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Abstract
Domain generalization (DG) methods aim to achieve generalizability to an unseen
target domain by using only training data from the source domains. Although a
variety of DG methods have been proposed, a recent study shows that under a fair
evaluation protocol, called DomainBed, the simple empirical risk minimization
(ERM) approach works comparable to or even outperforms previous methods. Un-
fortunately, simply solving ERM on a complex, non-convex loss function can easily
lead to sub-optimal generalizability by seeking sharp minima. In this paper, we
theoretically show that finding flat minima results in a smaller domain generaliza-
tion gap. We also propose a simple yet effective method, named Stochastic Weight
Averaging Densely (SWAD), to find flat minima. SWAD finds flatter minima and
suffers less from overfitting than does the vanilla SWA by a dense and overfit-aware
stochastic weight sampling strategy. SWAD shows state-of-the-art performances
on five DG benchmarks, namely PACS, VLCS, OfficeHome, TerraIncognita,
and DomainNet, with consistent and large margins of +1.6% averagely on out-
of-domain accuracy. We also compare SWAD with conventional generalization
methods, such as data augmentation and consistency regularization methods, to ver-
ify that the remarkable performance improvements are originated from by seeking
flat minima, not from better in-domain generalizability. Last but not least, SWAD
is readily adaptable to existing DG methods without modification; the combination
of SWAD and an existing DG method further improves DG performances. Source
code is available at https://github.com/khanrc/swad.

1 Introduction

Independent and identically distributed (i.i.d.) condition is the underlying assumption of machine
learning experiments. However, this assumption may not hold in real-world scenarios, i.e., the
training and the test data distribution may differ significantly by distribution shifts. For example, a
self-driving car should adapt to adverse weather or day-to-night shifts [1, 2]. Even in a simple image
recognition scenario, systems rely on wrong cues for their prediction, e.g., geographic distribution [3],
demographic statistics [4], texture [5], or backgrounds [6]. Consequently, a practical system should
require generalizability to distribution shift, which is yet often failed by traditional approaches.

Domain generalization (DG) aims to address domain shift simulated by training and evaluating
on different domains. DG tasks assume that both task labels and domain labels are accessible.
For example, PACS dataset [7] has seven task labels (e.g., “dog”, “horse”) and four domain labels
(e.g., “photo”, “sketch”). Previous approaches explicitly reduced domain gaps in the latent space [8–
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Table 1: Comparisons with SOTA. The proposed SWAD outperforms other state-of-the-art DG methods on
five different DG benchmarks with significant gaps (+1.6pp in the average).

PACS VLCS OfficeHome TerraInc DomainNet Avg.

ERM [29] 85.5 77.5 66.5 46.1 40.9 63.3
Best SOTA competitor 86.6 [30] 78.8 [31] 68.7 [31] 48.6 [32] 43.6 [15, 33] 65.3
SWAD (proposed) 88.1 79.1 70.6 50.0 46.5 66.9

Previous SOTA [31] + SWAD 88.3 78.9 71.3 51.0 46.8 67.3

12], obtained well-transferable model parameters by the meta-learning framework [13–16], data
augmentation [17–19], or capturing causal relation [20, 21]. Despite numerous previous attempts for
a decade, Gulrajani and Lopez-Paz [22] showed that a simple empirical risk minimization (ERM)
approach works comparably or even outperforms the previous attempts on diverse DG benchmarks
under a fair evaluation protocol, called “DomainBed”.

Unfortunately, although ERM showed surprising empirical success on DomainBed, simply mini-
mizing the empirical loss on a complex and non-convex loss landscape is typically not sufficient to
arrive at a good generalization [23–26]. In particular, the connection between the generalization gap
and the flatness of loss landscapes has been actively discussed under the i.i.d. condition [23–28].
Izmailov et al. [25] argued that seeking flat minima will lead to robustness against the loss landscape
shift between training and test datasets, while a simple ERM converges to the boundary of a wide flat
minimum and achieves insufficient generalization. In the DG scenario, because training and test loss
landscapes differ more drastically due to the domain shift, we conjecture that the generalization gap
between flat and sharp minima is larger than expected in the i.i.d. scenario.

To show that flatter minima generalize better to unseen domains, we formulate a robust risk minimiza-
tion (RRM) problem defined by the worst-case empirical risks within neighborhoods in parameter
space [26, 34]. We theoretically show that the generalization gap of DG, i.e., the error on the target
domain, is upper bounded by RRM, i.e., a flat optimal solution. Based on our theoretical observation,
we modify stochastic weight averaging (SWA) [25], one of the popular existing flatness-aware solvers,
by introducing a dense and overfit-aware stochastic weight sampling strategy. First, we suggest
to sample weights densely, i.e., for every iteration. Also, we search the start and end iterations
for averaging by considering the validation loss to avoid overfitting. We empirically show that the
proposed Stochastic Weight Averaging Densely (SWAD) finds flatter minima than the vanilla SWA
does, resulting in better generalization to unseen domains.

