
Under review as a conference paper at ICLR 2024

BINDER: HIERARCHICAL CONCEPT REPRESENTATION
THROUGH ORDER EMBEDDING OF BINARY VECTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

For natural language understanding and generation, embedding concepts using
an order-based representation is an essential task. Unlike traditional point vector
based representation, an order-based representation imposes geometric constraints
on the representation vectors for explicitly capturing various semantic relation-
ships that may exist between a pair of concepts. In existing literature, several ap-
proaches on order-based embedding have been proposed, mostly focusing on cap-
turing hierarchical relationships; examples include Order Embedding, Poincaré
embedding on hyperbolic space, and Box Embedding. Box embedding creates
region-based rich representation of concepts, but along the process it sacrifices
simplicity, requiring a custom-made optimization scheme for learning the rep-
resentation. Poincaré embedding improves embedding quality by exploiting the
ever-expanding property of hyperbolic space, but it also suffers from the same fate
as box embedding as gradient descent like optimization is not simple in the hyper-
bolic space. In this work, we propose BINDER, a novel approach for order-based
representation. BINDER uses binary vectors for embedding, so the embedding
vectors are compact with order of magnitude smaller footprint than other meth-
ods. BINDER uses a simple and efficient optimization scheme for learning repre-
sentation vectors with a linear time complexity. Our comprehensive experimental
results show that BINDER is very accurate, yielding perfect accuracy on the recon-
struction task. Also, BINDER can learn concept embeddings just from the direct
edges, whereas all existing order-based approaches rely on indirect edges. For
example, BINDER achieves 18% higher accuracy (98.4%) over the second best
Order Embedding model for our WordNet Nouns dataset (with 743,241 edges) in
0% transitive closure experiment setup.

1 INTRODUCTION

Ontologies transcribe the knowledge of a domain through formal listing of concepts along with
various semantic relations that may exist among the concepts. The most important among these
relations is hypernym-hyponym, which captures the is-a relation between a specialized and a general
concept of a domain. Such knowledge are essential for achieving optimal results in various natural
language generation tasks, such as image caption generation (Karpathy & Fei-Fei, 2015; Vinyals
et al., 2015), question-answering (Dai et al., 2016; Ren et al., 2020; Yao et al., 2019), and taxonomy
generation (Nakashole et al., 2012; Wu et al., 2012). For example, using an appropriate ontology,
an image caption generator can opt for a generic text “a person is walking a dog” instead of a more
informative text, “a woman is walking her dog”, if the model is not very confident about the gender
of the person walking the dog. However, building a large conceptual ontology for a domain is a
difficult task requiring gigantic human effort, so sophisticated machine learning models, which can
predict is-a links between pairs of concepts in an ontology, is of high demand.

The task of predicting is-a relationship between two concepts in an ontology can be viewed as a
link prediction task in a concept graph, or formally speaking, in an ontology chart. Although link
prediction (Hasan & Zaki, 2011) is a well-studied task, it did not receive much attention by the NLP
or machine learning researchers. A good number of works (Galárraga et al., 2013; Lao et al., 2011)
address link prediction in knowledge graphs, but they are customized for the Resource Description
Framework (RDF) type of data. Lately, node embedding using shallow (Perozzi et al., 2014; Tang
et al., 2015; Grover & Leskovec, 2016), or deep neural networks (Guo et al., 2019; Neelakantan

1

Under review as a conference paper at ICLR 2024

et al., 2015; Schlichtkrull et al., 2017; Shang et al., 2018; Nguyen et al., 2018; Yao et al., 2019)
have shown improved performance for solving link prediction tasks. The majority of these works
consider undirected graphs, so they are not suitable for predicting edges in a concept graph. Many
works (Bordes et al., 2013; He et al., 2015; Lin et al., 2015; Sun et al., 2019; Trouillon et al., 2016;
Wang et al., 2014) considered node embedding for knowledge graphs, where embedding of head
nodes, tail nodes, and relation nodes are learned, but such works are only suitable for RDF triple
based data representation.

In recent years, some progress has been made along embedding concepts which may have some se-
mantic relationships. One of the earliest efforts in this direction is a work by Vendrov et al. (2015),
which proposed order embedding. The main idea is to embed the concepts in the positive cone
Rd

+. In this embedding, if a is-a b, then their corresponding embedding vectors satisfy f(b) ≤ f(a)
element-wise. In this way, along all dimensions, the value of f(b) is smaller than that of f(a), and
a generic concept hovers more closer to the origin with smaller norm than the associated special-
ized concept. In another line of works (Nickel & Kiela, 2017; Ganea et al., 2018), which focus on
embedding trees, DAGs or tree-like graphs, hyperbolic space is used instead of Euclidean space. In
hyperbolic space, two non-intersecting straight lines diverge, allowing for the embedding of more
objects along the periphery. It is beneficial for embedding a tree structure which has exponentially
more nodes at a higher depth. The third line of work, known as box embedding (Vilnis et al., 2018; Li
et al., 2019; Dasgupta et al., 2020; 2021; Boratko et al., 2021), deviates from vector (point) embed-
ding, and instead uses a rectangular region for embedding a concept. This representation is richer
as it both helps embedding order relation and part-of relations between concepts, or overlapping
concepts, thereby overcomes some of the limitations of earlier approaches.

In this work, we propose an order embedding model that is simple, elegant and compact, and does
not suffer from the above limitations that we discussed about the existing order embedding schemes.
Our idea is to use binary vectors for order embedding, i.e. for each entity a, f(a) = a ∈ {0, 1}d.
In other words, we embed each object at a vertex of a d-dimensional non-negative unit hypercube,
where d is a user-defined parameter. The overall approach is simple, as for denoting a is-a b, we only
require that f(b)j = 1 =⇒ f(a)j = 1,∀j ∈ [1 : d], i.e., along any embedding dimension j, if bj is
1, then aj must be 1. The idea is fairly intuitive; if we consider each dimension denoting some latent
property which make something b, given that a is-a b, a also have those properties. Since it uses
bits for embedding, the embedding vectors are compact with order-of-magnitude smaller memory
footprint (see Appx. F.5) compared to other methods. Our embedding idea is elegant as it captures
the is-a relation through intent-extent philosophy of formal concept analysis (FCA) (Ganter & Wille,
1999), which is a principal way of deriving a concept hierarchy.

The major challenge for our proposed embedding idea is finding an effective optimization algorithm
for learning the embedding, as we deviated away from continuous Euclidean space and embraced
a combinatorial space. In this sense, given the training data (a collection of hyponym-hypernym
pairs), learning the embedding of the objects in the training data becomes a classical combinatorial
feasibility task, a known NP-complete problem. We use a randomized local search algorithm in-
spired by stochastic gradient descent for solving this problem. Our optimization uses a “gradient”
for each bit position to calculate a probability of flipping that bit. The idea of using gradient to flip
bit probabilistically to optimize in binary space is certainly novel. The novelty of our optimization
method from methodology perspective consists of computing a proxy of gradient for a binary space
(Section 2.4) and flip probability (Section 2.5). The contribution of this work is innovative, and
novel, both in terms of embedding idea and optimization framework. Our algorithm is very fast; the
overall computational complexity is O(ndT (|P | + |N |)), for n words and d dimensions, which is
linear in each variable. We name our method BINDER 1. We claim the following contributions:

1. We propose BINDER, a novel order embedding approach which embeds the entities at the
vertex of a d-dimensional hypercube. We show that BINDER is ideal for finding repre-
sentation of entities or concepts which exhibit hyponym-hypernym relationship. BINDER
is simple, compact, efficient, and has better generalization capacity over transitive edges
compared to existing methods in a transductive setting.

1The name Binder is an abbreviation of Binary Order Embedding.

2

Under review as a conference paper at ICLR 2024

2. BINDER uses a novel local search based optimization algorithm for solving the embedding
learning task. The proposed algorithm is simple, efficient and effective, and a proxy of
gradient descent for the combinatorial space.

3. Experiments on five benchmark datasets show that BINDER exhibits superior performance
than the existing state-of-the-art algorithms on transitive closure link prediction and recon-
struction tasks.

2 BINARY ORDER EMBEDDING (BINDER)

2.1 MOTIVATION

Our main motivation is to embed entities that have hierarchical (is-a) relations between pairs of
them. For this, one must impose order between two embedding vectors. For representing x is-a
y, one earlier work (Vendrov et al., 2015) has imposed order by requiring xi ≤ yi,∀i ∈ [1 : d]
for embedding vectors x and y in real space. BINDER uses a similar idea, but instead it uses
binary space, in which xi ≤ yi becomes xi =⇒ yi. Implication obeys the transitive property, so
BINDER’s binary representation works well for is-a relationship, which is transitive. BINDER has
the following benefits: (1) Binary representations are compact, often taking order of magnitude less
memory than real space embedding, and is computationally efficient (demonstrated in Appendix
F.5). (2) Binary representation can immediately provide representation of concepts that can be
obtained by logical operation over the given concept vectors. For instance, given vectors for the
concepts “vehicle” and “flying”, we can find a subtree of flying vehicles by taking the union of the
vehicle and flying vectors. Or, if we have representation vectors for “men’s shoe” and “women’s
shoe”, and we want a representation vector for shoe, we can obtain that by taking the intersection
of the above two vectors. Such operation can be extended to any complex Boolean operations. (3)
Binary representation is explainable in the sense that we can treat the binary representation as a
set of latent properties; a “1” value at a dimension means that the entity possesses that property,
and a “0” value means that it does not possess that property. Using this argument we can obtain
explainable embeddings, which is not immediately available for vectors in real space. We give a
small demonstration of this in Figure 1 in appendix D, where we trained our model on a small
lattice. In particular, the embedding, being a binary matrix, can be thought of as a machine-learned
object-attribute table. Such a table can be further studied by using formal concept analysis (FCA).
BINDER’s representation not only provides a simple check of two concept’s subsumption relation,
it also provides a intuitive distance measure between two related concepts. If a is-a b, the Hamming
distance of their representation gives us an indication of their distance. The number of ‘1’s in
a concept’s representation provides an indication of the narrowness of a concept. Using domain
knowledge, and by observing the distribution of ‘1’s in a column, one can further deduce which
dimension may represent which of the properties (intent). Above all of these, our experiments show
that binary representation vectors also perform well on reconstruction and link prediction tasks.

