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Abstract

Topological Data Analysis (TDA) allows us to ex-
tract powerful topological and higher-order infor-
mation on the global shape of a data set or point
cloud. Tools like Persistent Homology give a sin-
gle complex description of the global structure
of the point cloud. However, common machine
learning applications like classification require
point-level information and features. In this paper,
we bridge this gap and propose a novel method
to extract point-level topological features from
complex point clouds using discrete variants of
concepts from algebraic topology and differential
geometry. We verify the effectiveness of these
topological point features (TOPF) on both syn-
thetic and real-world data and study their robust-
ness under noise and heterogeneous sampling.

1. Introduction
In modern machine learning (Murphy, 2022), objects are
described by feature vectors. However, the coordinates of
a single vector can often only be understood in relation to
the entire data set: if the value x is small, average, large,
or even an outlier depends on the remaining data. In a
low-dimensional case this issue can be addressed simply by
normalising the data points according to the global mean and
standard deviation or similar procedures. We can interpret
this as the most straight-forward way to construct local
features informed by the global structure of the data set.

In the case where not all data dimensions are equally rele-
vant, or contain correlated and redundant information, we
can apply (sparse) PCA to project the data points to a lower-
dimensional space using information about the global struc-
ture of the point cloud. For even more complex data, we
may first have to learn the encoded structure itself: indeed, a
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typical assumption underpinning many unsupervised learn-
ing methods is the so-called “manifold hypothesis” which
posits that real world data can be described well via subman-
ifolds of n-dimensional space (Ma & Fu, 2012; Fefferman
et al., 2016). Using eigenvectors of some Laplacian, we can
then obtain a coordinate system intrinsic to the point cloud
(see e.g. (Shi & Malik, 2000; Belkin & Niyogi, 2003; Coif-
man & Lafon, 2006)). Common to all these above examples
is the goal is to construct locally interpretable point-level
features that encode globally meaningful positional infor-
mation robust to local perturbations of the data.

Instead of focussing on the interpretation of individ-
ual points, topological data analysis (TDA), (Carlsson &
Vejdemo-Johansson, 2021), follows a different approach.
TDA extracts a global description of the shape of data, which
is typically considered in the form of a high-dimensional
point cloud. This is done measuring topological features
like persistent homology, which counts the number of gen-
eralised “holes” on multiple scales. Due to their flexibility
and robustness these global topological features have been
shown to contain relevant information in a broad range of ap-
plication scenarios: In medicine, TDA has provided methods
to analyse cancer progression (Lawson et al., 2019). In biol-
ogy, persistent homology has been used to analyse knotted
protein structures (Benjamin et al., 2023), and the spectrum
of the Hodge Laplacian has been used for predicting protein
behaviour (Wee et al., 2024).

This success of topological data analysis is a testament to
the fact that relevant information is encoded in the global
topological structure of point cloud data. Such higher-order
topological information is however invisible to the tools of
data analysis discussed above like PCA or diffusion maps.
We are now faced by the problem that (i) important parts
of the global structure of a complex point cloud can only
be described by the language of applied topology, however
(ii) most standard methods to obtain positional point-level
information are not sensitive to the higher-order topology
of the point cloud.

Contributions We introduce TOPF (Figure 1), a novel
method to compute point-level topological features re-
lating individual points to global topological structures of
point clouds. TOPF (i) outperforms other methods and em-
beddings for clustering downstream tasks on topologically
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Figure 1: Computing Topological Point Features (TOPF). Input. A point cloud X in n-dimensional space. Step 1. To
extract global topological information, the persistent homology is computed on an α/VR-filtration. The most significant
topological features F across all specified dimensions are selected. Step 2. k-homology generators associated to all features
fi,k ∈ F are computed. For every feature, a simplicial complex is built at a step of the filtration where fi,k is alive. Step 3.
The homology generators are projected to the harmonic space. Step 4. The vectors are normalised to obtain vectors eik
indexed over the k-simplices. For every point x and feature f ∈ F , we compute the mean of the entries of eik corresponding
to simplices containing x. The output is a |X| × |F| matrix which can be used for downstream ML tasks. Optional. We
weigh the simplicial complexes resulting in a topologically more faithful harmonic representative in Step 3.

structured data, returns (ii) meaningful representations, and
is (iii) robust to moderate noise and heterogeneous sampling.
Finally, we introduce the topological clustering benchmark
suite, the first benchmark for topological clustering.

Related Work The intersection of topological data analy-
sis, topological signal processing and geometry processing
has many interesting related developments in the past few
years. On the side of homology and TDA, the authors in
(De Silva & Vejdemo-Johansson, 2009) and (Perea, 2020)
use harmonic cohomology representatives to reparametrise
point clouds based on circular coordinates. This implicitly
assumes that the underlying structure of the point cloud is
amenable to such a characterization.

In (Basu & Cox, 2022; Gurnari et al., 2023), the authors
develop and use harmonic persistent homology for data
analysis. However, among other differences their focus is
not on providing robust topological point features. (Car-
rière et al., 2015) construct point features using Topology
as well. However, their signatures only summarise the local
topology of the neighbourhood of the point rather than the
relation between the point and the global topological fea-
tures. (Grande & Schaub, 2023a) uses the harmonic space
of the Hodge Laplacians to cluster point clouds respecting
topology, but is unstable against some form of noise, has no

possibility for features selection across scales and is compu-
tationally far more expensive than TOPF. An overview over
the thriving field of topological data analysis can be found
in (Wasserman, 2018; Munch, 2017). For a more in-depth
review of related work, see Appendix A. Because there are
different views on what constitutes representation learning,
we note that the learnt representations of TOPF are the result
of homology and linear algebra computations, rather than
trained features of an autoencoder or other neural network.

Organisation of the paper In Section 2, we give an
overview over the main ideas and concepts behind TOPF.
In Section 3, we describe how to compute TOPF. Finally,
we will apply TOPF on synthetic and real-world data in Sec-
tion 4. Furthermore, Appendix A contains a brief history
of topology and a detailed discussion of related work. Ap-
pendix B contains additional theoretical considerations. In
Appendix C, we give a theoretical result guaranteeing the
correctness of TOPF in an idealised setting. Appendix D
describes the novel topological clustering benchmark suite,
Appendix E contains details on the implementation, the
choice of hyperparameters and a discussion of runtime com-
plexity, Appendix F contains more details on the experi-
ments, Appendix G gives a detailed treatment of feature
selection, Appendix H discusses simplicial weights, and
Appendix I discusses limitations in detail.
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Code We provide TOPF as an easy-to-use python pack-
age with example notebooks at https://github.com/
vincent-grande/topf installable via pip.

2. Main Ideas of TOPF
A main goal of algebraic topology is to capture the shape of
spaces. Techniques from topology describe globally mean-
ingful structures that are indifferent to local perturbations
and deformations. This robustness of topological features
to local perturbations is particularly useful for the analysis
of large-scale noisy datasets.

In this section we provide a broad overview over the most
important concepts of topology and TDA for our context,
prioritising intuition over technical formalities. For more de-
tails, the reader is referred to (Bredon et al., 1993) (algebraic
topology) and (Munch, 2017) (TDA).

Simplicial Complexes Spaces in topology are continuous
(connected), consist of infinitely many points, and often live
in abstract space. Our input data sets however consist of
finitely many points embedded in real space Rn. In order
to bridge this gap and open up topology to computational
methods, we need a notion of discretised topological spaces
consisting of finitely many base points with finite descrip-
tion length. A simplicial complex is the simplest discrete
model that can still approximate any topological space oc-
curing in practice (Quillen, 1967):

Definition 2.1 (Simplicial complexes). A simplicial com-
plex (SC) S consists of a set of vertices V and a set of
finite non-empty subsets (simplices, S) of V closed un-
der taking non-empty subsets, such that the union over all
simplices

⋃
σ∈S σ is V . We will often identify S with its

set of simplicies S and denote by Sk the set of simplices
σ ∈ S with |σ| = k + 1, called k-simplices. We say that S
is n-dimensional, where n is the largest k such that Sk is
non-empty. The k-skeleton of S contains the simplices of
dimension at most k. If the vertices V lie in Rn, we call the
convex hull in Rn of a simplex σ its geometric realisation
|σ|. When doing this for every simplex of S, we call this
the geometric realisation of S, |S| ⊂ Rn.

We can construct an n-dimensional SC S in n + 1 steps:
We start with a set of vertices V (S0). We then connect
certain pairs of vertices with edges (S1). Afterwards, we fill
in some fully connected triangles (S2), and so on.

Vietoris–Rips and α-complexes We now need a way to
construct a simplicial complex that approximates the topo-
logical structure inherent in our data set X ⊂ Rn. Instead
of having to pick a single scale, the Vietoris–Rips (VR) fil-
tration and the α-filtration take as input a point cloud and
return a nested sequence of simplicial complexes indexed

by a scale parameter ε approximating the topology of the
data across all possible scales.

Definition 2.2 (VR complex). Given a finite point cloud
X in a metric space (M, d) and a non-negative real num-
ber ε ∈ R≥0, the associated VR complex V Rε(X) is
given by the vertex set X and the set of simplices S =
{σ ⊂ X | σ ̸= ∅,∀x, y ∈ σ : d(x, y) ≤ ε}.

A VR complex at ε consists of all simplices σ where all ver-
tices x ∈ σ have distance of at most ε. For r ≤ r′, we obtain
the canonical inclusions ir,r′(X) : V Rr(X) ↪→ V Rr′(X).
For a simplex σ and a filtration F , we denote by its filtration
value F (σ) the smallest ε such that σ ∈ Fε. The set of
VR complexes on X for all possible r ∈ R≥0 together with
the inclusions then form the VR filtration on X . For large
point clouds, the VR filtration becomes computationally ex-
pensive due to its large number of simplices. In contrast,
the α-filtration approximates the topology of a point cloud
using far fewer simplices. Thus we will make use of α-
complexes in settings of ambient dimension lower than 4,
where their construction is computationally feasible. For
a complete discussion and definition of α-complexes, see
Appendix B.

Boundary matrices We still need an algebraic represen-
tation of simplicial complexes that is capable of encoding
the structure of the SC and enables extraction of the topo-
logical features: The boundary matrices Bk associated to
an SC S store all structural information of the SC. The rows
of Bk are indexed by the k-simplices of S and the columns
are indexed by the (k + 1)-simplices.

Definition 2.3 (Boundary matrices). Let S be a simplicial
complex and ⪯ a total order on its vertices V . Then, the i-th
face map in dimension n fn

i : Sn → Sn−1 is given by

fn
i : {v0, v1, . . . , vn} 7→ {v0, v1, . . . , v̂i, . . . , vn}

with v0 ⪯ v1 ⪯ · · · ⪯ vn and v̂i denoting the omission of vi.
Now, the n-th boundary operator Bn : R[Sn+1] → R[Sn]
with R[Sn] being the real vector space over the basis Sn is
given by

Bn : σ 7→
n+1∑
i=0

(−1)ifn+1
i (σ).