Contribution. Our main contribution is introducing flatness into DG, and showing remarkably
outperforming performances against existing DG methods. As shown in Table 1, our SWAD improves
the average DG performances by 3.6pp against the ERM baseline and 1.6pp against the existing
best methods. Furthermore, by combining SWAD and previous SOTA [31], we even achieve 0.4pp
improvements against the vanilla SWAD results. We also empirically show that while popular in-
domain generalization methods without considering flatness, e.g., Mixup [35] or CutMix [36], are
not effective to out-of-domain generalization (Table 3), flatness-aware methods, e.g., SWA [25] or
SAM [26], are only effective methods to both in-domain and out-of-domain generalization.

2 A Theoretical Relationship between Flatness and Domain Generalization

Let D := {Di}Ii be a set of training domains, where Di is a distribution over input space X , and I is
the total number of domains. From each domain, we observe n training data points which consist
of input x and target label y, (xij , y

i
j)
n
j=1 ∼ Di. We also define a set of target domain T := {Ti}Ti

similarly, where the number of target domains T is usually set to one. For the sake of simplicity,
unlike Ben-David et al. [37], we assume that there exists a global labeling function h(x) that generates
target label for multiple domains, i.e., yij = h(xij) for all i and j. Domain generalization (DG) aims
to find a model parameter θ ∈ Θ which generalizes well over both multiple training domains D
and unseen target domain T . More specifically, let us consider a bounded instance loss function
` : Y × Y → [0, c], such that `(y1, y2) = 0 holds if and only if y1 = y2 where Y is a set of
labels. For simplicity, we set c to one in our proofs, but we note that `(·, ·) can be generalized
for any bounded loss function. Then, we can define a population loss over multiple domains by
ED(θ) = 1

I

∑I
i=1 Exi∼Di

[`(f(xi; θ), yi))], where f(·; θ) is a model parameterized by θ. Formally,
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the goal of DG is to find a model which minimizes both ED(θ) and ET (θ) by only minimizing an
empirical risk ÊD(θ) := 1

In

∑I
i=1

∑n
j=1 `(f(xi; θ), yi)) over training domains D.

In practice, ERM, i.e., arg minθ ÊD(θ), can have multiple solutions that provide similar values of the
training losses but significantly different generalizability on ED(θ) and ET (θ). Unfortunately, the
typical optimization methods, such as SGD and Adam [38], often lead sub-optimal generalizability
as finding sharp and narrow minima even under the i.i.d. assumption [23–28]. In the DG scenario,
the generalization gap between empirical loss and target domain loss becomes even worse due to
domain shift. Here, we provide a theoretical interpretation of the relationship between finding a flat
minimum and minimizing the domain generalization gap, inspired by previous studies [23–28].

Flat minimum Sharp minimum

Empirical risk
Robust risk
Minimum of the empirical risk
Minimum of the robust risk

Figure 1: Robust risk minimization
(RRM) and flat minima. With proper γ,
RRM will find flat minima.

We consider a robust empirical loss function defined by
the worst-case loss within neighborhoods in the parameter
space as ÊγD(θ) := max‖∆‖≤γ ÊD(θ + ∆), where ‖ · ‖
denotes the L2 norm and γ is a radius which defines
neighborhoods of θ. Intuitively, if γ is sufficiently larger
than the “radius” of a sharp optimum θs of ÊD(θ), θs is no
longer an optimum of ÊγD(θ) as well as its neighborhoods
within the γ-ball. On the other hand, if an optimum θf
has larger “radius” than γ, there exists a local optimum
within γ-ball – See Figure 1. Hence, solving the robust
risk minimization (RRM), i.e., arg minθ ÊγD(θ), will find
a near solution of a flat optimum showing better generalizability [26, 34]. However, as domain shift
worsen the generalization gap by breaking the i.i.d. assumption, it is not trivial that RRM will find
an optimum with better DG performance. To answer the question, we first show the generalization
bound between ÊγD and ET as follows:

Theorem 1. Consider a set of N covers {Θk}Nk=1 such that the parameter space Θ ⊂ ∪Nk Θk where

diam(Θ) := supθ,θ′∈Θ ‖θ− θ′‖2, N :=
⌈
(diam(Θ)/γ)

d
⌉

and d is dimension of Θ. Let vk be a VC
dimension of each Θk. Then, for any θ ∈ Θ, the following bound holds with probability at least 1− δ,

ET (θ) < ÊγD(θ) +
1

2I

I∑
i=1

Div(Di, T ) + max
k∈[1,N ]

√
vk ln (m/vk) + ln(N/δ)

m
, (1)

where m = nI is the number of the training samples and Div(Di, T ) := 2 supA |PDi
(A)−PT (A)|

is a divergence between two distributions.