2.2 PROBLEM FORMULATION

For a concept a, BINDER embeds a through a d-dimensional binary vector, so every concept is
embedded at the vertex of a d-dimensional non-negative unit hypercube, where d is a user-defined
parameter. If a is-a b, and in the embedding space a and b are their representation, then BINDER
satisfies bk = 1 =⇒ ak = 1,∀k ∈ {1, . . . , d}. This embedding idea entails from the observation
that when a is-a b, a must possess all the properties that b possesses. In BINDER’s embedding, an
’1’ in some representation dimension denotes “having a latent property”; say j’th dimension of b
has a value of 1, i.e., b possesses the property j, then a must also possess the property j, which is
captured by the above requirement.

To learn embedding vectors for a collection of concepts in a domain, BINDER uses a supervised
learning approach. Given a set of concepts W and partial order concept-pairs P = {(a, b) : a is-a b},
BINDER’s task is to find an embedding function B : W → {0, 1}d such that for any a, b ∈ W ,

(a ∩ b) = b iff (a, b) ∈ P and a ̸= b (1)

holds; here a = B(a) and b = B(b) are the embedding vectors for concepts a and b, and ∩ denotes
the bitwise AND operation.

3

Under review as a conference paper at ICLR 2024

The above learning task is a constraint satisfaction problem (CSP) or a feasibility task in the combi-
natorial space, which is a known NP-Complete task (Cormen et al., 2022). To solve it, BINDER uses
a randomized local search algorithm, which is fast and effective. Note that given a training dataset,
P , if BINDER’s embedding solution satisfies all the constraints, then the embedding is perfect and
all the partial order pairs in P can be reconstructed from the embedding with 100% accuracy. But
the goal of our embedding is not necessarily yielding a 100% reconstruction accuracy on the training
data, rather to perform is-a prediction task on an unseen test dataset, so we do not strive to solve the
CSP task exactly. In the next section, we discuss BINDER’s learning algorithm.

Notations: Italic letters such as a, b denote entities, while boldface a,b denote their embedding
vectors. aj denotes the value at the j’th position in a. In the algorithms, we use B to denote the
complete binary embedding matrix, B[a, :] for a, and B[a, j] for bit j of said vector. We use ∗ to
denote element-wise multiplication; all arithmetic operations are done in Z or R. Finally, we write
pairs in hyponym-hypernym order: a pair (a, b) refers to the statement “a is-a b”.

2.3 TRAINING ALGORITHM

The learning task of BINDER is a CSP task, which assigns |W | distinct binary d-bit vectors to each
of the variables in W , such that each of the constraints in the partial order P is satisfied. Various
search strategies have been proposed for solving CSP problems, among which local search and
simulated annealing are used widely (Beck et al., 2011). For guiding the local search, we model this
search problem as an optimization problem, by designing a loss function that measures the fitness
of an embedding. A simple measurement is the number of pairs in P that violates the constraint in
Equation 1. Note that the constraint is “if and only if”, which means for any pair (a′, b′) that is not
in P , we want a′ and b′ to not satisfy this constraint. If |W | = n, we have exactly |P | constraints
for the positive pairs (we call these positive constraints), and n2 − n− |P | negative constraints for
the negative pairs. Using these constraints, we compute a simple loss function—a linear function of
the number of violated positive and negative constraints as shown below:

LossP = α
∑

(a,b)∈P

∑
j

1(aj ,bj)=(0,1)(a, b) (2)

LossN = β
∑

(a′,b′)∈N

1∀j(a′
j ,b

′
j)∈{(0,0),(1,0),(1,1)}(a

′, b′) (3)

Loss = LossP + LossN , (4)

where α and β are user-defined parameters and 1 is the indicator function. Due to the above loss
function, BINDER’s learning algorithm relies on the existence of negative pairs N ⊆ {(a′, b′) :
a′ is-not-a b′}. If these negative pairs are not provided, we generate them by randomly corrupting
the positive pairs P as in Vendrov et al. (2015); Nickel & Kiela (2017); Ganea et al. (2018), by
replacing (a, b) ∈ P with (r, b) or (a, r) where r is sampled randomly from the entity set W .

For local search in continuous machine learning, the search space is explored using some variant of
gradient descent. This gradient is defined as the derivative of the loss function (or an approximation
thereof) with respect to each parameter. With binary vectors, the parameters are discrete, but we
can get a proxy of the “gradient” by taking the finite difference between the current value of the loss
function, and the new value after a move is made. In a continuous space, vectors can be updated by
adding or subtracting a delta, but in discrete space, the new vector is one of the neighboring vectors
where the neighborhood is defined explicitly. If the neighborhood is defined by unit Hamming
distance, we can make a neighbor by flipping one bit of one vector, but for large datasets, such an
approach will converge very slowly. In BINDER, we randomly select bits to be flipped by computing
a probability from the gradient value of each bit position, as shown in the following subsection.

2.4 GRADIENT DERIVATION

BINDER’s gradient descent scheme is based on correcting order of positive pairs by flipping bits,
which are chosen randomly with a probability computed from a discrete gradient value. Below we
discuss how this gradient is computed.

A sub-concept will share all the attributes (bits set to 1) of the concept, and possibly contain more
attributes. For each positive pair (a, b) ∈ P and each bit index j, we aim to avoid having (aj ,bj) =

4

Under review as a conference paper at ICLR 2024

Table 1: Logic truth table to flip bits in positive (first 3 columns) and negative (last 3 columns) pairs
aj bj a is-a b a′

j b′
j a′ is-not-a b′

0 0 Protect bj 0 0 Flip b′
j

0 1 Flip either bit 0 1 Protect both bits
1 0 Don’t care 1 0 Flip both a′

j and b′
j

1 1 Protect aj 1 1 Flip a′
j

Table 2: Logic truth table to calculate positive and negative loss gradient
aj bj ∆ajLossP ∆bjLossP Comments a′

j b′
j ∆a′

jLossN
∆b′

jLossN
Comments

0 0 0 −1 Protect bj . 0 0 0 1 Flip b′
j .

0 1 1 1 Flip aj / bj* 0 1 0 0 Don’t care
1 0 0 0 Don’t care 1 0 0 0 Don’t care
1 1 −1 0 Protect aj . 1 1 1 0 Flip a′

j .

* or both bits

(0, 1), since that would imply a did not inherit attribute j from b. On the other hand, for negative
pairs (a′, b′), we aim to create at least one bit index with (0, 1) bit pair. Suggested bit flipping or
protecting operations for these requirements are shown in the third and sixth column of Table 1; for
a is-a b, we do not want (0, 1) configuration, hence we protect bj in first row, aj in the forth row, and
flip either bit in the second row. On the other hand, for a not-is-a b, we want a (0, 1) configuration.
If the model currently suggests a′ is-a b′ (i.e. there is no j where a′j = 0,b′

j = 1), we correct this
by flipping either the a′ side of a (1, 1) pair (fourth row) or the b′ side of a (0, 0) pair (first row),
as shown in the sixth columns of the same table. Note that negative samples are needed so we can
avoid trivial embeddings, such as all words being assigned the zero vector.

We first derive the gradient of LossP with respect to aj and bj . We define the “gradient” ∆aj to be
positive if flipping bit aj improves the solution according to our loss function, regardless of whether
bit aj is currently 0 or 1. As shown in Column 3 of Table 2, flipping aj makes no change in loss
for the first and third rows; but for the second row, one violation is removed, and for the fourth row,
one new violation is added. For the four binary bit configurations, {(0, 0), (0, 1), (1, 0), (1, 1)}, the
improvement to LossP is 0, 1, 0, and -1, respectively, as shown in Column 3 of Table 2. Column 4
of the same table shows the value of ∆bj

LossP calculated similarly. It is easy to see that these two
sets of gradients values can be written as bj(1−2aj) (for values in Column 3) and (1−aj)(2bj−1)
(for values in Column 4), respectively. Now we can use the following equations which shows the
gradient expression for all the dimensions of the bit vector, for all positive pairs, (a, b) ∈ P .

