

000 001 002 003 004 005 DANCING IN CHAINS: STRATEGIC PERSUASION IN 006 ACADEMIC REBUTTAL VIA THEORY OF MIND 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034

ABSTRACT

035 Although artificial intelligence (AI) has become deeply integrated into various
036 stages of the research workflow and achieved remarkable advancements, academic
037 rebuttal remains a significant and underexplored challenge. This is because rebuttal
038 is a complex process of strategic communication under severe information asymmetry
039 rather than a simple technical debate. Consequently, current approaches struggle
040 as they largely imitate surface-level linguistics, missing the essential element of
041 perspective-taking required for effective persuasion. In this paper, we introduce
042 **RebuttalAgent**, the first framework to ground academic rebuttal in Theory of
043 Mind (ToM), operationalized through a ToM-Strategy-Response (TSR) pipeline
044 that models reviewer mental state, formulates persuasion strategy, and generates
045 strategy-grounded response. To train our agent, we construct **RebuttalBench**, a
046 large-scale dataset synthesized via a novel critique-and-refine approach. Our training
047 process consists of two stages, beginning with a supervised fine-tuning phase
048 to equip the agent with ToM-based analysis and strategic planning capabilities,
049 followed by a reinforcement learning phase leveraging the self-reward mechanism
050 for scalable self-improvement. For reliable and efficient automated evaluation,
051 we further develop **Rebuttal-RM**, a specialized evaluator trained on over 100K
052 samples of multi-source rebuttal data, which achieves scoring consistency with hu-
053 man preferences surpassing powerful judge GPT-4.1. Extensive experiments show
054 RebuttalAgent significantly outperforms the base model by an average of 18.3% on
055 automated metrics, while also outperforming advanced proprietary models across
056 both automated and human evaluations. *Disclaimer: the generated rebuttal content
057 is for reference only to inspire authors and assist in drafting. It is not intended to
058 replace the author's own critical analysis and response.*¹

1 INTRODUCTION

035 Large language models (LLMs) are profoundly reshaping the entire research workflow (Liu et al.,
036 2024b; Lu et al., 2024; Chen et al., 2025b), from acting as a powerful tool for auxiliary tasks
037 such as literature summarization (El-Kassas et al., 2021; Koh et al., 2022) and data visualization
038 (Waskom, 2021; Wu et al., 2021), to serving as a collaborative partner in core tasks such as hypothesis
039 formulation (Wang et al., 2024; Novikov et al., 2025; He et al., 2025b) and experimental design
040 (Wang et al., 2021; Huang et al., 2024), and even functioning as an autonomous author of complete
041 scientific papers that successfully pass human peer review (Weng et al., 2024; Schmidgall & Moor,
042 2025). While LLMs have become an indispensable collaborator in most stages of research, its role in
043 the critical phase of **academic rebuttal** remains underexplored. From a game-theoretic perspective,
044 the academic rebuttal process is not a simple technical debate but rather a classic Dynamic Game
045 of Incomplete Information (Başar & Olsder, 1998; Fudenberg & Tirole, 1991; Owen, 2013). In this
046 process, authors must persuade reviewers under severe **information asymmetry**, whereby they are
047 unaware of the reviewers' knowledge base, intrinsic biases, or the cascading effects of their responses.
048

049 Current approaches for addressing this challenge, which primarily rely on Supervised Fine-tuning
050 (SFT) on review datasets (Zhang et al., 2025), suffer from the fundamental limitations of direct
051 imitation. These models excel at mimicking surface-level linguistic patterns, resulting in responses
052 that are superficially polite but often formulaic and lack strategic depth. This failure stems from
053

¹Our code and models will be released publicly.

their inability to perform the strategic, perspective-taking reasoning demanded by the game-theoretic structure of rebuttal. In practice, a successful rebuttal transcends superficial politeness and is, at its core, an exercise in strategic reasoning (Harland et al., 2017; Palminteri, 2023; Lim & Bowman, 2024). This requires a complex analysis of trade-offs, such as when to concede, when to stand firm, when to provide new evidence, or when to reframe the narrative. Successfully navigating these trade-offs depends on the ability to perceive the mind of the other, a capacity known in cognitive science as **Theory of Mind (ToM)** (Wellman, 2002; Leslie et al., 2004; Goldman et al., 2012). ToM involves modeling the internal states of others, such as their beliefs, intentions, and differing perspectives, to understand and predict their actions. Grounded in this mental model, an author can then model a reviewer’s specific internal state, such as their knowledge background, potential biases, and core concerns, to strategically allocate the limited response space, distinguishing between core critiques that warrant direct rebuttal and minor points that can be tactfully reframed.

In this paper, we propose **RebuttalAgent**, the first model to integrate Theory of Mind into academic rebuttal. RebuttalAgent employs a novel three-stage generation framework we term **ToM-Strategy-Response (TSR)**, which decomposes the complex task of rebuttal into a coherent series of reasoning and generation steps. Specifically, the initial Theory-of-Mind (T) stage comprises a hierarchical analysis to discern macro-level reviewer intent while deconstructing the micro-level attributes of each comment. This analysis constructs a multi-dimensional reviewer profile designed to inform both global strategy and local tactics. Subsequently, the Strategy (S) stage utilizes this profile to formulate an actionable plan for the target comment, which aligns the response strategy with both the macro- and micro-level critiques from the reviewer. The process concludes with the Response (R) stage, which achieves context-aware synthesis by integrating the reviewer profile, the plan, and pre-retrieved evidential chunks from the original manuscript, thereby generating a persuasive response.

To train RebuttalAgent with these complex reasoning capabilities, we construct **RebuttalBench**, a large-scale synthetic dataset of over 70K high-quality samples. This dataset is created via a critique-and-refine pipeline using multiple powerful teacher models, with each sample containing a complete TSR chain. Our training process begins with Supervised Fine-tuning to instill the agent with foundational rebuttal capabilities, and then advances the agent’s ToM-based analysis and sophisticated strategic policies via Reinforcement Learning (RL), which is optimized by a novel **self-reward mechanism** that enables scalable self-improvement without requiring a separate, external reward model during training. For reliable and efficient automated evaluation, we further develop a specialized evaluator called the Rebuttal-Reward Model (**Rebuttal-RM**). Built upon Qwen3-8B, this model is trained on a diverse, multi-source dataset of over 100K samples, which achieves high scoring consistency with human preferences, significantly surpassing the powerful judge GPT-4.1. In summary, our main contributions are as follows:

- We introduce **RebuttalAgent**, the first framework to leverage Theory of Mind (ToM) for academic rebuttal. Our agent employs a novel ToM-Strategy-Response (TSR) pipeline. By explicitly modeling the reviewer’s perspective, identifying key concerns, and suggesting grounded responses with adaptive strategic reasoning, our agent aims to help authors communicate more clearly and effectively and move beyond formulaic responses.
- We construct **RebuttalBench**, a large-scale dataset of over 70K high-quality samples created via our critique-and-refine pipeline, with each sample containing a ToM-strategy-response chain. Building on the foundational ToM-based reasoning and rebuttal capabilities through SFT, we further optimize the analysis and strategic policies of agent using RL with our Self-reward mechanism, enabling scalable policy refinement without external reward model.
- To conduct reliable and efficient evaluation, we develop **Rebuttal-RM**, a specialized evaluator that achieved high scoring consistency with human experts. Extensive experiments show RebuttalAgent outperforms the base model by an average of 18.3%, and shows performance comparable to advanced proprietary across both automated and human evaluation.

2 TASK FORMULATION

In this section, we define the task of academic rebuttal. The core objective is to generate a convincing response to the target comment. Formally, the input of this task consists of:

- **Manuscript (M)**: The original paper, serving as the evidentiary basis for the rebuttal.



Figure 1: Overview of our RebuttalAgent framework. First, we extract each comment from raw reviews and retrieves their relevant context from the paper. Next, based on our TSR pipeline, we collect a tailored strategy and response for each comment, grounded in Theory of Mind. Finally, our RebuttalAgent is trained via Supervised Fine-Tuning, followed by Reinforcement Learning with a self-reward mechanism, enabling both scalability and self-improvement.

- **Review** (R_i): One of m reviews in the set $\mathcal{R} = \{R_1, \dots, R_m\}$, which contains the specific critiques and queries that must be addressed.
- **Target Comment** (c_{target}): An individual unit of feedback within R_i (e.g., a critique, a query, or an identified weakness) that necessitates a direct response.

Given these inputs, a model \mathcal{G} is tasked with generating a response r_{target} , formalized as:

$$r_{\text{target}} = \mathcal{G}(M, R_i, c_{\text{target}}) \quad (1)$$

The response must be **Convincing**, which goes beyond mere politeness to thoughtfully address the reviewer’s concerns and strengthen the paper’s position. In addition, it must be deeply **Context-Aware**, demonstrating a nuanced understanding of not only the explicit criticism but also the reviewer’s potential underlying assumptions or even misunderstandings. Furthermore, the response must be **Evidence-Grounded**, with every claim and counter-argument verifiably substantiated by the manuscript M . Crucially, achieving success lies in the delicate balance of these competing objectives.

3 DATA PREPARATION

3.1 COMMENT EXTRACTION

Raw reviews often contain a mix of substantive critiques and irrelevant content like greetings or summary restatements. Feeding this unfiltered text directly into a model adds noise and redundancy, which can reduce the accuracy of the generated rebuttal. Furthermore, due to diverse reviewer writing styles and varying conference formats, comments are typically presented in an unstructured manner. Therefore, to address these challenges and align with our task formulation of addressing a single target comment (c_{target}) at a time, we first process the raw review. Drawing on the powerful information extraction capabilities of LLMs (Zhu et al., 2023; Dagdelen et al., 2024; Schilling-Wilhelmi et al., 2025), we leverage an *LLM-as-Extractor* and design a specific prompt that instructs the LLM to identify and separate each distinct point of criticism from the raw review text to segment a review into discrete, actionable comments. Specifically, the extractor is tasked with decomposing the raw review into a list of original, unedited, critical statements (e.g., “The current analysis lacks a crucial ablation study for component X...making it difficult to ascertain the true contribution.”). To validate

162 the reliability of this extractor, we conduct a manual verification on 100 randomly sampled reviews,
 163 which achieves a 98% accuracy in comment extraction. The detailed prompt is shown in Appendix E.
 164

165 **3.2 CONTEXT RETRIEVAL**
 166

167 A single reviewer comment typically targets a specific aspect of the manuscript, such as a formula or
 168 baseline comparison. However, using the full, information-dense manuscript as context is infeasible
 169 and sub-optimal, as it can overwhelm the model and dilute focus. Therefore, we implement a three-
 170 stage context retrieval pipeline to isolate the most relevant content for each comment. As shown in
 171 the top-left corner of Figure 1, the retrieval pipeline begins by segmenting the manuscript (M) into
 172 discrete text chunks, typically corresponding to paragraphs. Then we employ a pre-trained embedding
 173 model² to encode both the target comment (c_{target}) and each text chunk into high-dimensional vector
 174 representations. Relevance is then quantified by computing the cosine similarity between the comment
 175 vector and all chunk vectors. Finally, the top- k chunks with the highest similarity scores are retrieved
 176 to serve as the context. The effectiveness analysis of retrieval module is provided in Appendix B.
 177

178 **4 TOM-STRATEGY-RESPONSE FRAMEWORK**
 179

180 Theory of Mind (ToM) is a core concept in cognitive science, referring to the ability to understand
 181 and reason about the differing beliefs, intentions, desires, and perspectives of others. Applying this
 182 concept to artificial intelligence has led to Machine Theory of Mind (MToM), which is an AI system’s
 183 capacity to infer and model the mental states of human or AI teammates to support collaboration.
 184 Large language models such as GPT-4 have demonstrated stronger ToM-like reasoning capabilities. In
 185 our work, we extend MToM to the specific domain of academic rebuttal. Given the game-theoretic and
 186 information-asymmetric nature of the rebuttal process, modeling the reviewer’s beliefs, knowledge
 187 background, and core concerns is particularly critical. Therefore, our proposed RebuttalAgent
 188 framework explicitly implements ToM through a Theory-of-Mind-Strategy-Response (TSR) pipeline,
 189 which first constructs a hierarchical reviewer profile to guide the subsequent formulation of strategy
 190 and response. Figure 1 (bottom) depicts how our RebuttalAgent framework decomposes the task of
 191 rebuttal into a multi-stage reasoning process: (1) inferring the reviewer’s perspective with ToM, (2)
 192 formulating a tailored strategy, and (3) synthesizing a convincing, evidence-grounded response.
 193

194 **4.1 HIERARCHICAL REVIEWER PROFILE MODELING**
 195

196 To capture the underlying intent and stance of reviewers, we propose a hierarchical analysis structure.
 197 This structure consists of two levels: a Macro-level analysis to infer the overall intent, which guides the
 198 global strategy, and a Micro-level analysis to deconstruct comments for crafting targeted responses.
 199

200 **Macro-level: Inferring Overall Reviewer Intent.** This analysis employs principles from Theory of
 201 Mind to construct a holistic mental model of the reviewer, going beyond the literal text to infer the
 202 underlying intent, attitude, and core concerns that subsequently guide the rebuttal’s global strategy
 203 and tone. We instruct an LLM to interpret the review across four dimensions: Overall Stance, Overall
 204 Attitude, Dominant Concern, and Reviewer Expertise, as detailed in Table 4, generating a structured
 205 *macro-profile* composed of descriptive categorical labels.
 206

207 **Micro-level: Deconstructing Specific Comments.** This analysis shifts to target comment. We
 208 employ an LLM to classify the primary concern of each comment across four key dimensions:
 209 Significance, Methodology, Experimental Rigor, and Presentation, as detailed in Table 4. This
 210 classification generates a *micro-profile* for each comment. This fine-grained profile enables the
 211 formulation of tactical responses that are both precisely targeted and aligned with the global strategy.
 212

213 **4.2 TOM-DRIVEN STRATEGY GENERATION**
 214

215 The generation of an explicit strategy serves as a crucial intermediate reasoning step, bridging the
 216 gap between understanding the reviewer (the profile) and formulating a response. This step translates
 217 the static diagnostic profile into a dynamic, actionable plan. To achieve this, the strategy generation
 218 process is conditioned on the complete reviewer profile and the target comment itself. We prompt an
 219

²<https://huggingface.co/Qwen/Qwen3-Embedding-0.6B>

216 LLM to synthesize these inputs and output a concise, high-level strategy. The primary benefit of this
 217 explicit decomposition is that it compels the LLM to first decide how to respond before writing what
 218 to respond. This ensures the final text is not merely reactive to a comment’s surface-level query but is
 219 strategically aligned with the reviewer’s underlying intent, attitude, and primary concerns.
 220

221 4.3 STRATEGY-GUIDED REFINED RESPONSE GENERATION

223 The final stage of our TSR pipeline generates the definitive response (r_{target}) through an advanced
 224 guided synthesis process, conditioned on a rich set of strategic and contextual inputs. This intricate
 225 process is informed by two distinct yet complementary primary types of input:

- 227 • **Strategic Inputs:** The ToM-based reviewer profile (\mathcal{P}) and the tailored rebuttal strategy (S),
 228 which shape how the response engages with the reviewer’s likely perspective, guiding its tone
 229 and argumentative flow.
- 230 • **Contextual Inputs:** The retrieved relevant chunks (C_E) and the original response (r_{orig}).