Proof can be done similarly as [37] and [34]. In Theorem 1, the test loss ET (θ) is bounded by three
terms: (1) the robust empirical loss ÊγD(θ), (2) the discrepancy between training distribution and test
distribution, i.e., the quantity of domain shift, and (3) a confidence bound related to the radius γ and
the number of the training samples m. Our theorem is similar to Ben-David et al. [37], while our
theorem does not have the term related to the difference in labeling functions across the domains. It
is because we simply assume there is no difference between labeling functions for each domain for
simplicity. If one assumes a different labeling function, the dissimilarity term can be derived easily
because it is independent and compatible with our main proof. More details of Theorem 1, including
proof and discussions on the confidence bound, are in Appendix C.1 and C.2.

From Theorem 1, one can conjure that minimizing the robust empirical loss is directly related to the
generalization performances on the target distribution. We show that the domain generalization gap
on the target domain T by the optimal solution of RRM, θ̂γ , is upper bounded as follows:

Theorem 2. Let θ̂γ denote the optimal solution of the RRM, i.e., θ̂γ := arg minθ ÊγD(θ), and let v be
a VC dimension of the parameter space Θ. Then, the gap between the optimal test loss, minθ′ ET (θ′),
and the test loss of θ̂γ , ET (θ̂γ), has the following bound with probability at least 1− δ.

ET (θ̂γ)−min
θ′
ET (θ′) ≤ ÊγD(θ̂γ)−min

θ′′
ÊD(θ′′) +

1

I

I∑
i=1

Div(Di, T )

+ max
k∈[1,N ]

√
vk ln (m/vk) + ln (2N/δ)

m
+

√
v ln (m/v) + ln (2/δ)

m

(2)

3



minimum threshold stochastic weights

The number of iterations

Va
lid

at
io

n 
lo

ss Average sparsely

(a) SWA

The number of iterations

Va
lid

at
io

n 
lo

ss Average densely

(b) SWAD (proposed)
Figure 2: Comparison between SWA and SWAD. (a) SWA collects stochastic weights for every K epochs
from the pre-defined K0 epochs to the final epoch. (b) Our SWAD collects stochastic weights densely, i.e., for
every iteration, to obtain sufficiently many weights. SWAD collects the weights from the start iteration ts to the
end iteration te, where ts and te are obtained by monitoring the validation loss (overfit-aware scheduling).

Proof is in Appendix C.3. It implies that if we find the optimal solution of the RRM (i.e., θ̂γ), then
the generalization gap in the test domain (i.e., ET (θ̂γ) − minθ′ ET (θ′)) is upper bounded by the
gap between the RRM and ERM (i.e., ÊγD(θ̂γ)−minθ′′ ÊD(θ′′)). Other terms in Theorem 2 are the
discrepancy between the train domains D and the target domain T , and the confidence bounds caused
by sample means. We remark that if we choose a proper γ, the optimal solution of the RRM will find
a point near a flat optimum of ERM as shown in Figure 1. Hence, Theorem 2 and the intuition from
Figure 1 imply that seeking a flat minimum of ERM will lead to a better domain generalization gap.

3 SWAD: Domain Generalization by Seeking Flat Minima

We have shown that flat minima will bring a better domain generalization. In this section, we propose
Stochastic Weight Averaging Densely (SWAD) algorithm, and provide empirical quantitative and
qualitative analyses on SWAD and flatness to understand why SWAD works better than ERM.

3.1 A baseline method: stochastic weight averaging

Since the importance of flatness in loss landscapes has emerged [23–28], several methods have been
proposed to find flat minima [25, 26, 39]. We select stochastic weight averaging (SWA) [25] as a
baseline, which finds flat minima by a weight ensemble approach. More specifically, SWA updates
a pretrained model (namely, a model trained with sufficiently enough training epochs, K0) with a
cyclical [40] or high constant learning rate scheduling. SWA gathers model parameters for every
K epochs during the update and averages them for the model ensemble. SWA finds an ensembled
solution of different local optima found by a sufficiently large learning rate to escape a local minimum.
Izmailov et al. [25] empirically showed that SWA finds flatter minima than ERM. We also considered
sharpness-aware minimization (SAM) [26], which is another popular flatness-aware solver, but SWA
finds flatter minima than SAM (See Figure 3). We illustrate an overview of SWA in Figure 2a.

3.2 Dense and overfit-aware stochastic weight sampling strategy

Despite its advantages, directly applying SWA to DG task has two problems. First, SWA averages a
few weights (usually less than ten) by sampling weights for every K epochs, results in an inaccurate
approximation of flat minima on a high-dimensional parameter space (e.g., 23M for ResNet-50 [41]).
Furthermore, a common DG benchmark protocol uses relatively small training epochs (e.g., Gulrajani
and Lopez-Paz [22] trained with less than two epochs for DomainNet benchmark), resulting in
insufficient stochastic weights for SWA. From this motivation, we propose a “dense” sampling
strategy for gathering sufficiently enough stochastic weights.