∆aLossP = α
∑

b: (a,b)∈P

b ∗ (1− 2a) (5) ∆bLossP = α
∑

a: (a,b)∈P

(1− a) ∗ (2b− 1) (6)

∆aLossP and ∆bLossP are d-dimensional integer vector, where d is the embedding dimension.
Now, to calculate negative loss gradient, we count the number of (a′j ,b

′
j) = (0, 1) “good” bit pairs

in a negative pair. If Ga′,b′ :=
∑

j 1(a′
j ,b

′
j)=(0,1)(a

′, b′) = 0, then (a′, b′) is a false positive, so we
need to flip a bit to make (a′j ,b

′
j) = (0, 1). So for the case of violation, based on the bit values in

Columns 8 and 9 of Table 2, we derived the following algebraic expressions:

∆a′LossN = β
∑

b′: (a′,b′)∈N,
G=0

a′ ∗ b′ (7) ∆b′LossN = β
∑

a′: (a′,b′)∈N,
G=0

(1−a′)∗(1−b′) (8)

On the other hand, if Ga′,b′ = 1, there is no violation, but the not-is-a relation is enforced by only
one bit, so that bit must be protected. That is, if (a′j ,b

′
j) = (0, 1) for exactly one j, then we want

the gradient to be −1 for that index j (recall that negative gradient means flipping is bad), and zero
gradient for all other indices. This is true for exactly the bit j satisfying b′j(1− a′j) = 1, so we have

∆a′LossN = −β
∑

b′: (a′,b′)∈N,
G=1

b′ ∗ (1− a′) (9) ∆b′LossN = −β
∑

a′: (a′,b′)∈N,
G=1

b′ ∗ (1− a′) (10)

For Ga′,b′ > 1, the gradient is 0 for all bit index, as no bits need immediate protection. Finally, we
linearly add gradients over LossP and LossN to get the final gradient matrix, ∆ = ∆+ +∆−. The
overall process is summarized in Algorithm 1 in Appendix B. In this Algorithm, ∆+ is the gradient
of LossP and ∆− is the gradient of LossN . ∆, ∆+ and ∆− all are integer-valued matrices of size
n× d, where n is the vocabulary size and d is the embedding dimension.

5

Under review as a conference paper at ICLR 2024

2.5 FLIP PROBABILITY

In binary embedding, each bit position takes only two values, 0 and 1. Traditional gradient descent,
which updates a variable by moving towards the opposite of gradient, does not apply here. Instead,
we utilize randomness in the update step: bit j of word w is flipped with a probability based on its
gradient, ∆[w, j]. To calculate the flip probability we used tanh function. For each word w and
each bit j we compute the gradient ∆[w, j] as in Algorithm 1 and output

FlipProb[w, j] = max
{
0, 1

2 tanh (2(rℓ ∆[w, j] + bℓ))
}

(11)

where the learning rate rℓ is used to control frequency of bit flips, and the learning bias bℓ makes
sure bit vector update does not get stuck if all probability values are 0. The division by 2 prevents
the model from flipping (on average) more than half of the bits in any iteration; without it, the
model would sometimes flip nearly every bit of a vector, which will cause the model to oscillate.
Therefore, we (softly) bound probabilities by 1

2 to maximize the covariance of the flips of each
pair of vectors. The inside multiplication by 2 preserves the property 1

2 tanh(2p) ≈ p for small p,
making hyperparameter selection more intuitive: bℓ is (almost exactly) the probability of flipping a
neutral bit, and αrℓ approximates the increase in probability for each positive sample that would be
improved by flipping a given bit (and likewise for βrℓ and negative samples). We note that the three
hyper parameters rℓ, α, and β are somewhat redundant, since we can remove rℓ and replace α and
β with rℓα and rℓβ respectively without changing the probability. The only reason for using three
parameters is to keep the α and β computations in integer arithmetic for faster speed.

3 EXPERIMENTS AND RESULTS

To demonstrate the effectiveness of BINDER, we evaluate its performance on Reconstruction and
Link Prediction tasks, which are popular for hierarchical representation learning. We use the same
experimental setup as the existing methodologies and compare BINDER’s performance with them.

Reconstruction is an inverse mapping task from embedding vectors to the list of positive and neg-
ative pairs in the training data. A high accuracy in reconstruction testifies for the capacity of the
learning algorithm: it confirms that BINDER’s learning algorithm can obtain embedding vectors to
satisfy the representation constraints of both the positive and negative pairs, as defined in the prob-
lem formulation (Section 2.2). To evaluate representation capacity, we train BINDER over the full
transitive data set. We then create a test dataset which includes the entire positive edge set in the
training data, and a random set of negative samples of the same size, ensuring that these negative
samples are unique and not in the positive set (this setup is identical to Vendrov et al. (2015)). We
then validate whether, for each positive pair (a, b), their bit embeddings a and b satisfy (a∩b) = b
and a ̸= b. If so, the corresponding entry is correctly reconstructed. Then, for each negative pair
(c, d) we confirm whether (c ∩ d) ̸= d is true. If yes, this pair is correctly reconstructed.

Link Prediction task is predicting edges that the learning algorithm has not seen during training. For
this task, we split the dataset into train, test and validation. We randomly select a portion of edges
for the test split, and an equal number for the validation set, by randomly holding out observed
links. Details of the datasets can be found in Section 3.1. Since is-a relation is transitive, in theory,
transitive-pair edges are redundant: if (a, b) and (b, c) are positive pairs, then (a, c) should also be a
positive pair. A good embedding model should be able to deduce such pairs automatically.

The remainder of this Section is as follows. In Section 3.1, we explain the datasets. In Section 3.2,
we discuss competing methods and our justification of why they were chosen. Then we compare
BINDER’s performance with those of the competing methods, and give our results in Sections 3.3
and 3.4). Further details are given in the appendices. In Appendix C, we discuss low-level details of
training and hyperparameter tuning. In Appendix D, we show a visual representation of BINDER’s
embedding in a small dataset. We also perform an ablation study to show how different component of
cost function affects BINDER’s performance; results of ablation study is provided in Appendix F.1.

3.1 DATASETS

For reconstruction task, we evaluate our model on 5 datasets. We downloaded Music and Medical
domain dataset from SemEval-2018 Task 9: Hypernym Discovery. We collected Lex and random

6

Under review as a conference paper at ICLR 2024

Table 3: Reconstruction Results Balanced Acc(%) (dim)
Medical Music Shwartz Shwartz WordNet

Lex Random Nouns
Model entities = 1.4k entities = 1k entities = 5.8k entities = 13.2k entities = 82k

edges = 4.3k edges = 6.5k edges = 13.5k edges = 56.2k edges = 743k

OE 100 (10) 100 (20) 100 (20) 100 (20) 97.4 (200)
Poincaré 92.6 (10) 88.3 (20) 95.3 (20) 92 (100) 97.2 (50)

HEC 95.7 (20) 92.1 (100) 99 (5) 96.4 (100) 91.1 (100)
T-Box 100 (25) 100 (50) 100 (25) 100 (50) 99.8 (50)

BINDER 99.9 (50) 100 (100)* 100 (50)* 100 (50)* 99.9 (80)
*For Shwartz Lex and Random dataset, BINDER dimension is higher compared to OE but considering space

complexity (1 bit vs 4 bytes) for each dimension we conclude BINDER as the wining model.

dataset from Shwartz et al. (2016) which were constructed by extracting hypernymy relations from
WordNet (Fellbaum, 2012), DBPedia (Auer et al., 2007), Wiki-data (Vrandecic, 2012) and Yago
(Suchanek et al., 2007). The largest dataset is the WordNet noun hierarchy dataset. The full transitive
closure of the WordNet noun hierarchy consists of 82,115 Nouns and 743,241 hypernymy relations.
This number includes the reflexive relations w is-a w for each word w, which we removed for our
experiments, leaving 661,127 relational edges. We generate negative samples following a similar
method to Order Embedding (Vendrov et al., 2015) paper: we corrupt one of the words in a positive
pair, and discard any corrupted pairs that happen to be positive pairs.

For prediction task, we evaluate our model on the same datasets. Our dataset creation and experi-
mental setup are identical to Hyperbolic Entailment Cones paper (Ganea et al., 2018). We always
include the direct edges, edges (a, b) with no other word c between them, in the training set. The re-
maining “non-basic” edges (e.g. 578,477, for WordNet Nouns dataset) are split into validation (5%)
and test (5%). We generate four training sets that include 0%, 10%, 25% and 50% of the remaining
non-basic edges which are randomly selected. For validation and test set, we use 10 times more
negative pairs than positive pairs, so to keep consistency we re-weight the negative data by 1/10
before evaluating accuracy. We remove the root of WordNet Nouns dataset as it has trivial edges to
predict. The remaining transitive closure of the WordNet Nouns hierarchy consists of 82,114 Nouns
and 661,127 hypernymy relations.

3.2 COMPETING METHODS AND METRICS USED

We compare our model to four existing order embedding methods: the continuous Order Embedding
(Vendrov et al., 2015), Poincaré embeddings (Nickel & Kiela, 2017), Hyperbolic Entailment Cones
(Ganea et al., 2018), and the T-Box (Boratko et al., 2021). All four methods are intended to produce
embedding for entities having hierarchical organization. Among the above methods, our model is
most similar to Order Embedding Vendrov et al. (2015), as our model is simply the restriction of
theirs from (R+)d to the set {0, 1}d. So, this model is a natural competitor. Similarity of our model
to Hyperbolic Entailment Cones Ganea et al. (2018) is that both are transitive order embeddings. We
also compare to Poincaré embeddings Nickel & Kiela (2017), which makes use of a distance rank-
ing function to embed the undirected version of the hierarchy graph. Finally we compare with the
latest region-based probabilistic box embeddings with temperatures Boratko et al. (2021). In subse-
quent discussion and result tables, we will refer to order embedding as OE, Poincaré embedding as
Poincaré, hyperbolic entailment cones as HEC and probabilistic box embeddings with temperatures
as T-Box. We report balanced accuracy, meaning we either ensure the positive and negative test
sizes are equal (for reconstruction) or re-weight the negative samples (for transitive prediction). We
also report F1-score of all experiments in Appx. F.2.

BINDER, being discrete, has the additional property that two distinct words have a non-trivial chance
of being assigned the same embedding. For this reason, we evaluate BINDER on the strict hypernym
relation: we predict an edge (a, b) as positive (hypernym) if and only if (a ∩ b) = b (as in Eq. 1)
and a ̸= b. This is irrelevant for competing models, for which exact equality is extremely unlikely.

