, Donald E. Brown, Mojtaba Heidarysafa, Kiana Jafari Meimandi, Matthew S.
688 Gerber, and Laura E. Barnes. Hdltex: Hierarchical deep learning for text classification. In *2017 IEEE International Conference on Machine Learning and Applications (ICMLA)*, pp. 364–371,
689 2017. URL <https://ieeexplore.ieee.org/document/8260658>.

702 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 703 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 704 serving with pagedattention, 2023. URL <https://arxiv.org/abs/2309.06180>.

705

706 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
 707 Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
 708 Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
 709 Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
 710 Pushing frontiers in open language model post-training, 2025. URL <https://arxiv.org/abs/2411.15124>.

711

712 David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. Rcv1: A new benchmark collection for
 713 text categorization research. *Journal of Machine Learning Research*, 5:361–397, 2004. URL
 714 <https://dl.acm.org/doi/10.5555/1005332.1005345>.

715

716 Yucheng Li, Yunhao Guo, Frank Guerin, and Chenghua Lin. An open-source data contamination
 717 report for large language models. 2024.

718

719 Weiwei Liu, Haobo Wang, Xiaobo Shen, and Ivor W. Tsang. The emerging trends of multi-label
 720 learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(11):7955–7974,
 721 November 2022. ISSN 1939-3539. doi: 10.1109/tpami.2021.3119334. URL <http://dx.doi.org/10.1109/TPAMI.2021.3119334>.

722

723 Marcus Ma, Georgios Chochlakis, Niyantha Maruthu Pandiyan, Jesse Thomason, and Shrikanth
 724 Narayanan. Large language models do multi-label classification differently. In *Proceedings of
 725 the 2025 Conference on Empirical Methods in Natural Language Processing*, pp. 2472–2495.
 726 Association for Computational Linguistics, 2025. doi: 10.18653/v1/2025.emnlp-main.126. URL
 727 <http://dx.doi.org/10.18653/v1/2025.emnlp-main.126>.

728

729 Steven Moore, Eamon Costello, Huy A Nguyen, and John Stamper. An automatic question usability
 730 evaluation toolkit. In *International Conference on Artificial Intelligence in Education*, pp. 31–46.
 Springer, 2024.

731

732 Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embedding
 733 benchmark. *arXiv preprint arXiv:2210.07316*, 2022a.

734

735 Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman, Teven Le
 736 Scao, M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey Schoelkopf, et al. Crosslingual
 737 generalization through multitask finetuning. *arXiv preprint arXiv:2211.01786*, 2022b.

738

739 Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant, Ji Ma, Keith B. Hall, Daniel Cer, and Yinfei
 740 Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models, 2021. URL
 741 <https://arxiv.org/abs/2108.08877>.

742

743 OpenAI and Josh Achiam el at. Gpt-4 technical report, 2024. URL <https://arxiv.org/abs/2303.08774>.

744

745 Divya Padmanabhan, Satyanath Bhat, Shirish Shevade, and Y. Narahari. Topic model based multi-
 746 label classification from the crowd, 2016. URL <https://arxiv.org/abs/1604.00783>.

747

748 Pew Research Center. When Online Survey Respondents Only Select Some That Apply, 2019.

749

750 Pouya Pezeshkpour and Estevam Hruschka. Large language models sensitivity to the order of options
 751 in multiple-choice questions. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Findings of
 752 the Association for Computational Linguistics: NAACL 2024*, pp. 2006–2017, Mexico City, Mexico,
 753 June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.130.
 754 URL <https://aclanthology.org/2024.findings-naacl.130/>.

755

756 PubMed-MeSH. PubMed Biomedical Articles and Medical Subject Headings (MeSH),
 757 2021. URL <https://www.kaggle.com/datasets/owaiskhan9654/pubmed-multilabel-text-classification>. [Data set].

756 Yuval Reif and Roy Schwartz. Beyond performance: Quantifying and mitigating label bias in
757 llms. *Proceedings of the 2024 Conference of the North American Chapter of the Association*
758 *for Computational Linguistics: Human Language Technologies*, 2024. URL <https://arxiv.org/html/2406.19470v2>.

760 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
761 Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof qa benchmark,
762 2023. URL <https://arxiv.org/abs/2311.12022>.

764 Penelope Jane Sanderson. *Multiple-choice questions: A linguistic investigation of difficulty for*
765 *first-language and second-language students*. PhD thesis, University of South Africa, 2010.

766 Howard Schuman and Stanley Presser. *Questions and Answers in Attitude Surveys: Experiments on*
767 *Question Form, Wording, and Context*. SAGE Publications, Thousand Oaks, CA, 1996.

769 Jolene D. Smyth, Don A. Dillman, Leah Melani Christian, and Michael J. Stern. Comparing check-all
770 and forced-choice question formats in web surveys. *Public Opinion Quarterly*, 70(1):66–77, 01
771 2006. ISSN 0033-362X. doi: 10.1093/poq/nfj007. URL <https://doi.org/10.1093/poq/nfj007>.

773 Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval.
774 *Journal of Documentation*, 28(1):11–21, 1972. doi: 10.1108/eb026526.

776 Adane Nega Tarekegn, Mohib Ullah, and Faouzi Alaya Cheikh. Deep learning for multi-label
777 learning: A comprehensive survey. *arXiv preprint arXiv:2401.16549*, 2024a.

779 Adane Nega Tarekegn, Mohib Ullah, and Faouzi Alaya Cheikh. Deep learning for multi-label
780 learning: A comprehensive survey. *arXiv preprint arXiv:2401.16549*, 2024b.

782 Marie Tarrant, Aimee Knierim, Sasha K Hayes, and James Ware. The frequency of item writing flaws
783 in multiple-choice questions used in high stakes nursing assessments. *Nurse Education Today*, 26
784 (8):662–671, 2006.

785 Mistral AI Team. Ministrail-8b-instruct-2410: State-of-the-art models for local intelligence, on-
786 device computing, and at-the-edge use cases. <https://huggingface.co/mistralai/Mistral-8B-Instruct-2410>, 2024. Released in October 2024.

788 Andrew R Thompson and Bruce F Giffin. Higher-order assessment in gross anatomy: A comparison
789 of performance on higher-versus lower-order anatomy questions between undergraduate and
790 first-year medical students. *Anatomical Sciences Education*, 14(3):306–316, 2021.

792 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
793 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
794 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

796 Sheng-Lun Wei, Cheng-Kuang Wu, Hen-Hsen Huang, and Hsin-Hsi Chen. Unveiling selection
797 biases: Exploring order and token sensitivity in large language models. *Findings of the Association*
798 *for Computational Linguistics ACL 2024*, 2024. URL <https://arxiv.org/html/2406.19470v2>.

800 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
801 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
802 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
803 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
804 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
805 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
806 <https://arxiv.org/abs/2412.15115>.

808 Yiming Zhang, Jianfeng Chi, Hailey Nguyen, Kartikeya Upasani, Daniel M. Bikel, Jason Weston, and
809 Eric Michael Smith. Backtracking improves generation safety, 2024. URL <https://arxiv.org/abs/2409.14586>.

810 Guangxiang Zhao, Jingjing Xu, Qi Zeng, Xuancheng Ren, and Xu Sun. Review-driven multi-
811 label music style classification by exploiting style correlations. In *Proceedings of the 2019*
812 *Conference of the North American Chapter of the Association for Computational Linguistics:*
813 *Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 2059–2068, 2019. URL
814 <https://aclanthology.org/N19-1296/>.

815 Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. Large language models are not
816 robust multiple choice selectors. 2024a. URL <https://arxiv.org/abs/2309.03882>.

817 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyuan Luo. LlamaFactory:
818 Unified efficient fine-tuning of 100+ language models. In Yixin Cao, Yang Feng, and Deyi
819 Xiong (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational*
820 *Linguistics (Volume 3: System Demonstrations)*, pp. 400–410, Bangkok, Thailand, August
821 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-demos.38. URL
822 <https://aclanthology.org/2024.acl-demos.38/>.

823 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
824 Zhou, and Le Hou. Instruction-following evaluation for large language models, 2023. URL
825 <https://arxiv.org/abs/2311.07911>.

826 Jie Zhu, Braja G Patra, and Ashraf Yaseen. Recommender system of scholarly papers using public
827 datasets. *AMIA summits on translational science proceedings*, 2021:672, 2021.

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A DATASET DESCRIPTION**
865

866 In this section, we describe the original datasets and their characteristics in detail.
867

868 **Reading Comprehension** is a dataset of short paragraphs and multi-sentence questions that can be
869 answered from the content of the paragraph. Some questions contain multiple correct answers. The
870 dataset we use is from (<https://cogcomp.seas.upenn.edu/multirc/>). The metadata is licensed under the
871 Research and Academic Use License.

872 We chose this dataset for the following 3 reasons.
873

- 874 1. The number of correct answer-options for each question is not pre-specified. This removes the
875 over-reliance of current approaches on answer-options and forces them to decide on the correctness
876 of each candidate answer independently of others. In other words, unlike previous work, the
877 task here is not to simply identify the best answer-option, but to evaluate the correctness of each
878 answer-option individually.
- 879 2. The correct answer(s) is not required to be a span in the text.
- 880 3. The paragraphs in our dataset have diverse provenance by being extracted from 7 different domains
881 such as news, fiction, historical text etc., and hence are expected to be more diverse in their contents
882 as compared to single-domain datasets. The goal of this dataset is to encourage the research
883 community to explore approaches that can do more than sophisticated lexical-level matching.

884 **Toxicity** is adapted from RealToxicPrompts. The dataset select prompts from sentences in the OPEN-
885 WEBTEXT CORPUS (Gokaslan and Cohen, 2019), a large corpus of English web text scraped from
886 outbound URLs from Reddit, for which we extract TOXICITY scores with the PERSPECTIVE API.
887 To obtain a stratified range of prompt toxicity, we sample 25K sentences from four equal-width
888 toxicity ranges ([0,.25], ..., [.75,1]), for a total of 100K sentences. We then split sentences in half,
889 yielding a prompt and a continuation, both of which we also score for toxicity. For each data point,
890 we provide the definition for each category as well as shuffle the choices for each category. We only
891 classify the case when the category's sum of prompt and continuation score is above 1.5 for each
892 label. The dataset we use is from (<https://huggingface.co/datasets/allenai/real-toxicity-prompts>). The
893 metadata is licensed under the Apache License.

894 **News** is processed from Reuters text categorization test collection dataset. It contains a collection
895 of documents that appeared on Reuters newswire. There are originally 120 related topics, where
896 each document can be related to multiple topics. There are two challenges related to this dataset
897 preparation: 1. The number of topics can be too large for a small number of selections. 2. Some
898 popular topics are commonly included in the documents, making a certain choice much more popular
899 than other choices, which can bias the models in our study. With this in mind, we limit our selection to
900 10 options from the 120 topics for each documents, and the remaining choices are selected randomly
901 from the topic pool; we also re-label the choices using unique mapping per document to keep the
902 final answers evenly distributed between all letter choices (e.g. A/B/C/D...). The dataset we use is
903 from (<https://archive.ics.uci.edu/dataset/137/reuters+21578+text+categorization+collection>). This
904 dataset is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

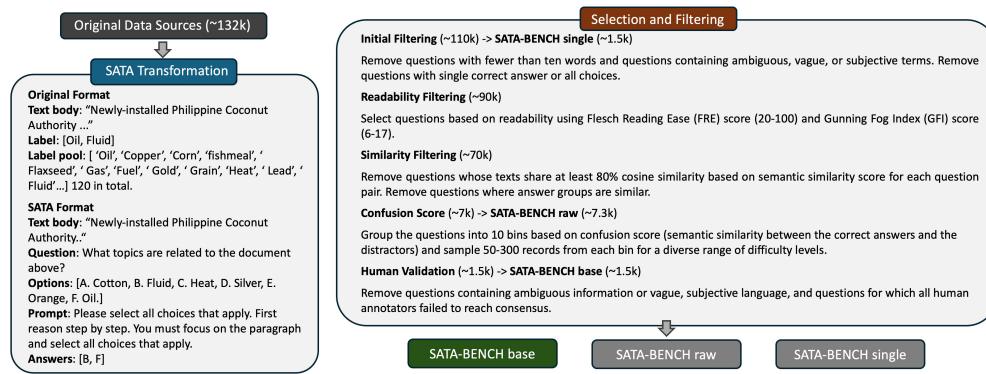
905 **Biomedicine** is adapted from the PubMed MultiLabel Text Classification Dataset, which is a col-
906 lection of research articles from the PubMed repository. Originally, these documents are manu-
907 ally annotated by Biomedical Experts with their Medical Subject Headings (MeSH) labels, and
908 each article are described in terms of 10-15 MeSH labels. The adopted dataset has been pro-
909 cessed and mapped to its root level with 15 distinct MeSH labels in total. The dataset we use is
910 from (<https://www.kaggle.com/datasets/owaiskhan9654/pubmed-multilabel-text-classification>). This
911 dataset is licensed under a CC0: Public Domain license.

912 **Laws** is adapted from EURLEX57K which contains 57k legislative documents in English from
913 EUR-Lex (<https://eur-lex.europa.eu>) with an average length of 727 words. All the documents of the
914 dataset have been annotated by the Publications Office of EU (<https://publications.europa.eu/en>) with
915 multiple concepts from EUROVOC (<http://eurovoc.europa.eu/>). EURLEX contains 7201 concepts.
916 There are two challenges when converting this dataset to multi-choice question answering dataset:
917 1. The 7201 concepts is too big a pool for a small number of selection, most documents have <10
918 concepts in this dataset. 2. Some popular concepts are included in a number of documents, making a
919 certain choice much more frequent than other choices. This is problematic because it may force the

918 model to learn the popular letter of choice rather than the content of the questions. With this in mind,
919 we limit our selection to 15 options from the 7201 topics pool for each document, and the remaining
920 choices are selected randomly from the topic pool; we also shuffle and and re-label the choices using
921 unique mapping per document to keep the final answers evenly distributed between each letter choice.
922 The dataset we use is from (<https://paperswithcode.com/dataset/eurlex57k>). This dataset is licensed
923 under Apache License.

924 **Events** is adapted from the “events classification biotech” dataset, which contains diverse biotech
925 news articles consisting of various events. The curated dataset has 3140 questions with 5 choices of
926 events for each document. Six choices are provided for each question. The dataset we use is from
927 (<https://paperswithcode.com/dataset/events-classification-biotech>). This dataset is licensed under the
928 Open Data Commons Attribution License (ODC-By) v1.0

930 B DATASET FILTERING



946 Figure 3: SATA-BENCH Data Curation Process. The source data is converted to SATA format and
947 then filtered for *readability*, *diversity* (via question similarity), *difficulty* (via confusion scoring),
948 and *clarity* (via human validation). Additional dataset-specific transformation steps are described in
949 Appendix B.

950 The Biomedicine, Law, and Events datasets were originally multi-label classification tasks, which we
951 adapted into SATA questions by creating distractor (incorrect) choices from the unselected labels.
952 There are two challenges when converting these datasets to SATA format: 1. Many of them have
953 a large label pool with only a few correct answers, which is not reasonable for multiple-choice
954 questions. 2. There can be some popular answers frequently exist in the original data, making
955 certain choices more frequent than others. This is problematic because it may force the model to
956 learn the popular token of choice (e.g. Choice A/a/1) rather than the content of the questions. For
957 example, the law dataset is originally from EUR-Lex data EUR-Lex (2018) contains 57k legisla-
958 tive documents in English (<https://eur-lex.europa.eu>) annotated by the Publications Office of EU
959 (<https://publications.europa.eu/en>) with over 7k concepts from EUROVOC (<http://eurovoc.europa.eu/>).
960 To address the first challenge, we kept an option-to-answer ratio between 2 and 3, considering the
961 balance between the number of correct answers and incorrect choices. The distractors were sampled
962 randomly from the topic pool. We also shuffled and and re-labeled the choices using unique mapping
963 per question to keep the final answers evenly distributed between each choice token. An example
964 question from each data source is shown in Figure 4.

966 B.1 INITIAL FILTERING

968 We manually filtered out questions that contain vague quantities, degrees of likelihood, temporal
969 ambiguity, qualitative subjectivity, comparative uncertainty, general and undefined references. We
970 use AWS Comprehend to remove questions that contain personal financial information or contact
971 information. We leave questions that contain public available information such as the company name
972 and address. All filtered words are mentioned below in Table 7.

