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Figure 1: Generated samples from ELM-2B with 2-12 tokenizer trained on 256×256 ImageNet.
ELM is flexible to generate any-size high-fidelity images.

ABSTRACT

The success of autoregressive (AR) language models in text generation has in-
spired the computer vision community to adopt Large Language Models (LLMs)
for image generation. However, considering the essential differences between text
and image modalities, the design space of language models for image generation
remains underexplored. We observe that image tokens exhibit greater random-
ness compared to text tokens, which presents challenges when training with token
prediction. Nevertheless, AR models demonstrate their potential by effectively
learning patterns even from a seemingly suboptimal optimization problem. Our
analysis also reveals that while all models successfully grasp the importance of lo-
cal information in image generation, smaller models struggle to capture the global
context. In contrast, larger models showcase improved capabilities in this area,
helping to explain the performance gains achieved when scaling up model size.
We further elucidate the design space of language models for vision generation,
including tokenizer choice, model choice, model scalability, vocabulary design,
and sampling strategy through extensive comparative experiments. Our work is
the first to analyze the optimization behavior of language models in vision gen-
eration, and we believe it can inspire more effective designs when applying LMs
to other domains. Finally, our elucidated language model for image generation,
termed as ELM, achieves state-of-the-art performance on the ImageNet 256×256
benchmark.
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1 INTRODUCTION

In the domain of artificial intelligence generated content (AIGC), text and image generation (Brown,
2020; Ho et al., 2022) represent the principal focal points. Despite their shared goal of content gen-
eration, these two modalities predominantly employ distinct modeling methods. On the one hand,
text generation is commonly facilitated by autoregressive (AR) language models, like LLaMA-3
(Touvron et al., 2023a) and GPT-4 (Achiam et al., 2023), which operate by predicting subsequent
tokens based on preceding ones in a sequence. On the other hand, image generation predominantly
utilizes diffusion models, such as Dall·E 3 (Betker et al., 2023) and Stable Diffusion v3 (Esser et al.,
2024), which learn to gradually denoise images for all pixels simultaneously.

The recent success of large language models (LLMs) has bolstered the research community’s confi-
dence in their potential contribution towards achieving artificial general intelligence (AGI). This op-
timism has also inspired researchers within the computer vision domain to extend the AR paradigm
to applications beyond text, such as image generation (Esser et al., 2021; Yu et al., 2021; Tian et al.,
2024) and video generation (Kondratyuk et al., 2024). Such explorations open up novel avenues
for leveraging AR in visual content creation. A significant advantage of integrating LLMs into im-
age generation is the ability to transfer established techniques from text-based applications, such as
generating content that exceeds the input length. In contrast, diffusion models generally exhibit less
flexibility in adapting to such capabilities. Moreover, the scalability of LLMs makes them the pre-
ferred foundation for building unified models with multi-modal inference capabilities (Team et al.,
2023; Kondratyuk et al., 2024). Gaining a deeper understanding of their potential across domains
will aid the community in building more efficient and effective universal models.

Nevertheless, current research in visual generation remains focused on diffusion models (Karras
et al., 2022; Ma et al., 2023; Kingma & Gao, 2024), and language models for image generation have
yet to be thoroughly explored. Current efforts (Esser et al., 2021; Chang et al., 2022; Yu et al., 2022;
Sun et al., 2024; Tian et al., 2024; Yu et al., 2024) are mostly preliminary, involving the discretization
of images into sequences of tokens with vector-quantization autoencoders, which are then processed
by language models trained with token prediction objectives. However, considering that text and
images represent fundamentally different modalities, it is essential to thoroughly analyze the training
dynamics and elucidate the design space when adapting LLM for image generation tasks.