When lexicographically ordering the simplex basis, we can
view Bn as a matrix. We call R[Sn] the space of n-chains.
B0 is the vertex-edge incidence matrix of the associated
graph consisting of the 0- and 1-simplices of S and B1 is
the edge-triangle incidence matrix of S

Betti Numbers and Persistent Homology We now turn
to the notion of topological features and how to extract them.
Homology is one of the main algebraic invariants to capture
the shape of topological spaces and SC. The k-th homol-
ogy module Hk(S) of an SC S with boundary operators Bk

3

https://github.com/vincent-grande/topf
https://github.com/vincent-grande/topf


Point-Level Topological Representation Learning on Point Clouds

Figure 2: PH sketch and TOPF pipeline applied to NALCN channelosome, a membrane protein (Kschonsak et al., 2022).
Left: Bars represent life times of features (Grande & Schaub, 2023b). Centre left: Steps 1&2a, when computing persistent
1-homology, three classes are more prominent than the rest. Centre right: Step 2b: The selected homology generators.
Right: Step 3: The projections of the generators into harmonic space are now each supported on one of the rings.

is defined as Hk(S) := kerBk−1/ ImBk. The generator
or representative of a homology class is an element of the
kernel kerBk−1. In dimension 1, these are given by formal
sums of 1-simplices forming closed loops in the SC. Impor-
tantly, the rank rkHk(S) is called the k-th Betti number Bk

of S. In dimension 0, B0 counts the number of connected
components, B1 counts the number of loops around ‘holes’
of the space, B2 counts the number of 3-dimensional voids
with 2-dimensional boundary, and so on.

Given a filtration of SCs, we can track how the homology
modules evolve as the simplicial complex grows. The math-
ematical formalisation, persistent homology, thus turns a
point cloud via a simplicial filtration into an algebraic ob-
ject summarising the topological features of the point cloud
(Edelsbrunner & Harer, 2008).

The Hodge Laplacian and the Harmonic Space We
need to relate the global characterisations of PH back to
local properties of the point cloud. We will do so by using
ideas and concepts from differential geometry and topol-
ogy: The simplicial Hodge Laplacian is a discretisation
and generalisation of the Hodge–Laplace operator acting on
differential forms of manifolds:

Definition 2.4 (Hodge Laplacian). Given a simplicial com-
plex S with boundary operators Bk, we define the n-th
Hodge Laplacian Ln : R[Sn] → R[Sn] by setting

Ln := B⊤
n−1Bn−1 + BnB⊤

n .

Theorem 2.5 (Hodge Decomposition (Lim, 2020; Schaub
et al., 2021; Roddenberry et al., 2021)). For an SC S with
boundary matrices (Bi) and Hodge Laplacians (Li), we
have in every dimension k

R[Sk] = ImB⊤
k−1︸ ︷︷ ︸

gradient space

⊕ kerLk︸ ︷︷ ︸
harmonic space

⊕ ImBk︸ ︷︷ ︸
curl space

.

This, together with the fact that the k-th harmonic space
is isomorphic to the k-th real-valued homology group

Algorithm 1 Topological Point Features (TOPF)

Input: Point cloud X ∈ Rn, maximum homology di-
mension d ∈ N, interpolation coeff. λ.
1. Compute persistent homology with generators in dim.
k ≤ d. (Sec. 2: Betti Numbers & Persistent Homology)
2. Select set of significant features (bi, di, gi) with birth,
death, and generator in F3 coordinates (See Step 2).
3. Embed gi into real space (1), and project into harmonic
subspace (2) of SC at step dλi b

1−λ
i or λdi + (1− λ)bi.

4. Normalise projections to eki and compute F i
k(x) :=

avgx∈σ(e
k
i l(σ)) for all points x ∈ X (3).

Output: Features of x ∈ X

kerLk
∼= Hk(R) means that we can associate a unique

harmonic representative to every homology class. Intu-
itively, this means that for every abstract global homology
class of persistent homology at filtration step t from above
we can now compute one unique harmonic representative
in kerLk that assigns every simplex a value based on how
much it contributes to the homology class. Thus, the Hodge
Laplacian is a gateway between the global topological fea-
tures and the local properties of our SC. We discuss how
this relates to the theory of differential forms and Hodge
theory in the continuous case in Appendix B.2.

3. How to Compute Topological Point Features
In this section, we will combine the ideas and insights of
the previous section to give a complete account of how to
compute topological point features (TOPF). A pseudo-code
version can be found in Algorithm 1 and an overview in
Figure 1. We start with a finite point cloud X ⊂ Rn.

Step 1: Computing the persistent homology First, we
determine the most significant persistent homology classes
which determine the shape of the point cloud. Doing this,
we also extract the “interesting” scales of the data set. We
will later use this to construct SCs to localise the global
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homology features. Thus we first compute the persistent
k-homology modules Pk including a set of homology rep-
resentatives Rk of X using an α-filtration for n ≤ 3 and
a VR filtration for n > 3. We use Z/3Z coefficients to
be sensitive to simplex orientations. In case we have prior
knowledge on the data set, we can choose a real number
R ∈ R>0 and only compute the filtration up to the parame-
ter R. In data sets like protein atom coordinates, this might
be useful as we have prior knowledge on what constitutes
the “interesting” scale, reducing computational complexity.
See Figure 2 centre left for a PH diagram.

Step 2: Selecting the relevant topological features We
now need to select the relevant persistent homology classes
which carry the most important global information. The
persistent homology Pk module in dimension k is given
to us as a list of pairs of birth and death times (bki , d

k
i ).

We can assume these pairs are ordered in non-increasing
order of the durations lki = dki − bki . We are interested in
connected components, loops, cavities, etc. that persist over
a long time, indicating that they are important for the shape
of the point cloud. Distinguishing between the relevant
and the irrelevant features is in general difficult and may
depend on additional insights on the domain of application.
In order to provide a heuristic which does not depend on
any a-priori assumptions on the number of relevant features
we pick the smallest quotient qki := lki+1/l

k
i > 0 as the

point of cut-off Nk := argmini q
k
i . The only underlying

assumption of this approach is that the band of “relevant”
features is separated from the “noisy” homological features
by a drop in persistence. If this assumption is violated,
the only possible way to do meaningful feature selection
depends on application-specific domain knowledge. We
found that our proposed heuristics work well across a large
scale of applications. See Figure 2 left and centre for an
illustration and Appendix G for more technical details and
ways to improve and adapt the feature selection module
of TOPF. We call the chosen k-homology classes with k-
homology generators f i

k.

Step 3: Projecting the features into harmonic space and
normalising In this step, we need to relate the global
topology extracted in the previous step to the simplices
which we will use to compute the local topological point
features. Every selected feature f i

k of the previous step
comes with a birth time bi,k and a death time di,k. This
means that the homology class f i

k is present in every SC of
the filtration between step (i.e. filtration value) bi,k and di,k
and we could choose any of the SCs for the next step. Pick-
ing a small filtration value will lead to fewer simplices in
the SC and thus to a very localised harmonic representative.
Picking a large filtration value will lead to many simplices
in the SC and thus to a very smooth and “blurry” harmonic
representative with large support. Finding a middle ground

between these regimes returns optimal results. Given inter-
polation hyperparameter γ ∈ (0, 1), we will thus consider
the simplicial complex Sti,k(X) at step ti,k := b1−γ

i,k dγi,k for
k > 0 and at step ti,k := γdi,k for k = 0 of the simplicial fil-
tration. At this point, the homology class f i

k is still alive. We
then consider the real vector space R[Sti,k

k (X)] with formal
basis consisting of the k-simplices of the SC Sti,k . From the
persistent homology computation of the first step, we also
obtain a generator of the feature f i

k, consisting of a list Σi
k of

simplices σ̂j ∈ Sbi,k
k and coefficients cj ∈ Z/3Z. We need

to turn this formal sum of simplices with Z/3Z-coefficients
into a vector in the real vector space R[Sti,k

k (X)]: Let
ι : Z/3Z be the map induced by the canonical inclusion
of {−1, 0, 1} ↪→ R. We can now define an indicator vector
eik ∈ R[Sti,k

k (X)] associated to the feature f i
k (Cf. (De Silva

& Vejdemo-Johansson, 2009)).

eik(σ) :=

{
ι(cj) ∃σ̂j ∈ Σi

k : σ = σ̂j

0 else
. (1)

Empirically, eik is a homology generator for real coefficients
as well in the vast majority of cases, although our construc-
tion only guarantees for Bk−1e

i
k ≡ 0 mod 3. We discuss

how to fix the rare case where this does not work in Ap-
pendix B.3 and now assume to work with a real homology
representative eik. While this homology representative lives
in a real vector space, it is not unique, has a small sup-
port, and its value can differ largely even between close
simplices. All of these problems can be solved by project-
ing the homology representative to the harmonic subspace
kerLk of R[Sti,k

k (X)]. Rather than directly projecting eik to
the harmonic subspace, we make use of the Hodge decom-
position theorem (Theorem 2.5) which allows us to solve
computationally efficient least square problems:

eik,curl := Bk argmin
x∈R[Sk+1]

∥∥eik − eik,grad − Bkx
∥∥2
2

(2)

and get the harmonic representative êik := eik − eik,grad −
eik,curl. (Cf. Figure 2 right for a visualisation.) Because
homology representatives are gradient-free, eik,grad = 0 and
we only need to compute eik,curl.

Step 4: Processing and aggregation at a point level In
the previous step, we have computed a set of harmonic
representatives of homology classes. Each harmonic repre-
sentative assigns each simplex in the correspondings SCs a
value. However, these simplices likely have no real-world
meaning and the underlying simplicical complexes differ
depending on the birth and death times of the homology
classes. Hence in this step, we will collect the features
on the point-level after performing some necessary prepro-
cessing. Given a vector êik indexed over simplices and a
hyperparameter δ, we now construct eik : S

ti,k
k (X) → [0, 1]
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by setting

eik : σ 7→∈ {|êik(σ)|/(δ max
σ′∈S

ti,k
k (X)

|êik(σ′)|), 1}

such that êik is normalised to [0, 1], then the values of [0, δ]
are mapped linearly to [0, 1] and everything above is sent
to 1. We found empirically that a thresholding parameter
of δ ≈ 0.07 works best across at the range of applications
considered below. However, TOPF is not sensitive to small
changes to δ because entries of êik are concentrated around
0 (cf. Appendix E.1).

For every feature f i
k in dimension k with processed sim-

plicial feature vector eik and simplicial complex Sti,k , we
define the point-level feature map F k

i : X → R mapping
from the initial point cloud X to R by setting

F k
i : v 7→

∑
σk∈S

ti,k
k : v∈σk

eik(σk)

max(1, |{σk ∈ St
k : v ∈ σk}|)

. (3)

For every point v, we can thus view the vector
(F k

i (v) : f
k
i ∈ F) as a feature vector for v. We call this

collection of features Topological Point Features (TOPF).
(Cf. Figure 3 for an example).

Choosing Simplicial Weights The above discussed the-
ory works analogously for weighted SCs. We discuss how
TOPF employs weighted SCs to mitigate the influence of
noise and heterogeneous sampling in Appendix H.

Theoretical Guarantees In the appendix in Theorem C.1
we give theoretical guarantees for when TOPF provably
works on an idealised point cloud.