In addition, widely used DG datasets, such as PACS (≈ 10K images, 7 classes) and VLCS (≈ 11K
images, 5 classes), are relatively smaller than large-scale datasets, such as ImageNet [42] (≈ 1.2M
images, 1K classes). In this case, we observe that a simple ERM approach is rapidly reached to a local
optimum only within a few epochs, and easily suffers from the overfitting issue, i.e., the validation
loss is increased after a few training epochs. It implies that directly applying the vanilla SWA will
suffer from the overfitting issue by averaging sub-optimal solutions (i.e., overfitted parameters).
Hence, we need an “overfit-aware” sampling scheduling to omit the sub-optimal solutions for SWA.
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Figure 3: Local flatness comparisons. We plot the local flatness via loss gap, i.e., Fγ(θ) =
E‖θ′‖=‖θ‖+γ [E(θ′) − E(θ)], of ERM, SAM, SWA, and SWAD by varying radius γ on different domains
of PACS dataset. For each figure, Y-axis indicates the flatness Fγ(θ) and X-axis indicates the radius γ. We
measure the train flatness FDγ (θ) on seen domains and the test flatness FTγ (θ) on unseen domain. Each point is
computed by Monte-Carlo approximation with 100 random samples. This comparisons show SWAD finds flatter
minima than not only ERM but also SAM and SWA.

The main idea of Stochastic Weight Averaging Densely (SWAD) is a dense and overfit-aware
stochastic weight gathering strategy. First, instead of collecting weights for every K epochs, SWAD
collects weights for every iteration. This dense sampling strategy easily collects sufficiently many
weights than the sparse one. We also employ overfit-aware sampling scheduling by considering traces
of the validation loss. Instead of sampling weights from K0 pretraining epochs to the final epoch, we
search the start iteration (when the validation loss achieves a local optimum for the first time) and the
end iteration (when the validation loss is no longer decreased, but keep increasing). More specifically,
we introduce three parameters: an optimum patient parameter Ns, an overfitting patient parameter
Ne, and the tolerance rate r for searching the start iteration ts and the end iteration te. First, we
search ts which satisfies mini∈[0,...,Ns−1] E

(ts+i)
val = E(ts)

val , where E(i)
val denotes the validation loss at

iteration i. Simply, ts is the first iteration where the loss value is no longer decreased during Ns
iterations. Then, we find te satisfying mini∈[0,1,...,Ne−1] E

(te+i)
val > rE(ts)

val . In other words, te is the
first iteration where the validation loss values exceed the tolerance r during Ne iterations.

We illustrate the overview of SWAD and the comparison of SWAD to SWA in Figure 2. Detailed
pseudo code is provided in Appendix B.4. We compare SWAD with other possible SWA strategies in
§4.3 and show that our design choice works better for DG tasks.

3.3 Empirical analysis of SWAD and flatness

Here, we analyze solutions found by SWAD in terms of flatness. We first verify that the SWAD
solution is flatter than those of ERM, SWA, and SAM. Our loss surface visualization shows that
the SWAD solution is located on the center of the flat region, while ERM finds a boundary solution.
Finally, we show that the sharp boundary solutions by ERM are not generalized well, resulting in
sensitivity to the model selection. All following empirical analyses are conducted on PACS dataset,
validating by all four domains (art painting, cartoon, photo, and sketch).

Local flatness anaylsis. To begin with, we quantify the local flatness of a model parameter θ by
assuming that flat minima will have smaller changes of loss value within its neighborhoods than sharp
minima. For the given model parameter θ, we compute the expected loss value changes between θ and
parameters on the sphere surrounding θ with radius γ, i.e., Fγ(θ) = E‖θ′‖=‖θ‖+γ [E(θ′)− E(θ)]. In
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Figure 4: Loss surfaces on model parameters in PACS dataset for each target domain. The three triangles
indicate model weights chosen at the end of training phase with equal intervals. Each plane is defined by the three
weights and losses upon the plane are visualized with contours. The center cross mark is averaged point of the
three weights. The first and second rows show the averaged training loss and the test loss surfaces, respectively.
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Figure 5: Validation accuracies for in-domains. The X- and Y-axis indicate the training iterations and
accuracy, respectively, about the validation domains (legend) and the test domain (caption). The vertical dot
lines represent start and end iterations, ts and te, identified by the overfit-aware sampling strategy of SWAD.

practice, Fγ(θ) is approximated by Monte-Carlo sampling with 100 samples. Note that the proposed
local flatness Fγ(θ) is computationally efficient than measuring curvature using the Hessian-based
quantities. Also, Fγ(θ) has an unbiased finite sample estimator, while the worst-case loss value, i.e.,
max‖θ′‖=‖θ‖+γ [E(θ′)− E(θ)] has no unbiased finite sample estimator.