231 Here, r_{orig} serves a crucial dual purpose. First, it acts as a high-fidelity source of context, analogous
 232 to the retrieved chunks (C_E). Second, it provides a high-quality reference for phrasing and structure,
 233 which the model uses as a blueprint to refine upon and build the final output.(Notably, r_{orig} is used
 234 only during the data-synthesis phase, not during the final model’s inference phase.) Our model, \mathcal{G} ,
 235 generates the response by weaving together these components, ensuring the final text is strategically
 236 aligned, factually grounded, and coherently structured. Formally, it is:
 237

$$238 r_{\text{target}} = \mathcal{G}(\mathcal{R}_i, c_{\text{target}}, \mathcal{P}, S, \bigoplus_{p_j \in C_E} p_j, r_{\text{orig}}) \quad (2)$$

240 where \bigoplus denotes the concatenation of the text from all relevant chunks in the set C_E .
 241

242 5 AGENT TRAINING FOR STRATEGIC PERSUASION

243 5.1 REBUTTALBENCH

246 **(1) Data Source:** Our training data is derived from the Re²-rebuttal dataset (Zhang et al., 2025), a
 247 comprehensive corpus containing initial scientific papers, their corresponding peer reviews, and the
 248 authentic author responses. **(2) Data Processing:** The raw data undergoes a multi-stage processing
 249 pipeline. First, we utilize GPT-4.1 to parse all the reviews into over 200K distinct comment-response
 250 pairs. Following this, each review and comment is annotated with the hierarchical profiles (macro-
 251 and micro-level) as defined in Section 4.1. Notably, we explicitly exclude comments that require
 252 conducting new, unprovided experiments (e.g., “Compare your method with baseline X”), as we focus
 253 the agent’s abilities on linguistic persuasion and strategic argumentation, and prevent the model from
 254 fabricating or hallucinating experimental data. To ensure a diverse and balanced training set, we then
 255 curate a final subset of 70K comments for the next stage, consisting of 60K instances filtered by cate-
 256 gory and 10K selected randomly. **(3) Data Synthesis:** For each selected comment and its associated
 257 authentic response, our **ToM-Strategy-Response (TSR)** framework generates the corresponding
 258 *reviewer analysis*, *rebuttal strategy*, and a new, synthetic *response*. To mitigate model-specific biases
 259 and enrich stylistic variety, a mixture of powerful teacher models (e.g., GPT-4.1, Claude 3.5) is used to
 260 generate data. To provide the agent with a holistic learning objective, the generated analysis, strategy,
 261 and response are structured into a final target sequence. This sequence is a concatenation of the three
 262 components, each explicitly demarcated by `<Analysis>`, `<Strategy>`, and `<Response>`
 263 tags. Figure D provides a complete example in our RebuttalBench.

264 5.2 INSTRUCTION TUNING WITH ToM-DRIVEN REASONING

266 We perform supervised fine-tuning on Qwen3-8B using our RebuttalBench. The objective of this
 267 stage is to enable the model to learn the structured reasoning process inherent to the ToM-Strategy-
 268 Response framework and to develop its core rebuttal competencies. The diversity of the training data,
 269 sourced from varied reviews and synthesized by multiple powerful LLMs, is designed to enhance our
 agent’s robustness and generalization capabilities across different reviewing styles.

270 5.3 REINFORCEMENT LEARNING WITH SELF-REWARD
271272 The former stage equips the agent with the fundamental TSR reasoning. We employ RL to further
273 optimize the agent’s outputs to be strategically superior and more convincing.274 **Self-Reward Mechanism.** To achieve scalable and self-improving agent capabilities without relying
275 on an externally trained reward model, we introduce a self-reward mechanism. This approach
276 leverages the intrinsic instruction-following and reasoning abilities of the SFT-tuned model \mathcal{G}_{SFT} to
277 evaluate its own generated outputs autonomously. Specifically, for each candidate output o , we assess
278 the response along four critical dimensions. The overall reward is:

279
$$R(o) = w_1 R_{\text{format}}(o) + w_2 R_{\text{think}}(o) + w_3 R_{\text{resp}}(o) + w_4 R_{\text{div}}(o) \quad (3)$$

280

281 We design multiple reward signals that encourage agent to reason explicitly about various quality
282 dimensions rather than simply restating its prior output. Here, each component is defined as follows:
283 (1) **Format Adherence** (R_{format}): We programmatically check if the output o correctly contains
284 the `<Analysis>`, `<Strategy>`, and `<Response>` structures. This is a binary reward. (2)
285 **Reasoning Quality** (R_{think}): The score is generated by \mathcal{G}_{SFT} itself. We prompt it to evaluate the
286 quality of the content within the `<Analysis>` and `<Strategy>` blocks, based on criteria such
287 as profiling accuracy and strategic soundness. (3) **Response Quality** (R_{resp}): This score is also
288 generated by \mathcal{G}_{SFT} . We prompt it to evaluate the final `<Response>` content based on persuasiveness,
289 clarity, and the correct use of evidence. (4) **Response Diversity** (R_{div}): To discourage generic and
290 homogeneous outputs and as a mechanism to enhance robustness against reward hacking, we prompt
291 \mathcal{G}_{SFT} to evaluate a generated `<Response>` content by comparing it against a set of our pre-defined,
292 modular negative samples (i.e., examples of undesirable, templated responses). A higher score is
293 awarded to responses that are semantically distinct from these negative examples, encouraging more
294 varied and human-like replies. The weights w are hyperparameters that balance the contribution of
295 each component. The details of training are provided in Appendix L. We discuss the robustness of
296 our reward signals against reward hacking, particularly focusing on the R_{div} , in Appendix M.
297298 **Optimization Algorithm.** Then, we use the defined rewards to optimize our policy with the Group
299 Reward Policy Optimization (GRPO) algorithm (Guo et al., 2025). For each input question q ,
300 the model generates a group of G candidates $\{o_1, o_2, \dots, o_G\}$. The policy π_θ is then updated by
301 optimizing the following clipped surrogate objective:

302
$$J_{\text{GRPO}}(\theta) = \mathbb{E} \left[\frac{1}{G} \sum_{i=1}^G \min \left(\frac{\pi_\theta(o_i|q)}{\pi_{\theta_{\text{old}}}(o_i|q)} A_i, \text{clip} \left(\frac{\pi_\theta(o_i|q)}{\pi_{\theta_{\text{old}}}(o_i|q)}, 1 - \epsilon, 1 + \epsilon \right) A_i \right) - \beta D_{\text{KL}}(\pi_\theta || \pi_{\text{ref}}) \right] \quad (4)$$

303 where $\pi_{\theta_{\text{old}}}$ is the policy before the update, π_{ref} is a frozen reference policy for regularization, and A_i
304 is the advantage computed for candidate o_i based on the group’s relative rewards.305 6 REBUTTAL-RM AS JUDGE
306307 To conduct both reliable and efficient evaluation, we develop **Rebuttal-RM**, a scoring model specific-
308 ally trained to automatically assess responses based on the provided target comment and relevant
309 contextual information, with the goal of aligning with human preferences.310 **Training Data Construction.** The reward model \mathcal{G}_{RM} takes the retrieved relevant chunks (C_E), the
311 current review \mathcal{R}_i , the target comment c_{target} , and a candidate response r_{target} as input. It outputs a set
312 of multi-dimensional scores, s , and an explanation, e . This process is formalized as:

313
$$(s, e) = \mathcal{G}_{\text{RM}}(\bigoplus_{p_j \in C_E} p_j, \mathcal{R}_i, c_{\text{target}}, r_{\text{response}}) \quad (5)$$

314

315 We construct a dataset of over 102K instances from three sources: (1) 12,000 original author responses
316 as a realistic human baseline, (2) high-quality GPT-4.1-refined responses representing top standards,
317 and (3) diverse model-generated replies (e.g., Qwen2.5-3B, Claude 3.5) for style coverage. To acquire
318 the ground-truth labels (s, e) for these inputs, we employ a hybrid annotation strategy. For the
319 original author responses, instances where the reviewer subsequently raises their score are considered
320 high-quality, and these are then manually scored by our team. For the responses generated by
321 various models, we utilize Gemini 2.5 Pro to automatically generate the corresponding scores and
322 explanations. Detailed statistics are provided in Table 10.

324
 325 Table 1: The consistency scores between various models and the human ratings. We evaluate the
 326 models using six standard statistical metrics. Due to space constraints, we present results for only a
 327 subset of these metrics in the main paper. More details are provided in Appendix C.1 and Table 12.
 328

Scoring Model	Attitude			Clarity			Persuasiveness			Constructiveness			Avg
	r	β	f	r	β	f	r	β	f	r	β	f	
Qwen3-8B	0.718	0.672	0.620	0.609	0.568	0.710	0.622	0.577	0.690	0.718	0.745	0.720	0.664
Llama-3.1-8B	0.297	0.347	0.540	0.158	0.047	0.380	0.272	0.245	0.560	0.424	0.457	0.460	0.349
GLM-4-9B	0.420	0.475	0.460	0.467	0.436	0.730	0.369	0.361	0.700	0.561	0.519	0.570	0.506
GPT-4.1	0.743	0.712	0.800	0.739	0.671	0.750	0.779	0.763	0.740	0.804	0.756	0.680	0.745
DeepSeek-r1	0.646	0.633	0.790	0.708	0.615	0.760	0.710	0.664	0.720	0.742	0.701	0.620	0.705
DeepSeek-v3	0.699	0.733	0.710	0.687	0.578	0.740	0.697	0.652	0.770	0.771	0.719	0.750	0.692
Gemini-2.5	0.620	0.509	0.750	0.605	0.593	0.540	0.627	0.607	0.520	0.711	0.705	0.610	0.616
Claude-3.5	0.569	0.635	0.720	0.704	0.670	0.680	0.706	0.686	0.670	0.753	0.738	0.630	0.680
Rebuttal-RM	0.839	0.828	0.910	0.753	0.677	0.790	0.821	0.801	0.820	0.839	0.835	0.810	0.812

337
 338 **Rebuttal-RM Training** We use 90% of above labeled data for training and 10% for testing. We
 339 select Qwen3-8B as the base model and fine-tune it on our constructed training dataset to create the
 340 final Rebuttal-RM. The details of training and evaluation is in Appendix K.
 341

342 7 EXPERIMENT

343 7.1 EVALUATION OF REBUTTAL-RM

344 To validate the effectiveness of Rebuttal-RM, we conduct comprehensive evaluation to measure the
 345 agreement between our model and human experts. Following recent work (Wu et al., 2025), we
 346 employ a set of six statistical metrics. We use four standard statistical measures to assess the overall
 347 correlation: *Mean Absolute Error* (e), *Pearson* (r), *Spearman* (β), and *Kendall* (τ). Additionally, to
 348 mitigate potential annotator biases and assess classification accuracy, we introduce two metrics based
 349 on score ranges: *Coarse-grained Accuracy* (c): Scores are mapped to four quality tiers: Unconvincing
 350 (scores 1-3), Acceptable (scores 4-6), Good (scores 7-8), and Excellent (scores 9-10). *Fine-grained*
 351 *Accuracy* (f): For a stricter assessment, scores are categorized into seven more granular ranges
 352 derived from our rubric, such as grouping scores of 1 and 2, 3 and 4, and so on, with single-point
 353 ranges for scores of 5 and 6.
 354

355 **Rebuttal-RM Aligns Better with Human Evaluators.** Table 1 shows that Rebuttal-RM outperforms
 356 all baselines in alignment with human judgments, achieving the highest average score (0.812) and
 357 leading in all individual metrics. Notably, it surpasses GPT-4.1 and DeepSeek-r1 by 9.0% and 15.2%,
 358 respectively. Full results are provided in Appendix Table 12.
 359

360 7.2 BENCHMARKING REBUTTALAGENT

361 **Baselines.** We evaluate our RebuttalAgent against two categories of baselines: foundation models
 362 and agent-based methods. (1) The **Foundation Models** include o3, GPT-4.1 (Hurst et al., 2024),
 363 Deepseek-R1 (Guo et al., 2025), Deepseek-V3 (Liu et al., 2024a), Gemini-2.5 (Comanici et al., 2025),
 364 GLM-4-9B (GLM et al., 2024), Llama-3.1-8B-Instruct (Grattafiori et al., 2024), and Qwen3-8B
 365 (Yang et al., 2025a). (2) The **Agent-based Methods** comprise three distinct approaches, with the first
 366 two leveraging GPT-4.1 as the backbone model: *Self-Refined*, which generates an initial response
 367 and then iteratively refines it via self-reflection; *Strategy-Prompt*, which mimics our methodology
 368 by first generating a strategic plan based on an analysis of reviewer comments before writing the
 369 final rebuttal; and *RebuttalFT*, a Qwen3-8B model directly supervised fine-tuned on the R²-rebuttal
 370 dataset, which contains real-world, human-written rebuttals.
 371

372 **Metrics.** Our primary metric is a holistic quality score on a scale of 0-10, where a higher score
 373 indicates a superior response, ranging from *Wholly Ineffective* (0) to *Outstanding* (9-10). This holistic
 374 score is supported by a breakdown into four key dimensions, each also rated on a 0-10 scale: **Clarity**
 375 (**C**) (logical flow and organization), **Persuasiveness** (**P**) (argument strength and evidence), and **Con-**
 376 **structiveness** (**Co**) (commitment to improvement and actionable revisions), **Attitude** (**A**) (tone and
 377 professionalism). These criteria form the rubric for our Rebuttal-RM automated evaluation, enabling
 378 our Rebuttal-RM to provide not only an overall quality score but also interpretable diagnostics.
 379

378
379 Table 2: Performance comparison of RebuttalAgent with baseline models and ablation study results
380 on R2-test. Due to space constraints, we only present C , P , and Co . For complete results, please
381 refer to Table 8. For the ablations, w/o indicates the removal of a specific reward component (e.g., w/o
382 $R_{\text{reasoning}}$), while w/ Distinct Weights indicates the use of distinct reward weights. The delta values
383 (Δ) reported in the table are computed with respect to the base model.