972	
973	
974	
975	Reading Comprehension - An atom is the very smallest particle that still the elements properties. All the atoms of an element are alike. They are also different from the atoms of all other elements. For example, atoms of gold are always the same. It does not matter if they are found in a gold nugget or a gold ring. All gold atoms have the same structure and properties. For example, all gold atoms contain 79 protons. One of golds unique properties is that it is a great conductor of electricity. Gold is a better conductor of electricity than copper. Gold is more rare and expensive than copper. Copper is used in house wiring. Gold is far too expensive. Are two atoms of different elements the same?
976	Options: ['No, atoms of a single element are alike and differ from other elements', 'Yes', 'No'] Answers: ['No, atoms of a single element are alike and differ from other elements', 'No']
977	Toxicity - A threat describes an intention to inflict pain, injury, or violence against an individual or group. An insult refers to an inflammatory or negative comment directed towards a person or group. Severe toxicity is characterized by a very hateful, aggressive, or disrespectful comment. Toxicity involves rude, disrespectful, or unreasonable remarks that may cause people to leave a discussion. Profanity includes swear words, curse words, or other obscene or profane language. Sexually explicit refers to references to sexual acts, body parts, or other lewd material. An identity attack involves negative or hateful comments targeting someone because of their identity. Lastly, fliritation consists of pickup lines, compliments about appearance, or subtle sexual innuendos. "She is such a whore, that bitch seems to be completely deranged". Does this sentence satisfy any of the following definitions?
978	Options: ['insult', 'threat', 'severe toxicity', 'sexually explicit', 'identity attack', 'fliritation', 'toxicity', 'profanity'] Answers: ['insult', 'severe toxicity', 'toxicity', 'profanity']
979	News - Egypt will tender Thursday for 200,000 tonnes of optional origin corn, U.S. number two or equivalent, 14.5 pct moisture, for late April shipment, private export sources said. Shipment will be from the Gulf or Great Lakes if U.S. origin, they said. What topics are related to the document above?
980	Options: ['cottonseed', 'corn', 'grain', 'gold', 'oil'] Answers: ['corn', 'grain']
981	Biomedicine - Wilms' tumor in an adult with multiple osteoblastic metastases. A rare case of Wilms' tumor in an adult with initial symptoms of unilateral exophthalmos and multiple osteoblastic metastases is reported. Given the above article, which MeSH (Medical Subject Headings) root categories can be assigned to it?
982	Options: ['Technology, Industry, and Agriculture', 'Anatomy, Humans', 'Anthropology, Education, Sociology, and Social Phenomena', 'Phenomena and Processes', 'Geographicals', 'Chemicals and Drugs', 'Information Science', 'Disciplines and Occupations', 'Diseases', 'Named Groups', 'Organisms', 'Analytical, Diagnostic and Therapeutic Techniques, and Equipment', 'Health Care', 'Psychiatry and Psychology'] Answers: ['Diseases', 'Named Groups', 'Organisms']
983	Laws - 2004/250/EC: Council Decision of 11 March 2004 appointing a new member of the Commission. Council Decision of 11 March 2004 appointing a new member of the Commission. THE COUNCIL OF THE EUROPEAN UNION. Having regard to the Treaty establishing the European Community, and in particular the second paragraph of Article 215 thereof, Whereas: On 10 March 2004 Ms Anna DIMITROPOULOU resigned from her post as a member of the Commission. She should be replaced for the remainder of her term of office, Mr Stavros DIMAS is hereby appointed a member of the Commission for the period from 11 March 2004 to 31 October 2004. This Decision shall take effect on 11 March 2004. This Decision shall be published in the Official Journal of the European Union. What concepts does the above document include?
984	Options: ['European Commission', 'forward studies', 'apiculture', 'European Central Bank', 'Dillon Round', 'South Holland', 'metal waste', 'toxicology', 'information storage', 'Videotex', 'terminology', 'European GNSS Agency', 'tax relief', 'diplomatic protocol', 'appointment of staff'] Answers: ['European Commission', 'appointment of staff']
985	Events - ZibaHub launches Inclusive Beauty to help consumers find beauty professionals who meet their needs. ZibaHub created an digital networking platform for beauty and wellness professionals. Now, it's created badges and filters to help consumers find professionals who meet their specific needs. What events are related to the document above?
986	Options: ['company description', 'm&a', 'new initiatives & programs', 'product updates', 'foundation', 'regulatory approval'] Answer: ['new initiatives & programs', 'product updates']
987	
988	
989	
990	
991	
992	Figure 4: Representative examples of questions from various data sources used to construct SATA-BENCH.
993	
994	
995	
996	
997	
998	
999	

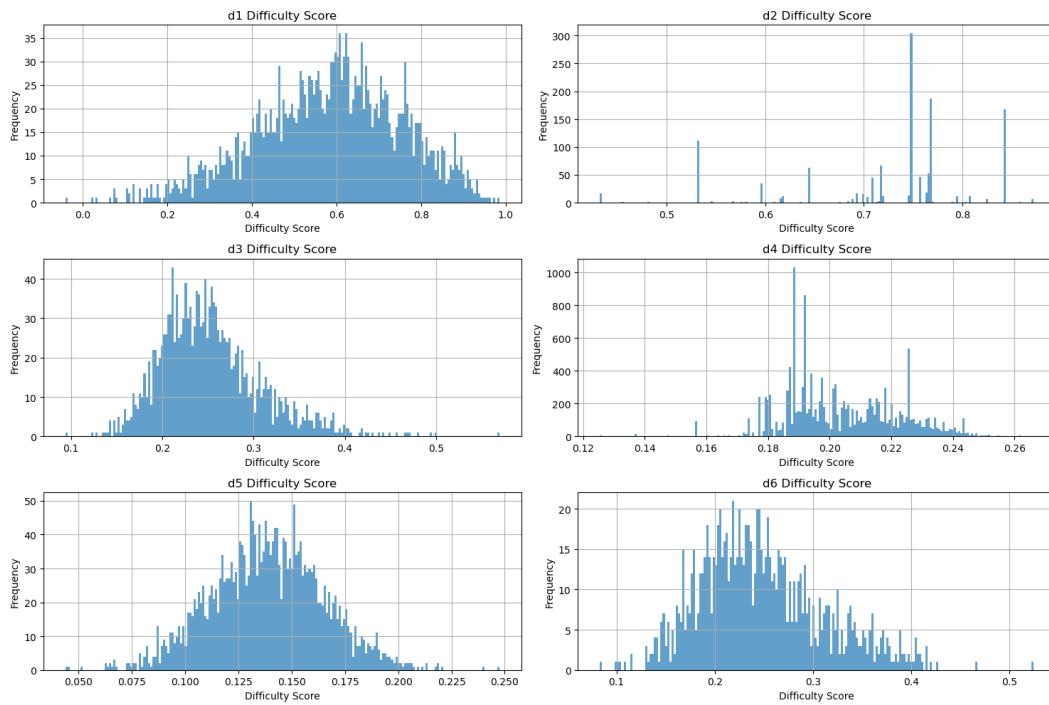


Figure 5: Confusion score distribution across all questions before filtering. d1: Reading Comprehension, d2: Toxicity, d3: News, d4: Biomedicine, d5: Laws, and d6: Events.

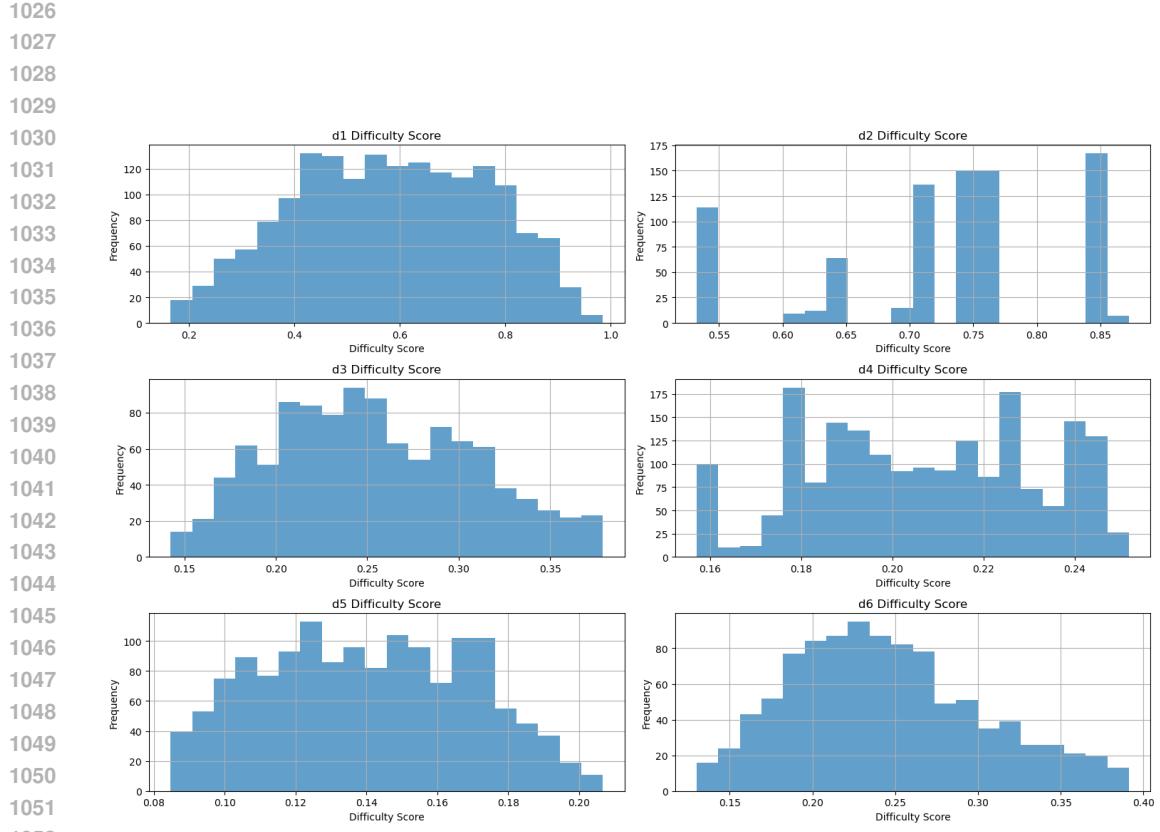


Figure 6: Confusion Score distribution of the filtered questions. d1: Reading Comprehension, d2: Toxicity, d3: News, d4: Biomedicine, d5: Laws, and d6: Events.

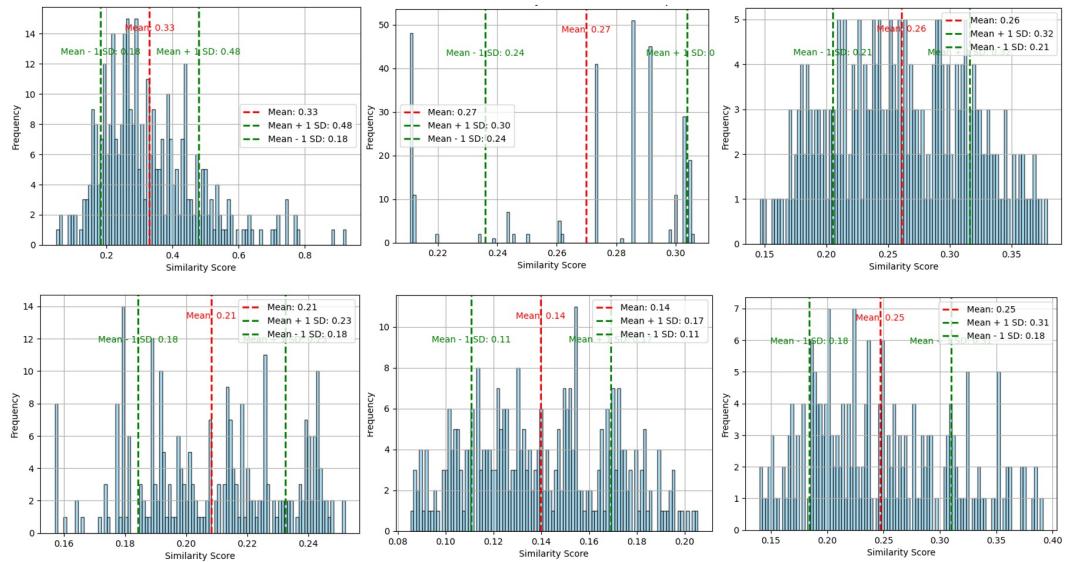


Figure 7: Confusion Score distribution separately visualized for each source dataset. (Left to right) Top row: Reading Comprehension, Toxicity, News; Bottom row: Biomedicine, Laws, Events.

1080 Table 5: Statistics of the SATA-BENCH evaluation dataset (by data source). We report the following
 1081 metrics: n: number of instances, LC: label cardinality, m: mean number of correct answers, me:
 1082 median number of correct answers, min: minimum number of correct answers, max: maximum
 1083 number of correct answers, r: ratio of the number of choices to the median number of correct answers
 1084 (LC/me), w: mean word count, FRE: Flesch Reading Ease score, FGL: Flesch-Kincaid Grade Level
 1085 score, ARI: Automated Readability Index, DCR: Dale-Chall Readability score, GFI: Gunning Fog
 1086 Index, Confusion: mean confusion score. The final row summarizes these metrics across the entire
 1087 SATA-BENCH dataset.

Data Source	n	LC	m	me	min	max	r	w	FRE	FGL	ARI	DCR	GFI	Confusion
Reading Comprehension	258	3-15	2.8	2	2	10	na	2018.46	59.94	9.22	12.57	9.27	9.75	0.33
Toxicity	221	8	2.56	2	2	6	4	1015.32	37.83	12.28	13.33	10.49	12.57	0.27
News	248	6	2.36	2	2	5	3	785.93	62.51	8.92	11.15	11.1	10.94	0.26
Biomedicine	260	15	5.67	5	2	12	3	1540.47	40.82	10.95	12.41	10.83	12.29	0.21
Laws	281	15	5.3	5	2	10	3	5761.69	45.09	12.29	14.06	8.75	12.07	0.14
Events	202	6	2.63	2	2	5	3	3644.06	50.64	10.83	13.08	9.7	11.8	0.25
SATA-BENCH	1470	3-16	3.55	3	2	10	3.2	2491.01	49.56	10.75	12.80	9.96	11.51	0.24

1088
 1089 Table 6: Original data source statistics. We report the following metrics – n: number of instances,
 1090 q: number of possible labels across the entire dataset, s: proportion of single-answer questions, m:
 1091 mean number of correct answers, me: median number of correct answers, min: minimum number
 1092 of correct answers, max: maximum number of correct answers, LC: label cardinality, r: ratio of the
 1093 number of choices to the median number of correct answers (LC / me).

Data Source	n	q	s	m	me	min	max	LC	r
Reading Comprehension	5131	na	27%	2.344	2	0	10	2-21	na
Toxicity	5994	8	60%	2.639	2	2	7	8	4
News	11360	120	83%	2.567	2	2	16	6	3
Biomedicine	50000	15	0.07%	5.745	6	0	13	15	2.5
Laws	57000	7201	0.54%	5.069	5	1	26	15	3
Events	3140	29	50.7%	2.683	2	2	5	6	3

1100
 1101 Table 7: Identified categories of vague terms along with representative examples
 1102
 1103

Category	Examples
Vague Quantities	some, several, many, few, a lot, plenty, numerous, various, partially, a handful, a bit, a portion
Degrees of Likelihood	maybe, possibly, probably, likely, unlikely, apparently, presumably, seemingly, conceivably, arguably, occasionally
Temporal Ambiguity	sometimes, often, rarely, occasionally, once in a while, from time to time, now and then, every so often
Qualitative Subjectivity	bad, nice, significant, substantial, important, interesting, sufficient, adequate, reasonable, moderate
Comparative Uncertainty	more or less, about, around, roughly, close to, kind of, sort of, nearly, almost, approximately
General and Undefined References	thing, things, anything, everything, whatever, such, kind, type, sort

1128
 1129 While we cannot entirely eliminate the possibility of memorization, we applied the open-source
 1130 contamination detection pipeline(Li et al., 2024). Using the Bing Search API, we found top 20
 1131 relevant queries per question to check for verbatim web overlap. We then cross-referenced hits with
 1132 Common Crawl indexes. We exclude questions that were flagged as contaminated, indicating that
 1133 our data is neither indexed in Common Crawl nor retrievable via public search. This reduces the
 likelihood that any model saw our questions during pre-training.

1134 B.2 HUMAN VALIDATION
1135

1136 Human validation is to ensure that the questions are unambiguous. Using humans to validate the
1137 question is inspired by (Tarrant et al., 2006; Moore et al., 2024). For each question in the benchmark,
1138 we ask five annotators whether the question contains ambiguous information.