In Figure 3, we compare Fγ(θ) of ERM, SAM, SWA with cyclic learning rate, SWA with constant
learning rate, and SWAD by varying radius γ. SAM and SWA find the solutions with lower local
flatness than ERM on average. SWAD finds the most flat minimum in every experiment.

Loss surface visualization. We visualize the loss landscapes by choosing three model weights
on the optimization trajectory (θ1, θ2, θ3)2, and computing the loss values by linear combinations
of θ1, θ2, θ3

3 as [25]. More details are in Appendix B.5. In Figure 4, we observe that for all cases,
ERM solutions are located at the boundary of a flat minimum of training loss, resulting in poor
generalizability in test domains, that is aligned with our theoretical analysis and empirical flatness
analysis. Since ERM solutions are located on the boundary of a flat loss surface, we observe that ERM
solutions are very sensitive to model selection. In Figure 5, we illustrate the validation accuracies for
each train-test domain combination of PACS by ERM, over training iterations (one epoch is equivalent
to 83 iterations). We first observe that ERM rapidly reaches the best accuracy within only a few
training epochs, namely less than 6 epochs. Furthermore, the ERM validation accuracies fluctuate a
lot, and the final performance is very sensitive to the model selection criterion.

On the other hand, we observe that SWA solutions are located on the center of the training loss
surfaces as well as of the test loss surfaces (Figure 4). Also, our overfit-aware stochastic weight
gathering strategy (denoted as the vertical dot lines in Figure 5) prevents the ensembled weight from
overfitting and makes SWAD model selection-free.

2We choose weights at iteration 2500, 3500, 4500 during the training.
3Each point is defined by two axes u and v computed by u = θ2 − θ1 and v = (θ3−θ1)−〈θ3−θ1,θ2−θ1〉

‖θ2−θ1‖2·(θ2−θ1)
.
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Table 2: Comparison with domain generalization methods and SWAD. Out-of-domain accuracies on five
domain generalization benchmarks are shown. We highlight the best results and the second best results. Note
that ERM (reproduced), Mixstyle are reproduced numbers, and other numbers are from the original literature
and Gulrajani and Lopez-Paz [22] (denoted with †). Our experiments are repeated three times.

Algorithm PACS VLCS OfficeHome TerraInc DomainNet Avg.

MASF [14] 82.7 - - - - -
DMG [33] 83.4 - - - 43.6 -
MetaReg [15] 83.6 - - - 43.6 -
ER [12] 85.3 - - - - -
pAdaIN [47] 85.4 - - - - -
EISNet [48] 85.8 - - - - -
DSON [30] 86.6 - - - - -
ERM† [29] 85.5 77.5 66.5 46.1 40.9 63.3
ERM (reproduced) 84.2 77.3 67.6 47.8 44.0 64.2
IRM† [20] 83.5 78.6 64.3 47.6 33.9 61.6
GroupDRO† [49] 84.4 76.7 66.0 43.2 33.3 60.7
I-Mixup† [50–52] 84.6 77.4 68.1 47.9 39.2 63.4
MLDG† [13] 84.9 77.2 66.8 47.8 41.2 63.6
CORAL† [31] 86.2 78.8 68.7 47.7 41.5 64.5
MMD† [53] 84.7 77.5 66.4 42.2 23.4 58.8
DANN† [9] 83.7 78.6 65.9 46.7 38.3 62.6
CDANN† [10] 82.6 77.5 65.7 45.8 38.3 62.0
MTL† [54] 84.6 77.2 66.4 45.6 40.6 62.9
SagNet† [32] 86.3 77.8 68.1 48.6 40.3 64.2
ARM† [16] 85.1 77.6 64.8 45.5 35.5 61.7
VREx† [21] 84.9 78.3 66.4 46.4 33.6 61.9
RSC† [55] 85.2 77.1 65.5 46.6 38.9 62.7
Mixstyle [17] 85.2 77.9 60.4 44.0 34.0 60.3

SWAD (ours) 88.1 79.1 70.6 50.0 46.5 66.9
(±0.1) (±0.1) (±0.2) (±0.3) (±0.1)

4 Experiments

4.1 Evaluation protocols

Dataset and optimization protocol. Following Gulrajani and Lopez-Paz [22], we exhaustively
evaluate our method and comparison methods on various benchmarks: PACS [7] (9,991 images, 7
classes, and 4 domains), VLCS [43] (10,729 images, 5 classes, and 4 domains), OfficeHome [44]
(15,588 images, 65 classes, and 4 domains), TerraIncognita [45] (24,788 images, 10 classes, and
4 domains), and DomainNet [46] (586,575 images, 345 classes, and 6 domains).