Category	Rigor			Soundness			Significance			Presentation			Avg
Metric	C	P	Co	C	P	Co	C	P	Co	C	P	Co	
o3	9.00	8.99	9.55	8.84	8.78	9.45	8.58	8.43	9.22	9.34	9.12	9.50	9.21
GPT-4.1	8.34	7.86	8.80	8.27	7.79	8.62	8.05	7.28	8.20	8.91	8.57	9.42	8.50
DeepSeek-R1	8.47	7.90	8.90	8.46	8.03	8.75	8.29	7.71	8.60	9.03	8.70	9.54	8.64
Deepseek-V3	8.43	7.67	8.83	8.42	7.71	8.72	8.18	7.35	8.59	8.94	8.45	9.41	8.51
Gemini-2.5	7.89	6.91	6.63	8.06	7.41	7.26	7.87	7.09	6.89	8.56	8.11	8.83	7.75
GLM-4.9B	8.08	7.46	8.69	7.97	7.24	8.26	7.84	6.90	8.11	8.52	8.02	8.99	8.13
Llama-3.1-8B	7.77	6.69	7.32	7.71	6.76	7.02	7.54	6.30	6.49	8.12	7.42	8.25	7.44
Qwen3-4B	7.84	7.05	7.42	7.77	6.98	6.99	7.72	6.69	6.83	8.48	8.02	8.66	7.69
Qwen3-8B	7.96	7.33	8.18	7.84	7.11	7.76	7.68	6.73	7.39	8.51	8.08	8.87	7.96
Self-Refined	8.55	8.08	9.04	8.47	8.04	8.88	8.19	7.56	8.52	9.08	8.75	9.59	8.72
Strategy-Prompt	8.26	7.41	8.32	8.33	7.77	8.51	8.13	7.41	7.95	8.85	8.44	9.46	8.37
TSR_{o3}	8.89	9.10	9.68	8.95	8.91	9.28	8.69	8.56	9.45	9.18	9.35	9.45	9.34
TSR_{GPT4.1}	8.47	7.63	8.53	8.12	7.94	8.85	7.90	7.51	8.45	9.07	8.42	9.16	8.76
RebuttalFT	6.91	6.07	6.80	6.58	5.72	6.24	6.52	5.50	5.94	6.55	5.79	6.63	6.35
RebuttalAgent	9.23	8.91	9.59	9.18	8.95	9.37	9.09	8.54	9.65	9.43	9.20	9.50	9.42
Δ (\uparrow)	16.1%	21.6%	22.1%	17.0%	25.9%	28.4%	18.3%	26.9%	34.6%	10.8%	13.8%	12.6%	18.3%

Data Ablation													
w/o ToM	8.91	8.21	9.29	8.88	8.30	9.28	8.70	7.87	9.38	9.22	8.86	9.58	9.04
w/o Strategy	9.01	8.89	9.93	9.00	8.85	9.30	8.88	8.49	9.82	9.27	9.06	9.33	9.31
w/o Thinking	9.06	9.00	9.18	9.02	8.92	9.13	8.96	8.60	9.20	9.35	9.16	9.55	9.37

Training Ablation													
w DPO	8.47	8.13	9.36	8.32	7.92	9.00	8.11	7.57	8.82	8.94	8.55	9.46	8.68
SFT-only	8.20	7.60	8.42	8.17	7.60	8.28	8.02	7.31	7.84	8.76	8.34	9.16	8.27
RL-only	8.63	8.27	9.42	8.47	8.07	9.01	8.21	7.56	8.34	9.05	8.71	9.61	8.79
w/o RAnalysis	9.25	9.23	9.79	9.20	9.18	9.39	9.00	8.87	9.27	9.59	9.41	9.45	9.23
w/o RResponse	8.51	7.90	9.02	8.41	7.91	8.63	8.17	7.51	8.25	9.05	8.68	9.61	8.63
w/o RFormat	9.06	8.91	9.22	9.04	8.74	9.30	8.88	8.29	9.67	9.37	9.14	9.35	9.32
w R _{Dist.} weights	9.08	8.54	9.53	9.04	8.63	9.23	9.05	8.32	9.85	9.34	9.08	9.38	9.27
w RebuttalIRM-reward	9.39	9.35	9.51	9.40	9.32	9.29	9.53	8.95	9.70	9.61	9.45	9.89	9.45
w GPT4.1-reward	9.33	9.24	8.85	9.32	9.16	9.82	9.35	9.07	9.30	9.24	9.38	9.18	9.35
w Llama-based	9.23	9.10	9.16	9.29	9.11	9.24	9.16	8.67	9.05	9.57	9.35	9.39	9.20
w Qwen3-4B-base	8.79	8.54	9.73	8.60	8.24	9.44	8.32	7.84	9.17	9.12	8.76	9.72	8.98

407 **Datasets.** (1) In-domain test set, R2-test, contains 6,000 comments randomly sampled from the
408 Re² dataset (Zhang et al., 2025), with no training data overlap. Sourced from 24 conferences
409 and 21 workshops on OpenReview (2017–2023), it offers broad topic and style diversity, enabling
410 comprehensive evaluation of familiar academic discourse. (2) For out-of-domain evaluation, we
411 introduce Rebuttal-test. We manually collect over one thousand recent ICLR and NeurIPS reviews
412 (post-2023) from OpenReview, ensuring no data overlap with our training set or R2-test. These
413 reviews are then processed using the comment extraction and context retrieval pipeline, resulting in a
414 final set of 2K comments designed to assess generalization capability.

7.3 EXPERIMENTAL RESULTS

417 **RebuttalAgent Significantly Outperforms Baselines.** As shown in Table 2, our RebuttalAgent
418 achieves the highest overall average score of **9.42**, substantially outperforming all baselines including
419 GPT-4.1 and o3. It excels across key rebuttal dimensions, attaining top Clarity (9.43) and strong
420 Persuasiveness (9.20) scores. Compared to the Qwen3-8B baseline, the agent yields an average
421 improvement of **18.3%**, with the most significant gains in Persuasiveness and Constructiveness (up
422 to 34.6%). Full results on R2-test are provided in Table 8, while the out-of-domain evaluation (i.e.,
423 results on our constructed Rebuttal-test) is presented in Table 9.

424 **Ablation Study.** Our ablation study confirms the necessity of all the model’s design components.
425 Performance significantly drops when removing any key component, such as ToM, Strategy, Thinking,
426 or when omitting core training stages such as SFT and RL. Among all reward signals, the one for
427 final response quality proved to be the most impactful. These results show that our model’s success is
428 rooted in the synergy between its specialized data, complete training process, and reward mechanism.
429 Applying our framework to Llama-3.1-8B and Qwen3-4B yields significant gains, raising scores
430 from 7.44 to 9.20 and 7.69 to 8.98, respectively. These results demonstrate that the effectiveness of
431 our TSR pipeline and self-reward mechanism is not tied to a specific backbone; rather, it serves as a
432 model-agnostic strategy that generalizes well to other models, including smaller ones.

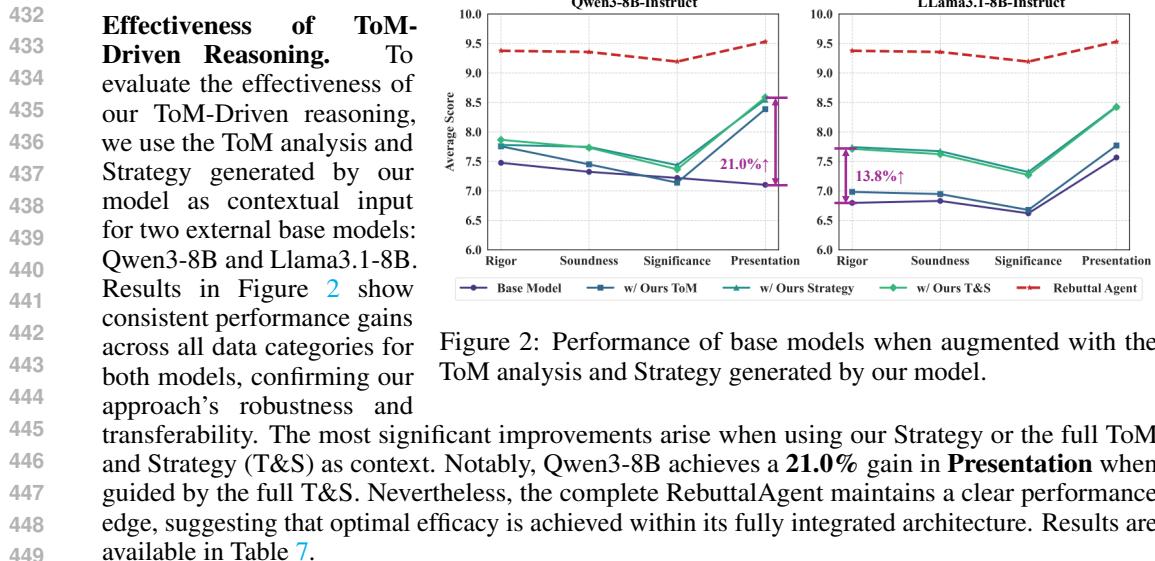


Figure 2: Performance of base models when augmented with the ToM analysis and Strategy generated by our model.

451 7.4 HUMAN EVALUATION

452 We perform a human evaluation as our gold-standard assessment, with detailed results presented
453 in Table 3. The evaluation utilizes a set of 100 randomly sampled comments, balanced between
454 in-domain and out-of-domain instances. Each response is evaluated blindly by three annotators
455 with at least three years of research experience in AI/ML and prior reviewing experience in top-
456 tier conferences on a 10-point scale across four distinct metrics. The reliability of this process is
457 underscored by a strong inter-annotator agreement (Cohen’s $\kappa = 0.79$).
458

459 **Result.** As presented in Ta-
460 ble 3, the human evaluation
461 results decisively confirm the
462 clear superiority of RebuttalA-
463 gent. Our model achieves the
464 highest average score of 9.57,
465 establishing a significant lead
466 over all the strongest base-
467 lines, o3 and GPT-4.1. This
468 advantage is comprehensive,
469 as RebuttalAgent outperforms
470 all other models across all
471 four evaluation dimensions. Our RebuttalAgent demonstrates the largest relative gain in Persuasiveness,
472 achieving a score of 9.34 which represents a **7.36%** improvement over the GPT-4.1 baseline.
473 This finding, combined with high scores in other metrics, confirms that RebuttalAgent by far is the
474 most effective and balanced model.
475

Table 3: Human evaluation results based on four evaluation metrics: Attitude, Clarity, Persuasiveness, and Constructiveness.

Metric	Attitude	Clarity	Persuasiveness	Constructiveness	Avg
o3	9.30	9.28	9.04	9.42	9.26
GPT-4.1	9.32	8.80	8.70	9.14	8.99
DeepSeek-R1	9.24	9.08	8.86	9.16	9.08
Qwen3-8B	8.88	8.60	8.12	8.40	8.50
w GPT4.1-reward	9.92	9.62	9.28	9.54	9.59
w RebuttalRM-reward	9.16	8.90	8.84	9.07	8.96
RebuttalFT	7.38	6.80	6.30	6.50	6.75
RebuttalAgent	9.86	9.38	9.34	9.68	9.57

476 8 RELATED WORK

477 **Machine Theory of Mind.** Machine Theory of Mind (ToM) refers to an AI system’s capacity to infer
478 and model the mental states of human or AI teammates to support collaboration (Rabinowitz et al.,
479 2018; Goldman et al., 2012; Wellman, 2002; Yang et al., 2025c; Leslie et al., 2004). Instruction-tuned
480 models such as GPT-4 have demonstrated stronger ToM-like reasoning compared to earlier versions
481 (Kosinski, 2023; 2024), sometimes matching or exceeding human performance in tasks involving
482 sarcasm and social inference. Various methods have been proposed to explicitly model ToM. For
483 example, SymbolicToM builds symbolic belief graphs to track character beliefs for answer generation
484 (Scclar et al., 2023). SimToM employs perspective-taking and context filtering in a two-stage process
485 (Wilf et al., 2023), while ToM-LM translates questions into symbolic forms for model checking (Tang

486 & Belle, 2024). ToMAP integrates opponent modeling and reinforcement learning to generate more
 487 persuasive arguments (Han et al., 2025).

488 **LLM Debate.** The use of multi-agent debate and interaction among Large Language Models
 489 (LLMs) has emerged as a promising approach to enhance capabilities in complex reasoning (He
 490 et al., 2023; 2024b; Qin et al., 2025; Xu et al., 2024; Yang et al., 2025b; Chen et al., 2025c) and
 491 fact-checking by simulating collaborative or adversarial dialogue (Du et al., 2023; He et al., 2025a;
 492 Liang et al., 2023; Jin et al., 2024a; Breum et al., 2024; He et al., 2025c; Salvi et al., 2025). For
 493 instance, ChatEval employs a multi-agent referee team to evaluate open-ended responses (Chan
 494 et al., 2023), while AgentsCourt improves answer quality through multi-round debate among model
 495 instances (He et al., 2024a). Debatrix provides a structured judging framework to assess debates
 496 along multiple dimensions (Liang et al., 2024), and DyLAN dynamically assembles agent teams
 497 tailored to different tasks (Liu et al., 2024c). Notably, Salvi et al. (2025) shows that GPT-4 equipped
 498 with sociodemographic data can outperform humans in persuasion.

499 **LLM for Academic Peer Review.** The emerging paradigm of AI for Research applies Large
 500 Language Models (LLMs) to automate and enhance scholarly activities, including automated research
 501 (Schmidgall & Moor, 2025; Yamada et al., 2025) and writing assistance (Wang et al., 2025; Chen
 502 et al., 2025a). Within the critical domain of peer review, LLMs are leveraged for generating reviews
 503 (Zhu et al., 2025; Idahl & Ahmadi, 2025) and for enhancing review quality analysis (Purkayastha
 504 et al., 2025). Furthermore, multi-agent systems have been proposed to explore peer review dynamics
 505 (Jin et al., 2024b; D'Arcy et al., 2024) and automate research workflows (Schmidgall et al., 2025).
 506 Despite the creation of large, multi-turn review datasets (Zhang et al., 2025), there remains limited
 507 exploration into the rebuttal stage. Building on these foundations, our work proposes a **RebuttalAgent**
 508 framework that explicitly leverages Theory of Mind to model reviewer intent, enabling more strategic
 509 and context-aware responses.

512 9 CONCLUSION

513 In this paper, we introduce **RebuttalAgent**, the first framework to ground academic rebuttal in
 514 Theory of Mind (ToM). To train our agent, we construct **RebuttalBench**, a large-scale synthetic
 515 dataset created via a novel critique-and-refine pipeline. Our twofold training process begins with a
 516 Supervised Fine-tuning phase to equip the agent with ToM-based analysis and strategic planning
 517 capabilities, followed by a Reinforcement Learning phase using a novel self-reward mechanism.
 518 For a reliable and scalable automated evaluation, we develop **Rebuttal-RM**, a specialized evaluator
 519 trained on over 100K samples of multi-source data. Extensive experiments show RebuttalAgent
 520 significantly outperforms the base model by 18.3% and is competitive with advanced models such as
 521 o3 across both automated and human evaluations.