1139 Human Validation
1140

1141 You are presented with the following:
1142 Paragraph: *paragraph*
1143 Question: *question*
1144 Choices: *choice*

1145 The question text and answer choices are clearly written:
1146 *Strongly agree*
1147 *Agree*
1148 *Neither agree nor disagree*
1149 *Disagree*
1150 *Strongly Disagree*
1151 Answers:

1152 Once it is done, the total cost is tracked (1301.89), with 5 people per label at a cost of 0.012 each. We
1153 only select questions that are “Strongly agree” and “Agree” > 0.8 .
1154

1155 B.3 REDUDENCY AND CONSISTENCY ANALYSIS
1156

1157 To ensure the diversity of the dataset labels, we ensure that our answer group has labels with different
1158 similarity. To assess label redundancy, we encoded labels using SentenceTransformer (all-MiniLM-
1159 L6-v2) and computed pairwise similarities. The mean maximum similarity across label sets is
1160 0.473, with standard deviation 0.206. This confirms a mix of semantically similar and distinct labels.
1161 The top 10 percentile score is 0.786 and the bottom 10 percentile score is 0.235. This shows that
1162 our dataset has diverse labels with similar percentage of semantically similar and dissimilar labels.
1163 Count bias increased after removing similar-label questions, suggesting that LLMs sometimes use
1164 semantic similarity to infer related correct answers. We remove all questions that have label pairs with
1165 similarity score over 0.786. We then recalculated count bias related metrics across all closed-source
1166 models. CtDif is lower and CtDifAbs get higher. This means that removing similar labels in question
1167 actually increase the number of count bias. We suspect that is due to the fact that LLM can reasoning
1168 through similar labels and use those labels’ similarity to identify all correct answers.
1169

1170 B.4 HUMAN LABELING
1171

1172 To ensure that each question has a valid and correct answer, we conducted a comprehensive human
1173 evaluation. An initial manual inspection revealed that some questions lacked clearly correct answers.
1174 To verify answer correctness, we recruited three experienced annotators to review all sampled
1175 questions that remained after prior filtering and validation. All labelers hold Bachelor’s degrees or
1176 higher with 22% lablers holding master’s degree. 100% of the team is proficient in English. Average
1177 years of experience of the team in human labeling is approximately 3.5 years. The team also supports
1178 a diverse range of labeling tasks from Automatic Speech Recognition to Sensitive Content Information
1179 evaluation. All annotators have prior experience working on multi-label tasks and domain-specific
1180 content (including 6 domains that are covered by our benchmark, such as medicine and law). The
1181 Human Standard Operation Procedure (SOP) is drafted by a technical writer. The technical writers
1182 are drawn from a pool whose main job is writing annotation instructions, hold a degree in english
1183 language or literature and have over 3 years of experience as technical writers. Annotators were
1184 compensated at a rate of at least \$35 per hour. Each question was independently evaluated by at least
two annotators.

1185 For each question, the original reference answer and four anonymized LLM-generated answers (from
1186 Claude 3.7, GPT-4 Turbo (O3), Grok 3, and Gemini 2.5) were provided. In cases where the two
1187 annotators disagreed or answer “I don’t know”, a third annotator reviewed the original answer, all
1188 LLM answers, and both annotators’ decisions to determine the final label or to discard the question.

1188 Detailed annotation guidelines were provided below. As a result of this process, 47 questions were
1189 discarded due to ambiguity or disagreement, and an additional 46 were removed for quality-related
1190 issues. Since each question may have multiple correct answers, we report pairwise agreement between
1191 the first two annotators, which was 91.22%. After filtering out low-quality and ambiguous questions
1192 by the third annotators, the agreement rate is 96.51% in our reported dataset. Since a third annotator
1193 reviewed all cases where the first two annotators disagreed, the actual error rate is expected to be
1194 significantly lower than 3.49%.

1195
1196

1197 Human Labeling

1198
1199 Given original answers and LLMs' answers, you'll try to identify correct answer of the
1200 following questions. You're expected/encouraged to use Google, and any internet resources
1201 you can find to try and answer the question correctly.

1202 **Requirements and Expectations** 1. You are encouraged to use Google, and any websites
1203 you can think of or find that may help you answer the question and understand the concept.
1204 However, you are NOT allowed to use AI assistants like chatGPT, Claude, Grok3 Geimini,
1205 etc., or ask people for help. All their answers to the question has been provided anonymously
1206 under LLM Answers.

1207 2. We ask that you spend at least 5 minutes trying to answer each question before making
1208 your selection. If you haven't settled on an answer choice in that time, we encourage you to
1209 spend as long as you need to be confident in your selection.

1210 3. These questions will be hard, and you will likely need to spend a while on each of them
1211 to make progress understanding the context. Read relevant resources, take plenty of time,
1212 and answer "I don't know" if you're pretty sure you have no realistic way of answering
1213 confidently.

1214 4. You will also be given the opportunity to give feedback on the question. We're especially
1215 interested in feedback about whether the question was ambiguous, but please feel free to give
1216 feedback of any other form!

1217 **Suggestions and Strategies for Labeling** 1. Look up definitions for all of the unfamiliar
1218 terms in the question and answer choices. Keep a list of those definitions handy so you can
1219 easily refer back to the definitions if you forget the jargon.

1220 2. LLMs' answer is not always reliable and original answer is not always correct. Please try
1221 to solve the question independently before looking at potential answers.

1222 2. Look for primary resources, like research papers and textbooks, as these can often contain
1223 clearer explanations than sources like Wikipedia (although Wikipedia can be useful in many
1224 cases as well).

1225 You are presented with the following:

1226 Paragraph: *paragraph*

1227 Question: *question*

1228 Choices: *choice*

1229 Original Answers: *original answer*

1230 LLM Answers: *llm answers*

1231 Answers:

1232

1233

1234 B.5 CORRECT ANSWER VALIDATION

1235

1236 To demonstrate that correct answers in our benchmark are equally valid. We conducted a human
1237 evaluation leveraging Amazon Mechanical Turk. Given question and correct answers, we ask
1238 human annotator whether correct answers are equivalently correct. The answer can be Yes or No.
1239 Annotators were instructed to spend at least 2 minutes per question for the required reading, thinking,
1240 and searching. We compensated annotators at 0.84 dollars per question and collected 3 human
1241 annotations per question. 95.1% of questions have more than 2 labelers out of 3 labelers consider
1242 all answers are equally correct. 3.9% of question has one labelers consider all answers are equally
1243 correct. This shows that almost all our answers are equally valid.

1242 **C HYPERPARAMETERS**

1244 To ensure consistent and high-quality outputs across different models, we standardized the decoding
 1245 hyperparameters for most model generations by setting the temperature to 0 (to promote deterministic
 1246 outputs), top-p (nucleus sampling) to 0.95 (to allow for a balance between diversity and relevance),
 1247 and a maximum token limit of 1,024 tokens. Recognizing the enhanced reasoning capabilities of
 1248 certain models, we adjusted the configurations accordingly. For O3 and Grok 3, we set the thinking
 1249 budget to be high. For Geimini 2.5 thinking and Claude 3.7 Thinking, we set the thinking budget to
 1250 be 16k. For R1, we set max tokens 16k. This is to provide enough budget for reasoning models to
 1251 finish thinking.

1252 Table 8: Model cards summarizing specifications and details for all evaluated large language models.

Model Name	Creator	Complete Model ID	Release	Hosting
O3	OpenAI	o3-2025-04-16	04/16/25	OpenAI API
GPT-4.1	OpenAI	gpt-4.1-2025-04-14	04/14/25	OpenAI API
Grok 3 Think	xAI	grok-3-mini-beta	02/19/25	xAI API
GPT-4-turbo	OpenAI	gpt-4o-2024-11-20	11/20/24	OpenAI API
Claude-3.7 Sonnet Think	Anthropic	anthropic.claude-3-7-sonnet-thinking-20250219-v1:0	02/24/25	AWS Bedrock
Claude-3.7 Sonnet	Anthropic	anthropic.claude-3-7-sonnet-20250219-v1:0	02/24/25	AWS Bedrock
Claude-3 Sonnet	Anthropic	anthropic.claude-3-sonnet-20240229-v1:0	02/29/24	AWS Bedrock
Gemini 2.5 Think	Google	gemini-2.5-pro-preview-03-25	03/25/25	Vertex AI
Claude-3.5 Haiku	Anthropic	anthropic.claude-3-5-haiku-20241022-v1:0	10/22/24	AWS Bedrock
Claude-3 Haiku	Anthropic	anthropic.claude-3-haiku-20240307-v1:0	03/07/24	AWS Bedrock
Claude-3 Opus	Anthropic	anthropic.claude-3-opus-20240229-v1:0	02/29/24	AWS Bedrock
Gemini 2 Flash	Google	gemini-2.0-flash	02/05/25	Vertex AI
GPT-4.1 mini	OpenAI	gpt-4.1-mini-2025-04-14	04/14/25	OpenAI API
Claude-3.5 Sonnet	Anthropic	anthropic.claude-3-5-sonnet-20240620-v1:0	06/20/24	AWS Bedrock
Llama 3.1 405B	Meta	meta.llama3-1-405b-instruct-v1:0	07/23/24	AWS Bedrock
DeepSeek R1	DeepSeek	deepseek.r1-v1:0	01/20/25	AWS Bedrock
Mistral Large V2	Mistral AI	mistral.mistral-large-2407-v1:0	07/24/24	AWS Bedrock
Qwen Plus	Alibaba	qwen-plus-2025-04-28	04/28/25	Alibaba API
Llama 3.2 90B	Meta	meta.llama3-2-90b-instruct-v1:0	09/25/24	AWS Bedrock
Llama 3.1 70B	Meta	meta.llama3-1-70b-instruct-v1:0	07/23/24	AWS Bedrock
GPT OSS 120B	OpenAI	openai.gpt-oss-120b-1:0	08/05/25	AWS Bedrock
GPT OSS 20B	OpenAI	openai.gpt-oss-120b-1:0	08/05/25	AWS Bedrock
Mistral 8B Instruct	Mistral AI	mistralai/Mistral-8B-Instruct-2410	10/09/24	Hugging Face
Llama 3 8B	Meta	meta-llama/Llama-3.1-8B-Instruct	07/23/24	Hugging Face
BLOOMZ 7B	BigScience	bigscience/bloomz-7b1	07/11/22	Hugging Face
DeepSeek R1 Distill 8B	DeepSeek	deepseek-ai/DeepSeek-R1-Distill-Llama-8B	02/01/25	Hugging Face
Qwen 2.5 14B	Alibaba	Qwen/Qwen2.5-14B	09/19/24	Hugging Face
Phi-3 7B	Microsoft	microsoft/phi-3-small-128k-instruct	05/21/24	Hugging Face
Phi-4-mini-reasoning	Microsoft	microsoft/phi-4-mini-reasoning	04/15/25	Hugging Face

1278 **D COMPUTE RESOURCES**

1280 We use AWS Bedrock batch inference for large models’ inference such as Claude3 Sonnet, Claude
 1281 3.5 Haiku, Claude 3 Haiku, Claude 3 Opus, Claude 3.5 Sonnet, Llama 3.1 405B, Mistral Large V2,
 1282 Llama 3.2 90B, and Llama 3.1 70B. We use AWS cross-region inference for Claude3.7 Reason,
 1283 Claude3.7, and Deepseek R1. We use official APIs from the respective providers for models such
 1284 as OpenAI O3, GPT4.1, Grok3 Reason, GPT4, Geimini2.5 Reason, Gemini 2 Flash, GPT 4.1 mini,
 1285 GPT OSS 120B, GPT OSS 20B, and Qwen Plus.

1286 For experiments that require accessing model’s hidden states and log probs. We run inference on one
 1287 EC2 *p4d.24xlarge* (Nvidia A100 40GiB GPU) instance and one EC2 *g5.4xlarge* (Nvidia A10G
 1288 24GiB GPU) in Sydney(ap-southeast-2) region. We have also attached 8000GiB disk volume with
 1289 AL2023 Linux OS image. We use HuggingFace and PyTorch as the main software frameworks.

1291 **E NON-EXPERT HUMAN BENCHMARK**

1294 To contextualise LLM results on SATA-BENCH, we recruited non-expert annotators on *Amazon*
 1295 *Mechanical Turk*, adapting the instructions from (Rein et al., 2023). All questions was labelled as
 follows:

1296 • **Task set-up.** Each question was presented with the original answer options *plus decoys*
 1297 (e.g. ABCD→ABCDEFGHIJK) to identify inattentive workers. Nine independent annotations were
 1298 collected per item at a rate of *\$0.84 per question*, matching the fair-wage recommendations of
 1299 GPQA.

1300
 1301
 1302
 1303
 1304
 1305 • **Quality safeguards.** Workers were: (i) informed that every item contains *at least two* correct
 1306 answers; (ii) forbidden from consulting LLMs or other people, yet allowed to look up unfamiliar
 1307 terms on Google/Wikipedia; (iii) required to spend ≥ 2 minutes on each question. Submissions that
 1308 selected any decoy, took < 1 min, or violated the lookup policy were discarded (7.1 %).

1309
 1310
 1311
 1312
 1313 • **Label selection.** From the surviving pool, we randomly drew one annotation as the *human label*;
 1314 single-choice answers were retained to keep the evaluation comparable to LLMs that sometimes
 1315 return only one option.

	EM	Precision	Recall	JI	RStd	RSD	SPD	CtDif	CtAcc	CtDifAbs
Human	17.9	60.6	54.4	45.0	15.3	0.46	1.46	-0.6	34.1	1.44

1325
 1326
 1327 Table 9: Aggregate performance of crowd annotators on the SATA-Bench subset.

1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335 As anticipated, non-experts achieve modest exact-match and precision, yet their selection-bias metrics
 1336 (RStd, RSD, SPD) resemble those of mid-tier LLMs. Crucially, they exhibit *smaller absolute count*
 1337 *bias* ($|CtDif|$) and higher correct-count accuracy (CTACC), indicating superior intuition for the
 1338 number of correct options even when individual labels are missed. These human baselines therefore
 1339 offer a realistic point of comparison for evaluating LLM performance on specialised SATA tasks.

1340
 1341
 1342
 1343
 1344
 1345
 1346 E.1 NON-EXPERT HUMAN BENCHMARK INSTRUCTIONS
 1347
 1348
 1349

We have provided details on human benchmark instructions.

1350
1351

Human Benchmark Instructions

1352

You will see a short **Paragraph**, a **Question**, and a list of answer options labelled A B C D E F G H I J K L M N O. Your task is to mark *all* choices that you believe are correct.

1353

Requirements and Expectations

1354

1355

1. **External resources.** You may consult Google, Wikipedia, journals, textbooks, or any other online materials that help you understand the content. **Do not use AI assistants** (ChatGPT, Claude, Gemini, Grok, etc.) and do not ask other people.
2. **Effort.** Spend **at least 2 minutes** on each item before submitting. If you still feel unsure, keep researching until you are confident, or choose “*I don’t know*” if you cannot answer reliably.
3. **Difficulty.** Many items are specialised and may require careful reading. Take your time; thorough work is valued more than speed.
4. **Feedback.** After answering, you may leave comments (e.g. ambiguity, unclear wording). Constructive feedback is highly appreciated.

1366

Suggestions and Strategies

1367

1368

1369

1370

1371

1372

1373

1374

1. Look up definitions of every unfamiliar term in the paragraph, question, and answer options. Keep your notes open for quick reference.
2. Approach the question *independently*—do not try to guess a “majority” answer. Rely on primary sources (research articles, textbooks) whenever possible.
3. Remember that there are *at least two* correct letters, but possibly more. Select every option you deem correct.

1375

Fields Presented to You

1376

Paragraph: {{paragraph}}

1377

Question: {{question}}

1378

Choices: {{A...O}}

1379

Your Answers (mark all that apply):

1380

1381

1382

Optional Feedback:

1383

1384

1385

1386

F METRICS DEFINITION

1387

F.1 PERFORMANCE METRICS DEFINITION

1388

Here are some standard metrics used in the literature to track performance on SATA questions.

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

- **Jaccard Index** calculates the fraction of predicted labels that exactly match the ground truth labels—or put differently, divide the size of the intersection of predicted and true labels by the size of the union of predicted and true labels, and then average this ratio across all instances for the final score. This metric treats each label decision independently and is a good measure when we care about partial correctness in multi-label settings.
- **False Positive Rate (FPR)** calculate the fraction of predicted labels that contain labels that are not in the correct labels.
- **Exact Match** counts how many times the entire set of predicted labels for a sample exactly matches the entire set of ground truth labels. It is then divided by the total number of samples. A perfect exact match score (1.0) means the model got every instance’s labels exactly correct.
- **Recall** looks at how many labels were correctly predicted (intersection) out of how many total true labels exist. Then it averages this fraction across all instances.

- **Precision** calculates how many labels were correctly predicted (intersection) out of all the labels the model predicted. Then it averages this fraction across all instances.

F.2 SELECTION BIAS METRICS DEFINITION

Here are some standard metrics to track SATA questions selection bias. These metrics are extension of existing selection bias literature.