For a fair comparison, we follow training and evaluation protocol by Gulrajani and Lopez-Paz [22],
including the dataset splits, hyperparameter (HP) search and model selection (while SWAD does
not need it) on the validation set, and optimizer HP, except the HP search space and the number
of iterations for DomainNet. We use a reduced HP search space to reduce the computational costs.
We also tripled the number of iterations for DomainNet from 5,000 to 15,000 because we observe
that 5,000 is not sufficient to convergence. We re-evaluate ERM with 15,000 iterations, and observe
3.1pp average performance improvement (40.9%→ 44.0%) in DomainNet. For training, we choose
a domain as the target domain and use the remaining domains as the training domain where 20%
samples are used for validation and model selection. ImageNet [42] trained ResNet-50 [41] is
employed as the initial weight, and optimized by Adam [38] optimizer with a learning rate of 5e-5.
We construct a mini-batch containing all domains where each domain has 32 images. We set SWAD
HPs Ns to 3, Ne to 6, and r to 1.2 for VLCS and 1.3 for the others by HP search on the validation sets.
Additional implementation details, such as other HPs, are given in Appendix B.

Evaluation metrics. We report out-of-domain accuracies for each domain and their average, i.e., a
model is trained and validated on training domains and evaluated on the unseen target domain. Each
out-of-domain performance is an average of three different runs with different train-validation splits.
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4.2 Main results

Table 3: Comparison between generaliza-
tion methods on PACS. The scores are aver-
aged over all settings using different target do-
mains. (↑) and (↓) indicate statistically signifi-
cant improvement and degradation from ERM.

Out-of-domain In-domain

ERM 85.3±0.4 96.6±0.0

EMA 85.5±0.4(-) 97.0±0.1(↑)
SAM 85.5±0.1(-) 97.4±0.1(↑)
Mixup 84.8±0.3(-) 97.3±0.1(↑)
CutMix 83.8±0.4(↓) 97.6±0.1(↑)
VAT 85.4±0.6(-) 96.9±0.2(↑)
Π-model 83.5±0.5(↓) 96.8±0.2(↑)
SWA 85.9±0.1(↑) 97.1±0.1(↑)
SWAD 87.1±0.2(↑) 97.7±0.1(↑)

Comparison with domain generalization methods.
We report the full out-of-domain performances on five
DG benchmarks in Table 2. The full tables including out-
of-domain accuracies for each domain are in Appendix
E. In all experiments, our SWAD achieves significant
performance gain against ERM as well as the previous
best results: +2.6pp in PACS, +0.3pp in VLCS, +1.4pp in
TerraIncognita, +1.9pp in OfficeHome, and +2.9pp
in DomainNet comparing to the previous best results.
We observe that SWAD provides two practical advan-
tages comparing to previous methods. First, SWAD
does not need any modification on training objectives
or model architecture, i.e., it is universally applicable to
any other methods. As an example, we show that SWAD
actually improves the performances of other DG meth-
ods, such as CORAL [31] in Table 4. Moreover, as we
discussed before, SWAD is free to the model selection,
resulting in stable performances (i.e., small standard errors) on various benchmarks. Note that we only
compare results with ResNet-50 backbone for a fair comparison. We describe the implementation
details of each comparison method and the hyperparameter search protocol in Appendix B.

Comparison with conventional generalization methods. We also compare SWAD with other
conventional generalization methods to show that the remarkable domain generalization gaps by
SWAD is not achieved by better generalization, but by seeking flat minima. The comparison
methods include flatness-aware optimization methods, such as SAM [26], ensemble methods, such
as EMA [56], data augmentation methods, such as Mixup [35] and CutMix [36], and consistency
regularization methods, such as VAT [57] and Π-model [58]. We also split in-domain datasets into
training (60%), validation (20%), and test (20%) splits, while no in-domain test set used for Table 2.
Every experiment is repeated three times.

The results are shown in Table 3. We observe that all conventional methods helps in-domain
generalization, i.e., performing better than ERM on in-domain test set. However, their out-of-domain
performances are similar to or even worse than ERM. For example, CutMix and Π-model improve
in-domain performances by 1.0pp and 0.2pp but degrade out-of-domain performances by 1.5pp
and 1.8pp. SAM, another method for seeking flat minima, slightly increases both in-domain and
out-of-domain performances but the out-of-domain performance is not statistically significant. We
will discuss performances of SAM in other benchmarks later. In contrast, the vanilla SWA and our
SWAD significantly improve both in-domain and out-of-domain performances. SWAD improves the
performances by SWA with statistically significantly gaps: 1.2pp on the out-of-domain and 0.6pp on
the in-domain. Further comparison between SWA and SWAD is provided in §4.3.