522 ETHICAL CONSIDERATION

523 We introduce a comprehensive framework agents for the academic rebuttal process. The goal of
 524 this work is to improve the clarity and constructive nature of academic dialogue. The resulting
 525 tool is intended to serve as a valuable reference and guidance resource for fresh scholars, offering
 526 strategic suggestions and practical tips to help them navigate this complex stage more effectively,
 527 rather than as a replacement for genuine scholarly engagement. While RebuttalAgent can clarify
 528 the organization and articulation of rebuttals, it is important to recognize its limitations. Like other
 529 AI systems, RebuttalAgent may inadvertently learn and reinforce biases present in its training data,
 530 such as inappropriate and unscholarly persuasion strategies or rebutting evidence. To mitigate misuse,
 531 we specifically excluded comments related to experimental results during training, thus preventing
 532 the model from fabricating evidence or data. Authors must view the generated output critically to
 533 ensure the accuracy, fairness, and rationality of the generated context. Ultimately, our vision is for
 534 RebuttalAgent to serve as a powerful AI assistant for researchers in any field, helping to facilitate
 535 more effective human-AI collaboration and foster a more open and constructive scientific world.

540 REPRODUCIBILITY STATEMENT
541

542 This paper introduces a comprehensive framework for leveraging Theory of Mind (ToM) for academic
543 rebuttal. This framework comprises three main components: (1) a rebuttal evaluator, **Rebuttal-RM**;
544 (2) a large-scale high-quality dataset, **RebuttalBench**; and (3) a novel academic assistant, **RebuttalA-**
545 **gent**. To ensure the full reproducibility of this framework, we have provided detailed documentation
546 across the paper and its appendices. The generation process for the RebuttalBench dataset, along with
547 the complete training procedures for RebuttalAgent (including all hyperparameters), are provided in
548 Section 5. The details for training Rebuttal-RM, the generation process for RAR-Rebuttal dataset are
549 provided in Section 6. Our code and models will be released publicly for future research.

550
551 REFERENCES
552

553 Tamer Başar and Geert Jan Olsder. *Dynamic noncooperative game theory*. SIAM, 1998. URL
554 <https://pubs.siam.org/doi/pdf/10.1137/1.9781611971132.bm>.

555 Simon Martin Breum, Daniel Vædele Egdal, Victor Gram Mortensen, Anders Giovanni Møller,
556 and Luca Maria Aiello. The persuasive power of large language models. In *Proceedings of the*
557 *International AAAI Conference on Web and Social Media*, volume 18, pp. 152–163, 2024. URL
558 <https://ojs.aaai.org/index.php/ICWSM/article/view/31304>.

559

560 Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
561 Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. *arXiv*
562 *preprint arXiv:2308.07201*, 2023. URL <https://arxiv.org/abs/2308.07201>.

563

564 Nuo Chen, Andre Lin HuiKai, Jiaying Wu, Junyi Hou, Zining Zhang, Qian Wang, Xidong Wang, and
565 Bingsheng He. Xtragpt: Context-aware and controllable academic paper revision, 2025a. URL
566 <https://arxiv.org/abs/2505.11336>.

567

568 Qiguang Chen, Mingda Yang, Libo Qin, Jinhao Liu, Zheng Yan, Jiannan Guan, Dengyun Peng, Yiyan
569 Ji, Hanjing Li, Mengkang Hu, et al. Ai4research: A survey of artificial intelligence for scientific
570 research. *arXiv preprint arXiv:2507.01903*, 2025b. URL <https://arxiv.org/abs/2507.01903>.

571

572 Yixiang Chen, Tianshi Zheng, Shijue Huang, Zhitao He, and Yi R. Fung. Self-redraft: Eliciting
573 intrinsic exploration-exploitation balance in test-time scaling for code generation, 2025c. URL
574 <https://arxiv.org/abs/2511.02854>.

575

576 Gheorghe Comanici, Eric Bieber, and Mike Schaeckermann. Gemini 2.5: Pushing the frontier with
577 advanced reasoning, multimodality, long context, and next generation agentic capabilities, 2025.
578 URL <https://arxiv.org/abs/2507.06261>.

579

580 John Dagdelen, Alexander Dunn, Sanghoon Lee, Nicholas Walker, Andrew S Rosen, Gerbrand
581 Ceder, Kristin A Persson, and Anubhav Jain. Structured information extraction from scientific
582 text with large language models. *Nature communications*, 15(1):1418, 2024. URL <https://www.nature.com/articles/s41467-024-45563-x>.

583

584 Mike D’Arcy, Tom Hope, Larry Birnbaum, and Doug Downey. Marg: Multi-agent review generation
585 for scientific papers, 2024. URL <https://arxiv.org/abs/2401.04259>.

586

587 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving
588 factuality and reasoning in language models through multiagent debate. In *Forty-first International*
589 *Conference on Machine Learning*, 2023. URL <https://openreview.net/forum?id=zj7YuTE4t8>.

590

591 Wafaa S El-Kassas, Cherif R Salama, Ahmed A Rafea, and Hoda K Mohamed. Automatic text
592 summarization: A comprehensive survey. *Expert systems with applications*, 165:113679, 2021.

593

Drew Fudenberg and Jean Tirole. *Game theory*. MIT press, 1991.

594 Team GLM, :, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego
 595 Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang,
 596 Jiale Cheng, and Jiayi Gui. Chatglm: A family of large language models from glm-130b to glm-4
 597 all tools, 2024. URL <https://arxiv.org/abs/2406.12793>.

598 Alvin I Goldman et al. *Theory of mind*, volume 1. Oxford handbook of philosophy and cognitive
 599 science, 2012.

601 Aaron Grattafiori, Abhimanyu Dubey, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo
 602 Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
 603 <https://arxiv.org/abs/2407.21783>.

604 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 605 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 606 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025. URL <https://arxiv.org/abs/2501.12948>.

607 Peixuan Han, Zijia Liu, and Jiaxuan You. Tomap: Training opponent-aware llm persuaders with
 608 theory of mind, 2025. URL <https://arxiv.org/abs/2505.22961>.

609 Tony Harland, Navé Wald, and Haseeb Randhawa. Student peer review: Enhancing formative
 610 feedback with a rebuttal. *Assessment & Evaluation in Higher Education*, 42(5):801–
 611 811, 2017. URL <https://www.tandfonline.com/doi/abs/10.1080/02602938.2016.1194368>.

612 Zhitao He, Pengfei Cao, Yubo Chen, Kang Liu, Ruopeng Li, Mengshu Sun, and Jun Zhao. LEGO:
 613 A multi-agent collaborative framework with role-playing and iterative feedback for causality
 614 explanation generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the
 615 Association for Computational Linguistics: EMNLP 2023*, pp. 9142–9163, Singapore, December
 616 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.613.
 617 URL <https://aclanthology.org/2023.findings-emnlp.613>.

618 Zhitao He, Pengfei Cao, Chenhao Wang, Zhuoran Jin, Yubo Chen, Jixin Xu, Huaijun Li, Xiaojian
 619 Jiang, Kang Liu, and Jun Zhao. Agentscourt: Building judicial decision-making agents with court
 620 debate simulation and legal knowledge augmentation, 2024a. URL <https://arxiv.org/abs/2403.02959>.

621 Zhitao He, Pengfei Cao, Chenhao Wang, Zhuoran Jin, Yubo Chen, Jixin Xu, Huaijun Li, Xiaojian
 622 Jiang, Kang Liu, and Jun Zhao. Simucourt: Building judicial decision-making agents with real-
 623 world judgement documents. *CoRR*, 2024b. URL <https://openreview.net/forum?id=W4GsvnrVvD>.

624 Zhitao He, Zijun Liu, Peng Li, Yi R. Fung, Ming Yan, Ji Zhang, Fei Huang, and Yang Liu. Advancing
 625 language multi-agent learning with credit re-assignment for interactive environment generalization,
 626 2025a. URL <https://arxiv.org/abs/2502.14496>.

627 Zhitao He, Zongwei Lyu, Dazhong Chen, Dadi Guo, and Yi R. Fung. Matp-bench: Can mllm be
 628 a good automated theorem prover for multimodal problems?, 2025b. URL <https://arxiv.org/abs/2506.06034>.

629 Zhitao He, Sandeep Polisetty, Zhiyuan Fan, Yuchen Huang, Shujin Wu, and Yi R. Fung. MM-
 630 Boundary: Advancing MLLM knowledge boundary awareness through reasoning step confidence
 631 calibration. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
 632 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
 633 (Volume 1: Long Papers)*, pp. 16427–16444, Vienna, Austria, July 2025c. Association for Com-
 634 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.802. URL
 635 <https://aclanthology.org/2025.acl-long.802>.

636 Kaixuan Huang, Yuanhao Qu, Henry Cousins, William A Johnson, Di Yin, Mihir Shah, Denny
 637 Zhou, Russ Altman, Mengdi Wang, and Le Cong. Crispr-gpt: An llm agent for automated
 638 design of gene-editing experiments. *arXiv preprint arXiv:2404.18021*, 2024. URL <https://arxiv.org/abs/2404.18021>.

648 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 649 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 650 *arXiv:2410.21276*, 2024. URL <https://arxiv.org/abs/2410.21276>.

651 Maximilian Idahl and Zahra Ahmadi. Openreviewer: A specialized large language model for
 652 generating critical scientific paper reviews, 2025. URL <https://arxiv.org/abs/2412.11948>.

653 Xuanfa Jin, Ziyan Wang, Yali Du, Meng Fang, Haifeng Zhang, and Jun Wang. Learning
 654 to discuss strategically: A case study on one night ultimate werewolf. *Advances in Neural Information Processing Systems*, 37:77060–77097, 2024a. URL
 655 https://proceedings.neurips.cc/paper_files/paper/2024/hash/8cea78701eb986f3ec357eb9b7c6badd-Abstract-Conference.html.

656 Yiqiao Jin, Qinlin Zhao, Yiyang Wang, Hao Chen, Kaijie Zhu, Yijia Xiao, and Jindong Wang.
 657 Agentreview: Exploring peer review dynamics with llm agents, 2024b. URL <https://arxiv.org/abs/2406.12708>.

658 Huan Yee Koh, Jiaxin Ju, Ming Liu, and Shirui Pan. An empirical survey on long document
 659 summarization: Datasets, models, and metrics. *ACM computing surveys*, 55(8):1–35, 2022.

660 Michal Kosinski. Theory of mind may have spontaneously emerged in large language models.
 661 *arXiv preprint arXiv:2302.02083*, 4:169, 2023. URL <https://arxiv.org/pdf/2302.02083v2/1000.pdf>.

662 Michal Kosinski. Evaluating large language models in theory of mind tasks. *Proceedings of the
 663 National Academy of Sciences*, 121(45):e2405460121, 2024. URL <https://www.pnas.org/doi/abs/10.1073/pnas.2405460121>.

664 Alan M Leslie, Ori Friedman, and Tim P German. Core mechanisms in ‘theory of mind’. *Trends
 665 in cognitive sciences*, 8(12):528–533, 2004. URL [https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613\(04\)00260-8](https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613(04)00260-8).

666 Jingcong Liang, Rong Ye, Meng Han, Ruofei Lai, Xinyu Zhang, Xuanjing Huang, and Zhongyu
 667 Wei. Debatrix: Multi-dimensional debate judge with iterative chronological analysis based on
 668 llm. *arXiv preprint arXiv:2403.08010*, 2024. URL <https://aclanthology.org/2024.findings-acl.868/>.

669 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
 670 and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
 671 debate. *arXiv preprint arXiv:2305.19118*, 2023. URL <https://aclanthology.org/2024.emnlp-main.992/>.

672 Weng Marc Lim and Carmen Bowman. Giving and responding to feedback: guidelines for
 673 authors and reviewers, 2024. URL <https://www.tandfonline.com/doi/abs/10.1080/01924788.2024.2304948>.

674 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 675 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 676 *arXiv:2412.19437*, 2024a. URL <https://arxiv.org/abs/2412.19437>.

677 Zijun Liu, Kaiming Liu, Yiqi Zhu, Xuanyu Lei, Zonghan Yang, Zhenhe Zhang, Peng Li, and
 678 Yang Liu. Aigs: Generating science from ai-powered automated falsification, 2024b. URL
 679 <https://arxiv.org/abs/2411.11910>.

680 Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent network
 681 for task-oriented agent collaboration. In *First Conference on Language Modeling*, 2024c. URL
 682 <https://openreview.net/forum?id=XII0Wp1XA9>.

683 Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
 684 Towards fully automated open-ended scientific discovery, 2024. URL <https://arxiv.org/abs/2408.06292>.

702 Alexander Novikov, Ng n V , Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
 703 ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan
 704 Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Push-
 705 meet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and algorithmic discovery,
 706 2025. URL <https://arxiv.org/abs/2506.13131>.

707 Guillermo Owen. *Game theory*. Emerald Group Publishing, 2013.

708 Stefano Palminteri. How to prepare a rebuttal letter: Some advice from a scientist, reviewer and
 709 editor. 2023. URL <https://osf.io/preprints/psyarxiv/kyfus>.

710 Sukannya Purkayastha, Zhuang Li, Anne Lauscher, Lizhen Qu, and Iryna Gurevych. Lazyreview a
 711 dataset for uncovering lazy thinking in nlp peer reviews, 2025. URL <https://arxiv.org/abs/2504.11042>.

712 Zeyu Qin, Qingxiu Dong, Xingxing Zhang, Li Dong, Xiaolong Huang, Ziyi Yang, Mahmoud
 713 Khademi, Dongdong Zhang, Hany Hassan Awadalla, Yi R. Fung, Weizhu Chen, Minhao Cheng,
 714 and Furu Wei. Scaling laws of synthetic data for language models, 2025. URL <https://arxiv.org/abs/2503.19551>.

715 Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and Matthew Botvinick.
 716 Machine theory of mind. In *International conference on machine learning*, pp. 4218–4227. PMLR,
 717 2018. URL <http://proceedings.mlr.press/v80/rabinowitz18a.html>.

718 Francesco Salvi, Manoel Horta Ribeiro, Riccardo Gallotti, and Robert West. On the conversa-
 719 tional persuasiveness of gpt-4. *Nature Human Behaviour*, pp. 1–9, 2025. URL <https://www.nature.com/articles/s41562-025-02194-6>.

720 Mara Schilling-Wilhelmi, Marti o R os-Garc a, Sherjeel Shabih, Mar a Victoria Gil, Santiago Miret,
 721 Christoph T Koch, Jos  A M rquez, and Kevin Maik Jablonka. From text to insight: large
 722 language models for chemical data extraction. *Chemical Society Reviews*, 2025. URL <https://pubs.rsc.org/en/content/articlehtml/2025/cs/d4cs00913d>.