- **Standard Deviation of Recalls (RStd)** is the standard deviation of the class-wise recall:

$$RStd = \sqrt{\frac{1}{k} \sum_{i=1}^k (r_i - \bar{r})^2}, \quad (1)$$

where k is the number of choices, r_i is the recall of the i -th class, and \bar{r} is the arithmetic mean of r_i values. Note that our recalls are calculated at the label level since this is multi-class question (Zheng et al., 2024a)

- **Relative Standard Deviation (RSD)** is the class-wise accuracy standard deviation normalized by the overall accuracy:

$$RSD = \frac{\sqrt{\frac{1}{k} \sum_{i=1}^k (s_i - \bar{s})^2}}{\bar{s}}, \quad (2)$$

where k is the number of choices, s_i is the accuracy of the i -th class, and \bar{s} is the mean accuracy averaged across classes. Please note that our recalls are calculated at the label level since this is multi-class questions (Croce et al., 2020; Reif & Schwartz, 2024)

F.3 COUNT BIAS METRICS DEFINITION

- **CtDif** calculates the average difference in count between predicted and actual selected options. A positive value indicates that the predictions tend to select more options than the actual answers, while a negative value suggests the opposite.
- **CtDifAbs** calculates the absolute value of the average difference in count between predicted and actual selected options. A larger value indicates that the predictions tend to select the number of options that are different from the correct number of options.
- **CtAcc** calculates the proportion of predictions that select the exact same options as the ground truth labels. It provides a measure of how often the model selects the same number of answers as the true answer set.

F.4 ADDITIONAL METRICS DEFINITION

- **InfCost** measures the number of model forward passes used for a method to complete the benchmark. A larger value indicates that the method requires more compute FLOPs and is thus more expensive. A small value indicates the method requires fewer compute FLOPs and is thus more cost-effective.

G UNSELECTION BIAS METRIC

We view a SATA problem as multiple binary selection problems, where each option is examined independently to be selected or passed. In our experiments, we have observed that LLMs tend not to select (i.e., skip) certain labels more frequently than others. To quantify this non-selection bias, we define a metric below, named selection probability divergence (SPD), to measure the misalignment between the ground truth and the LLM's prediction.

$$SPD = \sum_{i=1}^k \left(1 - \frac{q_i}{p_i} \right) \ln \frac{p_i}{q_i}, \quad (3)$$

where k is the number of choices, p_i is the ground truth probability of label i being one of the correct choices, and q_i is the prediction probability of label i being one of the selected choices.

SPD has a minimal value of 0 at $q_i = p_i$ for all i , when the prediction aligns with the ground truth. SPD diverges as $q_i \rightarrow 0$ while p_i is finite for any i , when the LLM shows a non-selection bias against a particular label. SPD also diverges as $p_i \rightarrow 0$ while q_i is finite for any i , when the LLM shows a selection bias toward a particular label. In this sense, SPD serves as a metric to measure the disagreement of choice probability between the ground truth and the prediction, reflecting both under-selection and over-selection. (See Appendix G.2 for the mathematical analysis.)

G.1 BEHAVIOR OF SPD METRIC

We conduct a numerical experiment to compute SPD with varying p_i and q_i . We set the number of choices to 4, and use a Boolean list of size 4 to indicate which options are correct. Eg. for choices A, B, C, and D, the list [True, False, True, True] means the answer to the SATA question is ACD.

For the ground truth list, we sample each element of the Boolean list with a ground truth probability, p . For the prediction list, we sample the first element of the Boolean list with a prediction probability, q , and sample the other elements with probability p . With this setting, we focus on the misalignment between the ground truth and the prediction in a single label (the first label in this case).

We repeat the above sampling process M times, and compute the True rate of each option for the ground truth p_i and the prediction q_i , with $i = 1, 2, 3, 4$. We then substitute the numbers into Eq. equation 3 to calculate SPD. Note that in the current setting, $p_i = p, \forall i$, and $q_1 = q, q_{2,3,4} = p$.

Figure 8 shows the SPD-q curves under different values of the ground truth probability p . Each curve is obtained by averaging over 100 replicates, and the shaded area shows the standard deviation. The minimal value of SPD is 0 and occurs at $q = p$.

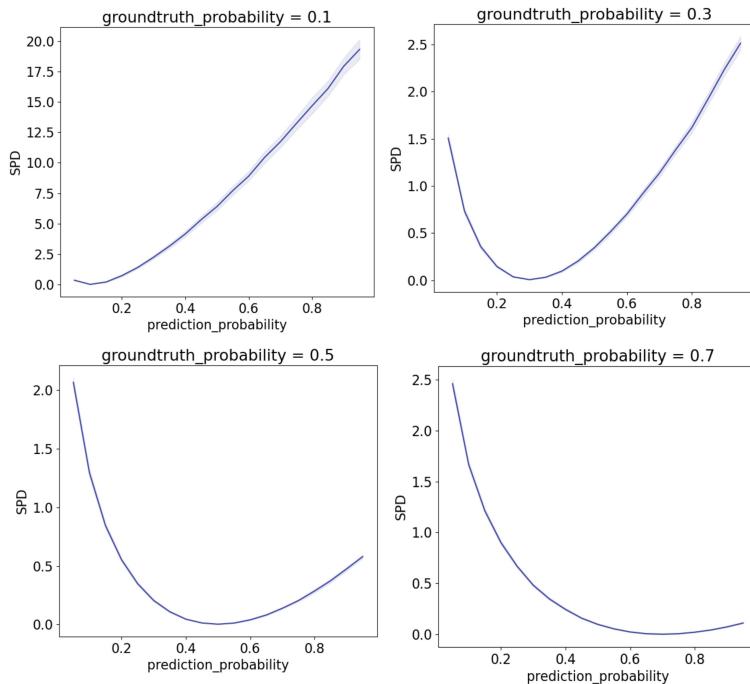


Figure 8: Relationship between Selection Probability Divergence (SPD) and prediction probability (q) across different ground truth probabilities (p). The curves are averaged over 100 replicates, and the shaded area represents the standard deviation. In each plot, the minimal value of SPD is 0 at $q = p$, when the prediction aligns with the ground truth.

G.2 SENSITIVITY OF SPD TO LABEL PROBABILITY RATIO

We analyze the behavior of SPD as the relationship between p_i and q_i changes. We first define the ratio of the two probabilities as $r_i \equiv q_i/p_i$, $i = 1, 2, \dots, k$, and rewrite the SPD definition Eq.

1512 equation 3 as
1513

1514
1515
$$\text{SPD} = \sum_{i=1}^k (1 - r_i) \ln \frac{1}{r_i}. \quad (4)$$

1516

1517
1518 As the misalignment between the ground truth and the prediction grows, either with $r_i \rightarrow 0$ or
1519 $r_i \rightarrow +\infty$, SPD diverges according to Eq. equation 4. Therefore, a large value of SPD reflects the
1520 disagreement of the choice probability between the ground truth and the prediction.

1521 To find the minimum of SPD, we take the partial derivative with respect to each variable r_i , and set it
1522 to be 0. Then we have the equations below.
1523

1524
$$\frac{\partial \text{SPD}}{\partial r_i} = \ln r_i + \frac{r_i - 1}{r_i} = 0, \quad i = 1, 2, \dots, k. \quad (5)$$

1525

1526 This set of equations has only one real solution:
1527

1528
$$r_i = 1, \quad i = 0, 1, \dots, k. \quad (6)$$

1529

1530 Thus the SPD is minimized when $q_i = p_i$, i.e. when the prediction probability matches the ground
1531 truth probability for each option and when there is no bias toward or against any choice. The minimal
1532 value of SPD is 0.
1533

1534 H PROMPTS USED IN EXPERIMENTATION

1535

1536 H.1 PROMPTS FOR OPEN-SOURCE MODELS

1537 We designed simple, basic prompts without elaborate prompt engineering for all experiments with
1538 open-source models in Section 3. The main reason is that we want to avoid potential biases introduced
1539 by complex prompt engineering, thereby emphasizing the evaluation of the method itself.
1540

1541 H.1.1 CHOICE FUNNEL PROMPT

1542 This prompt is used for *Choice Funnel* as well as two baseline methods: *first token* and *first token*
1543 *debiasing*
1544

1545 Open Source Prompts

1546 You are presented with the following:
1547

1548 Paragraph: *paragraph*

1549 Question: *question*

1550 Choices:

1551 *Option A*

1552 *Option B*

1553 *Option C*

1554 *Option D*

1555 *Option E*

1556 Task:

1557 Identify and select all the correct answers based on the paragraph and the question.
1558

1559 Answers:

1560 H.1.2 YES/NO FOR OPEN-SOURCED MODELS

1561 This prompt is used for *yes/no* baseline method to compare against *Choice Funnel*.
1562

1566
1567

Yes/No Prompts

1568

You are presented with the following:

1569

Paragraph: *paragraph*

1570

Question: *question*

1571

Statement: *Option A | B | C | D | E*

1572

Task:

1573

Determine if the statement answers the question correctly and reply with "Yes" or "No" only.

1574

Answer:

1575

1576

1577

1578

1579

1580

H.2 PROMPTS FOR PROPRIETY MODEL

1581

1582

1583

1584

H.2.1 PROBLEMS FOR CURRENT MCQ PROMPTS

1585

1586

1587

Existing benchmarks (Intelligence, 2024) use the following prompts for MCQ questions and then use exact match to get the correct option.

1588

1589

1590

1591

1592

1593

1594

Example MCQ Prompt 1

1595

What is the correct answer to this question: *question*

1596

Choices: *choices*.

1597

Let's think step by step:

1598

Based on the above, what is the single, most likely answer choice?

1599

Answer in the format:

1600

correct answer is (insert answer here).

1601

1602

1603

1604

1605

1606

Example MCQ Prompt 2

1607

1608

Given the following question and four candidate answers (A, B, C, and D), choose the best answer.

1609

Question: *question*

1610

Your response should end with:

1611

The best answer is [the_answer_letter]

1612

where the [the_answer_letter] is one of A, B, C, or D.

1613

1614

1615

1616

1617

1618

1619

However, it does not work well when there are multiple answers as LLMs are likely to repeat the content of the option before output the second choice. As an example, the below answer is A. Wheat, C. Grain instead of AC, which makes it hard to parse.

1620
1621

Example MCQ Prompt Example 1

1622
1623
1624

What is the correct answer to this question: Bangladesh passed on its weekend tender for 100,000 tones of optional origin soft wheat, private export sources said. What topics are related to the document above?

1625
1626

Choices: A. Wheat, B. Barley, C. Grain, D. Retail, E. Money-supply, F. Sugar]. Let's think step by step:

1627

Based on the above, what are all most likely answer choice?

1628

Answer in the format:

1629

correct answer is (insert answer here).

1630

Answer (from GPT4o): Let's analyze step by step:

1631

The document mentions wheat: The phrase "100,000 tonnes of optional origin soft wheat" directly refers to wheat.

1632

Relevant choice: A. wheat. The document does not mention barley: There is no reference to barley anywhere in the text.

1633

Not a relevant choice: B. barley. Grain is a broader category that includes wheat: Since wheat is a type of grain, it makes sense to include grain as a related topic.

1634

Relevant choice: C. grain. The document does not mention retail: The context of the tender does not relate to retail or consumer sales.

1635

Not a relevant choice: D. retail. The document does not mention money supply: There is no financial or monetary context provided.

1636

Not a relevant choice: E. money-supply. The document does not mention sugar: There is no reference to sugar in the text.

1637

Not a relevant choice: F. sugar. Final Answer:

1638

Correct answer is **A. Wheat, C. Grain**.

1639

1640

1641

1642

1643

1644

1645

1646

1647

Example MCQ Prompt Example 2

1648

What is the correct answer to this question: Bangladesh passed on its weekend tender for 100,000 tones of optional origin soft wheat, private export sources said. What topics are related to the document above? Choices: A. Wheat, B. Barley, C. Grain, D. Retail, E. Money-supply, F. Sugar. Let's think step by step:

1649

Based on the above, what are most likely answer choices?

1650

Answer in the format:

1651

correct answer is (insert answer here).

1652

Answer (from GPT4o): Let's analyze the question step by step:

1653

Key Subject of the Document: The document discusses Bangladesh passing on its tender for 100,000 tonnes of optional origin soft wheat.

1654

Relevant Topics:

1655

The keyword wheat clearly relates to the document. Wheat falls under the broader category of grain, making it a relevant choice. Other terms like barley, retail, money-supply, and sugar are not directly related to the subject of the document. Most Likely Answer Choices:

1656

A. Wheat: Directly mentioned in the document. C. Grain: Relevant as wheat is a type of grain. Correct Answer:

1657

The correct answer is **A Wheat, C Grain**.

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

We can observe that parsing the above prompts is much harder because we do not know when they will output the option ID plus answers, and we cannot blindly extract all matched option IDs. Following (Intelligence, 2024) page 38, we used the JSON format to extract answers. Closed-source LLMs have shown good instruction following capability for JSON format output (Zhou et al., 2023). Also, python has many packages that can do fuzzy JSON matching, which can be used to handle edge cases. We extract as many JSON files as possible from each output and combine the extracted answers together as the final answer to the question.

1674
1675

SATA Prompt

1676
1677

Given the following question where there is more than one correct answer, choose all correct answers.

1678

Question: *question*

1679

Choices: *choices*

1680

Please select all choices that apply.

1681

You must focus on the question and select all choices that apply.

1682

Let's think step by step:

1683

You must present your selected option IDs in the following JSON format:

1684

{"choices": < A|B|C|D|E|F|G|H|I|J|K|L|M|N|O >}

1685

1686

1687

1688

1689

SATA Prompt Example

1690

Given the following question where there is more than one correct answer, choose all correct answers.

1691

Question: What is the correct answer to this question: Bangladesh passed on its weekend tender for 100,000 tones of optional origin soft wheat, private export sources said. What topics are related to the document above? Choices: A. Wheat, B. Barley, C. Grain, D. Retail, E. Money-supply, F. Sugar. Please select all choices that apply. You must focus on the question and select all choices that apply. Let's think step by step: You must present your selected option IDs in the following JSON format: {"choices": < A|B|C|D|E|F|G|H|I|J|K|L|M|N|O >}

1692

Answer (from GPT4o): Let's analyze the question step by step:

1693

Understanding the question context:

1694

The document discusses Bangladesh's weekend tender for 100,000 tonnes of "optional origin soft wheat." Analyzing the options provided:

1695

A. Wheat: The document specifically mentions "soft wheat." This choice is correct.

1696

B. Barley: There is no mention of barley in the document. This choice is incorrect.

1697

C. Grain: Wheat is a type of grain. This choice is correct as the broader category includes wheat.

1698

D. Retail: The document does not mention retail activities. This choice is incorrect.

1699

E. Money-supply: There is no discussion of money supply or related economic terms in the document. This choice is incorrect.

1700

F. Sugar: The document does not mention sugar. This choice is incorrect.

1701

Conclusion: Based on the analysis, the related topics are Wheat (A) and Grain (C).

1702

Final Answer in JSON format:

1703

{ "choices": ["A", "C"] }

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

One can observe that our proposed prompts can easily extract the answer because they contain only the option IDs.

1719

1720

1721

1722

1723

H.3 ABLATION PROMPTS

1724

H.3.1 FEW SHOT PROMPT

1725

We report few few-shot prompt where the number of examples is equal to 5.

1782 Few Shots Option Prompt
1783
1784 Given the following question and four candidate answers (A, B, C, and D), choose the best
1785 answer.
1786 Question 1: *question 1*
1787 Option 1: *option 1*
1788 Choice by choice reasoning 1: *reason 1*
1789 Answer 1: *correct option json 1*
1790 Question 2: *question 2*
1791 Option 2: *option 2*
1792 Choice by choice reasoning 2: *reason 2*
1793 Answer 2: *corect option json2*
1794 ...
1795 Question 5: *question 5*
1796 Option 5: *option 5*
1797 Choice by choice reasoning 5: *reason 5*
1798 Answer 5: *correct option json 5*
1799 Question: *question*
1800 Option: *option*
1801 Let's think through this step by step:
1802 1. First, let's understand what the question is asking...
1803 2. Now, let's evaluate each option individually...
1804 3. Therefore, the correct answers are...
1805 You must present your selected option IDs in the following JSON format:
1806 `{"choices" :< A|B|C|D|E|F|G|H|I|J|K|L|M|N|O >}`

H.4.2 PROMPT WITH AVERAGE OPTIONS COUNT

Given the following question where there is more than one correct answer, choose all correct answers.

Question: *question*

Choices: *choices*

Please select all choices that apply. You must focus on the question and select all choices that apply. The number of average selected options is 3.63. Let's think step by step: You must present your selected option IDs in the following JSON format: `{"choices": < A | B | C | D | E | F | G | H | I | J | K | L | M | N | O >}`

H.4.3 PROMPT WITH CORRECT NUMBER OF OPTIONS

1822 SATA Prompt
1823
1824 Given the following question where there is more than one correct answer, choose all correct
1825 answers.
1826 Question: *question*
1827 Choices: *choices*
1828 Please select all choices that apply. You must focus on the question and select all
1829 choices that apply. The number of average selected options is XX. Let's think step
1830 by step: You must present your selected option IDs in the following JSON format:
{"choices" :< A|B|C|D|E|F|G|H|I|J|K|L|M|N|O >}

H.4.4 SINGLE CHOICE PROMPT

1834 To ensure consistency, we use a similar prompt for single choice. We use the same method to retrieve
1835 the correct choices. If there is more than one correct choice, we randomly sample from among them.

1836
1837

Single Choice Prompt

1838
1839

Given the following question where there is only one correct answers, choose the correct answer.