Table 4: Combination of SWAD and other methods. The scores are averaged over every target domain case.
The performances of ERM, CORAL, and SAM are optimized by HP searches of DomainBed. In contrast, for the
SWAD combination cases, CORAL and SAM use default HPs without additional HP search. We additionally
compare SWAD to SWAw/ const. Note that ERM + SWAD is same as “SWAD” in Table 2.

PACS VLCS OfficeHome TerraInc DomainNet Avg. (∆)

ERM 85.5 ±0.2 77.5 ±0.4 66.5 ±0.3 46.1 ±1.8 40.9 ±0.1 63.3
ERM + SWAw/ const 86.9 ±0.2 76.6 ±0.1 69.3 ±0.3 49.2 ±1.2 45.9 ±0.0 65.6 (+2.3)
ERM + SWAD 88.1 ±0.1 79.1 ±0.1 70.6 ±0.2 50.0 ±0.3 46.5 ±0.1 66.9 (+3.6)

CORAL 86.2 ±0.3 78.8 ±0.6 68.7 ±0.3 47.6 ±1.0 41.5 ±0.1 64.5
CORAL + SWAD 88.3 ±0.1 78.9 ±0.1 71.3 ±0.1 51.0 ±0.1 46.8 ±0.0 67.3 (+2.8)

SAM 85.8 ±0.2 79.4 ±0.1 69.6 ±0.1 43.3 ±0.7 44.3 ±0.0 64.5
SAM + SWAD 87.1 ±0.2 78.5 ±0.2 69.9 ±0.1 45.3 ±0.9 46.5 ±0.1 65.5 (+1.0)
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Combinations with other methods. Since SWAD does not require any modification on training
procedures and model architectures, SWAD is universally applicable to any other methods. Here,
we combine SWAD with ERM, CORAL [31], and SAM [26]. Results are shown in Table 4. Both
CORAL and SAM solely show better performances than ERM with +1.2pp average out-of-domain
accuracy gap. Note that SAM is not a DG method but a sharpness-aware optimization method to find
flat minima. It supports our theoretical motivation: DG can be achieved by seeking flat minima.

By applying SWAD on the baselines, the performances are consistently improved by 3.6pp on ERM,
2.8pp on CORAL, and 1.0pp on SAM. Interestingly, CORAL + SWAD show the best performances
with both incorporating different advantages of utilizing domain labels and seeking flat minima. We
also observe that SAM + SWAD shows worse performance than ERM + SWAD, while SAM performs
better than ERM. We conjecture that it is because the objective control by SAM restricts the model
parameter diversity durinig training, reducing the diversity for SWA ensemble. However, applying
SWAD on SAM still leads to better performances than the sole SAM. The results demonstrate that
the application of SWAD on other baselines is a simple yet effective method for DG.

4.3 Ablation study

Table 5: Ablation studies of the stochastic weights selection strategies on PACS and VLCS. In the configura-
tion, “ts”, “te”, “lr”, and “interval” indicate start and end iterations of sampling, a learning rate schedule, and
a stochastic weight sampling interval, respectively. “Opt” and “Overfit” indicate the start and end iterations
identified by our overfit-aware sampling strategy, and “Val” means the start and end iterations whose averaging
shows the best accuracy on the validation set. “Cyclic” and “Const” represent cyclic and constant learning rate
schedules. All experiments are repeated three times.

Configuration Out-of-domain In-domain
ts te lr interval PACS VLCS Avg. PACS VLCS Avg.

SWAw/ cyclic 4000 5000 Cyclic 100 85.9 ±0.1 76.6 ±0.1 81.2 97.1 ±0.1 85.0 ±0.2 91.0
SWAw/ const 4000 5000 Const 100 86.5 ±0.3 76.7 ±0.2 81.6 97.3 ±0.1 85.0 ±0.2 91.1
SWADw/o Dense Opt Overfit Const 100 86.5 ±0.4 78.0 ±0.7 82.2 97.6 ±0.1 85.8 ±0.4 91.7
SWADw/o Opt-Overfit 4000 5000 Const 1 86.6 ±0.6 76.9 ±0.3 81.7 97.5 ±0.1 85.2 ±0.1 91.3
SWADw/o Overfit Opt 5000 Const 1 87.1 ±0.3 77.6 ±0.1 82.4 97.7 ±0.1 85.8 ±0.3 91.8
SWADfit-on-val Val Val Const 1 86.2 ±0.2 78.6 ±0.1 82.4 97.5 ±0.2 85.8 ±0.3 91.7
SWAD (proposed) Opt Overfit Const 1 87.1 ±0.2 78.9 ±0.2 83.0 97.7 ±0.1 86.1 ±0.5 91.9