Homology, Cohomology, and Hodge Laplacian kernels
Many methods of TDA employ cohomology instead of ho-
mology because of computational benefits. The TOPF would
work with persistent cohomology instead of persistent ho-
mology, however the cohomology representatives will be
associated to different harmonic representatives which we
found to be less faithful of topological features. We will
briefly elaborate on this relationship. Formally, the cochain
space where cohomology lives is the dual of the chain space
of homology. For finite-dimensional vector spaces with the
standard inner product, there is a canonical isomorphism
between the two spaces induced by sending a vector v to
the linear extension of the map sending v to 1. Thus, we
can identify the chains and cochains. We have the boundary
maps Bi and the coboundary maps B⊤

i . By the universal
coefficient theorem real-valued homology and cohomology
are isomorphic, with

Hi = kerBi/ ImBi+1
∼= Hi = kerB⊤

i+1/ ImB⊤
i .

Thus, using the canonical isomorphism to the dual vec-
tor space, all elements of kerBi are homology represen-
tatives and of kerB⊤

i+1 are cohomology representatives.
The kernel of the Hodge Laplacian kerLi is the inter-
section of kerBi and kerB⊤

i+1. Hence every element in
kerLi = kerBi∩kerB⊤

i+1 automatically is a homology and
cohomology representative which is unique by matching
dimensions. This gives us an explicit isomorphism between
kerLi and the (co-)homology.

In step 3, we start with some arbitrary homology representa-
tive r in kerBi. However, we want a harmonic representa-
tive h in kerLi = kerBi∩kerB⊤

i+1 for the same homology
class, i.e. with h = r − c for c ∈ ImBi+1 , the curl space
quotiened out in homology. By the orthogonality of the
Hodge decomposition, this c is given by the projection of r
to the curl space .

Comparison with Topological Point Cloud Clustering
Given a point cloud, TPCC ((Grande & Schaub, 2023a))
selects an ε-radius and builds the associated VR simplicial
complex. It then computes the associated simplicial Hodge
Laplacians and determines a basis of their 0-eigenvectors.
TPCC embeds the simplices bases on the eigenvector coordi-
nates, performs subspace clustering on the embeddings and
aggregates this information back to the point level to deter-
mine a final clustering. However, TPCC is (i) computation-
ally expensive due to extensive eigenvector computations,
(ii) depending on high-dimensional subspace clustering al-
gorithms, which are prone to instabilities and errors, (iii)
sensitive to the correct choice of hyperparameters, (iv) re-
quiring the topological true features and noise to occur in
different steps of the simplicial filtration, and it (v) solely
focussed on clustering the points rather than extracting rele-
vant point-level features. TOPF solves (i) by using homology
representatives from persistent homology and projecting
them into the harmonic space, which requires solving a
computationally efficient least-squares problem instead of
an eigenvector problem. Problem (ii) and (iv) are solved by
selecting relevant persistent homology classes by the TOPF
heuristic instead of considering and clustering the entire
harmonic space of a given simplicial complex. Finally, chal-
lenge (iii) is partially addressed by the heuristics of step
3 and 4 and the general architecture being more robust to
noise.

4. Experiments
In this section, we conduct experiments on real world and
synthetic data, compare the clustering results with clus-
tering by TPCC, other classical clustering algorithms, and
other point features, and demonstrate the robustness of TOPF
against noise. In Table 2, we perform an ablation study with
respect to the harmonic projections of step 3 of TOPF.
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Figure 3: TOPF on 3d real-world and synthetic point
clouds. For every point, we highlight the largest corre-
sponding topological feature, where colour stands for the
different features and saturation for the value of the fea-
ture. (a): Atoms of mutated Cys123 of E. coli (Hidber
et al., 2007). We added auxiliary points on the convex hull
and considered 2-homology, to detect the protein pockets
which are crucial for protein-environment interactions, cf.
(Oda et al., 2024). (b): Atoms of NALCN channelosome
(Kschonsak et al., 2022) display three distinct loops. (c):
Points sampled in the state space of a Lorentz attractor. The
two features correspond to the two lobes of the attractor.
(d): Point cloud spaceship of our newly introduced topo-
logical clustering benchmark suite (See Appendix D). (e):
Latent space of a VAE trained on image patches showing
topological structure (See Figure 12 for details).

Topological Point Cloud Clustering Benchmark We
introduce the topological clustering benchmark suite (Ap-
pendix D) and report running times and the accuracies of
clustering based on TOPF and other methods and point em-
beddings, see Table 1. We see that spectral clustering on
TOPF vectors (listed as TOPF) outperforms all classical clus-
tering algorithms on all but one dataset by a wide margin.
We also see that TOPF closely matches the performance
of the only other higher-order topological clustering algo-
rithm, TPCC on two datasets with clear topological features,
whereas TOPF outperforms TPCC on datasets with more
complex structure. In addition, TOPF has a consistently
lower running time with better scaling for the more complex
datasets, while not requiring prior knowledge on the best
topological scale. Furthermore, TOPF outperforms WSDesc
(Li et al., 2022) pretrained on the 3DMatch dataset (Zeng
et al., 2017) and DGCNN (Wang et al., 2019) pretrained
on the ShapeNetPart data set. This highlights that neural
network architectures like DGCNN need specific application-
specific training data for good performance that is simply
not available in all cases. TOPF is an unsupervised method
for extracting interpretable topological features founded in
algebraic topology and differential geometry.

Figure 4: TOPF on a high-dimensional point cloud. We
used TOPF on 6500 points sampled from the 24-dimensional
conformation space of cyclooctane (Martin & Watson,
2011). We show the ISOMAP projection from 24 dimen-
sions. Top: Three features automatically selected by TOPF.
Bottom: TOPF-Clustering for 3 and 4 clusters. TOPF can
correctly cluster similar points according to their topolog-
ical function. Four clusters, TOPF can even identify the
anomalous points (blue) violating the manifold structure.

The performance differences of TPCC and TOPF on differ-
ent point clouds of the TCBS comes mainly down to how
“difficult” and “robust” the topological structure encoded
in the datasets is. In particular, 2Spheres2Circles and
SphereInCircle are directly sampled from unions of
manifolds without any noise and sufficient sampling den-
sity and TPCC and TOPF perform similarly. In compari-
son, in Ellipses and Spaceship, the topological fea-
tures have shorter life times and live at different scales.
There is no single scale containing all features, and for most
holes/voids, there is not even a scale whithout noisy holes
with small persistence present in the filtration. TOPF can
deal with these situations, whereas TPCC cannot. For the
difference on HalvedCircle, we posit that this is due to
the better feature aggregation of TOPF. TPCC requires to per-
form subspace clustering on an harmonic edge embedding,
which is both unstable and sensitive to parameters, which
we posit TPCC has no information to choose correctly in this
setting.

On 4Circles+Grid, TOPF performs worst out of the
point clouds of TCBS. Figure 8 and Figure 9 show the
ground truth and TOPFclustering on 4Circles+Grid. In short,
TOPF chooses suboptimal scales which are not well-enough
connected. Figure 10 supports this interpretation, increasing
the interpolation hyperparameter λ improves TOPF perfor-
mance on this dataset. We have used a fixed set of hyperpa-
rameters for all experiments on the TCBS for transparency.

Feature Generation In Figure 3, we show qualitatively
that TOPF constructs meaningful topological features on
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Table 1: Quantitative performance comparison of clustering with TOPF and other features/clustering algorithms.
Four 2d and three 3d data sets of the topological clustering benchmark suite (Appendix D, cf. Figure 8 for ground truth and
Figure 9 for labels by TOPF). We ran each algorithm 20 times and list the mean adjusted rand index (ARI) with standard
deviation σ and mean running time. We omit σ for algorithms with σ = 0. Spectral clustering on TOPF vectors consistently
outperforms or almost matches the other algorithms while having significantly better run time than the second best performing
algorithm TPCC. Spectral Clustering (SC), DBSCAN (applied on the points) are standard clustering algorithms, TOMATO is a
topological clustering algorithm (Chazal et al., 2013), Geo clusters using 12-dimensional point geometric features extracted
by pgeof. “Weakly Supervised 3D Local Descriptor Learning for Point Cloud Registration” (WSD (Li et al., 2022)) is
pretrained on 3DMatch data and produces 32-dimensional feature vectors. DGCNN (Wang et al., 2019) is pretrained on
ShapeNetPart segmentation, with the parameters determined by a hyperparameter search. PAM+ISOMAP denotes k-medoids
clustering on the ISOMAP embedding. We highlight all ARI scores within ±0.05 of the best ARI score.

TOPF TPCC SC DBSCAN AgC ToMATo Geo PN WSD DGCNN PAM+ISOMAP

4spheres ARI 0.81 0.52±0.17 0.37 0.00 0.45 0.32 0.20 0.30 0.13 0.29±0.03 0.39
time (s) 13.9 23.3 0.2 <0.1 <0.1 <0.1 0.2 <0.1 <0.1 <0.1 0.2

Ellipses ARI 0.95 0.47±0.04 0.25 0.19 0.52 0.29 0.81 0.50 0.35 0.70±0.00 0.56
time (s) 13.5 14.4 0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1

4Circles+Grid ARI 0.70 0.39±0.04 0.90 0.92 0.89 0.82 0.41 0.55 0.06 0.75±0 0.78
time (s) 13.7 28.5 0.5 <0.1 <0.1 <0.1 0.3 <0.1 <0.1 <0.1 0.3

Halved Circle ARI 0.71 0.18±0.12 0.24 0.00 0.20 0.16 0.08 0.36 0.00 0.39±0.07 0.13
time (s) 13.6 14.3 0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1

2Spheres2Circle ARI 0.94 0.97±0.01 0.70 0.00 0.51 0.87 0.12 0.55 0.95 0.84±0.18 0.63
time (s) 20.7 1662.2 1.6 <0.1 0.3 <0.1 0.9 <0.1 <0.1 0.2 6.5

SphereinCircle ARI 0.97 0.98±<0.1 0.34 0.00 0.29 0.06 0.69 0.39 0.46 0.76±0.06 0.94
time (s) 14.5 8.0 <0.1 <0.1 <0.1 <0.1 0.08 <0.1 <0.1 <0.1 <0.1

Spaceship ARI 0.92 0.56±0.03 0.28 0.26 0.47 0.30 0.87 0.41 0.76 0.79±0.00 0.58
time (s) 15.5 341.8 16.7 <0.1 <0.1 <0.1 0.2 <0.1 <0.1 <0.1 0.1

mean ARI 0.86 0.58 0.44 0.16 0.48 0.40 0.45 0.44 0.39 0.64 0.58
time (s) 15.1 298.9 0.4 <0.1 <0.1 <0.1 0.3 <0.1 <0.1 <0.1 1.0

synthetic data and data sets from Biology and Physics, cor-
responding to for example rings and pockets in proteins or
trajectories around different attractors in dynamical systems,
(for individual heatmaps see Figure 14). In Figure 4, we
show that TOPF works for the high-dimensional conforma-
tion space of cyclooctane.

Robustness Against Noise, Downsampling, and Sam-
pling Heterogeneity We have evaluated the robustness of
TOPF against Gaussian noise on the dataset introduced in
(Grande & Schaub, 2023a) and compared the results against
TPCC, Spectral Clustering, Graph Spectral Clustering on the
graph constructed by TPCC, and against k-means in Figure 6.
We have also analysed the robustness of TOPF against the
addition of outliers in Figure 6. We see that TOPF performs
well in both cases, underlining our claim of robustness. Fi-
nally, in Figure 5, we show that TOPF performs well under
sampling heterogeneity and under downsampling to sparse
point clouds, while comparing TOPF to the other baselines.
We posit that this is due to the robustness of α-complexes,
the chosen simplicial weights, and the general robustness
of features extracted by persistent homology. In our eyes,
the above result showcases the strength of our approach
incorporating ideas from topological data analysis and dif-
ferential geometry, given that heterogeneous sampling and
sparse point clouds constitute a major challenge for classical
geometry learning.