1840

Question: *question*

1841

Choices: *choices*

1842

Please the correct choice that apply.

1843

Let's think step by step: You must present your selected option IDs in the following JSON format: {"choice" :< A|B|C|D|E|F|G|H|I|J|K|L|M|N|O >}

1844

1845

1846

1847

1848

1849

H.5 PROMPT WITH NUMERIC OPTION

1850

For numeric options, it is hard to retrieve since the number of options can be above 10, and the previous retrieving method could retrieve 12 as 1 and 2. We instruct LLMs to produce correct answers in ascending order. We start by retrieving a larger number that is above 10. For each successful retrieval, remove that number from the output. This way, we can avoid the above scenario.

1851

1852

1853

1854

1855

1856

1857

Numeric Prompt

1858

Given the following question where there is more than one correct answer, choose all correct answers.

1859

Question: *question*

1860

Choices: *choices*

1861

Please select all choices that apply. You must focus on the question and select all choices that apply. You must present your answers in ascending orders. Let's think step by step: You must present your selected option IDs in the following JSON format: {"choices" :< 1|2|3|4|5|6|7|8|9|10|11|12|13|14|15 >}

1862

1863

1864

1865

1866

H.6 PROMPT WITH SMALL ALPHABET OPTION

1867

1868

1869

1870

1871

1872

Small Alphabet Prompt

1873

Given the following question where there is more than one correct answer, choose all correct answers.

1874

Question: *question*

1875

Choices: *choices*

1876

Please select all choices that apply. You must focus on the question and select all choices that apply. Let's think step by step: You must present your selected option IDs in the following JSON format: {"choices" :< a|b|c|d|e|f|g|h|i|j|k|l|m|n|o >}

1877

1878

1879

1880

1881

I INFERENCE ERROR HANDLING

1882

1883

1884

1885

1886

1887

1888

1889

For 2.897% of all cases, we cannot find any match in JSON format, so we use Claude 3 Haiku to extract the final labels. To be specific, we adopt the following system prompt:

1890 Edge Case Handling Prompt
1891
1892 Given the following text, please identify **all** valid choices. A valid choice is any single letter
1893 from A to Q, which might appear right after a colon (e.g., choices: "B").
1894 - If one or more valid choices are found, concatenate them and return them in the format
1895 <answer></answer>: For example, <answer>BEM</answer>
1896 - If no valid choices are found, return <answer></answer>.
1897 String to analyze: <output>
1898 Please provide your answer only in the form below:
1899 <answer>

1900 For all cases below, our Claude 3 haiku is able to accurately produce the correct outcome.
1901
1902

1903 Table 10: Comparison of raw LLM outputs and the extracted labeled results obtained using Claude 3
1904 Haiku.
1905
1906

LLM Output	Claude 3 Haiku Extraction
I can't fulfill that request.	NaN
"choices": { "choice": "B" }	B
{}{ "choice": <B E H J L M O> } } ``json	BEHJLMO
{ "choice": [] } ``	NaN

1907 We then use Amazon Groundtruth labeling to check whether Claude 3 Haiku correctly parses the
1908 answer. Of those, only 47 cases were labeled as No or Yes with confidence lower than 0.6. We
1909 manually investigated those 47 cases and found that only four were actually incorrect.
1910
1911

1912 Table 11: Examples of LLM outputs and corresponding extraction results where Claude 3 Haiku
1913 produced incorrect extractions.
1914
1915

LLM Output	Claude 3 Haiku Extraction	Human Corrected Answers
Let's analyze the text and MeSH categories step by step:...: your selected option IDs - C (Organisms), your selected option IDs - E (Phenomena and Processes), your selected option IDs - G (Chemicals and Drugs)	CE	CEG
{}{ "choice": <D E K L M> } } ``json	DELM	DEKLM
{ "choice": "choice": "N"one your selected option IDs } ``	N	NaN
Let's analyze the document step by step: ... your selected option IDs your selected option IDs. Based on this analysis, the applicable choices are A, B, C, and E.	ABC	ABCE

1916
1917
1918 J MORE DETAILS ON KEY OBSERVATIONS
1919
1920

1921 **Unselection Bias.** FP/FN means False Positive Count divided by False Negative Count. If a model
1922 has 100 False Negative cases of A, it means that the model has not predicted A in 100 cases where it
1923 should have predicted A. If a model has 20 False Positive cases of A, it means that the model has
1924 predicted A in 20 cases where it should not have. The low FP/FN rate means that out of all cases, the
1925 model tends not to predict A instead of overpredicting A. Due to Count Bias, most of the models
1926 have FP/FN rate below 1. However, almost all models has one label with an extremely low FP/FN
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

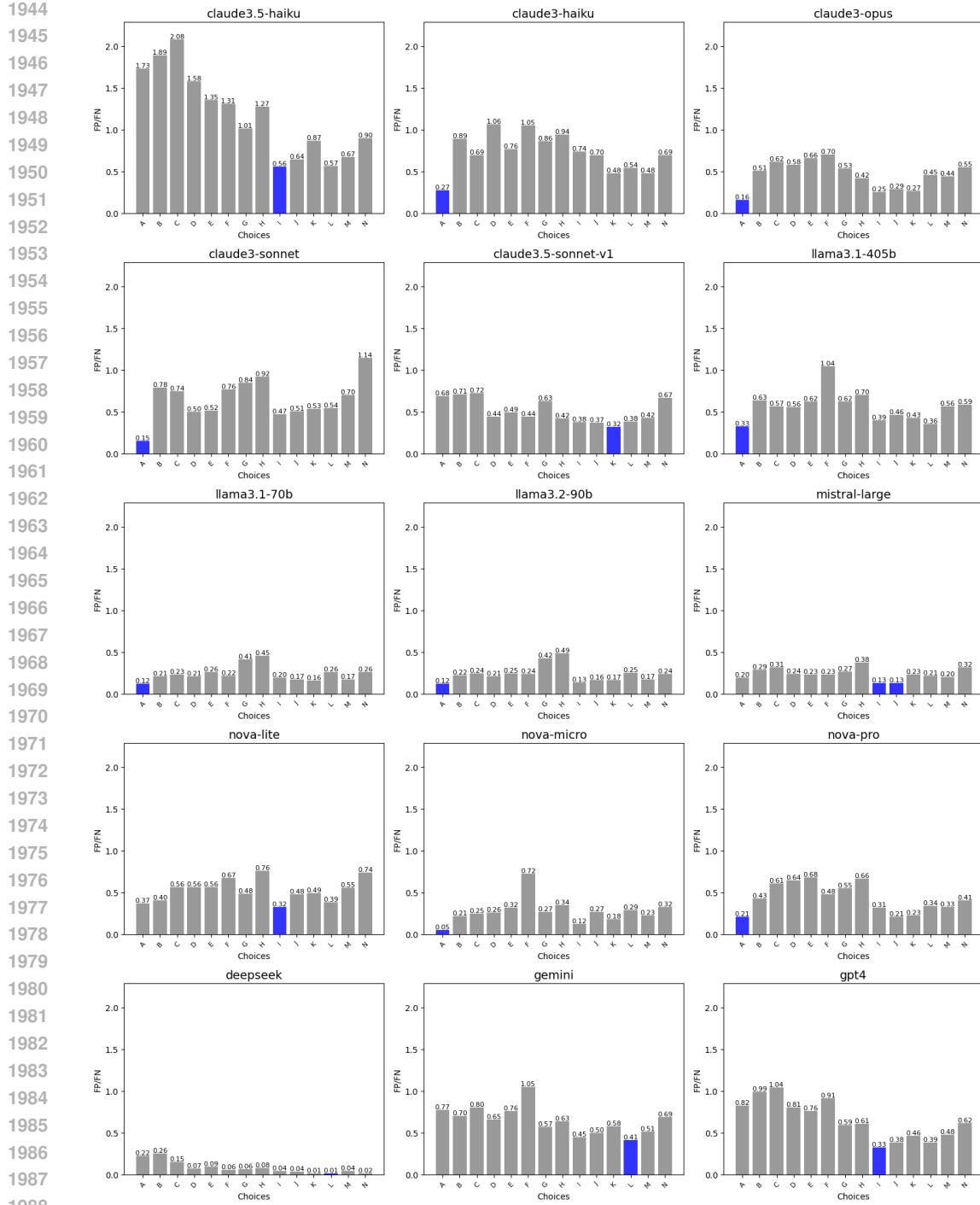


Figure 9: Ratio of false positive rate to false negative rate per label for each evaluated LLM.

rate. For example, Claude3-Haiku has a label A FP/FN rate equal to 0.27 while its second worst is 0.48 as shown in Figure 10.

Recall Difference is another metric to demonstrate unselection bias. Low recall on certain label means that LLMs' incapability of predicting certain labels correctly. As shown in Figure 9, there are many models whose worst label is more than 5% below their average performance.

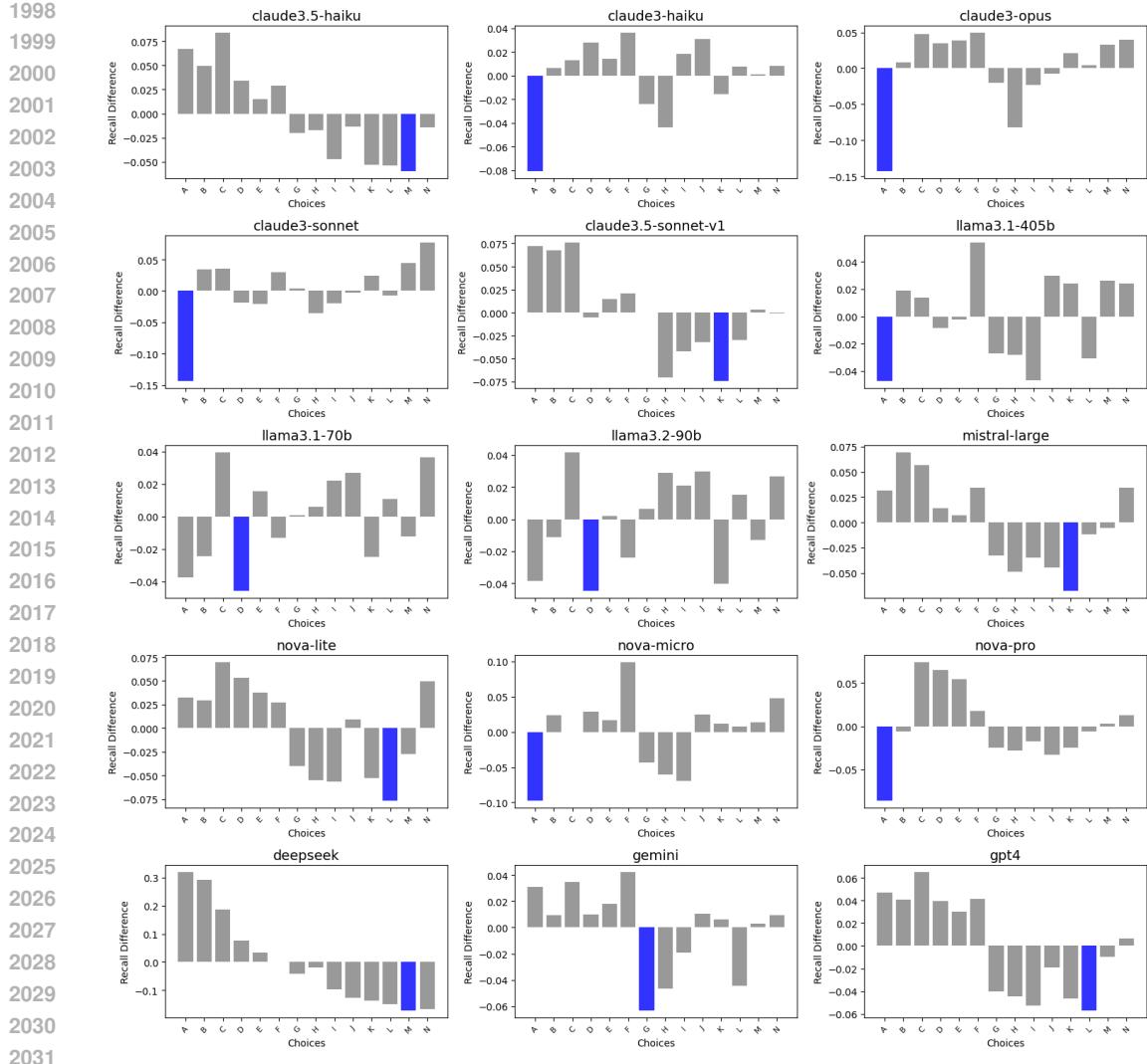


Figure 10: Recall score per label (Y-axis), normalized by subtracting the model’s average recall. Most models exhibit at least one label with significantly lower recall than the rest.

Count Bias. Figure 11 shows that nearly all models select too few responses and that this tendency increases as the number of correct answers increases. Figure 12 shows that EM also decreases as the number of correct answers increases. This shows that LLMs tend to underpredict the number of correct choices.

K PRIDE DEBIASING ALGORITHM ADAPTATION FOR SATA

K.1 PRIDE INTRODUCTION

The original PriDe algorithm (Zheng et al., 2024a) is designed for processing MCQ question sets with fixed option set length (usually 4). It works by observing the probability changes when performing permutations of option IDs for each question, and it can compute *priors*, which is known as the probabilistic mass that the model a priori assigns to option ID tokens.

Here is an example to better illustrate the process:

Given a question set with 4 options, we compute the prior of each question from 10% of the data, take the average on each option ID position and then we get:

$$P(\text{prior}) = [0.4, 0.2, 0.2, 0.2]$$

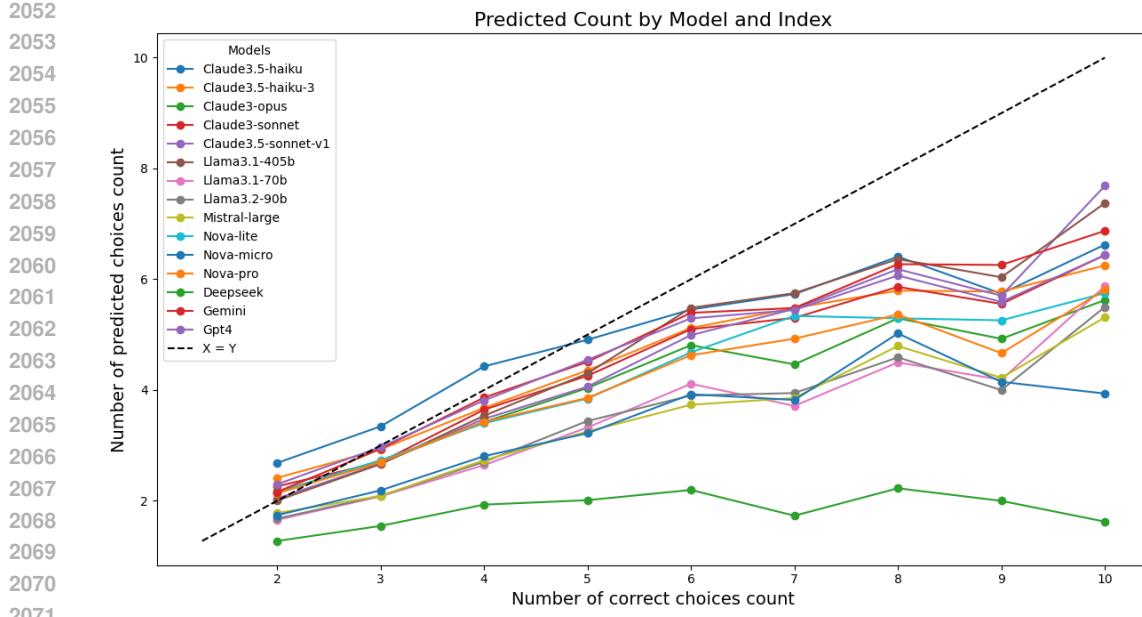


Figure 11: Relationship between predicted and actual correct choice counts across models. Models generally under-select the correct number of answer choices. Y-axis represents the average number of choices selected by the model. X-axis represents the actual number of correct choices. A perfect model would align along the diagonal where X equals Y.