7

Under review as a conference paper at ICLR 2024

3.3 RECONSTRUCTION TASK RESULTS

This task is relatively easy; BINDER and all the competing methods perform better in this task than
in the link prediction task. This is because reconstruction is similar to training accuracy and link
prediction task is similar to test accuracy in a typical machine learning task. The results are shown
in Table 3, in which the datasets are arranged in increasing size from left to right column-wise. For
each dataset and each model, we show accuracy and the dimension (in parenthesis) for which that
accuracy was achieved. As we can see, BINDER achieves near perfect result for each dataset and
maintains its consistent performance for larger datasets. Among the competitors, T-Box performs
the best with 100% accuracy for all datasets except the largest Nouns dataset (99.8%). OE performs
the third best; it has a perfect 100% accuracy for relatively smaller datasets, but its performance
drops by 3 percent for the larger dataset i.e. WordNet Nouns. HEC performs slightly better for
smaller datasets than Poincaré. Compared to other tasks, we found that reconstruction performance
generally improves as we increase the dimension. It makes sense, as reconstruction is like training
accuracy, and with higher dimensions, models have more freedom (higher capacity) to satisfy the
order constraints listed in the training data. Note that BINDER is a randomized algorithm, so we
show the best results that we obtain in 5 runs. The mean and standard deviation of its performance
metrics is shown in Table 5.

3.4 LINK PREDICTION RESULTS

Link prediction is more critical than Reconstruction, as it is made on unseen data. We execute
multiple variants of this task with different degree of transitive edges (0%, 10%, 25%, and 50%) in
the training data. Obviously, 0% transitive edge scenario is the most difficult. The results are shown
in Table 4. In this table also, we show accuracy along with the dimension value for which the best
accuracy is obtained. As we can see from this table, BINDER handsomely wins over all competitors
in the 0% transitive closure link prediction task. As the dataset size increases, the accuracy margin
over the second best also increases. For the largest dataset, WordNet Nouns, BINDER achieves 18%
better accuracy and 42% better F1 score than the second best. Note that in a smaller dataset, the
number of transitive edges is comparable to the number of direct edges, so competitors’ performance
are closer to BINDER, but still substantially inferior. It validates that BINDER does not rely much on
the presence of transitive edges in the training data, whereas other competing methods do. For larger
tree-like datasets like Shwartz Random and WordNet Nouns, there are generally far more transitive
edges than direct edges, and for both the datasets BINDER’s performance is around or above 99%. As
we add more transitive edges to the training dataset, the competitors’ results improve, yet BINDER
maintains its superiority over those methods (with a smaller margin); this further validates that other
methods rely on transitive edges during training, whereas BINDER does not. We show direct and
transitive edge statistics for all datasets in Appendix E

4 OTHER RELATED WORKS

We have discussed works that perform hierarchical embedding in the Introduction section and com-
pared our results with those in the Results section. In terms of order embedding in binary space, to
our best knowledge, there are no previous works. The closest works using FCA are Rudolph (2007),
which provided ways to encode a formal context’s closure operators into NN, and Dürrschnabel et al.
(2019) where authors introduced fca2vec similar to node2vec Grover & Leskovec (2016), which em-
beds existing FCA systems into real-valued vector spaces using NN method. None of these works
are our competitor, as their embedding objective is to embed in 2 dimensional real space for visual-
ization. Zhang & Saab (2021) takes a d-dimensional vector representation of N entities and embed
those N objects into k-dimensional binary vector space [−1,+1]k for preserving Euclidean distance
between a pair of entities. The objectives of these works are different than ours, since they all require
existing embeddings, while BINDER creates embeddings from a given hierarchy.

5 FUTURE WORKS AND CONCLUSION

BINDER is the first work which uses binary vector for embedding concepts, so there are numerous
scopes for building on top of this work. First, we like to explore more efficient combinatorial

8

Under review as a conference paper at ICLR 2024

Table 4: Link Prediction (Transitive Closure) Results Balanced Acc(%) (dim)
Medical Music Shwartz Shwartz Nouns

Model Lex Random

Transitive Closure 0%

OE 96.7 (10) 91.2 (5) 81.7 (10) 78.2 (200) 80.7 (200)
Poincaré 88.9 (50) 72.6 (5) 78 (20) 73.5 (5) 62.0 (100)

HEC 86.9 (100) 73.8 (100) 79 (10) 73.3 (5) 70.2 (200)
T-Box 70.4 (100) 78.0 (100) 74.6 (10) 71.4 (100) 70.8 (100)

BINDER 99.4 (100) 97.5 (100) 99.7 (100) 99.5 (100) 98.4 (120)
Transitive Closure 10%

OE 96.3 (10) 94.5 (10) 85.4 (5) 84.4 (5) 90.1 (5)
Poincaré 91.6 (10) 78.5 (20) 93.8 (50) 87.4 (5) 71.6 (5)

HEC 91.9 (50) 82 (50) 95.2 (100) 91.4 (50) 97.3 (200)
T-Box 80.0 (100) 80.0 (100) 74.4 (100) 74.4 (100) 80.1 (25)

BINDER 99.4 (100) 96.5 (100) 100 (100) 99.9 (100) 99.7 (120)
Transitive Closure 25%

OE 97.4 (20) 95 (5) 88.6 (10) 84.6 (50) 93.3 (10)
Poincaré 91.3 (5) 82 (200) 94.2 (100) 91.5 (100) 74.2 (10)

HEC 93.9 (100) 86.1 (100) 96.2 (100) 93 (10) 97.9 (100)
T-Box 80.8 (100) 80.3 (100) 74.6 (25) 74.6 (100) 86.8 (25)

BINDER 99.1 (100) 97.3 (100) 100 (100) 99.9 (100) 99.7 (120)
Transitive Closure 50%

OE 97 (10) 95.8 (50) 90.3 (10) 88.3 (10) 95.6 (10)
Poincaré 91.8 (5) 85.6 (10) 94.7 (50) 90.9 (10) 75.7 (5)

HEC 94.5 (100) 88.4 (5) 96.5 (50) 93.2 (100) 98.4 (50)
T-Box 83.8 (100) 84.3 (100) 74.4 (50) 74.5 (100) 91.2 (25)

BINDER 99.7 (100) 98 (100) 100 (100) 99.9 (100) 99.9 (120)

Table 5: Distribution of BINDER Results Acc (µ± σ)%
Medical Music Shwartz Shwartz Nouns

Task Lex Random

Recon (100% TC) 99.9± 0.01 99.9± 0.01 99.9± 0.01 99.9± 0.1 99.8± 0.04

Pred (0% TC) 98.9± 0.3 94± 0.6 99.6± 0.1 99.4± 0.05 98.1± 0.2
Pred (10% TC) 98.8± 0.5 94.7± 1 99.9± 0.04 99.8± 0.1 99.5± 0.2
Pred (25% TC) 98.9± 0.2 95.3± 1.5 99.9± 0.03 99.9± 0.02 99.6± 0.1
Pred (50% TC) 99.5± 0.2 94.9± 1.6 99.96± 0.03 99.9± 0.02 99.9± 0.04

TC = Transitive Closure

optimization algorithms for improving BINDER’s learning algorithm by using various well-known
CSP heuristics. Binder’s Loss function can also be extended with a node similarity expression (dot
product between node’s attribute vectors, if present), which we plan to do next. It can also be
extended to consider sibling similarity. In terms of limitation, BINDER is a transductive model, i.e.,
a concept must appear in the training data for its embedding to be learnt, but this limitation is also
shared by all the existing hierarchical embedding models, including order-embedding, hyperbolic
cone embedding, and Poincaré embedding. Yet, BINDER is better than the competitors as it can
generate embedding for unseen concepts by using logical functions over existing concepts, which
the competitors cannot do. Another future work can be to make BINDER inductive over any unseen
concept by imparting knowledge regarding the broadness (or narrowness) of a concept from large
distributed language model, such as BERT, RoBERTa, or Glove. To conclude, in this work, we
propose BINDER, a novel approach for order embedding using binary vectors. BINDER is ideal
for finding representation of concepts exhibiting hypernym-hyponym relationship. Also, BINDER’s
binary vector based embedding is extensive as it allows obtaining embedding of other concepts
which are logical derivatives of existing concepts. Experiments of five benchmark datasets show
that BINDER is superior than the existing state-of-the-art order embedding methodologies.

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY

We have included our Python code for training BINDER using PyTorch, including five datasets
automatically split into train, validation, and test as shown in the data folder therein. Due to
the stochastic nature of BINDER, we included the best achieved results in Table 4 but also ran
multiple experiments to show more of BINDER’s distribution of results (Table 5). Despite starting
in a determined state, BINDER gives extremely diverse outputs, due to the random flipping and the
fact that Algorithm 2 is symmetric in the d dimensions.

10

Under review as a conference paper at ICLR 2024

REFERENCES

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary
Ives. DBpedia: A nucleus for a web of open data. In Karl Aberer, Key-Sun Choi, Natasha Noy,
Dean Allemang, Kyung-Il Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard,
Riichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux (eds.), The Semantic Web,
Lecture Notes in Computer Science, pp. 722–735. Springer, 2007. ISBN 9783540762980. doi:
10.1007/978-3-540-76298-0 52.

J. Christopher Beck, T. K. Feng, and Jean-Paul Watson. Combining constraint programming and
local search for job-shop scheduling. 23(1):1–14, 2011. ISSN 1091-9856, 1526-5528. doi:
10.1287/ijoc.1100.0388. URL http://pubsonline.informs.org/doi/10.1287/
ijoc.1100.0388.