723 Samuel Schmidgall and Michael Moor. Agentrxiv: Towards collaborative autonomous research,
 724 2025. URL <https://arxiv.org/abs/2503.18102>.

725 Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
 726 Michael Moor, Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research
 727 assistants, 2025. URL <https://arxiv.org/abs/2501.04227>.

728 Melanie Sclar, Sachin Kumar, Peter West, Alane Suhr, Yejin Choi, and Yulia Tsvetkov. Minding
 729 language models' (lack of) theory of mind: A plug-and-play multi-character belief tracker, 2023.
 730 URL <https://arxiv.org/abs/2306.00924>.

731 Weizhi Tang and Vaishak Belle. Tom-lm: Delegating theory of mind reasoning to external symbolic
 732 executors in large language models. In *International Conference on Neural-Symbolic Learning and
 733 Reasoning*, pp. 245–257. Springer, 2024. URL https://link.springer.com/chapter/10.1007/978-3-031-71170-1_20.

734 Qingyun Wang, Manling Li, Xuan Wang, Nikolaus Parulian, Guangxing Han, Jiawei Ma, Jingxuan
 735 T , Ying Lin, Ranran Haoran Zhang, Weili Liu, Aabhas Chauhan, Yingjun Guan, Bangzheng Li,
 736 Ruisong Li, Xiangchen Song, Yi Fung, Heng Ji, Jiawei Han, Shih-Fu Chang, James Pustejovsky,
 737 Jasmine Rah, David Liem, Ahmed ELsayed, Martha Palmer, Clare Voss, Cynthia Schneider, and
 738 Boyan Onyshkevych. Covid-19 literature knowledge graph construction and drug repurposing
 739 report generation. In *Proceedings of the 2021 Conference of the North American Chapter of
 740 the Association for Computational Linguistics: Human Language Technologies: Demonstrations*.
 741 Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.nacl-demos.8. URL
 742 <http://dx.doi.org/10.18653/v1/2021.nacl-demos.8>.

743 Qingyun Wang, Doug Downey, Heng Ji, and Tom Hope. Scimon: Scientific inspiration ma-
 744 chines optimized for novelty. In *Proceedings of the 62nd Annual Meeting of the Associa-
 745 tion for Computational Linguistics (Volume 1: Long Papers)*, pp. 279–299, 2024. URL
 746 <https://aclanthology.org/2024.luhme-long.18/>.

756 Yubo Wang, Xueguang Ma, Ping Nie, Huaye Zeng, Zhiheng Lyu, Yuxuan Zhang, Benjamin Schneider,
 757 Yi Lu, Xiang Yue, and Wenhui Chen. Scholarcopilot: Training large language models for academic
 758 writing with accurate citations, 2025. URL <https://arxiv.org/abs/2504.00824>.

759 Michael L Waskom. Seaborn: statistical data visualization. *Journal of open source software*, 6
 760 (60):3021, 2021. URL <https://joss.theoj.org/papers/10.21105/joss.03021.pdf>.

761 Henry M Wellman. Understanding the psychological world: Developing a theory of mind.
 762 *Blackwell handbook of childhood cognitive development*, pp. 167–187, 2002. URL <https://onlinelibrary.wiley.com/doi/10.1002/9780470996652#page=179>.

763 Yixuan Weng, Minjun Zhu, Guangsheng Bao, Hongbo Zhang, Jindong Wang, Yue Zhang, and Linyi
 764 Yang. Cycleresearcher: Improving automated research via automated review. *arXiv preprint*
 765 *arXiv:2411.00816*, 2024. URL <https://arxiv.org/abs/2411.00816>.

766 Alex Wilf, Sihyun Shawn Lee, Paul Pu Liang, and Louis-Philippe Morency. Think twice: Perspective-
 767 taking improves large language models’ theory-of-mind capabilities, 2023. URL <https://arxiv.org/abs/2311.10227>.

768 Aoyu Wu, Yun Wang, Xinhuan Shu, Dominik Moritz, Weiwei Cui, Haidong Zhang,
 769 Dongmei Zhang, and Huamin Qu. Ai4vis: Survey on artificial intelligence approaches for data visualization. *IEEE Transactions on Visualization and Computer
 770 Graphics*, 28(12):5049–5070, 2021. URL https://ieeexplore.ieee.org/abstract/document/9495259/?casa_token=b17wfz0-xggAAAAA:cCmjuf_P9WD19WnO1ZIPXuR1BjaFbE8B1xG1ZjcxLx6oV-w6LcRVCxFbe9tVNI-w6CJk0PLTGA.

771 Yuhang Wu, Wenmeng Yu, Yean Cheng, Yan Wang, Xiaohan Zhang, Jiazheng Xu, Ming Ding, and
 772 Yuxiao Dong. Alignmmbench: Evaluating chinese multimodal alignment in large vision-language
 773 models, 2025. URL <https://arxiv.org/abs/2406.09295>.

774 Yao Xu, Shizhu He, Jiapei Chen, Zihao Wang, Yangqiu Song, Hanghang Tong, Guang Liu, Kang Liu,
 775 and Jun Zhao. Generate-on-graph: Treat llm as both agent and kg in incomplete knowledge graph
 776 question answering, 2024. URL <https://arxiv.org/abs/2404.14741>.

777 Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune,
 778 and David Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree
 779 search, 2025. URL <https://arxiv.org/abs/2504.08066>.

780 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 781 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 782 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 783 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 784 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 785 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 786 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 787 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 788 Qiu. Qwen3 technical report, 2025a. URL <https://arxiv.org/abs/2505.09388>.

789 Haolin Yang, Jipeng Zhang, Zhitao He, and Yi R. Fung. Mars-sql: A multi-agent reinforcement
 790 learning framework for text-to-sql, 2025b. URL <https://arxiv.org/abs/2511.01008>.

791 Scott Cheng-Hsin Yang, Tomas Folke, and Patrick Shafto. The inner loop of collective human-
 792 machine intelligence. *Topics in cognitive science*, 17(2):248–267, 2025c. URL <https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12642>.

793 Daoze Zhang, Zhijian Bao, Sihang Du, Zhiyi Zhao, Kuangling Zhang, Dezheng Bao, and Yang Yang.
 794 Re²: A consistency-ensured dataset for full-stage peer review and multi-turn rebuttal discussions,
 795 2025. URL <https://arxiv.org/abs/2505.07920>.

796 Minjun Zhu, Yixuan Weng, Linyi Yang, and Yue Zhang. Deepreview: Improving llm-based paper
 797 review with human-like deep thinking process, 2025. URL <https://arxiv.org/abs/2503.08569>.

810 Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongan Liu, Wenhan Liu, Chenlong Deng, Haonan Chen,
811 Zheng Liu, Zhicheng Dou, and Ji-Rong Wen. Large language models for information retrieval:
812 A survey. *arXiv preprint arXiv:2308.07107*, 2023. URL <https://arxiv.org/abs/2308.07107>.
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

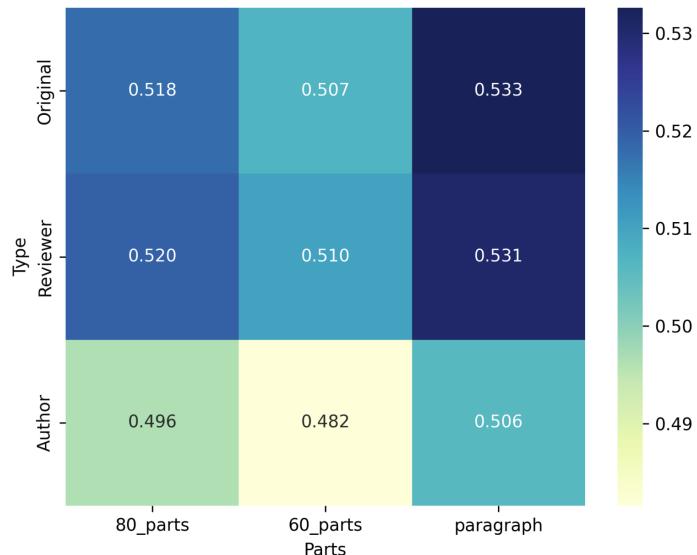
864 **A LLM USAGE**
865

866
867 This paper introduces a comprehensive framework for leveraging Theory of Mind (ToM) for academic
868 rebuttal, resulting in the **RebuttalAgent**, the **RebuttalBench** dataset, and the **Rebuttal-RM** evaluator.
869 In the preparation of this manuscript, we utilized Large Language Models (e.g., Google’s Gemini
870 and GPT-4.1) as a general-purpose writing assistant. The scope of the LLM’s assistance was
871 limited to language-level polishment. This included a number of specific tasks: detecting and
872 correcting grammatical and syntactical mistakes; giving suggestions on substitute phrasing to improve
873 sentence flow and coherence; enhancing vocabulary for better precision and stylistic consistency; and
874 paraphrasing author-written sentences to improve readability and prevent repetition.
875

876 **B DATA PREPARATION**
877

878
879 **Comment Extraction Accuracy:** To assess the accuracy of our comment extraction approach, we
880 randomly sampled 100 raw reviews and manually examined the extracted comments. Each extracted
881 comment was checked to determine whether it accurately captured a distinct and actionable criticism
882 from the original review. Our analysis shows that over 98 percent of the extracted comments were
883 both complete and well-aligned with the reviewers’ intended points, while only 2 percent of the
884 comment contained minor segmentation errors or incorporated redundant information. These results
885 demonstrate the robustness of our LLM-as-Extractor framework in handling diverse reviewer writing
886 styles and unstructured review formats.
887

888 **Context Retrieval Effectiveness** We conduct a comprehensive evaluation of our context retrieval
889 pipeline by comparing different retrieval and manuscript segmentation strategies. Specifically, we
890 evaluate three comment encoding strategies: (1) directly using the original comment for retrieval, (2)
891 rewriting the comment from the reviewer’s perspective before retrieval, and (3) rewriting the comment
892 from the author’s perspective. For manuscript segmentation, we compare splitting the text into 80
893 parts by word count, 60 parts by word count, and segmenting solely by paragraph. Cosine similarity
894 is employed as the primary quantitative metric to assess retrieval effectiveness across all settings. As
895 illustrated in Figure 3, the results show that using the original comment directly as the retrieval query,
896 combined with segmenting the manuscript by paragraph, achieves the highest retrieval effectiveness.
897 This configuration yields superior performance compared to alternative combinations, highlighting
898 the importance of both precise comment formulation and natural document segmentation.
899

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
Figure 3: Heatmap for retrieval effectiveness

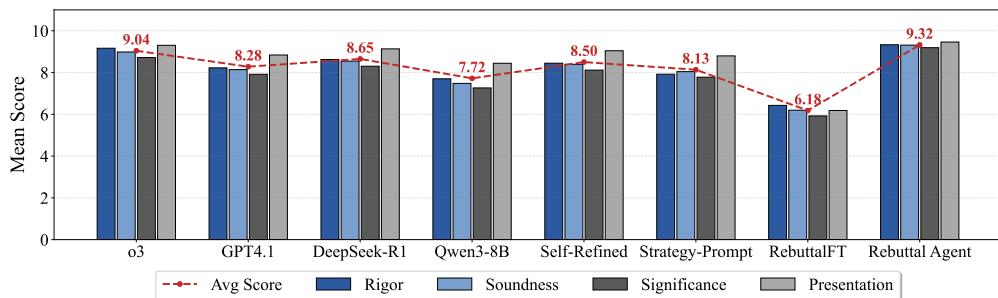
918
919
920
921 Table 4: Dimensions of the Hierarchical Reviewer Profile. The complete list of categories, along with
922 a visualization of the data distribution for reviews and comments, is provided in Appendix C.
923

921 Dimension	922 Description	923 Example Categories
Macro-level		
924 Overall Stance	925 Predicts the reviewer’s likely final recom- 926 mendation on the manuscript.	927 Reject, Accept
928 Overall Attitude	929 Assesses the underlying sentiment and tone.	930 Constructive, Skeptical
931 Dominant Concern	932 Identifies the primary area of criticism.	933 Methodology, Experiments
934 Reviewer Expertise	935 Estimates the reviewer’s topic familiarity.	936 Domain Expert, Generalist
Micro-level		
937 Significance	938 Identifies concerns about impact or novelty.	939 Incremental, Unclear
940 Methodology	941 Pinpoints flaws in the technical approach.	942 Technical Error, Unjustified
943 Experimental Rigor	944 Addresses issues related to the soundness 945 of the empirical validation.	946 Baselines Missing, Flawed
947 Presentation	948 Flags issues related to clarity and structure.	949 Writing Issues, Poor Org.

950 C DISTRIBUTION OF REVIEWS AND COMMENTS

951 C.1 SETUP AND METRICS OF REBUTTAL-RM

952 Following recent work (Wu et al., 2025), we employ a set of six statistical metrics. We use four
953 standard statistical measures to assess the overall correlation: *Mean Absolute Error* (e), *Pearson*
954 (r), *Spearman* (β), and *Kendall* (τ). Additionally, to mitigate potential annotator biases and assess
955 classification accuracy, we introduce two metrics based on score ranges: *Coarse-grained Accuracy*
956 (c): Scores are mapped to four quality tiers: Unconvincing (scores 1-3), Acceptable (scores 4-6),
957 Good (scores 7-8), and Excellent (scores 9-10). *Fine-grained Accuracy* (f): For a stricter assessment,
958 scores are categorized into seven more granular ranges derived from our rubric, such as grouping
959 scores of 1 and 2, 3 and 4, and so on, with single-point ranges for scores of 5 and 6.



960
961 Figure 4: Comparative Evaluation of Model Performance on Rebuttal Quality.
962

963 D INSTRUCTION FOR SFT WITH OUTPUT FORMAT EXAMPLE

964
965 You are an expert academic assistant specializing in crafting persuasive and respectful rebuttals
966 for peer reviews. Your goal is to formulate a response that addresses the reviewer’s concerns
967 directly and constructively, ultimately strengthening the paper’s position for acceptance.
968

969 You receive the following inputs:
970

1. Full_Review_Content: The entire review text for the target paper.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

2. Target_Comment: A specific excerpt from the review that requires a response.
3. Relevant_Paper_Fragment: A key excerpt from the author's own manuscript. This fragment provides the essential context and technical details that relevant to the Target_Comment.

Your task is to generate a structured rebuttal plan and response by following these steps precisely:

Step 1: Analysis

First, conduct your analysis of the overall review and target comment. Present this analysis inside `<analysis>` and `</analysis>` tags using the strict JSON format specified below.

Step 2: Rebuttal Strategy

Based on your analysis and the information within the Relevant_Paper_Fragment, devise an optimal, step-by-step strategy for the response. Present this strategy as a numbered list inside `<strategy>` and `</strategy>` tags. Each step should be a clear action.

Otherwise, omit this section.