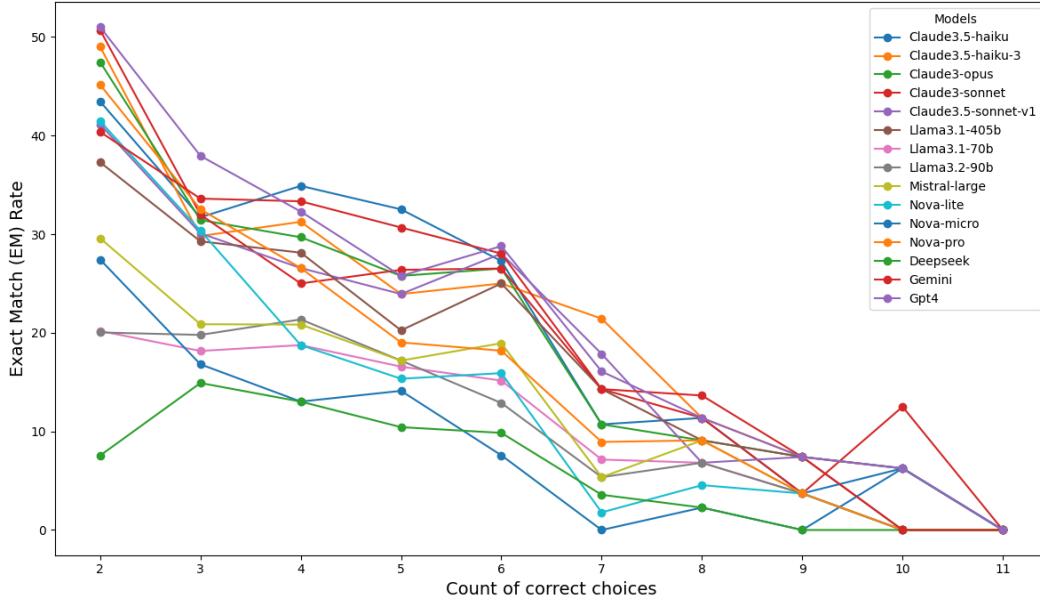


Figure 12: Relationship between Exact Match Rate and the number of correct choices. As the number of correct choices increases, the exact match rate decreases. None of the models achieve an exact match rate above 20% when the number of correct choices exceeds 7.

The list corresponds to probabilities for ABCD. In this case we can see that the model biases towards option "A". Now given a new question with probabilities computed as:

$$P(\text{observed}) = [0.5, 0.3, 0.1, 0.1]$$

Without debiasing model will select option "A" as top answer. We need to subtract prior:

$$P(\text{debiased}) = P(\text{observed}) / P(\text{prior})$$

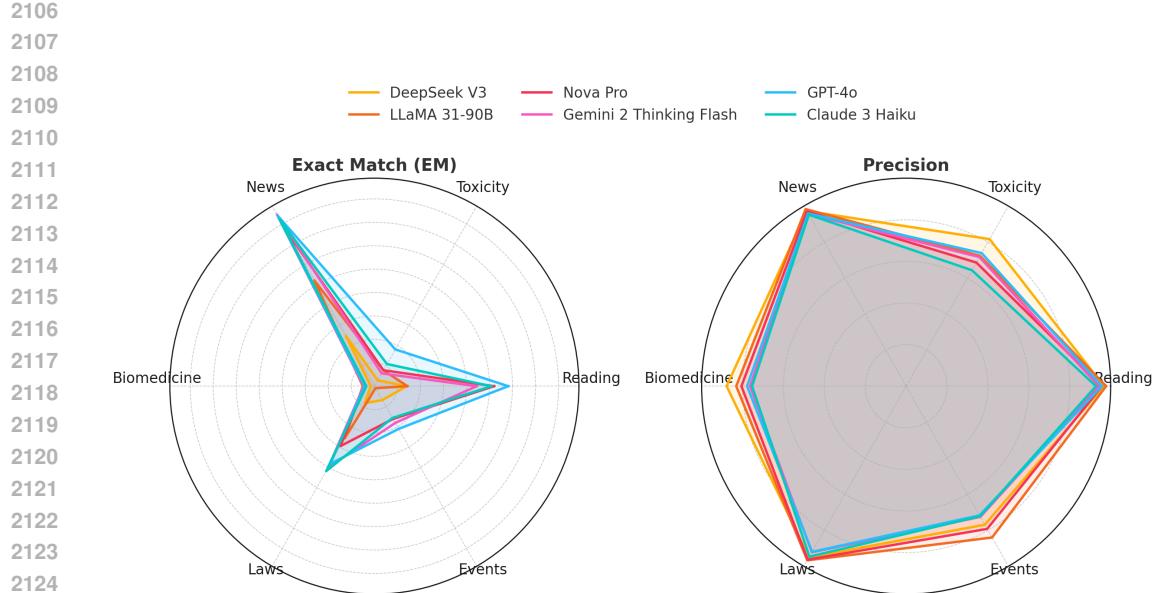


Figure 13: Performance breakdown of evaluated models across different source datasets.

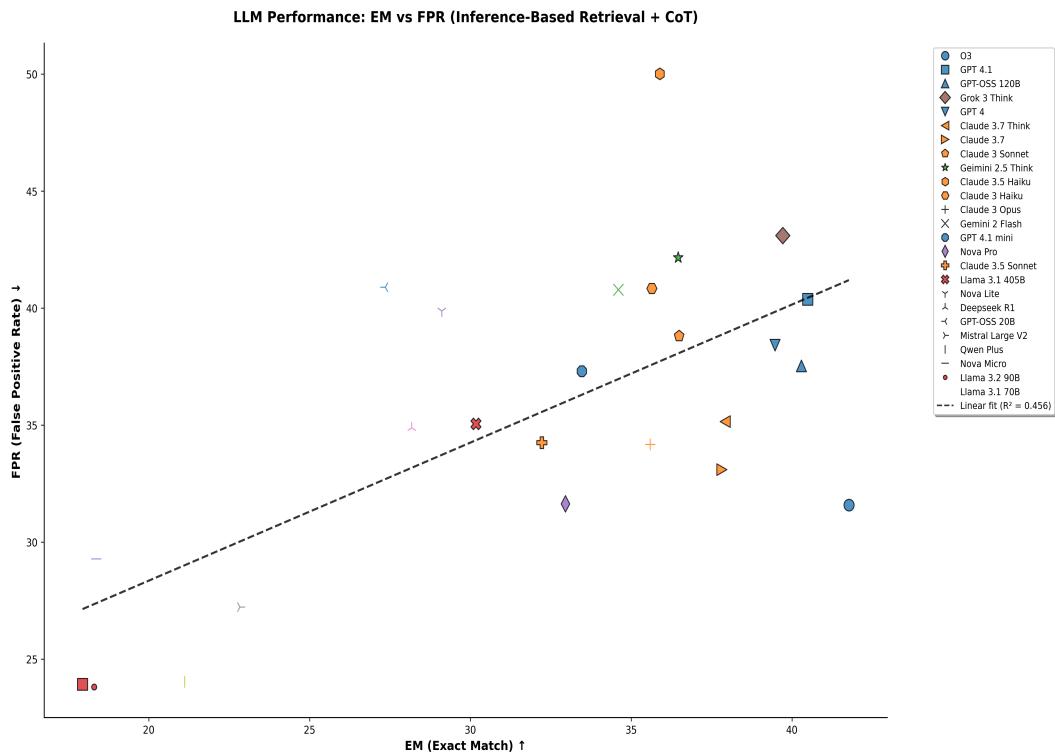


Figure 14: FPR and exact match are positively correlated ($r = 0.61$, $p = 8 \times 10^{-4}$, DoF = 23, Two tailed).

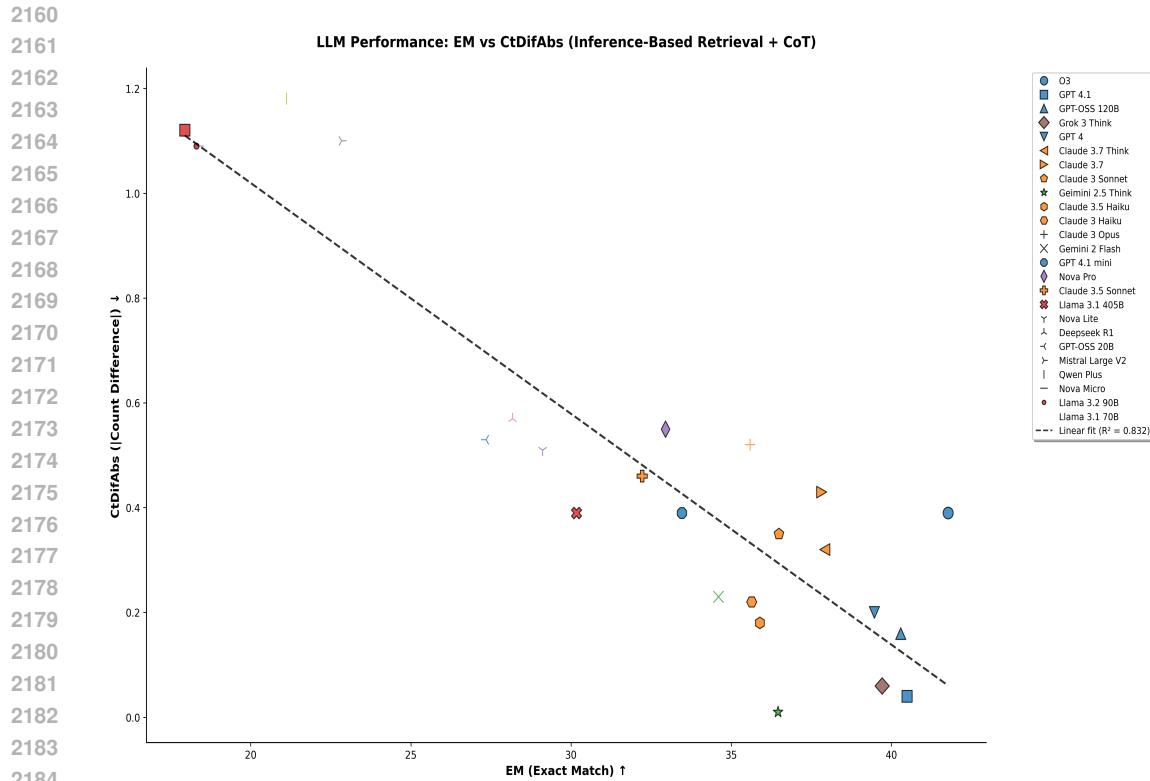


Figure 15: Stronger models Lower CtDifAbs.

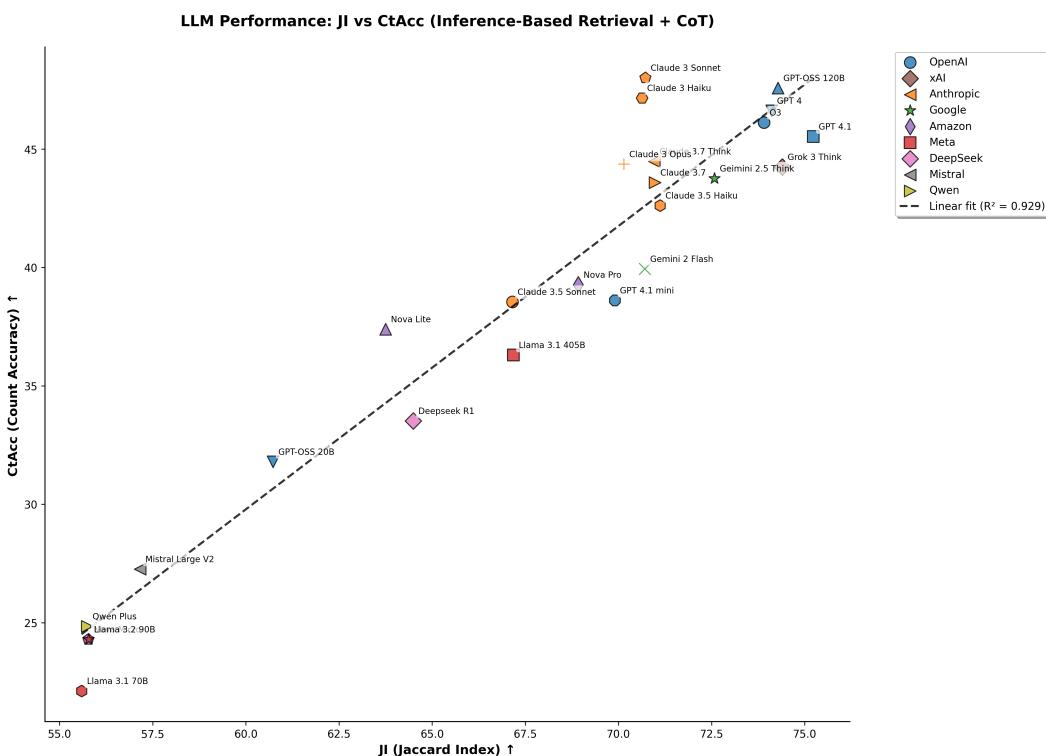


Figure 16: Stronger models better CtAcc.

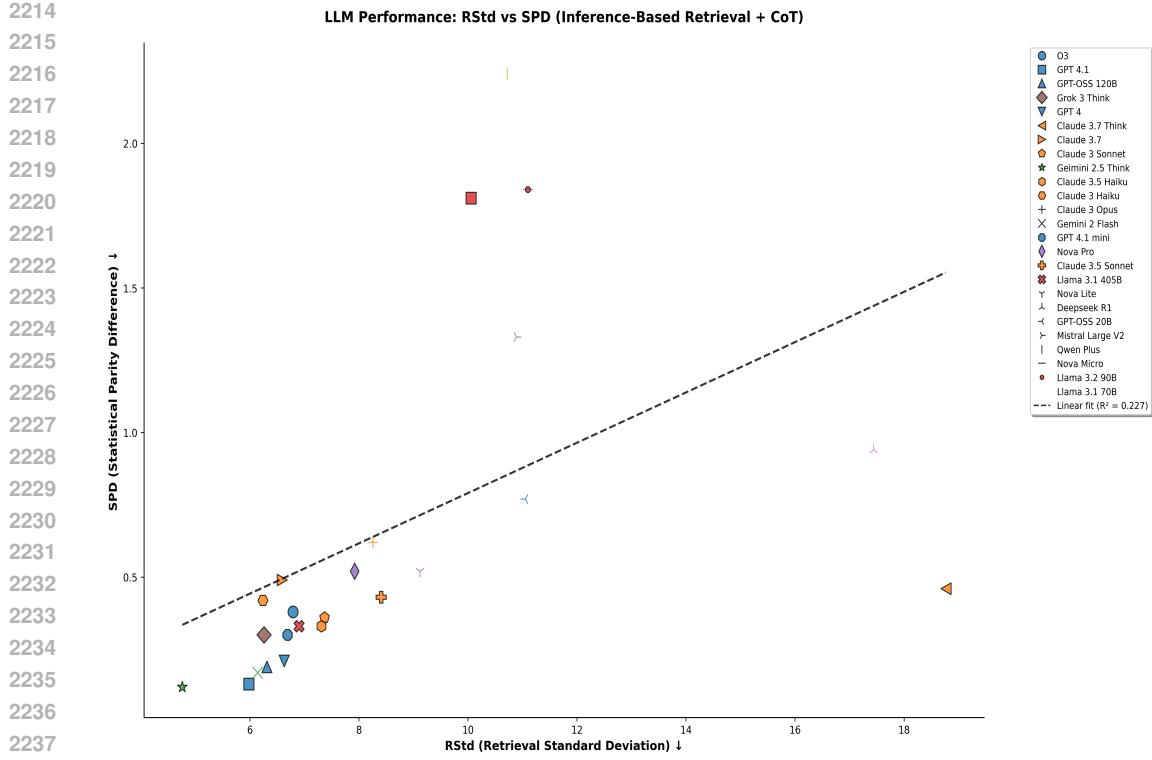


Figure 17: Geimini 2.5 Think has the lowest (un)selection bias compared to other models.

$$P(\text{debiased}) = [1.25, 1.5, 1.0, 0.5]$$

Option “B” becomes top-1 after we remove the heavy prior on “A”. To learn more low-level details, please refer to the original paper (Zheng et al., 2024a).

K.2 LIMITATION OF ORIGINAL ALGORITHM.

However, the prior is computed on a fixed length of 4, so the prior computed for each option has its own probability distribution. For a dataset with variable lengths of option sets (3-15 options for our SATA-Bench). We can only use priors computed for their own length groups (for example, using a length-3 prior to remove bias only for questions that have 3 options). Therefore, we might not have enough data to build an accurate prior. For example, SATA-BENCH contains only 52 out of 1650 questions with 3 choices.

Adaptation to solve SATA questions. To solve the above problem, we first construct a dictionary with key as the lengths seen in the dataset, and value as prior computed only from questions with corresponding length, for example:

$$\begin{aligned} 3: & [0.5, 0.3, 0.2], \\ 4: & [0.4, 0.3, 0.1, 0.2], \\ N: & [0.2, 0.1, 0.1, 0.04, 0.04, 0.01, \dots] \end{aligned}$$

To supplement the lengths with lower datapoint, we take prefix of the longer priors, then *normalize* to unit vector, and use as auxiliary datapoints to help computing for shorter priors, for example a 10-option prior (prior computed from 10-option question) can be used to help computing priors for 3-option question:

$$[\mathbf{0.12}, \mathbf{0.2}, \mathbf{0.05}, 0.17, 0.04, 0.01, 0.01, 0.02, 0.3, 0.2]$$

$$[\mathbf{0.32}, \mathbf{0.54}, \mathbf{0.14}]$$

2268 We take the first 3 numbers corresponding to “ABC” of a 3-option question, then normalize it to
 2269 the unit vector with the same probability distribution as the other 3-option priors. Similarly, this
 2270 10-option prior can also be used to compute priors for any shorter lengths.