Michael Boratko, Dongxu Zhang, Nicholas Monath, Luke Vilnis, Kenneth L Clarkson, and An-
drew McCallum. Capacity and bias of learned geometric embeddings for directed graphs. In
Advances in Neural Information Processing Systems, volume 34, pp. 16423–16436. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
88d25099b103efd638163ecb40a55589-Abstract.html.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Proceedings of the 26th Interna-
tional Conference on Neural Information Processing Systems - Volume 2, NIPS’13, pp. 2787–
2795. Curran Associates Inc., 2013.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, fourth edition. MIT Press, 2022. ISBN 9780262367509. Google-Books-ID:
RSMuEAAAQBAJ.

Zihang Dai, Lei Li, and Wei Xu. CFO: Conditional focused neural question answering with large-
scale knowledge bases, 2016. URL http://arxiv.org/abs/1606.01994.

Shib Sankar Dasgupta, Michael Boratko, Dongxu Zhang, Luke Vilnis, Xiang Lorraine Li, and An-
drew McCallum. Improving local identifiability in probabilistic box embeddings. 2020. doi:
10.48550/arXiv.2010.04831. URL https://arxiv.org/abs/2010.04831v2.

Shib Sankar Dasgupta, Xiang Lorraine Li, Michael Boratko, Dongxu Zhang, and Andrew Mc-
Callum. Box-to-box transformations for modeling joint hierarchies. In Proceedings of the
6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 277–288. Associa-
tion for Computational Linguistics, 2021. doi: 10.18653/v1/2021.repl4nlp-1.28. URL https:
//aclanthology.org/2021.repl4nlp-1.28.

Dominik Dürrschnabel, Tom Hanika, and Maximilian Stubbemann. FCA2vec: Embedding tech-
niques for formal concept analysis, 2019. URL http://arxiv.org/abs/1911.11496.

Christiane Fellbaum. WordNet. In Carol Chapelle (ed.), The Encyclopedia of Applied Lin-
guistics, pp. wbeal1285. John Wiley & Sons, Inc., 2012. ISBN 9781405198431. doi: 10.
1002/9781405198431.wbeal1285. URL https://onlinelibrary.wiley.com/doi/
10.1002/9781405198431.wbeal1285.

Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. AMIE: association
rule mining under incomplete evidence in ontological knowledge bases. In Proceedings of the
22nd international conference on World Wide Web, WWW ’13, pp. 413–422. Association for
Computing Machinery, 2013. ISBN 9781450320351. doi: 10.1145/2488388.2488425. URL
https://doi.org/10.1145/2488388.2488425.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment cones for
learning hierarchical embeddings. 2018. doi: 10.48550/arXiv.1804.01882. URL https://
arxiv.org/abs/1804.01882v3.

Bernhard Ganter and Rudolf Wille. Formal Concept Analysis. Springer, 1999. ISBN
9783540627715 9783642598302. doi: 10.1007/978-3-642-59830-2. URL http://link.
springer.com/10.1007/978-3-642-59830-2.

11

http://pubsonline.informs.org/doi/10.1287/ijoc.1100.0388
http://pubsonline.informs.org/doi/10.1287/ijoc.1100.0388
https://proceedings.neurips.cc/paper/2021/hash/88d25099b103efd638163ecb40a55589-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/88d25099b103efd638163ecb40a55589-Abstract.html
http://arxiv.org/abs/1606.01994
https://arxiv.org/abs/2010.04831v2
https://aclanthology.org/2021.repl4nlp-1.28
https://aclanthology.org/2021.repl4nlp-1.28
http://arxiv.org/abs/1911.11496
https://onlinelibrary.wiley.com/doi/10.1002/9781405198431.wbeal1285
https://onlinelibrary.wiley.com/doi/10.1002/9781405198431.wbeal1285
https://doi.org/10.1145/2488388.2488425
https://arxiv.org/abs/1804.01882v3
https://arxiv.org/abs/1804.01882v3
http://link.springer.com/10.1007/978-3-642-59830-2
http://link.springer.com/10.1007/978-3-642-59830-2

Under review as a conference paper at ICLR 2024

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. 2016. doi:
10.48550/arXiv.1607.00653. URL https://arxiv.org/abs/1607.00653v1.

Lingbing Guo, Zequn Sun, and Wei Hu. Learning to exploit long-term relational dependencies in
knowledge graphs, 2019. URL http://arxiv.org/abs/1905.04914.

Mohammad Al Hasan and Mohammed J. Zaki. A survey of link prediction in social networks. In
Charu C. Aggarwal (ed.), Social Network Data Analytics, pp. 243–275. Springer US, 2011. ISBN
9781441984623. doi: 10.1007/978-1-4419-8462-3 9. URL https://doi.org/10.1007/
978-1-4419-8462-3_9.

Shizhu He, Kang Liu, Guoliang Ji, and Jun Zhao. Learning to represent knowledge graphs with
gaussian embedding. In Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management, CIKM ’15, pp. 623–632. Association for Computing Machinery,
2015. ISBN 9781450337946. doi: 10.1145/2806416.2806502. URL https://doi.org/
10.1145/2806416.2806502.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descrip-
tions, 2015. URL http://arxiv.org/abs/1412.2306.

Ni Lao, Tom Mitchell, and William W. Cohen. Random walk inference and learning in a large
scale knowledge base. In Proceedings of the 2011 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 529–539. Association for Computational Linguistics, 2011. URL
https://aclanthology.org/D11-1049.

Xiang Li, Luke Vilnis, Dongxu Zhang, Michael Boratko, and Andrew McCallum. Smoothing the ge-
ometry of probabilistic box embeddings. 2019. URL https://openreview.net/forum?
id=H1xSNiRcF7.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and re-
lation embeddings for knowledge graph completion. 29(1), 2015. ISSN 2374-3468, 2159-
5399. doi: 10.1609/aaai.v29i1.9491. URL https://ojs.aaai.org/index.php/AAAI/
article/view/9491.

Ndapandula Nakashole, Gerhard Weikum, and Fabian Suchanek. PATTY: a taxonomy of relational
patterns with semantic types. In Proceedings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational Natural Language Learning, EMNLP-
CoNLL ’12, pp. 1135–1145. Association for Computational Linguistics, 2012.

Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. Compositional vector space models
for knowledge base completion, 2015. URL http://arxiv.org/abs/1504.06662.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Phung. A novel embedding
model for knowledge base completion based on convolutional neural network. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 327–333, 2018. doi:
10.18653/v1/N18-2053. URL http://arxiv.org/abs/1712.02121.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical rep-
resentations. In Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://papers.nips.cc/paper/2017/hash/
59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online learning of social represen-
tations. 2014. doi: 10.1145/2623330.2623732. URL https://arxiv.org/abs/1403.
6652v2.

Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs in
vector space using box embeddings, 2020. URL http://arxiv.org/abs/2002.05969.

Sebastian Rudolph. Using FCA for encoding closure operators into neural networks. In
Proceedings of the 15th international conference on Conceptual Structures: Knowledge Ar-
chitectures for Smart Applications, ICCS ’07, pp. 321–332. Springer-Verlag, 2007. ISBN
9783540736806. doi: 10.1007/978-3-540-73681-3 24. URL https://doi.org/10.
1007/978-3-540-73681-3_24.

12

https://arxiv.org/abs/1607.00653v1
http://arxiv.org/abs/1905.04914
https://doi.org/10.1007/978-1-4419-8462-3_9
https://doi.org/10.1007/978-1-4419-8462-3_9
https://doi.org/10.1145/2806416.2806502
https://doi.org/10.1145/2806416.2806502
http://arxiv.org/abs/1412.2306
https://aclanthology.org/D11-1049
https://openreview.net/forum?id=H1xSNiRcF7
https://openreview.net/forum?id=H1xSNiRcF7
https://ojs.aaai.org/index.php/AAAI/article/view/9491
https://ojs.aaai.org/index.php/AAAI/article/view/9491
http://arxiv.org/abs/1504.06662
http://arxiv.org/abs/1712.02121
https://papers.nips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html
https://papers.nips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html
https://arxiv.org/abs/1403.6652v2
https://arxiv.org/abs/1403.6652v2
http://arxiv.org/abs/2002.05969
https://doi.org/10.1007/978-3-540-73681-3_24
https://doi.org/10.1007/978-3-540-73681-3_24

Under review as a conference paper at ICLR 2024

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks, 2017. URL http://
arxiv.org/abs/1703.06103.

Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou. End-to-end structure-
aware convolutional networks for knowledge base completion, 2018. URL http://arxiv.
org/abs/1811.04441.

Vered Shwartz, Yoav Goldberg, and Ido Dagan. Improving hypernymy detection with an integrated
path-based and distributional method, 2016. URL http://arxiv.org/abs/1603.06076.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference on World Wide Web, WWW ’07, pp. 697–706.
Association for Computing Machinery, 2007. ISBN 9781595936547. doi: 10.1145/1242572.
1242667. URL https://doi.org/10.1145/1242572.1242667.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge graph embed-
ding by relational rotation in complex space, 2019. URL http://arxiv.org/abs/1902.
10197.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: Large-
scale information network embedding. 2015. doi: 10.1145/2736277.2741093. URL https:
//arxiv.org/abs/1503.03578v1.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction, 2016. URL http://arxiv.org/abs/1606.
06357.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-embeddings of images and
language. 2015. doi: 10.48550/arXiv.1511.06361. URL https://arxiv.org/abs/1511.
06361v6.