Step 3: Rebuttal Response

Finally, craft the rebuttal response for the Target_Comment. Write the response inside `<response>` and `</response>`, based on your above analysis and strategy.

Here is an example of output format:

```
I need to analysis the review's overall instance and the target
    ↳ comment:
<analysis>{
    "global\_profile": {
        "overall\_stance": "...",
        "overall\_attitude": "...",
        "dominant\_concern": "...",
        "reviewer\_expertise": "..."
    },
    "comment\_analysis": {
        "comment\_text": "...",
        "category": "...",
        "sub\_category": "...",
        "severity": "..."
    }
}
</analysis>.Based on current overall analysis, to address the target
    ↳ comment, I need to adopt the following strategies:
<strategy> 1. ; 2. ; 3. ; XXX</strategy>.
```

Based on the above analysis and strategies, for the target comment:

```
<response>XXX</response>.
```

E INSTRUCTION FOR SFT SCORING MODEL WITH OUTPUT FORMAT EXAMPLE

You are a seasoned academic reviewer and response optimization expert. Your task is to evaluate the quality of the response based on the review comments, paper fragments, and the authors' responses. Please strictly follow the requirements below, and output only the score

1026
 1027 and score explanation.
 1028
 1029
 1030 Input variables:
 1031 1.Full_Review_Content : Complete content of the review comments.
 1032 2.Relevant_Paper_Fragment: The paper fragment most relevant to the comment.
 1033 3.Target_Comment: Specific segment of the review comments.
 1034 4.Original_response: The authors' original response text to the comment.
 1035
 1036 Your task: Based on the input information, output only a JSON object containing the
 1037 following two items: Scoring Standard: Score Range: 0 - 10
 1038 0: Wholly Ineffective 1-2: Perfunctory 3-4: Unconvincing 5-6: Addresses Some Concerns 7-8:
 1039 Exceptional 9-10:Outstanding
 1040 **Four-dimensional score breakdown, ranging from 0-10, structured as follows:**
 1041 Attitude: The tone and professionalism of the response.
 1042 Clarity: The logic, structure, and focus of the response.
 1043 Persuasiveness: The effectiveness of the argumentation and evidence support.
 1044 Constructiveness: The commitment to revisions and specific actions taken.
 1045 ScoreExplanation: A brief explanation of each score, specifically citing key points from the
 1046 response text that reflect the scores and any shortcomings.
 1047
 1048
 1049 **Output requirements:**
 1050 Only output the JSON object; do not include any other characters or explanations. The scoring
 1051 must be reasonable, and the score explanation must clearly reference the original text that
 1052 reflects the score. All output must be in formal, polite academic English.
 1053
 1054 Output format example:
 1055 { "score": { "Attitude": <int>,
 1056 "Clarity": <int>,
 1057 "Persuasiveness": <int>,
 1058 "Constructiveness": <int> },
 1059 "score_explanation": <explanation for your given score> }
 1060
 1061
 1062
 1063

1064 F PROMPT FOR REVIEWER STANCE MODELING

1065
 1066
 1067 You are a world-class AI assistant specializing in the meta-analysis of academic peer reviews.
 1068 Your task is to act as an experienced and insightful scholar, dissecting a reviewer's comments
 1069 with extreme precision and objectivity. Your ultimate goal is to perform a comprehensive two-
 1070 level analysis (Macro and Micro) on the provided review text and output a SINGLE, VALID
 1071 JSON object that encapsulates your findings. Do not add any explanatory text, comments, or
 1072 markdown formatting like “‘json before or after the JSON output.
 1073
 1074
 1075

1076 EXECUTION STEPS:

1077
 1078
 1079 **Macro-Analysis:**

1080
 1081 Read the entire review text holistically. Determine the four macro-level attributes: Overall
 1082 Stance, Overall Attitude, Dominant Concern Theme, and Reviewer Expertise Proxy.
 1083
Micro-Analysis:
 1084 Extract all distinct reviewer questioning opinions, weaknesses, shortcomings, criticisms, and
 1085 actionable suggestions for improvement.
 1086
Key Section Focus:
 1087 Search for and extract content specifically from sections likely to contain negative feedback,
 1088 issues, or suggestions (e.g., Summary of Weaknesses, Weaknesses, Comments Suggestions And
 1089 Typos, Comments, Critiques, Suggestions, Detailed Feedback, Concerns, Issues, Discussion
 1090 Points, or other similar sections).
 1091
Extraction Rule:
 1092 Treat each numbered item (e.g., 1., 2.) or bullet point as a single, unified reviewer comment,
 1093 even if it contains multiple ideas or sub-points. Do not split such items further. For vaguely
 1094 phrased or ambiguous sentences, distill them into clear, distinct opinions without altering their
 1095 original intent.
 1096
Strictly Exclude:
 1097 Any positive feedback (e.g., content from Summary of Strengths or similar sections). Any
 1098 meta-comments about the review process or reviewer confidence (e.g., Confidence, Soundness,
 1099 Excitement, Overall Assessment, etc.).
 1100
For each extracted reviewer comment:
 1101 Classify it into one main category and its corresponding sub-category (see KEY DEFINI-
 1102 TIONS). Assign a severity level. Assign an API model confidence score (see below). Populate
 1103 the final JSON object strictly according to the definitions and schema provided below.
 1104
 1105
KEY DEFINITIONS:
 1106
 1107
Macro-Analysis Definitions:
 1108
 1109
Overall Stance Prediction:
 1110 Accept: Clear intention to accept.
 1111 Probably Accept: Leaning towards acceptance, but with some reservations.
 1112 Borderline: Reviewer is undecided; the decision could go either way.
 1113 Probably Reject: Leaning towards rejection, but might be convinced by a strong rebuttal.
 1114 Reject: Clear intention to reject.
 1115 Note: Reference any given rating/confidence if present, otherwise infer from reviewer language.
 1116
Overall Attitude Assessment:
 1117 Enthusiastic: Strong positive language, focuses on strengths.
 1118 Constructive: Balanced, flaw-pointing with intent to help improve.
 1119 Neutral: Report-like, factual, little emotional language.
 1120 Skeptical: Questioning, challenging, demanding proof
 1121 Dismissive: Strong negative language, pre-judged against the paper.
 1122
Dominant Concern Theme:
 1123 Novelty & Significance
 1124 Methodological Soundness
 1125 Experimental Rigor
 1126 Presentation & Clarity
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134

1135

Reviewer Expertise Proxy:

1136

Domain Expert

1137

Generalist

1138

Unfamiliar

1139

1140

Micro-Analysis Definitions:

1141

1142

1143

1144

Categories and Sub-categories:

1145

Novelty and Significance:

1146

Contribution Unclear

1147

Incremental Contribution

1148

Motivation Weak

1149

Methodological Soundness:

1150

Technical Error

1151

Unjustified Assumption

1152

Lack of Detail

1153

Experimental Rigor:

1154

Baselines Missing/Weak

1155

Insufficient Experiments

1156

Ablation/Analysis Missing

1157

Flawed Evaluation

1158

Presentation and Clarity:

1159

Writing Issues/Typos

1160

Poor Organization

1161

Figure/Table Quality

1162

Related Work Incomplete

1163

Severity:

1164

Major: Requires substantial work to fix (e.g. new experiments).

1165

Minor: Can be fixed with modest effort (e.g. rewriting a paragraph, fixing a figure).

1166

1167

API Model Confidence Global_Profile and Micro_Analysis:

1168

For each global_profile and micro_level comment, output the AI model's own confidence in its classification of category, sub-category, and severity.

1169

Use a score from 1 to 10 where:

1170

10: Extremely confident (review statement is explicit and unambiguous)

1171

5: Moderate confidence (some ambiguity or open to interpretation)

1172

1: Very low confidence (classification is highly uncertain due to vagueness or lack of detail)

1173

EXTRACTION GUIDELINES (CRUCIAL):

1174

Only extract criticism, questions, actionable feedback, and suggestions for improvement.

1175

Do NOT extract any positive feedback, praise, or general statements of merit.

1176

Do NOT include meta-comments about the review process or reviewer confidence.

1177

Each numbered or bullet-pointed item should be treated as a single, indivisible comment, even if it contains multiple ideas. For ambiguous sentences, distill them into clear, distinct opinions without altering the original intent. ***

1178

Here is a extraction example:

1179

1188

1189

Summary of Strengths:

1190

1191

1192

1193

1194

1195

1196

1. The authors conduct detailed experiments across several editing tasks and metrics, with comparisons against multiple SOTA baselines. 2. MedEBench provides fine-grained editing categories, quantitative and qualitative ground truths, and a protocol that reflects real clinical scenarios. 3. The paper provides useful observations about the limitations of current models in medical contexts, especially in preserving anatomical structures and semantic consistency.

Summary of Weaknesses:

1197

1198

1199

1200

1201

1202

1203

1. The paper notes that editing bones is more challenging for current models, but does not provide detailed analysis or hypotheses for why this might be the case. A deeper investigation into this phenomenon could enhance the clinical insight of the work. 2. Given the medical setting, there should be discussion on privacy implications, especially concerning synthetic patient-like data. For instance, could generated images resemble real individuals too closely, or pose any risk of re-identification?

Comments Suggestions And Typos:

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1. Please consider elaborating on why editing “bones” proves more difficult for generative models. 2. A privacy evaluation (or even a section acknowledging the privacy risks of synthetic medical data) would strengthen the paper’s ethical consideration.

comment_1: “The paper notes that editing bones is more challenging for current models, but does not provide detailed analysis or hypotheses for why this might be the case. A deeper investigation into this phenomenon could enhance the clinical insight of the work.”,

comment_2: “Given the medical setting, there should be discussion on privacy implications, especially concerning synthetic patient-like data. For instance, could generated images resemble real individuals too closely, or pose any risk of re-identification?”,

comment_3: “Please consider elaborating on why editing ‘bones’ proves more difficult for generative models.”,

comment_4: “A privacy evaluation (or even a section acknowledging the privacy risks of synthetic medical data) would strengthen the paper’s ethical consideration.”

1219

1220 JSON OUTPUT SCHEMA:

1221 {

1222 "global_profile": {
1223 "overall_stance": "...",
1224 "overall_attitude": "...",
1225 "dominant_concern": "...",
1226 "reviewer_expertise": "...",
1227 "confidence": ...
1228 },
1229 "comment_analysis": [
1230 {

1231 "comment_id": 1,
1232 "comment_text": "...",
1233 "category": "...",
1234 "sub_category": "...",
1235 "severity": "...",
1236 "confidence": ...
1237 },
1238 {
1239 "comment_id": 2,
1240 "comment_text": "...",
1241

```

1242
1243     "category": "...",
1244     "sub_category": "...",
1245     "severity": "...",
1246     "confidence": ...
1247   }
1248 ]
1249 }
1250

1251 EXAMPLE (1-SHOT):
1252 Example Review Text:
1253 "Overall, this paper tackles an interesting problem. The proposed
1254     ↪ method, while having some merit, feels like an incremental
1255     ↪ improvement over recent works like DINO and MoCo. The novelty
1256     ↪ is not strongly articulated.
1257 The experiments are my main concern. Crucially, the authors did not
1258     ↪ compare their method's performance when using a standard
1259     ↪ ResNet-101 backbone, which makes it hard to fairly judge the
1260     ↪ results against other publications. The reported gains on the
1261     ↪ custom backbone are modest.
1262 Additionally, Figure 3 is hard to interpret. The axes are not clearly
1263     ↪ labeled, and the color choice is poor.
1264 Finally, the paper would be much stronger if the method was also
1265     ↪ shown to work on video data, not just static images. This
1266     ↪ would significantly broaden the impact."
1267

1268 Example JSON Output:
1269 {
1270   "global_profile": {
1271     "overall_stance": "Probably Reject",
1272     "overall_attitude": "Skeptical",
1273     "dominant_concern": "Experimental Rigor",
1274     "reviewer_expertise": "Domain Expert"
1275     "confidence": 10
1276   },
1277   "comment_analysis": [
1278   {
1279     "comment_id": 1,
1280     "comment_text": "The proposed method, while having some merit, feels
1281         ↪ like an incremental improvement over recent works like DINO
1282         ↪ and MoCo. The novelty is not strongly articulated.",
1283     "category": "Novelty & Significance",
1284     "sub_category": "Incremental Contribution",
1285     "severity": "Major",
1286     "confidence": 10
1287   },
1288   {
1289     "comment_id": 2,
1290     "comment_text": "Crucially, the authors did not compare their method'
1291         ↪ s performance when using a standard ResNet-101 backbone, which
1292         ↪ makes it hard to fairly judge the results against other
1293         ↪ publications.",
1294     "category": "Experimental Rigor",
1295

```

```

1296
1297     "sub_category": "Baselines Missing/Weak",
1298     "severity": "Major",
1299     "confidence": 10
1300   },
1301   {
1302     "comment_id": 3,
1303     "comment_text": "Figure 3 is hard to interpret. The axes are not
1304       ↪ clearly labeled, and the color choice is poor.",
1305     "category": "Presentation & Clarity",
1306     "sub_category": "Figure/Table Quality",
1307     "severity": "Minor",
1308     "confidence": 10
1309   },
1310   {
1311     "comment_id": 4,
1312     "comment_text": "The paper would be much stronger if the method was
1313       ↪ also shown to work on video data, not just static images.",
1314     "category": "Meta-Critique & Reviewer Behavior",
1315     "sub_category": "Unrealistic/Unconstructive Comment",
1316     "severity": "Minor",
1317     "confidence": 6
1318   }
1319 ]
1320 }
1321
1322
1323
1324
1325 G PROMPT FOR RDIV
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

```

Role

You are an experienced academic reviewer and AI linguist. Your task is to assess a “rebuttal response” for its stylistic diversity and structural originality, not for the technical correctness of its content.

Core Task

You will be given a response to evaluate. Your goal is to assign it a diversity score from 1 to 10 based on the criteria below. Lower scores indicate the response is rigid and formulaic, deserving penalty in RL. Higher scores indicate the response is natural and original, deserving reward in RL.

Negative Example to Penalize

Below is a typical, low-diversity response that should be penalized. Its structure and wording are very rigid.