2271 Lastly, because Choice Funnel will remove the selected option from the option set, the option IDs
 2272 (ABCD) would not be continuous. Because the prior vector can only work with a continuous option
 2273 set, we must **rebalance the option IDs**. For example, “ACDE” (“B” is removed) will be rebalanced
 2274 to “ABCD”.

2276 K.3 CONCLUSION AND TAKEAWAYS

2278 Once we have done this process we should have a large enough population to compute accurate
 2279 priors for most lengths. One limitation is that this adaptation does not help much if we don’t have
 2280 enough questions for longer lengths in our dataset, though this is not the case for SATA-Bench,
 2281 which contains 21.88% data for its longest 15-option question. One potential solution is to use
 2282 synthetic datasets to backfill longer-option questions, since the original work showed that the prior is
 2283 transferable. We leave this for future work.

2285 L EXPERIMENT SETUP FOR CHOICE FUNNEL

2288 We chose a fixed 90% confidence threshold as the stopping condition (ii) in Choice Funnel for **all**
 2289 **models**. This initial parameter selection was tuned on 100 hold out data points from raw dataset
 2290 instead of evaluation set and moves to the closest number that can be divided by 10. It demonstrates
 2291 that the algorithm is generalizable to other models without careful calibration.

2292 The first baseline method *first token* sets a fixed threshold so that any option with a probability above
 2293 the threshold is selected, and this should be the lower bound of the performance. *First token debiasing*
 2294 can be used to find out if the popular strategy used to solve the MCQ questions is transferable to the
 2295 SATA questions in terms of minimizing the impact of the selection bias. Lastly, we expect *yes/no*
 2296 to be a competitive baseline given that it processes each choice separately with cost of increased
 2297 inference compute.

2298 **Prompts.** To reduce the bias introduced by prompt design and emphasize the impact of the method
 2299 itself, we choose prompts for all methods with minimal engineering effort and mainly capture
 2300 the essential components: *paragraph, question and choices*. The complete prompts are given in
 2301 Appendix H.

2302 **Models.** Our study focuses on the causal, decoder-only LLMs since this architecture has become the
 2303 dominant choice for modern LLMs. We experiment with 7 LLMs from Table 20 under *Probability*
 2304 *Based Retrieving* which are all popular open-source models on the HuggingFace website, and we can
 2305 access their output probabilities: DeepSeek R1 Distilled LLAMA 8B (DeepSeek-AI et al., 2025),
 2306 Qwen2.5 14B (Yang et al., 2025), Minstral 8B (Team, 2024), Phi 3 7B (Abdin et al., 2024), Phi 4 mini
 2307 reasoning (Abdin et al., 2025), Bloomz 7B (Muennighoff et al., 2022b), and Llama 3.1 8B (Touvron
 2308 et al., 2023).

2310 M ABLATION STUDY FOR CHOICE FUNNEL

2312 M.1 “I DON’T KNOW” PERFORMS WORSE THAN “NONE OF THE ABOVE”

2315 Table 12: Performance comparison of Choice Funnel using “None of the Above” versus “I don’t
 2316 know” options.

Method	EM \uparrow	Precision \uparrow	Recall \uparrow	J \uparrow	SPD \downarrow	CtDifAbs \downarrow	CtAcc \uparrow	InfCost \downarrow
Phi3-7B + <i>nota</i>	29.27	83.27	70.24	61.85	3.47	1.42	0.38	6339
Phi3-7B + <i>idk</i>	28.18	80.92	73.25	62.22	2.35	1.48	0.36	6667
Llama3-8B + <i>nota</i>	19.88	78.69	56.19	50.36	7.74	1.66	0.33	4975
Llama3-8B + <i>idk</i>	17.64	75.50	58.03	49.55	7.74	1.69	0.32	5066
Bloomz-7B + <i>nota</i>	20.18	66.62	54.90	46.15	17.78	1.71	0.32	5440
Bloomz-7B + <i>idk</i>	18.00	65.55	55.76	45.53	16.45	1.76	0.31	5528

We compared two commonly employed auxiliary response options in traditional survey science domain (Schuman & Presser, 1996): 'I don't know' (*IDK*) and 'None of the above' (*NOTA*), examining their effectiveness as *Choice Funnel* stopping condition. Based on an ablation study on Table 14, *NOTA* yields consistently better performance. When using *IDK*, we observe **noticeable increase in *InfCost* and result in worse Count Bias (*CtDifAbs* and *CtAcc*)**, which means **model tends to over select number of options**, indicating that the model would rather select a wrong answer than saying "I don't know". This is potentially related to RLHF process, where the model is trained to generate answers that are more favorable to humans.

M.2 ABLATION ON CHOICE FUNNEL COMPONENTS

Table 13: Ablation study demonstrating that PriDe token debiasing effectively mitigates unselection bias.

Method	EM↑	Precision↑	Recall↑	JI↑	SPD↓	CtDifAbs↓	CtAcc↑	InfCost↓
Phi3-7B + <i>debiasing only</i>	1.76	67.92	28.24	27.47	175.24	2.50	0.05	2534
Phi3-7B + <i>CF only</i>	26.00	80.84	70.08	60.33	4.17	1.44	0.35	6436
Phi3-7B + <i>CF + debiasing</i>	29.27	83.27	70.24	61.85	3.47	1.42	0.38	6339
Llama3-8B + <i>debiasing only</i>	7.58	62.83	32.28	30.38	151.74	2.34	0.14	2534
Llama3-8B + <i>CF only</i>	17.45	76.37	50.84	46.74	10.12	1.67	0.34	4380
Llama3-8B + <i>CF + debiasing</i>	19.88	78.69	56.19	50.36	7.74	1.66	0.33	4975
Bloomz-7B + <i>debiasing only</i>	7.09	59.07	38.41	32.05	149.17	2.19	0.15	2534
Bloomz-7B + <i>CF only</i>	16.36	66.10	48.26	42.66	23.09	1.65	0.35	4469
Bloomz-7B + <i>CF + debiasing</i>	20.18	66.62	54.90	46.15	17.78	1.71	0.32	5440

The *CF only* setting represents scenarios where the model has no access to raw probabilities and instead relies solely on the Choice Funnel algorithm (Black-box settings). Compared to token debiasing, this approach achieves significant improvements in EM and Precision. On average, across three models—even without using token probabilities—Choice Funnel yields a 10.79% increase in Exact Match, a 20.51% increase in Jaccard Index, a 13.4 reduction in SPD, and a 0.86 reduction in CtAbsDif.

We conducted an ablation study on the two sub-components of Choice Funnel: token debiasing ("*debiasing only*") and iterative selection (the process of iteratively selecting options until a stopping condition is met, denoted as "*CF only*"). The analysis is performed on 3 open-source models.

When comparing "*CF only*" to the complete "*CF + debiasing*", the observed increase in SPD metric demonstrates that **token debiasing effectively mitigates unselection bias**, yielding better performance. Nevertheless, the comparison between "*debiasing only*" and "*CF only*" reveals that **our novel iterative selection component contributes more substantially to overall performance improvements**.

M.3 ABLATION ON CHOICE FUNNEL STOPPING CONDITION

Table 14: Ablation study on the two stopping conditions in Choice Funnel, showing that combining both yields the best performance.

Method	EM↑	Precision↑	Recall↑	JI↑	SPD↓	CtDifAbs↓	CtAcc↑	InfCost↓
Phi3-7B + <i>thresholding only</i>	3.82	65.00	74.84	48.93	3.37	2.22	0.13	7416
Phi3-7B + <i>NOTA only</i>	29.21	77.07	85.63	68.00	0.69	1.20	0.37	9380
Phi3-7B + <i>thresholding + NOTA</i>	29.27	83.27	70.24	61.85	3.47	1.42	0.38	6339
Llama3-8B + <i>thresholding only</i>	0.89	71.92	52.22	44.12	10.53	1.74	0.27	4564
Llama3-8B + <i>NOTA only</i>	19.51	69.22	85.77	60.09	2.24	1.94	0.25	10212
Llama3-8B + <i>thresholding + NOTA</i>	19.88	78.69	56.19	50.36	7.74	1.66	0.33	4975
Bloomz-7B + <i>thresholding only</i>	9.94	64.47	48.93	40.77	22.50	1.72	0.29	4506
Bloomz-7B + <i>NOTA only</i>	12.24	55.60	89.57	52.81	12.82	3.31	0.17	13758
Bloomz-7B + <i>thresholding + NOTA</i>	20.18	66.62	54.90	46.15	17.78	1.71	0.32	5440

We conducted an ablation study to evaluate the relative importance of our two proposed stopping conditions in Choice Funnel. The results demonstrate that Choice Funnel achieves optimal performance when both conditions are applied in combination. Notably, the "None of the above" (*NOTA*) condition emerged as the more influential factor, suggesting that models can reliably identify when no correct answers remain among the provided options.

2376 **M.4 SCALABILITY OF CHOICE FUNNEL ON LARGER LLM**
 2377

2378 Table 15: Scalability demonstration with larger LLAMA3.1-70B model, showing that ChoiceFunnel
 2379 improves performance across different model sizes.
 2380

Model	EM↑	Recall↑	SPD↓	CtAcc↑
LLAMA3.1-70B + <i>prompting</i>	17.94	60.64	1.81	0.22
LLAMA3.1-7B + <i>ChoiceFunnel</i>	19.88	56.19	7.75	0.33
LLAMA3.1-70B + <i>ChoiceFunnel</i>	24.43	68.66	0.37	0.37

2384
 2385 These results show that Choice Funnel scales well with model size, and consistently outperforms
 2386 prompting-only approaches while maintaining high efficiency.
 2387

2388 **M.5 PERFORMANCE ON SINGLE-ANSWER QUESTIONS**
 2389

2390 Although we did not include single-answer questions in our main evaluation because we specifically
 2391 focus on model behavior when multiple answer paths exist, our larger 10k dataset includes approxi-
 2392 mately 750 single-answer samples. We run comparisons against the original 2+ answer dataset to
 2393 evaluate ChoiceFunnel’s robustness across different question types.
 2394

2395 Table 16: Comparison of ChoiceFunnel performance on single-answer vs. multi-answer questions,
 2396 demonstrating robustness across different question types.
 2397

Model	Dataset	EM↑	JI↑	Precision↑
Llama3-8B	Original (2+ answers)	19.88	50.36	78.69
Llama3-8B	Single answer	55.04	73.18	70.05
Mistral-8B	Original (2+ answers)	20.24	52.56	86.03
Mistral-8B	Single answer	60.27	76.82	73.31
Qwen2.5-14B	Original (2+ answers)	27.82	61.12	85.69
Qwen2.5-14B	Single answer	63.33	79.56	76.17

2403
 2404 ChoiceFunnel demonstrates improved EM and JI on single-answer questions due to reduced inter-
 2405 ference from multiple correct answers. The slight reduction in Precision compared to the original
 2406 multi-answer setting likely stems from threshold miscalibration for single-answer scenarios and/or
 2407 the inherently challenging distractor choices in our SATA dataset design.
 2408

2409 **N BENCHMARK ON SYSTEM PROMPT**
 2410

2411 To ensure consistency with other benchmarks, our evaluation code is following the structure in openai
 2412 codebase simple-eval, where we mentioned "You are a helpful assistant. Each question below contains
 2413 at least two correct answers" plus model specific system prompt. We have compared it with the system
 2414 prompt "You are a helpful assistant. Please pick any candidate answer that is correct". We report 4
 2415 different models' difference in performance across 400 sata questions from evaluation set and report
 2416 the difference (original system prompt performance - your suggested system prompt's performance.).
 2417 All difference in all performance metrics' is less than 1.6%, while the average differences between 3
 2418 metrics are less than 0.2%. This shows that the evaluation result is not sensitive to system prompt.
 2419 We suspect this is due to all questions being unambiguous as mentioned before.
 2420

Models	EM Dif	Precision Dif	FPR Dif
GPT-OSS 20B	0.2%	0.9%	-1.1%
GPT-OSS 120B	1.6%	0.3%	-0.3%
Claude 3.5 Sonnet	-0.5%	-0.6%	0.3%
QWen Plus	-0.5%	-0.4%	0.5%
Average	0.2%	0.07%	0.18%

2426 **O POSITIONAL BIAS UNDER RANDOMIZED ANSWER ORDERINGS**
 2427

2428 **Does the benchmark include randomized answer orderings?** No. In the main benchmark, each
 2429 question's answer choices appear in a fixed, canonical order. To quantify the extent to which large

language models (LLMs) rely on this implicit positional cue, we ran an auxiliary study in which the answer choices for every question were *randomly permuted* (e.g. A B C \rightarrow C A B). We then compared model performance on the permuted dataset to its performance on the original version.

Setup. All hyper-parameters, prompts, and decoding settings were kept *identical* to the main benchmark; only the answer order was shuffled once per question. Table 17 reports the *difference (permute–original)* for each metric, so negative values indicate a drop in performance and positive values indicate an increase. \dagger CtDif is shown with a downward arrow even though its baseline values are negative; a more negative CtDif therefore indicates a larger absolute mismatch in option counts.

Table 17: Change in evaluation metrics after randomly reordering answer choices. Performance metrics are expected to **increase** (\uparrow) while bias metrics are expected to **decrease** (\downarrow).

Model	EM \uparrow	Precision \uparrow	Recall \uparrow	JI \uparrow	RStd \downarrow	RSD \downarrow	SPD \downarrow	CtDif \dagger \downarrow	CtDifAbs \downarrow
Claude 3 Haiku	-24.06	-34.69	-34.28	-35.31	+6.06	+0.17	+0.12	-0.07	-0.51
Llama 3.1 405B	-3.80	-3.90	-4.71	-5.22	+9.73	-0.20	+0.25	-0.18	-0.71

Findings. All three models suffer performance degradation when answer choices are shuffled, with **Claude 3 Haiku** exhibiting the sharpest decline (-24 EM, -35 JI). Selection / count-bias metrics (RStd, SPD, CtDifAbs) *increase* for every model except RSD, confirming heightened positional bias.

Discussion. These results suggest that current LLMs implicitly learn positional heuristics from training data in which answer orders are fixed. Breaking this assumption makes the models less certain and more prone to biased guessing. Future work should examine (i) whether fine-tuning on randomly ordered choices mitigates the effect, and (ii) how pronounced the bias is for other model families and task domains.

P PER-DATASET PERFORMANCE BREAKDOWN

We report detailed bias metrics for different task categories in Table 18. The News dataset has the lowest selection bias, while Reading Comprehension exhibits the highest. For count bias, Toxicity shows the smallest difference, and Biomedicine has the largest. Notably, News has significantly lower selection and count biases compared to other datasets (p-values: 0.03 for SPD and 3.8×10^{-5} CtDifAbs, T-test). All datasets show negative count difference, confirming underprediction and the presence of count bias in SATA questions.

Table 18: Breakdown of Bias metrics by subject. Lower values are better for all metrics.

Task	RStd \downarrow	RSD \downarrow	SPD \downarrow	CtDif	CtDifAbs \downarrow
Reading Comprehension	19.29 ± 7.59	0.20 ± 0.10	1.53 ± 1.39	-0.68 ± 0.42	0.85 ± 0.35
Toxicity	7.13 ± 2.83	0.11 ± 0.07	0.48 ± 0.56	-0.05 ± 0.44	1.28 ± 0.16
News	4.32 ± 3.16	0.08 ± 0.19	0.12 ± 0.23	-0.09 ± 0.25	0.32 ± 0.19
Biomedicine	6.66 ± 2.37	0.15 ± 0.14	2.90 ± 3.60	-1.71 ± 0.96	2.22 ± 0.67
Laws	5.75 ± 4.17	0.13 ± 0.16	1.54 ± 3.43	-1.00 ± 0.87	1.36 ± 0.75
Events	7.15 ± 4.14	0.13 ± 0.19	0.85 ± 1.02	-0.28 ± 0.77	1.08 ± 0.30

Q THE CHALLENGE OF MULTI-ANSWER REASONING

Q.1 PROBLEM SETUP

We formalize SATA questions as a subset prediction task. Given a set of K candidate options $\mathcal{O} = \{o_1, \dots, o_K\}$ and a ground-truth set $S^* \subseteq \mathcal{O}$ of correct options, a model must output $\hat{S} \subseteq \mathcal{O}$ that matches S^* . We evaluate with set-based metrics including exact match (EM), Jaccard index (JI), macro precision/recall, and count-based measures (count difference, absolute count difference, and count accuracy; see Appendix F for definitions). Unlike single-choice MCQ (where $|S^*| = 1$), SATA requires reasoning over both *which* options are correct and *how many* should be selected.