Luke Vilnis, Xiang Li, Shikhar Murty, and Andrew McCallum. Probabilistic embedding of
knowledge graphs with box lattice measures, 2018. URL http://arxiv.org/abs/1805.
06627.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image
caption generator, 2015. URL http://arxiv.org/abs/1411.4555.

Denny Vrandecic. Wikidata: a new platform for collaborative data collection. In Alain Mille, Fabien
Gandon, Jacques Misselis, Michael Rabinovich, and Steffen Staab (eds.), Proceedings of the 21st
World Wide Web Conference, WWW 2012, Lyon, France, April 16-20, 2012 (Companion Volume),
pp. 1063–1064. ACM, 2012. doi: 10.1145/2187980.2188242.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by trans-
lating on hyperplanes. 28(1), 2014. ISSN 2374-3468. doi: 10.1609/aaai.v28i1.8870. URL
https://ojs.aaai.org/index.php/AAAI/article/view/8870.

Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q. Zhu. Probase: a probabilistic taxonomy
for text understanding. In Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’12, pp. 481–492. Association for Computing Machinery,
2012. ISBN 9781450312479. doi: 10.1145/2213836.2213891. URL https://doi.org/
10.1145/2213836.2213891.

Liang Yao, Chengsheng Mao, and Yuan Luo. KG-BERT: BERT for knowledge graph completion,
2019. URL http://arxiv.org/abs/1909.03193.

Jinjie Zhang and Rayan Saab. Faster binary embeddings for preserving euclidean distances, 2021.
URL http://arxiv.org/abs/2010.00712.

13

http://arxiv.org/abs/1703.06103
http://arxiv.org/abs/1703.06103
http://arxiv.org/abs/1811.04441
http://arxiv.org/abs/1811.04441
http://arxiv.org/abs/1603.06076
https://doi.org/10.1145/1242572.1242667
http://arxiv.org/abs/1902.10197
http://arxiv.org/abs/1902.10197
https://arxiv.org/abs/1503.03578v1
https://arxiv.org/abs/1503.03578v1
http://arxiv.org/abs/1606.06357
http://arxiv.org/abs/1606.06357
https://arxiv.org/abs/1511.06361v6
https://arxiv.org/abs/1511.06361v6
http://arxiv.org/abs/1805.06627
http://arxiv.org/abs/1805.06627
http://arxiv.org/abs/1411.4555
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://doi.org/10.1145/2213836.2213891
https://doi.org/10.1145/2213836.2213891
http://arxiv.org/abs/1909.03193
http://arxiv.org/abs/2010.00712

Under review as a conference paper at ICLR 2024

APPENDICES

A PROOF OF BINDER’S CONVERGENCE TO LOCAL OPTIMAL SOLUTION

BINDER’s algorithm literally solves a combinatorial satisfiability task, a known NP-complete prob-
lem. By computing gradient and then utilizing the gradient in deciding bit flipping probability, it
works as a gradient descent scheme in the combinatorial space to minimize the objective function
defined in Equation 4. However, note that the bit flipping probability decreases gradually as the
number of violated constraints decreases with each subsequent epochs. This gives BINDER’s learn-
ing algorithm a flavor of local search with simulated annealing. The following theorems and lemmas
are provided to establish the claim of BINDER’s local optimality.

Lemma 1. When bias bℓ = 0, for any word a, if the j’th bit in the binary representation vector a is
updated by BINDER’s probabilistic flipping (keeping the remaining bits the same), the loss function
value decreases in the successive iteration.

Proof. Let S be the set of positive data instances (a, b) where the first entity is the given a. θ is a
d-dimensional embedding vector of a and L(θ) is the component of loss function associated with
a. Suppose in an iteration, we probabilistically flip bit j of θ. To compute this probability, BINDER
computes the ∆aj

LossP , which is L(θ)−L(θ′j) , where θ′j is the same as θ except that the bit value
of j’th position is different. (Recall that we define our gradient to be positive when flipping bit j
improves our model, thus decreasing the loss function.) Based on Eq. 5, this gradient value is +1
only for the case when a constraint aj → bj is violated (where b is the other element in a training
pair) i.e. aj = 0, but bj = 1 (see the 3rd column of Table II). Using Line 7 of Algorithm 2 for
bℓ = 0, this yields a positive flip probability (tanh is asymmetric function), and with the flip the
loss function value decreases by Kα (through Eq. 2), where 0 ≤ K ≤ |S|; here K is the number
of pairs in S that violate implication constraint with a in the left side. For the other three choices
of aj and bj , (0, 0), (1, 0), (1, 1), the contribution to gradient value is 0 or −1, yielding zero flip
probability. In all scenarios, the loss value decreases in the successive iteration.

Lemma 2. When bias bℓ = 0, for any word b, if the j’th bit in the binary representation vector
of b is updated by BINDER’s probabilistic flipping (keeping the remaining bits the same), the loss
function value decreases in the successive iteration.

Proof. The proof is identical to the proof of Lemma 1, except that we use gradient value in Eq.
6 instead of Eq. 5. In this case also when only one position of b’s embedding vector is flipped
probabilistically, the loss function value decreases.

Lemma 3. When bias bℓ = 0, given a collection of negative data instances, say, (a′, b′), if the j’th
bit in the vectors of a′ or b′ independently (not simultaneously) is updated by BINDER’s probabilistic
flipping (keeping the remaining bits same), the loss function value decreases or remains the same in
the successive iteration.

Proof. The proof is identical to proof of Lemma 1, except that we use gradient value in Eq. 7 (or
Eq. 9) for the case of a′, and gradient value of Eq. 8 (or Eq. 10) for b′, and the loss function value
decreases through Eq. 3.

These proofs also apply if rℓα ≥ bℓ > 0 and rℓβ ≥ bℓ > 0. In that case, we can flip a bit with zero
gradient. Such flips do not immediately increase or decrease the loss function; however, they can
allow BINDER to improve from a weak local optimum. In our experiments, rℓα and rℓβ are much
larger than bℓ, so our algorithm prioritizes actual improvements over zero-gradient steps.

Theorem 4. When bias bl = 0, if Line 8 of Algorithm 2 is executed sequentially for each index
value j for each of the entities, BINDER reaches a local optimal solution considering a 1-hamming
distance neighborhood.

Proof. Using earlier Lemmas, each bit flipping in any embedding vector of any of the entities, either
decreases the loss function or keeps it the same. When Line 8 of Algorithm 2 is executed sequentially
for each index j (only one change in one iteration) for each of the entities, the loss function value

14

Under review as a conference paper at ICLR 2024

monotonically decreases in each successive iteration, At a local optimal point, none of the single bit
flip improves the value of loss function. Now, if the bias bl = 0, for each entity, the probability of
bit-flipping for each index is computed to be 0 (by Line 7 in Algorithm 2), embedding of none of the
entities changes any further and BINDER reaches a local optimal solution considering a 1-hamming
distance neighborhood. In other words, for an entity a, considering that all the entity embedding is
fixed, if we change any single bit of a’s embedding, the original embedding of a is guaranteed to be
at least as good as the changed embedding.

When we change only one bit at a time keeping everything else the same (as in the proof), our opti-
mization algorithm becomes a greedy hill climbing algorithm. However, this would make BINDER
extremely slow to converge, and it may get stuck in a bad local optimal solution. Thus, we allow
all bits to change simultaneously, so it behaves like gradient descent: Suppose θ is an embedding
vector of an entity and L(θ) is the component of loss function associated with this entity. For
minimizing L(θ), at each iteration, a hill climbing method would adjust a single element in θ to
decrease L(θ); on the other hand, gradient descent will adjust all values in θ in each iteration by
using θnew = θold−α∆θL(θ

old). During early iterations, BINDER works like gradient descent, but
as iteration progresses, it behaves more like a hill climbing method as gradient values for most bit
positions decrease, causing fewer bits to flip.

B PSEUDO-CODE

Pseudo-code of BINDER is shown in Algorithm 2. We initialize the embedding matrix with all 0’s.
The algorithm goes for at most T epochs (for loop in Line 4-17), updating bit vectors of each vocab-
ulary word in each iteration by flipping bits with probability based on gradient computed through
Algorithm 1. The balanced-accuracy metric, defined as 1

2

(
TP

TP+FN + TN
TN+FP

)
, is computed at the

end of each epoch and best accuracy is recorded. We exit early if no improvement on validation data
is seen over two consecutive windows of ω epochs, for user-specified ω. The overall computational
complexity is O(ndT (|P |+ |N |)), for n words and d dimensions, which is linear in each variable.