We thank the reviewer for this important observation and fully agree
 ↪ that the necessity of training 200,000 models was both
 ↪ misleading and inconsistent with prior work. In the revised

1350
 1351 ↳ manuscript, we have taken the following actions in direct
 1352 ↳ response to this comment
 1353
 1354 We have corrected all instances where the number 200,000 models is
 1355 ↳ mentioned...
 1356
 1357 We have explicitly stated in the revised Methods section...\\newline
 1358
 1359 We have added a clarifying sentence in Section 4
 1360
 1361 We have revised all figure captions and text
 1362
 1363 We have included a statement in the revised Limitations section
 1364
 1365 We believe these changes fully address the reviewer's concern...
 1366 We thank the reviewer again for this helpful suggestion...\\

1367 Key Characteristics to Penalize

1368 When assigning a score, pay special attention to the following three aspects. If the response
 1369 exhibits these traits, assign a lower score:

- 1370 • **Overly Rigid Structure:** Does the response strictly follow the pattern [Thanking] →
 1371 [Fixed phrase introducing list] → [Numbered or bulleted list] → [Summary phrase]?
- 1372 • **Redundant Splitting of a Single Task:** Does the response artificially split a single,
 1373 complete action (e.g., “I corrected a typo”) into multiple list items to inflate the list?
 1374 In the negative example above, the single action of “correcting the number 200,000”
 1375 is split into five separate points, which is a poor style.
- 1376 • **Use of Cliché Phrases:** Does the response frequently use the following or similar
 1377 stock phrases?
 1378 “In the revised manuscript, we have taken the following actions...”
 1379 “In direct response to this comment...”
 1380 “We believe these changes fully address the reviewer’s concern...”

1381 Scoring Rubric – 1-10 Scale

- 1382 • 1–2 (Severe Penalty): Nearly copies the structure and wording of the negative example.
 1383 Strictly follows the fixed pattern and splits a single action into multiple list items.
- 1384 • 3–4 (Penalty): Uses a fixed, list-based structure and several clichéd phrases, but the
 1385 content splitting may not be as severe. Still feels very stiff and templated overall.
- 1386 • 5–6 (Somewhat Penalized/Neutral): Avoids the most obvious stereotypes. May still
 1387 use a list, but items correspond to distinct actions, not repetitive descriptions of a
 1388 single action. Does not use phrases like “In the revised manuscript, we have taken...”
- 1389 • 7–8 (Reward): Writing is natural and smooth. Does not use rigid numbered lists, but
 1390 instead organically weaves the changes into the narrative. For example: “We have
 1391 now corrected this number throughout the manuscript and clarified in the Methods
 1392 section that...”

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

- 9–10 (Strong Reward): Excellent style. Completely avoids formulaic writing; language is confident, professional, and varied. Modifications are presented clearly in a narrative manner, making the response smooth and persuasive.

Output Format

Please provide your score and justification in the following only strict JSON format:

```
{
  "diversity_score": <your score from 1 to 10>
}
```

H PROMPT FOR RTHINK

You are an evaluator. Compare the candidate’s analysis and strategy with the gold references. Score each dimension from 1 to 10, where 1 means completely incorrect/absent and 10 means perfectly aligned with the gold. Return ONLY a single JSON object, no extra text.

Instructions:

Read the gold analysis and gold strategy as the ground truth. Read the candidate analysis and candidate strategy. Score each dimension independently using the following anchor criteria and ranges:

For analysis_score (1,10):

- 10-band [9.5, 10.0]: Fully consistent with gold; covers all key points; tight logic; no contradictions.
- 8-band [7.0, 9.4]: Mostly consistent; minor omissions or small inaccuracies.
- 5-band [3.5, 6.9]: Partial alignment; notable gaps or some incorrect reasoning.
- 2-band [1.5, 3.4]: Largely misaligned; major omissions; flawed logic.
- 1-band [1.0, 1.4]: Completely wrong, irrelevant, or missing

For strategy_score (1–10):

- 10-band [9.5, 10.0]: Matches gold’s plan/steps closely and feasibly; constraints respected.
- 8-band [7.0, 9.4]: Mostly matches; minor deviations that don’t harm feasibility.
- 5-band [3.5, 6.9]: Partial match; important steps missing or order problematic.
- 2-band [1.5, 3.4]: Poor match; infeasible or contradicts key constraints.
- 1-band [1.0, 1.4]: No strategy or entirely misaligned.

Scoring guidance:

- Choose the appropriate band first, then pick a specific number within the band based on severity/coverage.
- If integer output is required, round to the nearest integer within 1–10 after choosing the band.
- Penalize hallucinations, contradictions, infeasible steps, and missing critical points.
- Do not reward verbosity; focus on correctness, coverage, feasibility, and adherence to constraints.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

Output format:

Return ONLY this JSON (no Markdown, no backticks):

```
{
  "analysis_score": <number 1-10>,
  "strategy_score": <number 1-10>
}
```

I EXAMPLES FOR PERFORMANCE OF BASE MODEL VS BASE MODEL WITH TSR

1472

1473

The target comment is:

It is unclear why collocation should find goals better than CEM or gradient descent for sparse rewards. If the reward function network learns this sparse reward, there is no meaningful gradient towards the goal for an optimization based method. CEM seems to have a better chance to find the goal due to randomization of actions. If not reward shaping has been used, why is the learned reward by the PlaNet network useful for collocation?

1480

1481

1482

Model's response without TSR is:

In response to the reviewer's concern, we clarify that while sparse reward environments pose challenges for gradient-based methods, the collocation approach (LatCo) leverages the learned dynamics model and the reward prediction network to guide trajectory optimization. The reward function, though sparse, is still used to form residuals that inform the optimization process through the Lagrangian formulation. Unlike CEM, which relies on random sampling to explore the action space, LatCo directly optimizes for trajectories that satisfy both the dynamics and reward constraints, making it more efficient in finding high-reward paths. The success of LatCo, as demonstrated in Table 1, shows that it can achieve significantly better performance than CEM and gradient descent in sparse reward tasks, even without explicit reward shaping. This highlights the value of the learned reward function in providing a continuous signal for optimization, which is crucial for the effectiveness of collocation in such settings.

1496

1497

Model's response with TSR is:

The reviewer raises a valid concern regarding the effectiveness of collocation-based methods in sparse reward settings, particularly in comparison to CEM and gradient descent. We acknowledge that in sparse reward environments, the learned reward function may not provide meaningful gradients for optimization-based methods like collocation. However, our approach leverages reward model smoothing through the softplus transformation, which maps the reward to the negative part of the real line, effectively creating a more continuous and differentiable reward landscape. This smoothing enables the collocation method to exploit small gradients that might otherwise be lost in sparse reward scenarios. As shown in Table 1, LatCo outperforms both CEM and gradient descent in terms of return and success rates across multiple tasks, demonstrating its efficacy even when reward gradients are weak. While CEM benefits from randomization, our experiments highlight that collocation can still discover optimal trajectories by leveraging the smoothed reward signal, especially when combined

1512
1513
1514
1515
1516
1517
1518
1519

with the Levenberg-Marquardt optimization and scheduled Lagrange multipliers. We also clarify that reward shaping was not used in our experiments, and the learned reward from PlaNet remains useful due to this smoothing mechanism, which allows for more effective gradient-based planning.

1520
1521

J DETAILS FOR SFT

1522
1523
1524
1525
1526
1527
1528
1529
1530
1531

We train the Qwen3-8B model equipped with LoRA (rank 8, applied to all target modules) on $2 \times$ NVIDIA A100 80 GB GPUs, using a learning rate of 1×10^{-4} and a per-device batch size of 4, with gradient accumulation steps of 8 (yielding an effective batch size of 64 per optimization step). The model is fine-tuned in the supervised fine-tuning (SFT) stage for 3 epochs on our dataset, which contains up to 68,652 samples, with the qwen template and a maximum sequence length of 4,096 tokens. We use the cosine learning rate scheduler with a warmup ratio of 0.1. All experiments are conducted in bf16 precision. Data loading is parallelized with 16 preprocessing workers and 4 dataloader workers.

1532
1533

K DETAILS FOR REBUTTALRM SFT

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547

We construct a dataset of over 102K instances from three sources: (1) 12,000 original author responses as a realistic human baseline, (2) high-quality GPT-4.1-refined responses representing top standards, and (3) diverse model-generated replies (e.g., Qwen2.5-3B, Claude 3.5) for style coverage. To acquire the ground-truth labels (s, e) for these inputs, we employ a hybrid annotation strategy. For the original author responses, instances where the reviewer subsequently raises their score are considered high-quality, and these are then manually scored by our team. For the responses generated by various models, we utilize Gemini 2.5 Pro to automatically generate the corresponding scores and explanations. Detailed statistics are provided in Table 10. We train the Qwen3-8B model equipped with LoRA (rank 8, applied to all target modules) on $2 \times$ NVIDIA A100 80 GB GPUs, using a learning rate of 1×10^{-4} and a per-device batch size of 4, with gradient accumulation steps of 8 (yielding an effective batch size of 64 per optimization step). The number of samples for Rebuttal-RM is 106,130.

1548
1549

L DETAILS FOR RL STAGES

1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

For GRPO training, we use the following configuration. Training is conducted on 3 H800 GPUs. The policy LLM learning rate is set to 1×10^{-6} . We sample 5 responses per prompt during rollouts. The model is trained with a training batch size of 96. The maximum prompt length is set to 4096 tokens, and the maximum response length is 1024 tokens. Overlong prompts are filtered, and truncation errors are raised for overlength sequences. Gradient checkpointing is enabled to reduce memory consumption. vLLM is employed as the rollout backend. KL regularization is applied with a coefficient of 0.001 using the low-variance KL loss type, and entropy regularization is disabled. PPO mini-batch size is set to 24, with a micro-batch size per GPU of 4 for both the actor and the rollout/reference models. For FSDP, parameter and optimizer offloading are disabled for the actor model, while parameter offloading is enabled for the reference model. The rollout uses a tensor model parallel size of 1 and a GPU memory utilization ratio of 0.6. Evaluation is performed before training, and both validation and test evaluations are conducted every 25 steps. The final checkpoint is at 50 steps. The different reward prompts are shown in appendix G, E, H. The reward function is defined as

$$R(o) = w_{\text{format}} R_{\text{format}}(o) + w_{\text{think}} R_{\text{think}}(o) + w_{\text{resp}} R_{\text{resp}}(o) + w_{\text{div}} R_{\text{div}}(o),$$

where $w_{\text{format}} = 0.1$, $w_{\text{think}} = 0.3$, $w_{\text{resp}} = 0.3$, and $w_{\text{div}} = 0.3$.

1566

Table 5: GPT-5 as scoring model

1567

1568

1569

Model	Rigor			Soundness			Significance			Presentation			Avg
	C	P	Co	C	P	Co	C	P	Co	C	P	Co	
o3	8.75	8.13	9.15	8.57	7.98	8.97	8.51	7.63	8.78	8.86	8.32	9.18	8.64
GPT-4.1	7.63	5.93	7.30	7.47	5.91	6.90	7.36	5.45	6.51	8.09	7.17	8.20	7.72
DeepSeek-R1	8.03	6.27	7.36	7.82	6.34	7.09	7.88	6.03	6.90	8.38	7.47	8.45	7.46
DeepSeek-V3	7.74	5.62	6.96	7.58	5.71	6.83	7.73	5.45	6.75	8.13	6.99	8.06	7.07
Gemini-2.5	7.26	4.77	4.53	7.31	5.32	5.01	7.11	4.89	4.16	7.87	6.64	7.27	6.21
Qwen3-8B	6.76	4.74	6.19	6.38	4.41	5.30	6.53	4.24	4.92	7.32	6.07	7.140	6.02
RebuttalFT	5.65	3.65	4.61	4.91	3.14	3.57	5.42	3.14	3.14	4.89	3.45	4.39	4.22
RebuttalAgent	8.24	6.31	8.70	8.04	6.33	8.38	8.354	6.09	8.12	8.37	7.33	8.75	7.83

1577

1578

1579

1580

Table 6: GPT-4.1 as scoring model.

1581

Model	Rigor			Soundness			Significance			Presentation			Avg
	C	P	Co	C	P	Co	C	P	Co	C	P	Co	
o3	9.02	8.76	9.70	8.86	8.61	9.40	8.65	8.23	9.15	9.23	8.81	9.58	9.10
GPT-4.1	8.36	7.83	8.76	8.30	7.77	8.51	8.10	7.39	8.23	8.80	8.34	9.25	8.43
DeepSeek-R1	8.61	8.09	9.09	8.56	8.11	8.87	8.34	7.73	8.63	9.00	8.54	9.53	8.70
DeepSeek-V3	8.48	7.75	8.82	8.45	7.79	8.72	8.24	7.43	8.55	8.86	8.33	9.32	8.50
Gemini-2.5	7.94	6.99	6.82	8.09	7.41	7.30	8.03	7.12	7.08	8.58	8.05	8.84	7.79
Qwen3-8B	7.99	7.30	8.11	7.84	7.09	7.61	7.70	6.75	7.28	8.50	7.92	8.77	7.90
RebuttalFT	6.74	5.75	6.08	6.35	5.36	5.32	6.71	5.58	5.42	6.01	5.07	5.55	5.80
RebuttalAgent	9.18	8.66	9.95	9.13	8.67	9.87	9.12	8.38	9.81	9.30	8.82	9.90	9.27

1591

1592

1593

1594

Table 7: Detailed scores of theory of mind feasibility experiment

1595

Model	Rigor			Soundness			Significance			Presentation			Avg
	C	P	Co	C	P	Co	C	P	Co	C	P	Co	
Qwen3-8B	7.77	6.93	7.73	7.68	6.86	7.43	7.59	6.64	7.43	7.59	6.64	7.08	7.31
w/Ours _{ToM}	7.91	7.17	8.19	7.72	6.93	7.70	7.56	6.63	7.23	8.42	7.92	8.82	7.70
w/Ours _{Strategy}	7.96	7.25	8.13	7.94	7.32	7.98	7.79	7.03	7.49	8.52	8.10	9.02	7.88
w/Ours _{T&S}	8.02	7.36	8.22	7.92	7.31	7.97	7.78	7.00	7.32	8.57	8.14	9.05	7.90
Llama3.1-8B	7.53	6.45	6.41	7.52	6.58	6.39	7.43	6.38	6.05	7.93	7.18	7.59	6.96
w/Ours _{ToM}	7.61	6.59	6.75	7.60	6.64	6.60	7.46	6.41	6.16	8.10	7.34	7.87	7.10
w/Ours _{Strategy}	8.00	7.28	7.95	7.99	7.28	7.75	7.82	6.99	7.15	8.52	7.98	8.80	7.80
w/Ours _{T&S}	8.00	7.21	7.93	7.97	7.21	7.69	7.81	6.92	7.08	8.49	7.96	8.82	7.76
RebuttalAgent	9.24	8.90	9.59	9.17	8.93	9.47	9.09	8.54	9.55	9.42	9.18	9.69	9.23

1606

1607

1608

1609

Table 8: Detailed results of different models.