Embedding Space of Variational Autoencoders and High-
dimensional spaces Variational autoencoders (VAE) are
unsupervised neural networks that learn to extract a low-
dimensional embedding of a high-dimensional data set. We
have trained 2 VAEs on 518 image patches which were sam-
pled along a topological structure on a larger image with a
latent space dimension of 3 and of 16. We show that run-
ning TOPF on the two latent spaces as well as directly on the
8748(!)-dimensional base space can recover the topological
structure underlying the capturing process of the training
set. We visualise the feature vectors on the latent space in
Figure 3 (e) and Figure 13 and provide additional details in
Figure 12 and Appendix F.

In Figure 4, we use TOPF on a high-dimensional input point
cloud representing the conformation space of cyclooctane
(Martin & Watson, 2011). We see in the ISOMAP projections
of Figure 4 that TOPF extracts reasonable features represent-
ing the topology of the conformation space. This shows the
feasability of TOPF on very high-dimensional spaces. Note
that TOPF even recovers the anomalous points violating the
manifold hypothesis, as done in (Stolz et al., 2020).

5. Discussion
Limitations TOPF can — by design — only produce mean-
ingful output on point clouds with a topological structure
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Figure 5: Performance of TOPF Clustering under down-
sampling and heterogeneous sampling on 4spheres.
Left: We perform random downsampling to test the per-
formance of TOPF on sparse point clouds. TOPF maintains
strong performance until ∼ 100 points, which proves that
TOPF performs well on very sparse point clouds. For exper-
iments on all datasets of TCBS see Figure 15. Right: We
investigate the performance under heterogeneous sampling.
We divide the point cloud into halves cutting up topological
structures and downsample one of the halves with a factor
of up to 100. The experiments show that TOPF still outper-
forms the other methods under a sampling irregularity of
1 : 10, indicating a strong robustness against heterogeneous
sampling. For experiments on more datasets of TCBS see
Figure 16.
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Figure 6: Performance of TOPF Clustering with
noise/outliers on SphereinCircle, 95% CI. The radii
are 3 and 1, the mean distance to the closest neighbour is
0.22. Left: We add i.i.d. Gaussian noise to every point with
standard deviation indicated by the noise parameter. Even
when compared with TPCC on a data set specifically crafted
for TPCC, TOPF requires significantly less information and
delivers almost equal performance. Tuned for datasets with
a high noise, the TOPF outperform TPCC. Right: We add
outliers with same standard deviation as the point cloud. We
then measure ARI restricted to original points. Compared
with TPCC on a data set specifically crafted for TPCC, TOPF
requires significantly less information and delivers matching
to superior performance.

Table 2: Ablation study for the harmonic projection in
step 3. We see that in the more complex datasets, perfor-
mance without the harmonic projection drops significantly.
Only 2Spheres2Circles and SphereinCircle are
unions of simple manifolds without noise and thus TOPF
can recover meaningful features even without harmonic pro-
jection.

Dataset ARI TOPF
ARI TOPF

without harmonic projection

4spheres 0.81 0.08
Ellipses 0.95 0.53
4Circles+Grid 0.70 0.11
Halved Circle 0.71 0.15

2Spheres2Circles 0.94 0.95
SphereinCircle 0.97 1.00
Spaceship 0.92 0.49

mean 0.86 0.47

quantifiable by persistent homology. In practice it is thus
desirable to combine TOPF with some geometric or other
point-level feature extractor. As TOPF relies on the com-
putation of persistent homology, its runtime increases on
very large point clouds, especially in higher dimensions
where α-filtrations are computationally infeasible. However,
subsampling, either randomly or using landmarks, usually
preserves relevant topological features while improving run
time (Perea, 2020). Finally, selection of the relevant features
is a very hard problem. While our proposed heuristics work
well across a variety of domains and application scenar-
ios, only domain- and problem-specific knowledge makes
correct feature selection feasible.

Future Work The integration of higher-order TOPF fea-
tures into ML pipelines that require point-level features po-
tentially leads to many new interesting insights across the do-
mains of biology, drug design, graph learning and computer
vision. Furthermore, efficient computation of simplicial
weights leading to the provably most faithful topological
point features is an exciting open problem.

Conclusion We introduced point-level features TOPF
founded on algebraic topology relating global structural
features to local information. We gave theoretical guaran-
tees for the correctness of their construction and evaluated
them quantitatively and qualitatively on synthetic and real-
world data sets. Finally, we introduced the novel topological
clustering benchmark suite and showed that clustering us-
ing TOPF outperforms other available clustering methods
and features extractors. In particular, we showed that TOPF
performs well both on very sparse datasets and on datasets
under heterogeneous sampling.
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A. Extended Background
A brief history of topology and machine learning Algebraic topology is a discipline of Mathematics dating back
roughly to the late 19th century (Poincaré, 1895). Starting with Henri Poincaré and continuing in the early 20th century,
the mathematical community became interested in developing a framework to capture the global shapes of manifolds
and topological spaces in concise algebraic terms. This development was partly made possible by the push towards a
formalisation of mathematics and analysis, in particular, which took place inside the mathematical community in the 1800’s
and early 1900’s (e.g. (Dedekind, 1888; Hilbert, 1899; Hausdorff, 1908)). The axiomatisation of analysis in the early 20th

century is an important result of this process. Another key step towards modern algebraic topology was the development
of homological algebra which was led by the insights of Emmy Noether (Noether, 1926). The main idea was to replace
the Betti numbers by the more structured and powerful homology groups. Over the course of the last 100 years, branching
into many sub-areas like low-dimensional topology, differential topology, K-theory or homotopy theory (Atiyah, 1989; Hu,
1959), algebraic topology has resolved many of the important questions and provides a comprehensive tool-box for the study
of topological spaces. These achievements were tied to an abstraction and generalisation of concepts: topological spaces
turned into spectra, diffeomorphisms to homotopy equivalences and later weak equivalences, and Topologists turned to
category theory (Eilenberg & MacLane, 1945), model categories (Bousfield, 1975) and recently ∞-categories (Lurie, 2006)
as the language of choice.

The 21st century saw the advent and rise of topological data analysis (TDA, (Bubenik et al., 2015; Chazal & Michel, 2021)).
In short, mathematicians realised that the same notions of shape and topology that their predecessors carefully defined a
century earlier were now characterising the difference between healthy and unhealthy tissue, between normal and abnormal
behaviour protein behaviour, or more general between different categories in their complex data sets.

Topological data analysis is closely connected to distance- and density-based methods for data analysis like DBSCAN or tools
from manifold learning like ISOMAP (Tenenbaum et al., 2000) or UMAP (McInnes et al., 2018). Persistent homology captures
the shape of a point cloud across all scales and can be captured in persistence barcodes (Carlsson et al., 2004), persistent
landscapes (Bubenik et al., 2015) or persistence images (Adams et al., 2017). In multiparameter persistent homology, an
additional filtration parameter like density is included, allowing for stronger representations like graphcodes (Kerber &
Russold, 2024) or GRIL (Xin et al., 2023). The persistent homology transform computes persistent homology over a height
filtration across different directions in the data set, further uncovering geometric properties of the dataset (Turner et al.,
2014). The mapper graph is a tool to visualise high dimensional point clouds with graphs using the (persistent) homology of
slices according to some generalised heigh function (Singh et al., 2007).

Related Work The intersection of topological data analysis, topological signal processing and geometry processing has
many interesting related developments in the past few years. On the side of homology and TDA, the authors in (De Silva
& Vejdemo-Johansson, 2009) and (Perea, 2020) use harmonic cohomology representatives to reparametrise point clouds
based on circular coordinates. This implicitly assumes that the underlying structure of the point cloud is amenable to such a
characterization. Although circular coordinates are orthogonal to the core goal of TOPF, the approaches share many key
ideas and insights. In (Basu & Cox, 2022; Gurnari et al., 2023), the authors develop and use harmonic persistent homology
and provide a way to pool features to the point-level. However, their focus is not on providing robust topological point
features and their approach includes no tunable homology feature selection across dimensions, no support for weighted
simplicial complexes, and they only construct the simplicial complex at birth. In their paper on topological mode analysis,
(Chazal et al., 2013) use persistent homology to cluster point clouds. However, they only consider 0-dimensional homology
to base the clustering on densities and there is no clear way to generalise this to higher dimensions.

On the more geometric-centred side, (Ebli & Spreemann, 2019) already provide a notion of harmonic clustering on simplices,
(Chen & Meilă, 2021; Chen et al., 2021) analyse the notion of geometry and topology encoded in the Hodge Laplacian and
its relation to homology decompositions, (Schaub et al., 2020) study the normalised and weighted Hodge Laplacian in the
context of random walks, and (Grande & Schaub, 2023a) use the harmonic space of the Hodge Laplacians to cluster point
clouds respecting topology. Finally, a persistent variant of the Hodge Laplacian is used to study filtrations of simplicial
complexes (Mémoli et al., 2022).

There are other constructions of isometry-invariant local shape descriptors, as for example proposed in (Mémoli, 2011).
However, their aim is not relate the global topology back to the local features.

In (Moor et al., 2020), the authors basically set up a topological loss functions that ensures that topological features of the
original point cloud are preserved in the latent space of the autoencoder. This is different from the approach TOPF takes, as
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TOPF tries to detect and extract topological features. Similar things can be said about topological node-2-vec (Hiraoka et al.,
2024) and some experiments in (Carriere et al., 2021) or some experiments of (Carriere et al., 2024): They all try to come
up with ways to preserve global topological structure while embedding a point cloud, while we on the other hand construct
the embedding based on the relationship between the points and the global topological structure.

On graphs, (Arafat et al., 2024) construct topological representations of graphs to study adversarial graph learning. They
construct a local topological features for nodes and global topological features for the entire graph. In contrast to our
approach, they do not relate the global topological features back to the local level, but rather consider the local topology on
the point level and the single global topological summary separately. Furthermore when constructing their features, they
use vision transformers on the persistence images of their witness filtrations, which does not allow for the same amount of
interpretability as TOPF does.

In (Grande & Schaub, 2023a), the authors have introduced TPCC, the first method to cluster a point cloud based on
the higher-order topological features encoded in the data set. However, TPCC is (i) computationally expensive due to
extensive eigenvector computations, (ii) depending on high-dimensional subspace clustering algorithms, which are prone to
instabilities and errors, (iii) sensitive to the correct choice of hyperparameters, (iv) requiring the topological true features
and noise to occur in different steps of the simplicial filtration, and it (v) solely focussed on clustering the points rather
than extracting relevant node-level features. This paper solves all the above by completely revamping the TPCC pipeline,
introducing several new ideas from applied algebraic topology and differential geometry. The core insight is: When you
have the time to compute persistent homology with generators on a data set, you get the topological node features with
similar computational effort.