Algorithm 1 Gradient Computation
Require: Zero-one Embedding Matrix B of size n × d initialized with all 0; positive Is-A relation set P =

{(ai, bi)}mi=1; negative set N = {(a′i, b′i)}m
′

i=1; positive and negative sample weights α, β
1: ∆+ ← zero matrix, same size as B
2: ∆− ← zero matrix, same size as B
3: for (a, b) ∈ P do ▷ ∗ is element-wise product
4: ∆+[a, :]← ∆+[a, :] +B[b, :] ∗ (1− 2B[a, :])
5: ∆+[b, :]← ∆+[b, :] + (1−B[a, :]) ∗ (2B[b, :]− 1)
6: end for
7: for (a′, b′) ∈ N do
8: G← B[b′, :] ∗ (1−B[a′, :]) ▷ “good” bit pairs (a vector)
9: if

∑
j Gj = 0 then ▷ false positive, flip something

10: ∆−[a′, :]← ∆−[a′, :] +B[a′, :] ∗B[b′, :]
11: ∆−[b′, :]← ∆−[b′, :] + (1−B[a′, :]) ∗ (1−B[b′, :])
12: else if

∑
j Gj = 1 then ▷ close to being wrong, so protect

13: ∆−[a′, :]← ∆−[a′, :]−G ▷ note only one element of G is 1
14: ∆−[b′, :]← ∆−[b′, :]−G
15: end if
16: end for
17: return ∆ := α∆+ + β∆−

C TRAINING SETUP AND HYPERPARAMETER TUNING

For BINDER, we learn a d-bit array for each concept in the hierarchy. For all tasks, we train BINDER
for 10000 epochs, where each epoch considers the full batch for training. We tune our hyper-
parameters: dimension d, positive and negative sample weights α, β, negative sample multiplier n−,
and the learning rate and bias rℓ, bℓ manually by running separate experiments for each dataset. We

15

Under review as a conference paper at ICLR 2024

Algorithm 2 Training Algorithm
Require: Word list W = (w1, . . . , wn); Dimension d; Positive training set P = {(ai, bi)}mi=1; validation sets

V P, V N ; gradient weights α, β, learning params rℓ, bℓ, negative sample multiplier n− (must be even);
maximum epochs T , early stop width ω

1: B ← zero matrix of size |W | × d
2: Acc← empty list
3: (BestEmbedding,BestAcc)← (B, 0)
4: for t = 1 to T do
5: N ← negative samples (Section 2.3)
6: ∆← gradient from Algorithm 1
7: X ← max

{
0, 1

2
tanh(2(rℓ∆+ bℓ))

}
▷ flip probabilities

8: Flip each bit B[w, j] with (independent) probability X[w, j]
9: acc← BalancedAccuracy(Evaluate(B, V P, V N))

10: if acc > BestAcc then
11: (BestEmbedding,BestAcc)← (B, acc)
12: end if
13: Append acc to list Acc
14: if mean(last 2ω elements of Acc) ≥ mean(last ω elements of Acc) then
15: Exit Loop ▷ Early Exit Criterion if no improvement
16: end if
17: end for
18: return BestEmbedding

find that the optimal learning rate rℓ and learning bias bℓ are 0.008 and 0.01 respectively for all data
sets and tasks. The learning bias bℓ = 0.01 means that bits whose gradient was exactly neutral had a
1% chance of flipping. We fix β at 10 and tuned α; we always find that α ≤ β gives far too many
false negatives. By compressing the expressiveness of the model, we force the binary embeddings
to make “decisions” about which attributes to merge, thus increasing its predictive power. For
reconstruction task we need more bits to increase the capacity of our model to better reconstruct
training edges. Optimal (bits, α, n−) for reconstruction task on Medical, Music, Shwartz Lex and
Shwartz Random datasets is (50, 30, 32), and for WordNet Nouns dataset it is (80, 15, 8). For
link prediction transitive closure experiment on Medical, Music, Shwartz Lex and Shwartz Random
datasets with transitive closure 0% and 10%: (100, 25000, 12) and for 25% and 50%: (100, 50000,
12). Optimal (bits, α, n−) for link prediction transitive closure task on WordNet Nouns dataset
with all transitive closure configurations (0%, 10%, 25%, 50%) is (120, 25000, 12). We use these
hyper parameters to obtain results of Table 3, 4 and 5. For the competing models, except T-Box,
we exhaustively tuned dimensions d = 5, 10, 20, 50, 100, 200 keeping other hyperparmeters similar
to original papers. Since T-Box requires 2*d dimension for its representation, to be fair with other
models, we tuned T-Box for dimensions d = 2, 5, 10, 20, 50, 100 keeping other hyperparmeters
similar to original paper implementation. All the models were run on a Tesla V100 GPU.

D CASE STUDY

We present a case-study experiment, which will provide the reader a sketch of BINDER’s embedding
results. For this we run our model with 8 bits on the toy lattice from Vendrov et al. (2015). Because
the lattice is very small, it is possible for BINDER to achieve perfect accuracy. Figure 1 shows the
final embedding. Given the embeddings for boy, person, and city, a human can determine that,
according to the model, boy is-a person but not is-a city. In theory, each bit can correspond to
some “attribute” of each object, where all attributes are passed down to hyponyms. This can help to
build an explainable embedding. For instance, the second circle clearly denotes an attribute which
could be named has-life. Sometimes, however, bits are used with different meanings in different
words: the right-most bit is 1 on man, girl, and SanJuan. This is partly because the toy lattice
is very sparse, with only two sub-components of city compared to ten of livingThing, and
adult and child were not included in the lattice, as they are in WordNet.

16

Under review as a conference paper at ICLR 2024

Figure 1: Visual representation of toy dataset results. White circles represent 1 and black circles 0.

Table 6: Edge distribution for all datasets
Edge Counts

Dataset Direct Edge Transitive (Indirect) Edge Full Transitive Closure (Direct + Transitive)

Medical 2616 1692 4308
Music 3920 2608 6528

Shwartz Lex 5566 7940 13506
Shwartz Random 13740 42437 56177
WordNet Nouns 84363 576764 661127

E DATASET STATISTICS

We have explained before that since BINDER does not rely on transitive edges for link prediction,
unlike its competitors, BINDER performance is superior compared to its competitors at 0% transitive
closure. The difference margin with the competitors are larger for large datasets where transitive
edge percentages are significantly higher compared to direct edge percentages, as shown in Table 6
and figure 2. Hence it proves the superiority of BINDER embedding.

F MORE EXPERIMENTAL RESULTS

F.1 ABLATION STUDY

For an ablation study, we observe the effect on model accuracy on the validation data by removing β
and bℓ separately while keeping other parameters at best value. For Nouns data set on reconstruction
task, setting β = 0 (i.e. ignoring the negative samples) gives accuracy 76% after 500 iterations. If
we set bℓ to 0 then we don’t see any significant effect on accuracy. For the 0% transitive closure pre-
diction task on Nouns data set, when we set β = 0 accuracy saturates at 86% after 800 iterations.If
we set bℓ to 0 then we see accuracy drops by several percentages from the best result.

F.2 JUSTIFICATION OF BALANCED ACCURACY METRIC OVER F1-SCORE

For classification over imbalance data, F1 measure is a good metric; however some argue (and we
agree with them) that balanced accuracy (BA) is actually a better metric, which is defined as the
average of positive class recall+ = TP

TP+FN , and negative class recall− = TN
TN+FP . Balanced ac-

curacy is a better metric than F1-score for imbalanced datasets, because F1-score does not care about
how many true negatives are being classified. F1-score uses precision and recall, which together use
only three entries of the confusion matrix (TP, FP, FN); on the other hand, balanced accuracy uses
all four entries of the confusion matrix. For an example, say a dataset has 1000 negative and 10
positive examples. If the model predicts there are 15 positive (TP = 5, FP = 10), and predicts the
rest as negative (TN = 990, FN = 5), we get Precision = 5

15 ≈ 0.33, and Recall = 5
10 = 0.5

it yields F1 = 0.4. The model does not get much credit for correctly predicting 990 out of 1000

17

Under review as a conference paper at ICLR 2024

Figure 2: Distribution of Direct and Transitive (Indirect) edges for all datasets.

examples as negative. However, the balanced accuracy is 1
2 ∗ (5

10 + 990
1000) = 0.745, which provides

somewhat a more realistic picture.

Additionally, balanced accuracy does not depend on the ratio of positive to negative edges, which is
important because our datasets have different negative edge ratios: Medical has about 1400 entities
and 4300 edges, for a negative ratio of about 450, while the ratio for Nouns is about 9000, and
evaluating the entire negative edge set is impractical. In practice, we chose a 10:1 ratio of negative
to positive test cases, but this choice was arbitrary and made because Nickel & Kiela (2017) used
the same ratio. Balanced accuracy is unaffected by these arbitrary decisions, provided the samples
are large enough to avoid statistical error.

We actually used an F1 measure with the 10:1 ratio, but found it to be very harsh for the competitors.
In the Table below, we show F1-score results for the four transitive link prediction experiments. As
can be seen BINDER’s F1-scores (bold numbers) are significantly better than all other methods on
all datasets. The competitor methods suffer severely due their poor precision. We have reported
F1-score for all our experiments in Tables 7, 8 and 9.

F.3 BINDER: RESULTS FURTHER DISCUSSION

For reconstruction task, OE achieves better performance than BINDER on two smaller datasets
(Edges: Medical: 4.3k, Music: 6.5k) and achieves equal performance on mid-sized datasets (Edges:
Shwartz Lex: 13.5k, Shwartz Random: 56.2k) for fewer dimensions. For smaller datasets, OE
achieves 100% accuracy by using d = 10 and 20, but BINDER achieves 99.9% accuracy by using
50 bits. Based on this observation, one can conclude that BINDER does not show superiority over
OE. However, we argue that BINDER still wins because it uses bits, whereas other methods operates
in real number domain. We need at least 4 bytes (32 bits) to represent a real number. So, the
claim that OE is using fewer dimension is untrue, because OE is using d ≥ 10 (10 × 32 = 320
bits), whereas BINDER is using only d = 50 bits. If BINDER is allowed only 50 bits, for a fair
comparison other methods should be allowed [50/32] = 2 dimensions. From our experiments,

18

Under review as a conference paper at ICLR 2024

Table 7: Reconstruction Results F1-score(%) (dim)
Medical Music Shwartz Shwartz WordNet

Lex Random Nouns
Model entities = 1.4k entities = 1k entities = 5.8k entities = 13.2k entities = 82k

edges = 4.3k edges = 6.5k edges = 13.5k edges = 56.2k edges = 743k

OE 100 (20) 100 (20) 100 (20) 100 (50) 97.5 (200)
Poincaré 61.0 (100) 45.0 (50) 40.1 (10) 28.6 (100) 97.2 (50)

HEC 87.5 (100) 73.2 (100) 97.7 (20) 88.6 (10) 91.3 (100)
T-Box 100 (25) 100 (50) 100 (25) 100 (50) 99.9 (50)

BINDER 99.9 (50) 99.9 (50) 100 (50)* 100 (50)* 99.9 (80)*
*For Shwartz Lex and Random dataset, BINDER dimension is higher compared to OE but considering space

complexity (1 bit vs 4 bytes) for each dimension we conclude BINDER as the wining model.