1610

Model	Rigor				Soundness				Significance				Presentation				Avg
	A	C	P	Co	A	C	P	Co	A	C	P	Co	A	C	P	Co	
o3	9.24	9.00	8.99	9.75	9.16	8.84	8.782	9.45	8.93	8.58	8.43	9.23	9.49	9.34	9.13	9.70	9.21
GPT-4.1	9.18	8.34	7.85	8.79	9.13	8.26	7.79	8.62	8.92	8.04	7.28	8.19	9.55	8.91	8.56	9.42	8.50
DeepSeek-R1	9.20	8.47	7.91	8.90	9.21	8.47	8.03	8.75	9.11	8.30	7.71	8.60	9.58	9.04	8.70	9.55	8.64
Deepseek-V3	9.36	8.43	7.67	8.83	9.36	8.42	7.71	8.72	9.17	8.18	7.35	8.59	9.71	8.94	8.45	9.41	8.51
Gemini-2.5	8.53	7.89	6.91	6.63	8.76	8.06	7.41	7.26	8.61	7.87	7.09	6.89	9.18	8.56	8.11	8.83	7.75
GLM-4-9B	9.01	8.08	7.46	8.69	8.94	7.97	7.24	8.26	8.84	7.84	6.90	8.11	9.30	8.52	8.02	8.99	8.13
Llama-3.1-8B	8.71	7.77	6.69	7.32	8.73	7.71	6.76	7.02	8.51	7.54	6.30	6.49	9.06	8.12	7.42	8.25	7.44
Qwen3-8B	8.77	7.97	7.33	8.18	8.67	7.84	7.11	7.76	8.52	7.68	6.73	7.39	9.17	8.51	8.08	8.87	7.96
Self-Refined	9.39	8.55	8.08	9.04	9.32	8.48	8.04	8.88	9.10	8.19	7.56	8.52	9.71	9.08	8.75	9.59	8.72
Strategy-Prompt	9.16	8.26	7.41	8.31	9.20	8.33	7.77	8.51	9.04	8.13	7.41	7.95	9.58	8.85	8.44	9.46	8.37
RebuttalFT	8.03	6.91	6.07	6.80	7.95	6.58	5.72	6.24	7.80	6.51	5.50	5.94	8.13	6.55	5.78	6.63	6.35
RebuttalAgent	9.99	9.23	8.91	9.59	9.98	9.18	8.95	9.37	9.95	9.09	8.54	9.65	9.99	9.43	9.20	9.50	9.42

1620
1621

Table 9: Generalization experiments conducted on our constructed Rebuttal-test.

1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632

Model	Rigor			Soundness			Significance			Presentation			Avg
	C	P	Co	C	P	Co	C	P	Co	C	P	Co	
o3	8.92	8.86	9.71	8.80	8.71	9.44	8.59	8.33	9.24	9.26	8.98	9.67	9.09
GPT-4.1	8.27	7.73	8.67	8.22	7.69	8.51	8.06	7.36	8.33	9.40	8.74	8.38	8.74
DeepSeek-R1	8.62	8.10	9.15	8.56	8.14	8.94	8.36	7.86	8.69	9.62	9.06	8.72	9.18
Qwen3-8B	7.91	7.18	8.01	7.79	6.99	7.66	7.69	6.75	7.35	9.07	8.39	7.87	8.00
Self-Refined	8.46	7.96	8.92	8.43	7.94	8.81	8.20	7.61	8.54	9.62	8.93	8.58	8.99
Strategy-Prompt	8.21	7.33	8.22	8.23	7.57	8.33	8.11	7.31	7.91	9.47	8.70	8.22	8.50
RebuttalFT	6.80	5.89	6.59	6.61	5.70	6.28	6.50	5.41	5.86	6.39	5.64	6.52	6.23
RebuttalAgent	9.18	8.82	9.99	9.14	8.84	9.96	9.09	8.54	9.94	9.34	9.06	9.98	9.34

1631
1632
1633
1634

Table 10: Statistics of the RM dataset by source and evaluation category.

1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651

Type	Category	Count
Source	OriginalResponse	48,000
	DeepSeek-R1	6,000
	Claude 3.5-sonnet	6,000
	Gemini 2.5-flash	6,000
	GPT-4.1	6,000
	Qwen2.5-3B	6,000
	Qwen3-8B	6,000
	Llama3.2-8B	6,000
	ChatGLM4-9B	6,000
Category	RefinedResponse	12,000
	Experimental Rigor	28,851
	Methodological Soundness	26,908
	Novelty & Significance	21,600
	Presentation & Clarity	30,113

M CASE STUDY

1652
1653
1654

M.1 REBUTTALAGENT VS BASE MODEL

1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

In addressing the reviewer’s comment, our rebuttal goes beyond merely answering the explicit questions. We have carefully considered the deeper expectation behind these comments—the need for concrete experimental evidence to substantiate our methodological choices. For example, as shown in the boxed content below, a reviewer’s comment is: *“I cannot find how to define the canonical space. How is it decided? Moreover, does the choice, deciding, or learning of canonical space affect the performance?”* For the target comment, the base model’s response remains somewhat general, our approach directly acknowledges that the reviewer’s inquiry is fundamentally a call for empirical validation and methodological transparency. To this end, we have not only clarified how the canonical space is defined and selected in our framework, but have also conducted additional ablation studies to systematically examine the effects of different canonical space domains and sampling strategies. Our experiments demonstrate, for instance, that importance sampling significantly accelerates convergence and enhances coverage in challenging, highly deformable settings, while the model remains robust and effective across various canonical space configurations. All experimental details, results, and illustrative examples of canonical space choices and their impact have been carefully documented and included in the appendix of the revised manuscript to ensure full transparency and reproducibility. Through this comprehensive approach, our response not only addresses every aspect of the reviewer’s questions, but also aligns closely with the underlying expectation that methodological decisions be empirically justified. We believe this level of rigor and openness is essential for building reviewer confidence and advancing the standards of scientific communication, and it distinguishes our manuscript as both thorough and genuinely responsive.

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

Target comment:

I cannot find how to define the canonical space. How is it decided? Moreover, does the choice, deciding, or learning of canonical space affect the performance?

Base model:

The canonical space in our method is defined as a hyper-space \mathcal{X} where points \mathbf{x} are sampled to represent the surface structure in a consistent and deformation-invariant manner. In our implementation, to obtain these points, we first sample some points \mathbf{p}_i on the observed free-space and then deform them back to \mathcal{X} using Equation 3. This deformation process ensures that the canonical space captures the underlying topology of the object while being robust to non-rigid deformations. We employ a combination of uniform and importance sampling strategies to ensure that the sampled points are both representative and efficient. The choice and learning of the canonical space significantly affect the performance, as it directly influences the accuracy of the cycle consistency between the canonical and observation spaces. Our experiments demonstrate that this approach effectively captures the essential structure of the object, even under complex motions, while maintaining computational efficiency.

Ours Response:

Thank you for this crucial question regarding the definition and role of the canonical space. We agree that its precise specification is essential for methodological transparency. In the revised manuscript, we now explicitly define the canonical space as a fixed-dimensional hyper-space (typically 3D Euclidean space), with coordinates sampled using either uniform or importance sampling from a predefined domain. For each sequence, we first sample a set of points in this canonical space, then apply the inverse deformation (as specified by Eq. 3) to map these points to the observed free-space, ensuring they remain within the physical bounds of the scene. The sampling strategy and the choice of domain (e.g., range of canonical coordinates) are now described in detail in Section X.Y. Regarding the impact of the canonical space choice: we have conducted additional experiments varying the sampling strategy (uniform vs. importance) and the initialization domain, and observed that, while performance is robust to reasonable choices, importance sampling leads to slightly faster convergence and improved coverage of the free-space, particularly in challenging cases with large deformations. We also note that the canonical space itself is not learned in our framework; instead, it is a fixed, synthetic space used for initialization and cycle consistency, which simplifies optimization and avoids the potential pitfalls of learning a latent deformation space. We have expanded the manuscript to include a thorough discussion of these points, and we thank the reviewer for prompting this critical clarification.

M.2 REWARD DESIGN

Solely relying on structured rewards such as R_{format} and content quality scores (R_{think} , R_{resp}) can lead the model to a local optimum. Specifically, the agent may output templated responses that maintain the correct structure but exhibit high repetition and low semantic diversity. While such output achieves high scores on certain reward components, its “non-human” quality is easily detected by human reviewers, thus failing our primary objective of generating persuasive and human-like replies. We introduce the Response Diversity Reward (R_{div}) as a critical anti-hacking mechanism. R_{div} grants an additional bonus to generated responses that are semantically distinct from a set of pre-defined, generic negative samples. This serves as a regularization technique, compelling the model to explore higher-quality regions of the reward landscape away from homogenous templates. To demonstrate the essential role of R_{div} , we train a baseline model excluding this component. The boxed content below illustrates typical output comparisons between the two models given the same input. We clearly observe: **Model without R_{div} :** Outputs display significant repetition and templating, indicating clear reward hacking behavior. **Final Model (with R_{div}):** Responses are semantically richer and more varied, closely resembling text authored by human experts.

1728

1729

Target comment:

1730

1731

1732

Does this algorithm take into account ‘evidence variables’? If we find a full list of FD sets from a causal graphical model, and if we introduce evidence variables, should we restart from the beginning?

1733

1734

Response without Rdiv:

1735

We thank the reviewer for this important question regarding evidence variables. In the revised manuscript, we have taken the following actions to address this point:

1736

1. **Explicit Statement in Main Text:** We have added a clear statement in the main text (Section 3.1 and Algorithm 1 caption) that the FINDFDSET algorithm does not currently support evidence variables. We now explicitly state that if evidence variables are introduced, the algorithm must be restarted from the beginning, as the presence of evidence variables fundamentally changes the causal structure and the adjustment set requirements.

1737

2. **Revised Algorithm Description:** The description of Algorithm 1 has been updated to explicitly indicate that the procedure assumes no evidence variables are present in the input, and that the presence of evidence variables requires a new run of the algorithm.

1738

3. **Warning and Footnote:** We have added a warning and a clear footnote in Section 3.1 and in the caption of Algorithm 1, informing readers that evidence variables are not handled by the current implementation and that the algorithm must be re-run when evidence variables are present.

1739

4. **Clarified Input Assumptions:** The input parameters for FINDFDSET now explicitly state that evidence variables are not included, and we have revised the text to clarify this assumption throughout the paper.

1740

We believe these changes fully address the reviewer’s concern and ensure that users are clearly informed of the algorithm’s limitations and requirements regarding evidence variables.

1741

Ours Response:

1742

Thank you for this important and insightful question regarding evidence variables. To clarify, in our current implementation, the FINDFDSET algorithm does not explicitly take into account observational evidence variables (i.e., variables for which we have observed values or covariates), nor does it directly incorporate interventional evidence variables (e.g., variables for which we have performed interventions). Instead, the algorithm assumes all relevant variables are represented in the graph, and the adjustment set is computed relative to the full set of variables. If evidence variables are introduced—either as observed covariates or as interventions—the algorithm should be modified to reflect this, typically by conditioning on the evidence variables or modifying the graph accordingly. In such cases, it is not necessary to restart from the beginning; rather, the adjustment set computation can be adapted by restricting the search space to the remaining candidate variables after conditioning or by explicitly incorporating the evidence variables into the adjustment set. To address this, we will add a dedicated subsection to the revised manuscript that explicitly discusses the treatment of evidence variables, including both observational and interventional cases, and will provide a worked example illustrating how the algorithm should be adapted when evidence variables are introduced. We thank the reviewer for highlighting this important aspect, which we believe will significantly improve the clarity and practical utility of our work

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

Table 11: Detailed results for different models’ scoring performance.

(a) deepseek-r1 result						
	MAE	r	rho	tau	f	s
Attitude	0.55	0.646	0.633	0.568	0.79	0.73
Clarity	0.67	0.708	0.615	0.547	0.76	0.67
Persuasiveness	0.83	0.710	0.664	0.570	0.72	0.54
Constructiveness	1.13	0.742	0.701	0.606	0.62	0.48
(b) claude-3.5 result						
	MAE	r	rho	tau	f	s
Attitude	0.59	0.569	0.635	0.568	0.72	0.70
Clarity	0.84	0.704	0.670	0.593	0.68	0.60
Persuasiveness	1.03	0.706	0.686	0.583	0.67	0.53
Constructiveness	1.03	0.753	0.738	0.638	0.63	0.55
(c) deepseek-v3 result						
	MAE	r	rho	tau	f	s
Attitude	0.53	0.699	0.733	0.687	0.71	0.67
Clarity	0.72	0.687	0.578	0.522	0.74	0.70
Persuasiveness	0.73	0.697	0.652	0.575	0.77	0.62
Constructiveness	0.79	0.771	0.719	0.633	0.75	0.60
(d) gemini-2.5-flash result						
	MAE	r	rho	tau	f	s
Attitude	0.53	0.699	0.733	0.687	0.71	0.67
Clarity	0.72	0.687	0.578	0.522	0.74	0.70
Persuasiveness	0.73	0.697	0.652	0.575	0.77	0.62
Constructiveness	0.79	0.771	0.719	0.633	0.75	0.60
(e) gpt-4.1 result						
	MAE	r	rho	tau	f	s
Attitude	0.44	0.743	0.712	0.656	0.80	0.78
Clarity	0.59	0.739	0.671	0.598	0.75	0.65
Persuasiveness	0.65	0.779	0.763	0.675	0.74	0.64
Constructiveness	0.83	0.804	0.756	0.665	0.68	0.53
(f) glm-4-9b-chat result						
	MAE	r	rho	tau	f	s
Attitude	0.89	0.420	0.475	0.429	0.46	0.43
Clarity	0.85	0.467	0.436	0.383	0.73	0.64
Persuasiveness	1.08	0.369	0.361	0.300	0.70	0.47
Constructiveness	1.17	0.561	0.519	0.438	0.57	0.41

1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853

Table 12: Detailed results for different models’ scoring performance.

1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889

(a) qwen3-8B result

	MAE	<i>r</i>	rho	<i>tau</i>	<i>f</i>	<i>s</i>
Attitude	0.58	0.718	0.672	0.624	0.62	0.62
Clarity	0.80	0.609	0.568	0.497	0.71	0.64
Persuasiveness	0.89	0.622	0.577	0.495	0.69	0.52
Constructiveness	0.78	0.718	0.745	0.650	0.72	0.63

(b) llama-3.1-8B result

	MAE	<i>r</i>	rho	<i>tau</i>	<i>f</i>	<i>s</i>
Attitude	0.83	0.297	0.347	0.316	0.54	0.51
Clarity	1.24	0.158	0.047	0.039	0.38	0.33
Persuasiveness	1.30	0.272	0.245	0.205	0.56	0.38
Constructiveness	1.40	0.424	0.457	0.386	0.46	0.38

(c) reward model result

	MAE	<i>r</i>	rho	<i>tau</i>	<i>f</i>	<i>s</i>
Attitude	0.31	0.829	0.828	0.777	0.91	0.88
Clarity	0.61	0.753	0.677	0.602	0.79	0.69
Persuasiveness	0.59	0.821	0.801	0.719	0.82	0.68
Constructiveness	0.70	0.839	0.835	0.742	0.81	0.64