B. Theoretical Considerations
B.1. More details on VR and α-filtrations

Vietoris–Rips complexes are easy to define, approximate the topological properties of a point cloud across all scales and
computationally easy to implement. However for moderately large r, the associated VR complex contains a large number of
simplices — up to

( |X|
n+1

)
n-simplices for large enough r — leading to poor computational performance for any downstream

task on some large point clouds. One way to see this is the following: After adding the first edge that connects two
components or the final simplex that fills a hole in the simplicial complex the VR complex keeps adding more and more
simplices in the same area that keep the topology unchanged. One way to mitigate this problem is to pre-compute a set
of simplices that are able to express the entire topology of the point cloud. For a point cloud X ⊂ Rn, the α-filtration
consists of the intersection of the simplicial complexes of the VR filtration on X with the (higher-dimensional) Delaunay
triangulation of X in R. Due to algorithmic reasons, the filtration value of a simplex is then related to the radius of the
circumscribed sphere instead of the maximum pair-wise distance of vertices, where the filtration value αX(σ) of a simplex
σ is given by the minimum ε such that σ is contained in αε(X), i.e. αX(σ) := inf{ε ∈ R : σ ∈ αε(V )}. This reduces
the number of required simplices across all dimensions to O(|X|⌈n/2⌉). However, the Delaunay triangulation becomes
computationally infeasible for larger n.

Definition B.1 (n-dimensional Delaunay triangulation). Given a set of vertices V ⊂ Rn, a Delaunay triangulation DT (V )
is a triangulation of V such that for any n-simplex σn ∈ DT (V ) the interior of the circum-hypersphere of σn contains no
point of DT (V ). A triangulation of V is a SC S with vertex set V such that its geometric realisation covers the convex hull
of V hull(V ) = |S| and we have for any two simplices σ, σ′ that the intersection of geometric realisations |σ| ∩ |σ′| is
either empty or the geometric realisation |σ̂| of a common sub-simplex σ̂ ⊂ σ, σ′.

If V is in general position, the Delaunay triangulation is unique and guaranteed to exist (Delaunay et al., 1934). We will
now first introduce a slightly simpler version of the α-filtration, the α∗-filtration.

Definition B.2 (α∗-complex of a point cloud). Given a finite point cloud X in real space Rn, the α∗-complex α∗
ε(X) is the

subset of the n-dimensional Delaunay triangulation DT (X) consisting of all k-simplices σk ∈ DT (X) with a radius r of
its circumscribed (k − 1)-sphere with r ≤ ε for all k ≤ n.

The α∗ and α-filtration share the same set of simplices and agree on the filtration values of the simplices on all top-
dimensional simplices and all other simplices which are Gabriel simplices.

Definition B.3 (Gabriel Simplex). Given a set of vertices V ⊂ Rn and its Delaunay triangulation DT (V ). A simplex
σ ∈ DT (V ) is called Gabriel if there exists no point v ∈ V such that v is contained in the interior of the circumsphere of σ.
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Definition B.4 (α-complex of a point cloud, (Kerber & Edelsbrunner, 2013; Edelsbrunner, 2011)). Given a finite point cloud
X in real space Rn, the α-complex αε(X) is the α∗-complex of V , except that the filtration value α(σ) of all non-Gabriel
simplices σ with associated points X in the interior of the circumsphere of σ is given by minx∈X α(σ ∪ {x}).

We note that due to the definition of the Delaunay triangulation, all n-simplices are Gabriel simplices and hence this is
well-defined. This is an equivalent formulation of the original definition, which was for example shown in (Kerber &
Edelsbrunner, 2013). We chose to go with the above formulation, as it is the form used in implementations of α-filtrations.

We note two things: (i) The α∗-filtration and α-filtration have fewer simplices than the VR filtration and (ii) the filtration
values of individual simplices differ between the α∗, the α and the VR filtration. In particular, the order of the filtration
values can be different across the two types of filtration. For 1-simplicial complexes, the α∗ and VR filtration values on the
simplices present in both are equivalent: The VR filtration value of an edge is its length l, whereas its α∗-filtration value is
the radius r = l/2 of the associated 0-sphere consisting only of the two vertices.

B.2. Differential forms and a continuous analogue of TOPF

In this section, we will discuss how a continuous analogue of TOPF on Riemannian manifolds would look like. Simply
considering the simplicial homology of the manifold, as we did in the case of a discrete simplicial complex, is however
not sufficient: Harmonic cycles and cocycles don’t exist in the simplicial chain complex of the manifold. This is because
the space of chains in simplicial homology on manifolds is infinite-dimensional. Thus, we cannot canonically identify
the space of chains with its dual, the space of cochains. From an intuitive point of view, a harmonic chain would need to
take infinitesimal small values on every simplex which is not allowed. Rather, the right language to formalise harmonic
representatives is Differential Geometry, Hodge Theory, and harmonic forms. Dodziuk proved in (Dodziuk, 1976) that
the discrete Hodge Laplacian as used in this paper if weighted correctly converges spectrally to the Hodge Laplacian on
differential forms which are arbitrary-dimensional integrands over manifolds.

There is a beautiful connection between differential geometry and algebraic topology: A theorem by de Rham states that
given a Riemannian manifold M , the real-valued homology Hk(M ;R) with coefficients in R is isomorphic to the de Rham
cohomology Hk

dR(M ;R) on differential forms on M for arbitrary k ∈ Z≥0, some form of cohomology defined via the chain
complex of vector spaces of differential k-forms on M . We can define an analogue of the discrete Hodge Laplacian on
differential forms by the differential induced via exterior derivates d and its adjoint δ:

∆ := δd+ dδ

The kernel ker∆ of the Hodge Laplacian is called the space of harmonic forms. Similar to the discrete case, the Hodge
theorem now gives us a natural vector space isomorphism between the space of harmonic k-forms on M , Hk(M), and the
kth real-valued homology group

Hk(M ;R) ∼= Hk(M).

We can rephrase this as follows: the harmonic forms can be seen as unique and natural homology representatives.

Let us now get some intuition for what this means for continuous TOPF features: In dimension 0, 0-forms are functions
f : M → R. In this case, we can simply take their value f(x) at x ∈ M as the corresponding point feature at x. In
dimension 1, there is a correspondence between 1-forms and vector fields on M . In this case, we can take the norm of the
vector field that corresponds to a given harmonic form at a point x via the map x 7→ |v(x)|.

In general in dimension k, this is more complicated. Luckily, as we are interested in point-features, we can do all
computations point-wise. We consider a point x ∈ M and a harmonic form ω. At point x, ω determines an element in the
exterior algebra on the dual of the tangent space of M at x, i.e ωx ∈

∧k
T ∗
xM and we need to define a norm on this space.

An orthonormal basis on T ∗
xM , e1(x), . . . , en(x) gives rise to a basis consisting of elements ei1(x) ∧ ... ∧ eik(x) of the

exterior algebra. We can now evaluate ωx on the elements of this basis ωx(ei,1(x) ∧ ... ∧ ei,k(x)) and take the square root
of the sum of squares of the individual results

TOPFω : x 7→
√ ∑

1≤i1<···<ik≤n

ωx (ei1(x) ∧ · · · ∧ eik(x))
2
.

As one can show, this result is independent of the choice of ONB of T ∗
xM and gives a point-wise norm of the differential

forms.
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In the discrete case discussed in this paper, however, we don’t evaluate on all basis elements as described above, but rather on
all k-simplices adjacent to x. These k-simplices can thus be seen as samples from the exterior algebra of x. This sampling
induces some differences to the continuous case, which we address with the post-processing procedure as described in the
paper.

We note that some authors prefer to reserve the name of Hodge Laplacian for the continuous case of differential geometry
and for the representations of finite element theory and discrete exterior calculus. Thus, what we call Hodge Laplacian on
simplicial complexes is sometimes known as the combinatorial Laplacian.

B.3. Fixing real lifts of homology generators in Z/3Z-coefficients

Figure 7: Z/3Z-homology generator with “faulty” lift to R-coefficients. Left: Initial lift produced in Z/3Z-coefficients.
Right: Fixed lift with light blue edges representing the original lift with coefficients in {−1, 1} and dark blue edges
representing the fix with coefficients in 3Z. The underlying data is the trefoil knot embedded in R3, as generated by (Perea
et al., 2023).

In step 3. of the TOPF algorithm in Section 3, we attempt to lift a homology generator with simplices σj ∈ Σk and
coefficients cj in Z/3Z-coefficients to a homology generator in R-coefficients using the embedding

eik(σ) :=

{
ι(cj) ∃σ̂j ∈ Σi

k : σ = σ̂j

0 else
.

where ι : Z/3Z is the map induced by the canonical inclusion of {−1, 0, 1} ↪→ R. Thus, we know that eik is a cycle modulo
3: Bk−1e

i
k ≡ 0 mod 3. A-prior however, there is no reason why this equality should hold in R as well. As it turns out, in

virtually all examples in practice, we already have eik ∈ kerBk−1 which is very convenient. The same phenomenon occurs
for cocycles as well, see (De Silva & Vejdemo-Johansson, 2009). We will now assume to be in a rare case of eik ̸∈ kerBk−1.
We can now attempt to fix this using a linear integer program finding y ∈ Z|Sk| such that

3Bk−1y = Bk−1e
i
k.

And then we set fix(eik) := eik − 3y. If this linear program is not feasible, eik has no integer/real lift and TOPF will skip
the associated topological feature. In Figure 7, we give a visual example of a faulty lift and a fix obtained by the above
procedure. This is similar to the implementation used to compute Eilenberg–MacLane coordinates in DREiMac (Perea et al.,
2023).
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C. Theoretical guarantees
In this section, we want to investigate possible theoretical guarantees for TOPF computed on idealised datasets. Instead of
directly working with the α-complexes, we will first prove guarantees for the closely related construction of α∗-complexes.
α∗ filtrations (Definition B.2) are closely related to α-filtrations (Definition B.4) used in the implementation and agree on
the filtration values on most of the simplices, have however nicer properties. Finally, we give conditions on when this result
applies to the α-filtrations, which is relevant to the actual implementation of TOPF.

Theorem C.1 (Topological Point Features of Spheres). Let X consist of at least (n+ 2) points (denoted by S) sampled
uniformly at random from a unit n-sphere in Rn+1 and an arbitrary number of points with distance of at least 2 to S. When
we now consider the α∗-filtration on this point cloud, with probability 1 we have that (i) there exists an n-th persistent
homology class generated by the n-simplices on the convex hull of S, and (ii) the support of the associated topological
point feature (TOPF) F∗

n is precisely S: supp(F∗
n) = S. (iii) The same holds true for point clouds sampled from multiple

ni-spheres if the above conditions are met on each individual sphere. (iv) If there are no other points contained in or on
the circumspheres of the n-simplices of the convex hull of S, then the same above holds true for TOPF computed using the
α-filtration. (v) More generally, for any contractible subset M of the (n + 1)-simplices such that all n-simplices on the
boundary fulfill the above condition, this holds when using the α-filtration, the discussed n-simplices (i) and the subset of
points contained in M (ii).