Table 8: Link Prediction (Transitive Closure) Results F1-score(%) (dim)
Medical Music Shwartz Shwartz Nouns

Model Lex Random

Transitive Closure 0%

OE 83.1 (10) 74.8 (10) 46.7 (10) 42.1(50) 48.9 (20)
Poincaré 44.0 (100) 27.5 (50) 28.8 (5) 31.9 (5) 33.1(200)

HEC 58.3 (100) 38.2 (20) 41.2 (50) 32.3 (5) 39.6 (200)
T-Box 29.8 (50) 29.5 (50) 25.5 (100) 22.8 (50) 25.7 (100)

BINDER 96.6 (100) 87.8 (100) 98.4 (100) 97.5 (100) 91.7 (120)
Transitive Closure 10%

OE 87.3 (100) 81.8 (20) 56.7 (5) 51.6 (5) 62.1 (5)
Poincaré 55.2 (50) 30.0 (10) 22.6 (5) 27.8 (200) 35.6 (10)

HEC 71.5 (50) 51.6 (50) 81.1 (200) 66.8 (50) 87.2 (200)
T-Box 38.7 (100) 35.2 (100) 28.3 (100) 28.5 (100) 35.6 (100)

BINDER 99.4 (100) 83.9 (100) 100 (100) 99.9 (100) 99.2 (120)
Transitive Closure 25%

OE 87.3 (10) 83.2 (20) 55.9 (10) 51.1 (10) 71.2 (10)
Poincaré 54.4 (10) 33.2 (20) 22.7 (20) 23.4 (10) 39.9 (50)

HEC 78.9 (100) 58.4 (5) 85.9 (20) 74.1 (50) 91.2 (200)
T-Box 39.6 (100) 35.4 (100) 28.4 (100) 28.5 (100) 45.6 (100)

BINDER 99.1 (100) 87.0 (100) 100 (100) 99.9 (100) 98.5 (120)
Transitive Closure 50%

OE 92.0 (50) 87.9 (10) 53.3 (5) 61.6 (10) 80.7 (10)
Poincaré 62.1 (50) 32.4 (200) 24.4 (100) 23.6 (20) 43.0 (200)

HEC 87.2 (200) 68.9 (5) 83.1 (50) 77.3 (100) 95.3 (50)
T-Box 48.8 (100) 42.5 (100) 28.1 (100) 28.5 (50) 57.9 (100)

BINDER 99.7 (100) 90.0 (100) 100 (100) 99.9 (100) 99.6 (120)

we observed that even with d = 5 (5 × 32 = 160 bits) and d = 10 (320 bits), OE achieves
99.4% and 98.6% accuracy respectively for Medical and Music, which is poorer than BINDER.
Most importantly, on the largest dataset (Nouns), which has 100 times more edges than the smaller
datasets, BINDER achieves 99.7% accuracy with 100 bits, whereas OE achieves 96.7% accuracy by
using 200 dimensions, or 200× 32 = 6400 bits.

To summarize, OE uses the smallest dimension of all the competitors because it uses real-number
space which is less constrained, whereas hyperbolic space is more constrained, and box embedding
requires two vectors per dimension. Comparing to BINDER, OE actually uses more memory, as OE
uses real space and BINDER uses binary vectors.

19

Under review as a conference paper at ICLR 2024

Table 9: Distribution of BINDER Results F1-score (µ± σ)%
Medical Music Shwartz Shwartz Nouns

Task Lex Random

Recon (100% TC) 99.9± 0.03 99.8± 0.04 99.9± 0.11 99.9± 0.07 99.8± 0.04

Pred (0% TC) 93.9± 2.4 78.2± 5.5 97.7± 0.5 96.9± 0.3 98.1± 0.2
Pred (10% TC) 93.8± 2.5 77.4± 3.7 99.4± 0.3 99.1± 0.1 97.8± 1.1
Pred (25% TC) 94.1± 0.2 79.6± 5.8 99.4± 0.3 99.5± 0.1 97.7± 0.9
Pred (50% TC) 97.1± 0.9 78.4± 6.5 99.8± 0.2 99.6± 0.1 99.4± 0.3

TC = Transitive Closure

F.4 BINDER: MODEL CONVERGENCE RESULTS

We run our models with a large number of iterations to maximize the accuracy. Although the model
attains high accuracy very quickly, it continues to improve steadily for reconstruction task, as shown
in the first graph in Figure 3. The 0% transitive closure prediction task accuracy saturates at around
1000 iterations and then start decreasing, as shown in the second graph in Figure 3.

Noun Reconstruction Validation Acc

Noun Zero Transitive Prediction Validation Acc

Figure 3: Graph of validation Acc score of the two types of Noun experiments, for the first 250
iterations (left) and the last 750 and 1750 (right).

F.5 BINDER: RESOURCE CONSUMPTION RESULTS

One of the main advantages of using binary vectors is their efficiency compared to floating-point
vectors. The algorithms for BINDER are fast since BINDER uses only basic integer arithmetic ex-
cept for the tanh function in the flip probability. On Nouns dataset the Reconstruction task takes
22m 50s for 1000 iterations and the 0% transitive closure task takes 2m 09s for 2000 iterations.
Furthermore, the final representation of the concepts using BINDER are binary vectors; the storage
required for n words and d dimensions is dn

8 bytes instead of Order Embedding’s 4dn bytes if 32-
bit floating point values are used. We want to add the following table where we consider WordNet
Nouns dataset and calculate the size of final embedding of different models for d=100 in table 10

20

Under review as a conference paper at ICLR 2024

Table 10: Space complexity for all models
Model Storage

OE 34.2 MB
Hyperbolic methods 34.2 MB

T-Box 67.0 MB
BINDER 2.36 MB

G FURTHER JUSTIFICATION OF BINDER’S ALGORITHM

G.1 COMPARISON OF BINDER WITH SPARSE ADJACENCY LIST (SAL)

Sparse adjacency list (SAL) does not provide fixed-size vector embedding of entities, but BINDER’s
bit-vector representation provides that. SAL does not capture order between entities, but BINDER’s
bit-vector provides that. SAL only captures the edges of the relation, but BINDER’s bit-vector is
an order-embedding, which represents nodes as vectors which are transferable to other subsequent
knowledge discovery task. For the Noun dataset, which has 743K edges and 82K vertices, BINDER’s
bit vector will take 82 kB · 100/8 = 1025 kB, whereas a sparse adjacency list will take at least
(743k + 82k) ∗ 4 = 3300 Kbytes (considering 4 bytes for integer).

G.2 COMPARISON OF BINDER’S RANDOMIZED ALGORITHM WITH DETERMINISTIC
ALGORITHM FOR GENERATING BIT-VECTOR EMBEDDINGS

A deterministic algorithm offers no learning, it is simply memorizing the edges. It can only be used
when an entire minimal set of edges of the DAG is given. But, one cannot expect that all the edges
between entity pairs are already known/given in the training data. If that is the case, no learning or
embedding is needed and a fixed deterministic method can be used.

The advantage of BINDER is that it has learning capability. It assign bit-vectors so that it can infer
missing edges. In other words, if we remove some direct edges in the training data, BINDER will
still be able to embed entities reasonably. We performed link prediction experiments to prove this
claim on Mammals and Nouns dataset; this setup is identical to that of Vendrov et al. (2015). For
Mammals dataset (6.5k edges) and Nouns dataset (743k edges) we randomly take out 300 and 3500
edges2 respectively, which may or may not be direct edges, to construct positive test data. We create
negative test data by corrupting positive pairs. Results from this experiment are reported in table 11.
For Nouns, Vendrov et al. (2015) reported an accuracy of 90.6% in their work, which is worse than
BINDER’s 93.9%.

Table 11: Results of Vendrov et al. (2015) style Link Prediction experiment
Model Dataset

Mammals Nouns
Acc(%) F1-score(%) Acc(%) F1-score(%)

BINDER 94.2± 1.1 94.1± 1.1 93.9± 0.4 93.6± 0.5

2Vendrov et al. (2015) removed 4000 edges from their Nouns dataset. However, they appear to have used
a different version of WordNet Nouns with about 838,000 edges, and so we remove fewer edges to maintain
approximate proportion.

21

	Introduction
	Binary Order Embedding (Binder)
	Motivation
	Problem Formulation
	Training Algorithm
	Gradient Derivation
	Flip probability

	Experiments and Results
	Datasets
	Competing methods and Metrics Used
	Reconstruction Task Results
	Link Prediction Results

	Other Related Works
	Future Works and Conclusion
	Proof of Binder's Convergence to Local Optimal Solution
	Pseudo-code
	Training Setup and Hyperparameter Tuning
	Case Study
	Dataset Statistics
	More Experimental Results
	Ablation Study
	Justification of Balanced Accuracy metric over F1-score
	Binder: Results Further Discussion
	Binder: Model Convergence Results
	Binder: Resource Consumption Results

	Further justification of Binder's Algorithm
	Comparison of Binder with Sparse Adjacency List (SAL)
	Comparison of Binder's randomized algorithm with deterministic algorithm for generating bit-vector embeddings