Table 5 provides ablative studies on the starting and ending iterations for averaging, the learning
rate schedule, and the sampling interval. SWAw/ cyclic (SWA in Table 3) and SWAw/ constant are vanilla
SWAs with fixed sampling positions. We also report SWAD by eliminating three factors: the
dense sampling strategy, and searching the start iteration, searching the end iteration. The dense
sampling strategy lets SWAD estimate a more accurate approximation of flat minima: showing 0.8pp
degeneration in the average out-of-domain accuracy (SWADw/o Dense). When we take an average from
ts to the final iteration, the out-of-domain performance degrades by 0.6pp (SWADw/o Overfit). Similarly,
a fixed scheduling without the overfit-aware scheduling only shows very marginal improvements from
the vanilla SWA (SWADw/o Opt-Overfit). We also evaluate SWADfit-on-val that uses the range achieving
the best performances on the validation set, but it becomes overfitted to the validation, results in
lower performances than SWAD. The results demonstrate the benefits of combining “dense” and
“overfit-aware” sampling strategies of SWAD.

4.4 Exploring the other applications: ImageNet robustness

Table 6: ImageNet robustness benchmarks. We show the ImageNet generalization performances on
ImageNet-C, background challenge (BGC), and ImageNet-R.

Method ImageNet (%) ↑ ImageNet-C (mCE) ↓ BGC (%) ↑ ImageNet-R (%) ↑

ERM 76.5 57.6 8.7 36.7
SWA 76.9 56.8 10.9 37.5
SWAD (ours) 77.0 55.7 11.8 38.8
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Since SWAD does not rely on domain labels, it can be applied to other robustness tasks not containing
domain labels. Table 6 show the generalizability of SWAD on ImageNet [42] and its shifted
benchmarks, namely, ImageNet-C [59], ImageNet-R [60], and background challenge (BGC) [61].
SWAD consistently improves robustness performances against the ERM baseline and the SWA
baseline. These results support that our method is robustly and widely applicable to improve both
in-domain and out-of-domain generalizability. The detailed setup is provided in Appendix B.6.

5 Discussion and Limitations

Despite many benefits from SWAD, such as the significant performance improvements, model
selection-free property, working plug-and-play manner for various methods, there are some potential
limitations. Here, we discuss the limitations of SWAD for further improvements.

Confidence error in Theorem 1. While the confidence error in Theorem 1 tells the effect of γ on
generalization error bound, there exists a limitation in that the confidence error term shows improper
behavior with respect to γ if γ is close to zero. The behavior we expect is that the confidence error of
RRM converges to the confidence error of ERM as γ decreases to zero, however, the current theorem
does not show such tendency since the confidence bound diverges to infinity when γ goes to zero.
However, we would like to note that this limitation is not a drawback of RRM, but it is caused by
the looseness of the union bound which is a mathematical technique used to derive the confidence
error of RRM. Our RRM formulation has a similarity to previous works [26, 34] and we note that the
counter-intuitive behavior of the confidence bound and γ also appears in Foret et al. [26].

SWAD is not a perfect flatness-aware optimization method. Note that SWAD is not a perfect and
theoretically guaranteed solver for flat minima, but a heuristic approximation with empirical benefits.
However, even if a better flatness-aware optimization method is proposed, our theoretical contribution
still holds: showing the relationship between flat minima and DG.

SWAD does not strongly utilize domain-specific information. In Theorem 2, the domain gener-
alization gap is bounded by three factors: flat minima, domain discrepancy, and confidence bound.
Most of the existing approaches focus on domain discrepancy, reducing the difference between the
source domains and the target domain by domain invariant learning [8–12]. SWAD focuses on the
first factor, the flat minima. While the domain labels are used to construct a mini-batch, SWAD does
not strongly utilize domain-specific information. It implies that if one can consider both flatness and
domain discrepancy, better domain generalization can be achievable. Table 4 gives us a clue: the
combination of CORAL (utilizing domain-specific information) and SWAD (seeking flat minima)
shows the best performance among all comparison methods. As a future research direction, we
encourage studying a method that can achieve both flat optima and small domain discrepancy.

6 Concluding Remarks

In this paper, we theoretically and empirically demonstrate that domain generalization (DG) is
achievable by seeking flat minima. We propose SWAD that captures flatter minima than the vanilla
SWA does. The extensive experiments on five DG benchmarks show superior performances of SWAD
compared with existing DG methods. In addition, combinations of SWAD and existing DG methods
even show better performances than the vanilla SWAD. We theoretically and empirically observe that
seeking flat minima can achieve better generalizability to both in-domain and out-of-domain, while
strong in-domain generalization methods without consideration of flatness, e.g., Mixup or CutMix,
cannot guarantee to achieve out-of-domain generalizability in both theory and practice. This study
first brings the concept of flatness into DG tasks, and shows strong empirical performances not only
in DG but also in ImageNet benchmarks. We hope that this study promotes a new research direction
of seeking flat minima for domain generalization and other robustness tasks.
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