We will give a proof of this after the following remark.
Remark C.2. The key idea of the proof is to use that α∗-filtrations and partially α-filtrations assign the filtration value based
on the radius of the circumsphere of the k-simplex. Because all points in S lie on the same n-sphere, with probability
1 we can write down the filtration value of the (n + 1)-simplices explicitly. This is of course a very idealised setting.
However in practice, datasets with topological structure consist in a majority of cases of points sampled with noise from
deformed n-spheres. The theorem thus guarantees that TOPF will recover these structural information in an idealised setting.
Experimental evidence suggests that this holds under the addition of noise as well which is plausible as harmonic persistent
homology is robust against some noise (Basu & Cox, 2022). For the 2D setting, condition (iv) is equivalent to assuming that
there is no line through the centre of the circle such that one half plane does not contain any points of S.

We will now give the proof of the theorem that guarantees that TOPF works. We discuss the assumptions of the theorem in
Remark C.3.

Proof. Assume that we are in the scenario of the theorem. Now because the n-volume of (n− 1)-submanifolds is zero, we
have that with probability 1 the points of S don’t lie on a single (n− 1) sphere inside the n-sphere. Let us now look at the
α-filtration of the simplices in S: Recall that the filtration values of a k-simplex is given by the radius of the (k − 1)-sphere
determined by its vertices. Because all of the (n+1)-simplices σn+1 with vertices V ⊂ S in S lie on the same unit n-sphere
Sn, they all share the filtration value of α(σn+1) = 1. By the same argument as above, with probability 1 there are no
(n+1) points in S that lie on an unit (n− 1)-sphere. Thus all of the n-simplices σn lie on (n− 1)-spheres Sn with a radius
r < 1 smaller than 1 and hence have a filtration value α(σn) smaller than 1. Let

b := max ({α(σn) : σn ⊂ ∂ hull(S)})

be the maximum filtration value of an n-simplex on the boundary of the convex hull of S. Then, a linear combination g of
the n-simplices of the boundary of the convex hull of S with coefficients in ±1 is a generator of a persistent homology class
with life time (b, 1) (this follows from the fact that n-spheres and their triangulations are orientable). This proves claim (i).

Because of the assumption that all points not contained in S have a distance of at least 2 to the points in S, all (n + 1)-
simplices σn+1 with vertices both in S and its complement in X will have a filtration value α(σn+1) ≥ 1 of at least 1.
Recall that all (n+ 1)-simplices σn+1 ⊂ S with vertices inside S have a filtration value of α(σn+1) = 1. Thus the adjoint
of the n-th boundary operator B⊤

n is trivial on the homology generator g for a simplicial complex constructed during (b, 1).
Thus, we have that for the n-th Hodge Laplacian

Lng = B⊤
n−1Bn−1g + BnB⊤

n g = 0 + 0 = 0

and hence g is a harmonic generator for the entire filtration range of (b, 1). Claim (ii) and (iii) then follow from the
construction of the TOPF values.
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For claim (iv), it suffices to notice that the n-simplices σ on the convex hull are precisely non-Gabriel simplices iff there exist
a point x ∈ S lying inside the circumsphere of σ. Because the assumption of part (iv) excludes this case, all n-simplices
are Gabriel simplices and the α-filtration values (Definition B.4) and α∗-filtration values (Definition B.2) agree on the
n-simplices and (n+ 1)-simplices of the Delaunay triangulation. Because these are the only considered filtration values for
the proof, the claim follows.

Finally for part (v), we see that the same argument now applies to the simplices on the boundary, consisting of n-simplices of
M , consisting of (n+ 1)-simplices. Because M is contractible, it is connected and has trivial homology. Thus, its boundary
is homotopy equivalent to an n-sphere. Because in this case only the points X ′ on the boundary of M are contained in
the generating n-simplices of the considered homology class, the associated TOPF feature will have support on X ′. This
concludes the proof. □

Remark C.3. The setting of the theorem is a very special setting. In general on data, harmonic chains have entries with
absolute values somewhere in [0, 1]. In the setting of the theorem however, the harmonic representative will take values
in −1, 0, 1. We will briefly explain why this is the case: Consider a k-homology representative r with simplex-values in
{−1, 0, 1}. We consider the harmonic projection h of r into the harmonic space. Then, for a k-simplex σ, we have that
h(σ) = ±1 iff r(σ) = 1 and σ is not the face of any (k + 1)-simplices.

This can for example be seen by representing h as the difference of r and its gradient and curl parts h = r − rgrad − rcurl.
Because r is already a cycle, Bkr = 0 and thus rgrad = 0. Now, the curl part can be written as stemming from a signal on
the the k + 1-simplices, rcurl = Bk+1xcurl. However, because σ is not the face of a k + 1-simplex, rcurl(σ) = 0 and thus
h(σ) = r(σ).

The setting of the theorem precisely constructs a case where we have k-simplices and no (k + 1)-simplices in the relevant
part of the filtration. This is the case because in an α∗-filtration, the filtration value of a k-simplex is the radius of its
circumscribed (k− 1)-sphere. All relevant (k+ 1)-simplices in the theorem lie on the k-unit sphere, and thus have filtration
value 1. This is however an idealised setting. Because we construct the simplicial complex to compute the harmonic
representative somewhere in the middle (determined by the interpolation coefficient) between the birth and death time of the
homology class, empirically the majority of the k- simplices of the k-homology generators are faces of (k + 1)-simplices.
In this case, the harmonic representative smooths out the feature.

D. Topological Clustering Benchmark Suite
We introduce seven point clouds for topological point cloud clustering in the topological clustering benchmark suite (TCBS).
Some of these point clouds have been adapted from (Grande & Schaub, 2023a). The ground truth and the point clouds are
depicted in Figure 8. The point clouds represent a mix between 0-, 1- and 2-dimensional topological structures in noiseless
and noisy settings in ambient 2-dimensional and 3-dimensional space. Point clouds Ellipses and spaceship already
incorporate heterogeneous sampling/densities. The results of clustering according to TOPF can be found in Figure 9.

We constructed the benchmark by sampling from topologically different shapes with varying sampling density in different
ambient dimensions. For example for the point cloud 2Spheres2Circles, we combined points sampled from two
spheres and two circles. We then divided the point cloud into four ground truth clusters, one for each of the two spheres and
two circles and assigned every point the cluster corresponding to the object it was sampled from. Thus, the ground truth
labels of a point corresponds to the topological structure it was sampled from. We provide functions to resample some
of the point clouds with variable point numbers and provide a method to provide sampling heterogeneity as described in
Figure 16.

E. Implementation
We have created an easy-to-use python package TOPF which can be found at github (https://github.com/
vincent-grande/topf) and PyPi (https://pypi.org/project/topf/) with many examples from the paper
and the topological clustering benchmark suite. The package currently works under macOS and Linux. The package
contains both the code to generate the topological point features, as well as the code to reproduce the various visualisation
steps in this paper.

All experiments for TOPF were run on a Apple M1 Pro chipset with 10 cores and 32 GB memory. TOPF and the
experiments are implemented in Python and Julia. For persistent homology computations, we used GUDHI (The
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b) d)

Figure 8: Data sets of the Topological Clustering Benchmark Suite (TCBS) with true labels. Top: 2D data sets.
From left to right: a): 4Spheres (656 points), b): Ellipses (158 points), c): Spheres+Grid (866 points), d):
Halved Circle (249 points). Bottom: 3D data sets. From left to right: e): 2Spheres2Circles (4600 points), f):
SphereinCircle (267 points), g): spaceship (650 points).

b) d)

Figure 9: Data sets of the Topological Clustering Benchmark Suite (TCBS) with labels generated by TOPF. Top: 2D
data sets. From left to right: a): 4Spheres (0.81 ARI), b): Ellipses (0.95 ARI), c): Spheres+Grid (0.70 ARI),
d): Halved Circle (0.71 ARI). Bottom: 3D data sets. From left to right: e): 2Spheres2Circles (0.94 ARI), f):
SphereinCircle (0.97 ARI), g): spaceship (0.92 ARI).

GUDHI Project, 2015) (© The GUDHI developers, MIT license) and Ripserer (Čufar, 2020) (© mtsch, MIT license),
which is a modified Julia implementation of (Bauer, 2021). For the least square problems, we used the LSMR im-
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plementation of SciPy (Fong & Saunders, 2011). We used the pgeof Python package for computation of geometric
features https://github.com/drprojects/point_geometric_features (© Damien Robert, Loic Lan-
drieu, Romain Janvier, MIT license). We use parts of the implementation of TPCC https://git.rwth-aachen.
de/netsci/publication-2023-topological-point-cloud-clustering (© Computational Network
Science Group, RWTH Aachen University, MIT license). We use the implementation of WSDesc (Li et al., 2022),
https://github.com/craigleili/WSDesc (Lei Li, Hongbo Fu, Maks Ovsjanikov. CC BY-NC 4.0 License).
We use the implementation of An Tao, https://github.com/antao97/dgcnn.pytorch of Dynamic Graph
CNNs (Wang et al., 2019), MIT license. The idea for the implementation of the fix of the lift of the Z/3Z-representative to
R-coefficients was inspired by DREiMac, (Perea et al., 2023).

E.1. Hyperparameters
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Figure 10: Hyperparameter robustness of TOPF on the TCBS. TOPF performs reasonably well across a large range around
the default parameters (Interpolation coefficient: 0.3, δ: 0.07, damping coefficient (non-negative): 0, Clustering method:
spectral). The clustering method is used on the TOPF vectors to determine the cluster-ids.

All the relevant hyperparameters are already mentioned in their respective sections. However, for convenience we gather
and briefly discuss them in this section. We note that TOPF is robust and applicable in most scenarios when using the
default parameters without tuning hyperparameters. The hyperparameters should more be thought of as an additional way
where detailed domain-knowledge can enter the TOPF pipeline. We have performed additional experiments to validate the
robustness of TOPF to moderate changes in parameters, see Figure 10.

21

https://github.com/drprojects/point_geometric_features
https://git.rwth-aachen.de/netsci/publication-2023-topological-point-cloud-clustering
https://git.rwth-aachen.de/netsci/publication-2023-topological-point-cloud-clustering
https://github.com/craigleili/WSDesc
https://github.com/antao97/dgcnn.pytorch


Point-Level Topological Representation Learning on Point Clouds

Maximum Homology Dimension d The maximum homology dimension determines the dimensions of persistent
homology the algorithm computes.

For the choice of the maximum homology degree d to be considered there are mainly three heuristics which we will list in
decreasing importance (Cf. (Grande & Schaub, 2023a)):

I. In applications, we usually know which kind of topological features we are interested in, which will then determine
d. This means that 1-dimensional homology and d = 1 suffices when we are looking at loops of protein chains. On
the other hand, if we are working with voids and cavities in 3d histological data, we need d = 2 and thus compute
2-dimensional homology.

II. Algebraic topology tells us that there are no closed n-dimensional submanifolds of Rn. Hence their top-homology will
always vanish and all interesting homological activity will appear for d < n.

III. In the vast majority of cases, the choice will be between d = 1 or d = 2 because empirically there are virtually no
higher-dimensional topological features in practice.

In our quantitative experiments, we have always chosen d = n− 1.

Thresholding parameter δ In step 4 of the algorithm, we normalise and threshold the harmonic representatives. After
normalising, the entries of the vectors lie in the interval of [0, 1]. The thresholding parameter δ now essentially determines
an interval of [0, δ] which we will linearly map to [0, 1], while mapping all entries above δ to 1 as well. This is necessary as
most of the entries in the vector eik are very close to 0 with a very small number of entries being close to 1. Without this
thresholding, TOPF would now be almost entirely determined by these few large values. Thus this step limits the maximum
possible influence of a single entry. However, because most of the entries of eik are concentrated around 0, small changes in
δ will not have a large effect and we chose δ = 0.07 in all our experiments.