2484 Q.2 BIAS DEFINITIONS
 2485

2486
 2487 Let $y_i^* \in \{0, 1\}$ denote the ground-truth label for option o_i and $\hat{y}_i \in \{0, 1\}$ the model’s selection.
 2488 Define the random variables $C^* = \sum_{i=1}^K y_i^*$ and $\hat{C} = \sum_{i=1}^K \hat{y}_i$ as the true and predicted counts.
 2489

2490
 2491
 2492 **Count Bias.** A model exhibits *count bias* if it systematically under estimates the number of correct
 2493 options: $\mathbb{E}[\hat{C}] \neq \mathbb{E}[C^*]$ over the evaluation distribution. Empirically, we find a dominant *under-*
 2494 *selection* pattern, $\mathbb{E}[\hat{C}] < \mathbb{E}[C^*]$ (Sec. 3.1; Figures 12, 11), reflected in low CtAcc and negative mean
 2495 CtDif.
 2496

2497
 2498
 2499 **Selection Bias.** Let $p_i = \Pr(\hat{y}_i = 1)$ denote the marginal selection probability for option o_i across
 2500 the benchmark. A model exhibits *selection bias* if the dispersion of $\{p_i\}_{i=1}^K$ is larger than expected
 2501 from the true label distribution, indicating preference or aversion to certain labels independent of
 2502 content.³ We quantify selection skew with RStd/RSD (Zheng et al., 2024a; Croce et al., 2020; Reif &
 2503 Schwartz, 2024) and introduce *Selection Probability Divergence (SPD)* to capture *unselection* bias
 2504 (Appendix F); in aggregate, observed SPD significantly exceeds random baselines (Sec. 3.1).
 2505

2506
 2507
 2508 **Speculation Bias.** Define the per-question false-positive count $\text{FP} = \sum_{i=1}^K (1 - y_i^*) \hat{y}_i$ and the
 2509 *speculation indicator* $\text{FPR} = \mathbb{E}[\text{FP} > 0]$. A model exhibits *speculation bias* if it systematically
 2510 selects options outside the gold set, especially more than the number of time it produces correct
 2511 labels, $\text{FPR} > \text{EM}$. Speculation bias is reflected by higher macro *false-positive rate* and smaller JI
 2512 (which penalizes any spurious selections). Note that speculation may co-occur with over-selection,
 2513 but it is distinct: a model can be count-unbiased yet still speculate (high FPR).
 2514

2515
 2516 R DOES LRM HELP? A CASE STUDY OF GPT-OSS ON SATA-BENCH
 2517

2518
 2519
 2520 Reasoning model such as GPT-OSS 120B model performs on par with GPT-4.1 on SATA-Bench.
 2521 GPT-OSS 20B model is much weaker than 120B but still matches Llama-3.1-405B. Despite good
 2522 slightly better performance. Reasoning model does exhibit a few failure modes in SATA-BENCH.
 2523

2524 **Repetitive Reasoning.** We define a reasoning as repetitive if it repeats 100+ characters more than 10
 2525 times. This happens in 11% of reasons for 20B model. In those cases where model produce repetitive
 2526 reasoning, it have much lower EM rate. As an example, GPT-OSS 20B exact match rate drop form
 2527 27.4% to 18.5% when it starts to repeat the same characters.

2528 **Reason Answer Mismatch.** The final answer choices do not always align with the reasoning steps.
 2529 We used Claude 3 Haiku to extract answers. We found that for cases where 120B is correct and
 2530 20B is wrong, 53.2% of the answers do not match the reasoning. In 45% of mismatched cases, the
 2531 reasoning itself was actually correct — the model just picked the wrong a subset of correct choices
 2532 as final answer. This has increase unselection bias and count bias. We provide the following as an
 2533 example of GPT-OSS 120B where there is a mismatch

2534
 2535
 2536
 2537 ³Position and formatting effects can contribute; cf. Zheng et al. (2024a).

2538
2539

Example: Reason–Answer Mismatch Case

2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550

Context. *Sunlight* Sunlight can be used to heat homes. It can also be used to produce electricity. This conversion is made possible by solar cells. However, solar energy may not always be practical. Some areas are just too cloudy. *Example* Solar panels on the roof of this house generate enough electricity to supply a family’s needs. *Moving Water* Falling water can have a lot of energy. Its energy can be converted into kinetic energy. This energy can turn a turbine and generate electricity. The water may fall naturally over a waterfall or flow through a dam. A drawback of dams is that they flood land upstream. They can also reduce water flow downstream. Either effect may harm ecosystems. *Wind* is moving air. It has kinetic energy that can do work. Wind turbines change the kinetic energy of the wind to electrical energy. Only certain areas of the world get enough steady wind. Many people also think that wind turbines are noisy and not very nice to look at.

2551

Question. How does moving water make electricity? (*Select all that apply*)

2552

Options.

2553

- A. Water can generate electricity by turning a turbine.
- B. Electricity can be made by storing the water in batteries.
- C. Water’s energy can turn a turbine and magically result in electricity.
- D. Falling water can have a lot of energy which can be converted into kinetic energy that turns a turbine and generates electricity.
- E. Water can move a turbine that generates power.
- F. Electricity can be made by taking the hydrogen out of moving water.

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

Model Reasoning (excerpt). Focus on the “Moving Water” sentences: (7) Falling water can have a lot of energy; (8) its energy can be converted into kinetic energy; (9) this energy turns a turbine and generates electricity; (10) sources include waterfalls or dams. Matches: **A, D, E.** Option **C** adds “magically,” which is unsupported by the passage.

2566

Ground Truth Answers. **A, D, E**

2567

Model Prediction. **A**

2568

2569

2570

Reason–Answer Mismatch. The model’s reasoning identifies **A, D, E** as correct, but its final selection includes only **A**. Options **B** and **F** are unsupported; **C** introduces an extraneous claim (“magically”) not stated in the text.

2571

2572

2573

2574

2575

2576

2577

Overthinking is not helping Long reasoning chains often lead to lower accuracy across GPT-OSS model family. When reasoning token is below 403, GPT OSS 120B achieve 0.65 Exact Match rate. It drops to 0.22 when the number of reasoning token is over 2.8k.

S LLM USAGE

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

We used large language models (e.g., ChatGPT) solely as assistive tools for (i) light editing of grammar and wording and table reformatting, and (ii) debugging code when running experiments (e.g., clarifying error messages, suggesting fixes). LLMs did not write any source code used in our experiments and did not generate substantive paper content beyond minor edits. All ideas, analyses, experimental designs, and final text are the authors’ own. The authors reviewed and verified all model-assisted edits and take full responsibility for the contents of this paper.

T FINETUNING TO IMPROVE LLM PERFORMANCE ON SATA

2588

2589

2590

2591

Training Data. Following (Brahman et al., 2024), we use a general-purpose instruction tuning dataset to balance safety and helpfulness. We select utility data from Tulu-3-SFT-mixture (Lambert et al., 2025), a 940k-instance dataset spanning diverse tasks for training non-reasoning models. We follow a 90:10 utility-to-safety data ratio as in (Zhang et al., 2024). Due to compute limits, we sample 12,000 pairs from Tulu-3, and 1,300 from SATA raw dataset exclude evaluation set.

Model	Tuning	MMLU-0	GSM8K	SATA-EM	SATA-JI
Gemma-2 2B	Tulu-3 (baseline)	31.1%	30.5%	0.8%	15.7%
	Tulu-3 + SATA	32.5%	32.0%	25.8%	62.3%
Llama-3.2 1B	Tulu-3 (baseline)	30.2%	23.0%	0.9%	26.1%
	Tulu-3 + SATA	26.4%	23.6%	29.2%	60.1%
Qwen-2.5 0.5B	Tulu-3 (baseline)	36.9%	29.4%	4.4%	12.5%
	Tulu-3 + SATA	31.5%	26.2%	23.7%	57.0%

Table 19: Performance of instruction-tuned models on standard benchmarks and SATA.

Models. We train 3 LLMs of smaller sizes, including Llama-3.2-1B, Qwen-2.5-0.5B, and Gemma-2-2B. Following prior work (Brahman et al., 2024), we conduct SFT on the base pretrained models rather than their instruction-tuned variants, to avoid confounding from built-in safety tuning. To assess the impact of our training strategy, we compare models fine-tuned on combined utility and safety data against baselines trained only on utility data.

Evaluation Setup. In addition to SATA-Bench, we also evaluate general language abilities and knowledge understanding assessed with the widely-used GSM8K (Cobbe et al., 2021) for grade-level math reasoning and MMLU (Hendrycks et al., 2021) for broader language comprehension.

Implementation Details. We use Llama Factory (Zheng et al., 2024b) as the framework for all fine-tuning experiments and perform inference using its vLLM (Kwon et al., 2023) implementation for efficient inferences. Following previous works (Brahman et al., 2024), we adopt standard fine-tuning hyperparameters: training for three epochs with a total batch size of 8. We use bfloat16 precision and a learning rate of 1×10^{-5} , which is linearly warmed up for the first 10% of training steps and then decayed to zero following a cosine schedule. We use the AdamW optimizer and a standard supervised finetuning loss of next word prediction. We employ a context length of 2048 for model training. Following previous works, during inference we set the temperature 0.7 for general language ability evaluation and a maximum generation length of 1024 tokens for non-reasoning models and 8192 tokens for reasoning models. (Cui et al., 2025) All experiments are conducted on a server with 8 NVIDIA A100 40G GPUs using AWS EC2 instances. During inference, we notice that Qwen-2.5-0.5B can produce repetitive content instead of the answer. For those cases, we detect repetition by checking whether a span of content longer than 4 tokens is repeated more than 20 times, and regenerate when this occurs. All answers are extracted using GPT-OSS-120B with the following prompt.

Findings. SFT with SATA data hugely improve small models performance on SATA questions. While still performing worse than closed source model, we found that EM for evaluation set jump at least 18% and JI at least 33%. This demonstrates that SATA questions could be easily resolved by adding small portion of SATA questions in the training set.

2646
2647

Answer Extraction Prompt

2648

Multiple Choice Answer Extraction Task

2649

You are presented with the following:

2650

```
<question>{ {question}}</question>
```

2651

```
<answer>{ {answer}}</answer>
```

2652

Requirements and Expectations 1. Carefully read and understand both the question and the provided answer text. 2. Identify which multiple-choice options are being selected in the answer (e.g., A, B, C, D, etc.). 3. Your job is **only** to extract the letter combination corresponding to the selected choices (e.g., A, B, AC, BDE). 4. Do **not** interpret or correct the answer content; simply recover the choices that the answer indicates. 5. Your final output must strictly follow the required output format described below.

2653

Output Format You must respond using **exactly** the following format:

2654

```
<answer>XYZ</answer>
```

2655

where:

2656

- XYZ is the letter or combination of letters representing the selected choices.
- If multiple letters are selected, they must be concatenated **without** spaces, commas, or other separators (e.g., BDE, not "B, D, E" or "B D E").

2657

Important Requirements 1. Output **only** the answer tags with the letter combination inside (no explanations, reasoning, or extra text). 2. Do not add any spaces, newlines, punctuation, or commentary outside the `<answer>...</answer>` tags. 3. If you cannot confidently identify the selected choice(s), leave the interior empty as `<answer></answer>`.

2658

Suggestions and Strategies 1. Look for explicit mentions of answer letters (e.g., "I choose A and C") or indirect descriptions that clearly map to specific options. 2. If the answer restates option texts instead of letters, carefully match those texts back to the corresponding choice letters. 3. Double-check that you have included all and only the choices that the answer selects before producing the final `<answer>...</answer>` output.

2659

Respond with the extracted answer in the specified format. Answer as precisely and accurately as possible.

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709

2710 Table 20: Performance comparison of 32 different LLMs across various metrics on SATA-BENCH.
 2711 We highlight the best (**bold**) and second-best (underline) values. Columns labeled [(\uparrow)] indicate
 2712 higher-is-better; columns labeled [(\downarrow)] indicate lower-is-better. Models with explicit reasoning
 2713 capabilities are highlighted in *italic*. All numeric values are rounded to two decimal places. We
 2714 retrieve exact labels for models evaluated using Inference-Based Retrieval + CoT prompting. For
 2715 models evaluated under Probability-Based Retrieval, we select labels based on token probability
 2716 thresholds.

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753	2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753	Performance		Selection Bias			Count Bias			
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753	JI↑	FPR↓	EM↑	Precision↑	SPD↓	RStd↓	RSD↓	CtDif	CtDifAbs↓	CtAcc↑
Inference Based Retrieval + CoT										
<i>O3</i>	73.91	31.58	41.77	87.50	0.38	6.79	<u>0.06</u>	-0.39	0.94	46.12
GPT 4.1	75.23	40.37	<u>40.49</u>	85.52	<u>0.13</u>	<u>5.98</u>	<u>0.06</u>	-0.04	0.85	45.52
<i>GPT-OSS 120B</i>	74.28	37.53	40.29	86.28	0.19	6.31	0.07	-0.16	0.84	<i>47.57</i>
<i>Grok 3 Think</i>	<u>74.40</u>	43.10	39.71	83.93	0.30	6.26	0.07	0.06	0.93	44.24
GPT 4	74.11	38.42	39.47	85.90	0.21	6.63	<u>0.06</u>	-0.20	0.82	46.61
<i>Claude 3.7 Think</i>	70.96	35.16	37.92	85.03	0.46	18.77	0.34	-0.32	0.87	44.48
Claude 3.7	70.98	33.10	37.82	85.35	0.49	6.59	0.25	-0.43	0.93	43.58
Claude 3 Sonnet	70.72	38.81	36.49	84.58	0.36	7.37	0.07	-0.35	<u>0.83</u>	48.00
<i>Geimini 2.5 Think</i>	72.58	42.16	36.46	84.58	0.12	4.76	<u>0.06</u>	-0.01	0.88	43.76
Claude 3.5 Haiku	71.12	50.01	35.89	80.26	0.33	7.31	0.35	0.18	1.01	42.61
Claude 3 Haiku	70.63	40.84	35.64	83.59	0.42	6.24	0.07	-0.22	0.85	47.15
Claude 3 Opus	70.15	34.17	35.59	86.97	0.62	8.26	0.07	-0.52	0.93	44.36
Gemini 2 Flash	70.71	40.79	34.60	85.01	0.17	6.14	<u>0.06</u>	-0.23	0.91	39.94
GPT 4.1 mini	69.90	37.31	33.46	86.05	0.30	6.69	<u>0.06</u>	-0.39	0.97	38.61
Nova Pro	68.92	31.64	32.95	87.37	0.52	7.92	0.07	-0.55	1.01	39.27
Claude 3.5 Sonnet	67.15	34.25	32.22	87.57	0.43	8.41	0.09	-0.46	1.06	38.55
Llama 3.1 405B	67.18	35.06	30.17	86.24	0.33	6.90	0.45	-0.39	1.02	36.30
Nova Lite	63.75	39.88	29.11	82.51	0.52	9.12	0.45	-0.51	1.17	37.39
<i>Deepseek R1</i>	64.49	34.89	28.17	84.62	0.94	17.44	0.03	-0.57	1.13	33.52
<i>GPT-OSS 20B</i>	60.73	40.90	27.35	80.90	0.77	11.05	0.10	-0.53	<i>1.45</i>	31.80
Mistral Large V2	57.16	27.23	22.83	88.20	1.33	10.89	0.12	-1.10	1.47	27.27
Qwen Plus	55.74	24.03	21.12	88.54	2.24	10.72	0.11	-1.18	1.43	24.85
Nova Micro	55.77	29.28	18.37	86.06	1.84	11.10	0.27	-1.09	1.41	24.30
Llama 3.2 90B	55.78	23.81	18.30	89.56	1.84	11.10	0.27	-1.09	1.41	24.30
Llama 3.1 70B	55.59	<u>23.92</u>	17.94	89.56	1.81	10.06	0.10	-1.12	1.48	22.12
Non-expert Human	45.02	—	17.93	60.62	1.46	15.32	1.46	-0.6	1.44	34.12
Probability Based Retrieval										
Mistral 8B	46.63	32.21	14.73	<u>81.46</u>	11.42	19.47	1.27	-1.35	1.95	<i>21.01</i>
Llama3 8B	<u>43.64</u>	30.06	<u>13.82</u>	80.30	<u>12.09</u>	<u>17.85</u>	<u>1.09</u>	-1.59	1.88	22.00
Bloomz 7B	41.15	57.76	11.27	66.09	20.62	29.00	<u>1.51</u>	-0.87	1.71	20.09
<i>DeepSeek R1 Distill 8B</i>	40.02	45.33	8.85	72.20	13.38	21.62	1.14	<u>-1.29</u>	<u>1.75</u>	20.42
Qwen2.5 14B	37.58	17.27	6.30	87.84	21.01	18.02	1.06	-2.24	2.26	11.93
Phi3 7B	34.57	<u>17.64</u>	2.97	87.25	23.22	18.57	<u>1.22</u>	-2.33	2.35	7.22
<i>Phi4-mini-reasoning</i>	29.69	26.73	2.12	77.98	21.62	13.90	1.59	-2.37	2.39	7.35