Interpolation coefficient λ The interpolation coefficient λ ∈ (0, 1) determines whether we build our simplicial complexes
close to the birth or the death of the relevant homological features at time t = b1−λd. This then in turns controls how
localised or smooth the harmonic representative will be. In general, the noisier the ground data is the higher we should
choose λ. However, TOPF is not sensitive to small changes in λ. We have picked λ = 0.3 for all the quantitative experiments,
which empirically represents a good choice for a broad range of applications.

Feature selection factor β Increasing β leads to TOPF preferring to pick a larger number of relevant topological features.
Without specific domain-knowledge, β = 0 represents a good choice.

Feature selection quotients max_total_quot, min_rel_quot, and min_0_ratio These are technical hyperpa-
rameters controlling the feature selection module of TOPF. For a technical account of them, see Appendix G. In most of the
cases without domain knowledge, they do not have an effect on the performance of TOPF and should be kept at their default
values.

Simplicial Complex Weights Although the simplicial weights are not technically a hyperparameter, there are many
potential ways to weigh the considers SCs that can highlight or suppress different topological and geometric properties. In
all our experiments, we use w∆ weights discussed in Appendix H.

Ablation study In Table 2, we performed an ablation study and benchmarked TOPF against TOPF while skipping the
harmonic projection step with the Hodge Laplacian (Step 3.). The result show that in general, skipping the step with the
Hodge Laplacian decreases the performance of TOPF by a wide margin. The exception to this are SphereInCircle or
2Spheres2Circles, where the two methods have similar performance. In these two last examples, points are directly
sampled from a manifold, and thus the loops and spheres are very "thin". Thus, the homology generator is already a good
approximation of all the simplices responsible for a topological feature. In general however, this is not the case, necessating
the use of Differential Geometry and the Hodge Laplacian.
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E.2. Runtime

In Figure 11, we analyse the runtime of the current TOPF implementation on two point clouds from the topological clustering
benchmark suite. We increase the point density while keeping the structure of the point cloud intact. The runtime of our
implementation with sparsification = ’off’ in the regime of Figure 11 appears to scale linearly with the total
number of points with a significant constant term. The significant constant term is probably due to our implementation
starting a new julia kernel and communicating between python and julia. A python-only or julia-only implementation would
thus speed up computations.

Theoretical runtime complexity

1. a). Constructing the complex: The Vietoris–Rips complex will have O(nk+1) simplices, where n is the number of
points and k the maximum homology dimension. Apart from this, there is no significant computational effort needed.
Note that we can decrease this if we set a maximum VR-radius, as done in many works from the literature. Computing
the alpha-complex in ambient dimension d is equivalent to computing the convex hull in ambient dimension d+ 1,
which has a complexity of ∼ O(nd/2). For a fixed dimension d, the number of simplices is linear in n. b). Computing
persistent homology and generators: As we need the homology generators, we use the recently introduced involuted
persistent homology (Čufar & Virk, 2023). While the authors discuss the runtime performance, they do not give a
concrete complexity bound in (Čufar & Virk, 2023). However, they deduce that it has a similar run-time to usual
persistent cohomology computations, whose performance is for example discussed in (De Silva et al., 2011).

2. Picking the significant generators has negligible impact.

3. Computing the harmonic projections. Given a homology representative r in dimension k, computing the harmonic
representative amounts to computing a sparse matrix vector product of Bk+1x and a sparse least squares problem
lsmr(Bk+1, r), i.e. solving

min
x∈RSk+1

∥r − Bk+1x∥2

where Sk+1 is the number of (k + 1)-simplices in the simplicial complex and Bk+1 has (k + 2)Sk+1 non-zero entries.
This is a sparse least-squares problem, which we solve using the iterative sparse solver lsmr (Fong & Saunders,
2011). Because this is an iterative solver, the authors do not give runtime complexity, but discuss the computational
requirements in (Fong & Saunders, 2011).

4. Pooling and averaging over the simplicial neighbours has negligible runtime constraints.

F. More Details on the Experiments
High-dimensional Point Clouds In Figure 4, we use TOPF on a high-dimensional input point cloud representing the
conformation space of cyclooctane (Martin & Watson, 2011). Because the ambient dimension is too large for α-filtrations, a
Vietoris–Rips filtration with more simplices is used. The VR filtration depends on the ambient dimension only for computing
the distance matrix, which is a negligible part of the runtime. Hence, a similar performance can be expected for higher
dimensions than 24 as well. To counteract the increase in computational complexity, TOPF automatically downsamples
the point cloud using a mixture of landmark and random sampling. We see in the ISOMAP projections of Figure 4 that
TOPF extracts reasonable features representing the topology of the conformation space. Setting nclusters to 4 even reveals
the manifold anomalies in a separate cluster (blue), similar to the results of (Stolz et al., 2020). The runtime for this
high-dimensional experiment was 189.8 seconds.

Variational Autoencoders We have trained a VAE on image patches sampled with a topological structure, see Figure 12.
We have sampled the image patches around two loops and a connecting line. Using TOPF, we could recover this structure
in the latent space of the VAE highlighting how topological point features can help in explainable AI. We note, of course,
that many latent spaces do not carry any higher-order topological information, making characterisation by TOPF infeasible.
Rather we showed that when we expect a topological structure to exist in the data set due to some specifics of the data, we
can recover this topological structure even in the latent space of the VAE using TOPF. We have repeated the experiments for
a higher-dimensional latent space and received similar results, see Figure 13.

23



Point-Level Topological Representation Learning on Point Clouds

0 10000 20000 30000 40000
n_points

25

30

35

40

45

50
ti
m

e 
(s

)

sparsification
off
auto

0 2000 4000 6000 8000
n_points

25

30

35

40

45

50

ti
m

e 
(s

)

sparsification
off
auto

Figure 11: Runtime on two examples from Topological Clustering Benchmark Suite while increasing point density.
Left: Halved Circle, Right: 2 Spheres 2 Circles. Experiments kept the topological structure intact while
increasing the number of points sampled. Both the runtime of the vanilla TOPF algorithm, as well as of TOPF using automatic
subsampling heuristic as implemented in the python package, are listed.

Additional heatmaps on proteins In Figure 14, we provide additional experiments of TOPF on protein data. This time,
we report every single feature vector produced by TOPF in a separate plot. In the experiment with Cys123, we wanted to
show that TOPF can detect so-called protein pockets. Because pockets do not form holes detectable by TDA straightforward,
the literature suggests adding (and later removing) these points on the convex hull, which turns the pockets into holes, see
for example (Oda et al., 2024).

Performance with decreasing sampling density In Figure 15, we analyse the robustness of TOPF with respect to a
decrease in sampling density. We have selected 2Spheres2Circles as the dataset with the highest original sampling
density for this experiment. It shows that TOPF can still produce meaningful results even for significantly downsampled point
clouds. We note that the considered point clouds are in particular very sparse when compared to the point clouds usually
considered by neural 3D point cloud architectures. We interpret the results as basically repeating the good performance of
TOPF, except for the datasets EllipsesinEllipses and spaceship, where the performance drops rapidly (at least
in a logarithmic plot). Our interpretation of this is that both datasets consist of submanifolds with different sampling density,
which intersect/are contained in one another. Thus, the point density is a key to distinguishing the classes, and a random
change in these densities due to downsampling can make the encoded structure hard to detect or even causes them to vanish
in a sense of topology.

Performance under heterogeneous sampling In Figure 16, we analyse the robustness of TOPF with respect to hetero-
geneous sampling. The results show that TOPF performs well even in the presence of inhomogeneous sampling, and the
degrading of performance can largely be attributed to a decrease in minimum sampling rate, rather than the inhomogeneous
nature.

From a theoretical point of view, this should not be surprising: The birth of the topological feature will now depend on the
minimum sampling density, while the death time still depends on the size of the feature. The heuristic employed by TOPF
will then choose a maximal triangulation radius which lies between these two radii. In the dense part, the triangulation will
be denser then in the sparse parts. However, due to the the character of the alpha filtration, the weighting of the simplices
discussed in Appendix H and the thresholding this does not cause an issue in the features generated by TOPF.

Details on experiments with WSDesc WSDesc (Weakly Supervised 3D Local Descriptor Learning for Point Cloud
Registration), (Li et al., 2022), uses voxel-based representations of point clouds to extract robust 3D local descriptors for
point cloud registration. As showcased in the original paper, WSDesc showcases a good generalisation for point clouds
outside of the training set. We used WSDesc pretrained on the 3DMatch data. WSDesc was used with 512 keypoints, and
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Figure 12: Using TOPF to explore the topological structure in latent/embedding spaces of Variational Auto Encoders
(VAE) 1. Given a picture (of a cow strolling along the shore of Lake Prags), we sample 578 square patches around the centre
points marked in red in the image. The centre points are taken from the sides of two squares and a line connecting the two
squares. The assumption is that this topological structure (with two holes) is present in the sample space as well. 2. We
train a VAE on the set of 578 square patches with latent space dimension of 3 (down from 33 · 33 · 3.) 3. We run TOPF
with fixed_num_features set to [0, 2] on the latent space to extract the two most significant point-wise topological
features. 4. We overlay the topological features from the latent space over the centre points of the corresponding image
patches. We see that TOPF has roughly recovered the topological structure inherent in the sample space as described in
step 1. We note that the image patches with centre on the middle horizontal line are almost identical, making it virtually
impossible to distinguish them. Note that although TOPF thinks they contribute to the left loop, their corresponding feature
entries are a lot smaller than those of the image patches (shown by lighter colours and smaller dots in the plot.)

tested with a varying of keypoints up to ∼ 5000. We thus tested WSDesc with the maximum number of keypoints possible
per input point cloud.

Details on experiments with DGCNN We use the implementation of An Tao, https://github.com/antao97/
dgcnn.pytorch of Dynamic Graph CNNs (Wang et al., 2019). We use the data pretrained on the ShapeNetPart
segmentation dataset, where we use the features of the second last layer. This showed the best performance. We determine
the optimal hyperparameters (k, object class, clustering method, layer to use) for every dataset of TCBS individually and
only present the results on the best parameter set. The spectral clustering always outperformed k-means. The authors of the
original paper state that DGCNN performs very well on datasets with above 500 points, and still is robust to downsampling
beyond this point. Thus we always input the maximum available number of points to DGCNN. As described in (Wasserman,
2018), we scale the input point cloud to fit into a unit sphere. We pad the 2d data sets with zeroes in the third dimension.
TOPF still outperforms DGCNN on the TCBS. We believe that this is due to the heterogeneous sampling, small sampling
set size and most importantly the lack of training data for the neural network.
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Figure 13: VAE experiment described in Figure 12 for a 16-dimensional latent space of the VAE and the original
8748-dimensional image space. Left: The first three of the 16 dimension of the latent space embeddings, colour represents
the fourth dimension. Centre left: The weighted harmonic representatives of the selected topological features. Centre right:
The features produced by TOPF overlayed on the centre pixels of the associated image patches, as done in Figure 12 Step 4.,
just without the picture of the cow. Right: TOPF features obtained from the original 8748-dimensional image space. This
shows that TOPF can help analyse topological structure in high-dimensional data.

Figure 14: TOPF heatmaps for three proteins. Top left: NALCN channelosome (Kschonsak et al., 2022) Top right: Mutated
Cys123 of E. coli (Hidber et al., 2007), with convex hull added during computation, only 2-dimensional homology features
Bottom: GroEL of E. coli (Chaudhry et al., 2004) (Selected features).

G. How to pick the most relevant topological features
Simplified heuristic The persistent homology Pk module in dimension k is given to us as a list of pairs of birth and death
times (bki , d

k
i ). We can assume these pairs are ordered in non-increasing order of the durations lki = dki − bki . This list
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Figure 15: Performance of TOPF while decreasing sampling density. The x-axis is scaled logarithmically and TOPF
achieves an adjusted rand index (ARI, random algorithms achieve an ARI of over 0.9 for ∼ 700 samples, down from 4600
original points on the 2Spheres2CirclesDataset. The smallest considered sample size was 16 points. The points
were sampled at random. We ran each experiment 100 times and report the standard deviation.

is typically very long and consists to a large part of noisy homological features which vanish right after they appear. In
contrast, we are interested in connected components, loops, cavities, etc. that persist over a long time, indicating that they
are important for the shape of the point cloud. Distinguishing between the relevant and the irrelevant features is in general
difficult and may depend on additional insights on the domain of application. In order to provide a heuristic which does not
depend on any a-priori assumptions on the number of relevant features we pick the smallest quotient qki := lki+1/l

k
i > 0

as the point of cut-off Nk := argmini q
k
i . The only underlying assumption of this approach is that the band of “relevant”

features is separated from the “noisy” homological features by a drop in persistence.

Advanced Heuristic However, certain applications have a single very prominent feature, followed by a range of still
relevant features with significantly smaller life times, that are then followed by the noisy features after another drop-off.
This then could potentially lead the heuristic to find the wrong drop-off. We propose to mitigate this issue by introducing a
hyperparameter β ∈ R>0. We then define the i-th importance-drop-off quotient qki by

qki := lki+1/lki (1 + β/i) .
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Figure 16: Performance of TOPF under heterogeneous sampling. Top: We divide four of the point clouds with a
symmetry into two halves. We downsample only one of the halves, creating sampling irregularities within the individual
topological features. We repeat the experiment 100 times and report the achieved ARI. Note that the lowest value on
the x-axis means downsampling by a factor of 100, meaning that the smaller point clouds will then almost only consist
of one half. We compare the performance of TOPF with the other baselines, noting that TOPF outperforms them for
reasonable heterogeneities. Bottom Left: 4spheres with downsampling factor 0.2 with true labels. Bottom Right:
2spheres2circles with downsampling factor 0.1 with true labels.
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The basic idea is now to consider the most significant Nk homology classes in dimension k when setting Nk to be

Nk := argmin
i

qki .

Increasing β leads the heuristic to prefer selections with more features than with fewer features. Empirically, we still found
β = 0 to work well in a broad range of application scenarios and used it throughout all experiments. There are only a few
cases where domain-specific knowledge could suggest picking a larger β.

To catch edge cases with multiple steep drops or a continuous transition between real features and noise, we introduce two
more checks: We allow a minimal qki of min_rel_quot = 0.1 and a maximal quotient qh1/qki of max_total_quot = 10
between any homology dimensions. Because features in 0-dimensional homology are often more noisy than features in higher
dimensions, we add a minimum zero-dimensional homology ratio of min_0_ratio = 5, i.e. every chosen 0-dimensional
feature needs to be at least min_0_ratio more persistent then the minimum persistence of the higher-dimensional features.
Because these hyperparameters only deal with the edge cases of feature selection, TOPF is not very sensitive to them. For
all our experiments, we used the above hyperparameters. We advise to change them only in cases where one has in-depth
domain knowledge about the nature of relevant topological features.

Fixed number of topological features Alternatively, it is possible to specify a fixed desired number Nd of topological
features per dimension d. TOPF then automatically returns the Nd most relevant features in dimension d. For practical
purposes, we can then weigh these features by a function w(−) in the life time di − bi or the life quotient di/bi of the
features. Possible picks for w include an exponential function w(x) = ex, a quadratic function w(x) = x2, a linear function
w(x) = x or a scaled sigmoid function. Our intuition suggests that when picking functions like a linear function, the many
short-lived features will be given too much weight in comparison to the few more relevant features. Selection the best weight
function is an interesting open problem for future work.

H. Simplicial Weights
In an ideal world, the harmonic eigenvectors in dimension k would be vectors assigning ±1 to all k-simplices contributing
to k-dimensional homological feature, a 0 to all k-simplices not contributing or orthogonal to the feature, and a value in
(−1, 1) for all simplices based on the alignment of the simplex with the boundary of the void. However, this is not the case:
In dimension 1, we can for example imagine a total flow of 1 circling around the hole. This flow is then split up between all
parallel edges which means two things: I Edges where the loop has a larger diameter have smaller harmonic values than
edges in thin areas and II in VR complexes, which are the most frequently used simplicial complexes in TDA, edges in areas
with a high point density have smaller harmonic values than edges in low-density areas. Point II is another advantage of
α-complexes: The expected number of simplices per point does not scale with the point density in the same way as it does
in the VR complex, because only the simplices of the Delaunay triangulation can appear in the complex.

We address this problem by weighing the k-simplices of the simplicial complex. The idea behind this is to weigh the
simplicial complex in such a way that it increases and decreases the harmonic values of some simplices in an effort to make
the harmonic eigenvectors more homogeneous. For weights w ∈ RSk , W = diag(w), the symmetric weighted Hodge
Laplacian (Schaub et al., 2020) takes the form of

Lw
k = W 1/2Bk−1B⊤

k−1W
1/2 +W−1/2BkB⊤

k W
−1/2.

Because we want the homology representative to lie in the weighted gradient space, we have to scale its entries with the
weight and set eik,w := W−1/2eik. With this, we have that

B⊤
k−1W

1/2eik,w = B⊤
k−1W

1/2W−1/2eik = B⊤
k−1e

i
k = 0

We propose two options to weigh the simplicial complex. The first option is to weigh a k-simplex by the square of the
number of k + 1-simplices the simplex is contained in:

w∆(σk) = 1/(|{σk+1 ∈ St
k+1 : σk ⊂ σk+1}|+ 1)2

where the +1 is to enforce good behaviour at simplices that are not contained in any higher-order simplices. One of the
advantages of the α-complex is that we don’t have large concentrations of simplices in well-connected areas. The proposed
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Figure 17: Effect of weighting a simplicial complex on harmonic representatives. Red edges have large absolute values
and blue edges have small absolute values of the considered quantity. Top: VR complex. Bottom: α-complex Left: The base
point cloud with different densities. 2nd Left: Unweighted harmonic homology representative of the large loop. 3rd Left:
Effective resistance of the 1-simplices. 3rd Right: Harmonic homology representative of the complex weighted by effective
resistance. 2nd Right: Inverse of number of incident triangles (Definition H.1). Right: Harmonic homology representative of
the complex weighted by number of incident triangles. Up to a small threshold, the standard harmonic representative in the
VR complex is almost exclusively supported in the low-density regions of the simplicial complex. This leads to poor and
unpredictable classification performance in downstream tasks. In contrast, the harmonic homology representative of the
weighted VR complex has a more homogenous support along the loop, while still being able to discriminate the edges not
contributing to the loop. The α-complex suffers less from this phenomenon (at least in dimension 2), and hence reweighing
is not necessarily required.

weighting w∆ is computationally straightforward, as it can be obtained as the column sums of the absolute value of the
boundary matrix |Bk|. The weights also deal with the previously mentioned problem II: As the homology representative is
scaled inversely to the weight vector w, the simplices in high-density regions will be assigned a low weight and thus their
weighted homology representative will have a larger entry. By the projection to the orthogonal complement of the curl space,
this large entry is then diffused among the high-density region of the SC with many simplices, whereas the lower entries of
the simplices in low-density regions are only diffused among fewer adjacent simplices.

(Paik & Park, 2023) consider the dual problem of weighting the simplicial complex such that a harmonic cohomology
representative becomes sampling-density independent. They show that the dual to our approach, i.e. by dividing by the sum
of lower-incident simplices (i.e. nodes) of the two vertices of an edge produces an harmonic representative stable under
heterogeneous density.

However, the first weight is not able to incorporate the number of parallel simplices into the weighting. This is why we
propose a second simplicial weight function based on generalised effective resistance.

Definition H.1 (Effective Hodge resistance weights). For a simplicial complex S with boundary matrices (Bk), we define
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the effective Hodge resistance weights wR on k-simplices to be:

wR := diag
(
B+
k−1Bk−1

)2
where diag(−) denotes the vector of diagonal entries and (−)+ denotes taking the Moore–Penrose inverse.

Intuitively for k = 1, we can assume that every edge has a resistance of 1 and then the effective resistance coincides with
the notion from Physics. Thus simplices with many parallel simplices are assigned a small effective resistance, whereas
simplices with few parallel simplices are assigned an effective resistance close to 1. However, computing the Moore–Penrose
inverse is computationally expensive and only feasible for small simplicial complexes.

In Figure 17, we show that the weights w∆ are a good approximation of the effective resistance in terms of the resulting
harmonic representative. The standard form of TOPF used in all experiments uses w∆-weights.

I. Limitations
Topological features are not everywhere The proposed topological point features take relevant persistent homology
generators and turn these into point-level features. As such, applying TOPF only produces meaningful results on point
clouds that have a topological structure. On these point clouds, TOPF can extract structural information unobtainable by
non-topological methods. Although TDA has been successful in a wide range of applications, a large number of data sets
does not possess a meaningful topological structure. Applying TOPF in these cases will produce no additional information.
Other data sets require pre-processing before containing topological features. In Figure 3 left, the 2d topological features
characterising protein pockets of Cys123 only appear after artificially adding points sampled on the convex hull of the point
cloud (Cf. (Oda et al., 2024)).

Computing persistent homology can be computationally expensive As TOPF relies on the computation of persistent
homology including homology generators, its runtime increases on very large point clouds. This is especially true when
using VR instead of α-filtrations, which become computationally infeasible for higher-dimensional point clouds. Persistent
homology computations for dimensions above 2 are only feasible for very small point clouds. Because virtually all
discovered relevant homological features in applications appear in dimension 0, 1, or 2, this does not present a large problem.
Despite these computational challenges, subsampling, either randomly or using landmarks, usually preserves relevant
topological features and thus extends the applicability of TDA in general and TOPF even to very large point clouds.

Automatic feature selection is difficult without domain knowledge While the proposed heuristics works well across a
variety of domains and application scenarios, only domain- and problem-specific knowledge makes truthful feature selection
feasible.

Experimental Evaluation There are no benchmark sets for topological point features in the literature, which makes
benchmarking TOPF not straightforward. On the level of clustering, we introduced the topological clustering benchmark
suite to make quantitative comparisons of TOPF possible, and benchmarked TOPF on some of the point clouds of (Grande &
Schaub, 2023a). On both the level of point features and real-world data sets, it is however hard to establish what a ground
truth of topological features would mean. Instead we chose to qualitatively report the results of TOPF on proteins and
real-world data, see Figure 3.
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