In this study, we delve into the potential of language models for vision generation tasks. We quanti-
tatively analyze the fundamental differences between images and text and conduct a comprehensive
exploration of the design space for image generation using language models. Starting with image
tokenization, we compare two approaches: VQGAN, which uses a vector quantizer (VQ) to dis-
cretize latent codes (Van Den Oord et al., 2017; Esser et al., 2021), and BAE, which employs binary
autoencoders for “look-up free” quantization (LFQ) (Wang et al., 2023; Yu et al., 2023). Our com-
parison based on reconstruction ability, scalability, and generation performance shows that BAE
consistently outperforms VQGAN across all dimensions. Despite this, current language model-
based image generation methods largely rely on vector-quantization auto-encoders (Yu et al., 2022;
Chang et al., 2022; Li et al., 2023; Sun et al., 2024). We believe that a more powerful quantizer for
images can lead to significantly better generation performance. We then evaluate the performance
of two primary language modeling approaches for image generation: autoregressive (AR) models
and masked language models (MLMs). Consistent with findings in the language domain (Henighan
et al., 2020; Liao et al., 2020; Zhang et al., 2024; Chang & Bergen, 2024), AR models demon-
strate superior image generation ability and scalability compared to MLMs. We further leveraged
the flexibility of the binary-valued bit codes produced by BAE. Through our exploration of code
decomposition strategies, we found that splitting the original code into two subcodes significantly
reduces learning complexity, improves performance, and reduces computational costs.

Additionally, we analyze how AR models learn to generate images by examining attention scores
across different layers and model sizes. Our findings indicate that AR models effectively learn the
importance of local information for image generation. However, larger models also capture global
information, which is more difficult for smaller models to learn, helping to explain the performance
improvements observed with increasing model size. Our research deepens the understanding of
the LLM’s capability and behavior in vision generation. The insights can contribute to the design of
more efficient and unified large models handling multi-modalities inference tasks and the exploration
of general artificial intelligence systems. In conclusion, our main contributions include:
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• We identify the fundamental differences between the token distributions of discretized images and
text, highlighting significant disparities in training dynamics and terminal phases between them.

• We thoroughly examine two prevalent language modeling methods, including AR models and
MLMs, within the realm of image generation. Our findings suggest that AR mechanism holds
greater potential in the visual domain.

• Leveraging an image discretization mechanism with BAE, our results reveal that a vocabulary
decomposition helps improve performance and reduce computational cost.

• We show that AR models can learn effective image patterns without inductive bias, identify dis-
tinct patterns across model sizes, and offer a concise explanation of the scaling law.

• Combining all key ingredients of the design space explicitly explored, we reach a strong
Elucidated Language model for iMage generation, termed as ELM, and achieve state-of-the-art
performance on the ImageNet 256×256 benchmark.

2 PRELIMINARY

2.1 IMAGE TOKENIZATION

Image tokenization typically involves an encoder ENC, a quantizer QUANT, and a decoder DEC.
Given an image x ∈ RH×W×3, ENC encodes it to latent variables z = ENC(x) ∈ R

H
f ×W

f ×D,
where f is the down-sample factor and D is the latent dimension. Each spatial vector zij in z is
then quantized to discrete code qk. Let the quantized latent be denoted as zq , which is then decoded
to reconstruct the original image as x̂ = DEC(zq) (Van Den Oord et al., 2017; Razavi et al., 2019;
Esser et al., 2021; Yu et al., 2023). All the codes form a codebook Q = {qk}Kk=1 ⊂ RD that
contains K codes in total. The codebook can be viewed as the “vocabulary” if we regard the image
as a special kind of language. A sequence of tokens q = (q1, q2, ..., qL), where L = H

f × W
f , is

obtained by reshaping zq to a sequence of L tokens.

VQGAN (Esser et al., 2021) For this method, the codebook Q is trained alongside the encoder
and decoder, the most widely used one named VQGAN. In this method, each spatial latent vector
zij ∈ RD “looks up” the nearest code qk by minimizing the Euclidean distance:

zq = QUANT(z) :=

(
arg min

qk∈Q
∥zij − qk∥

)
∈ R

H
f ×W

f ×D. (1)

BAE (Wang et al., 2023; Yu et al., 2023) This method discretizes the scalar value at each position
of the latent vector, converting it to a binary value (0/1 or -1/1) (Fajtl et al., 2020; Wang et al., 2023;
Yu et al., 2023). Specifically, suppose the latent vector zij ∈ RD is normalized and the values
lie within the range of (0,1). Each value zd, d ∈ {1, ..., D} at the d-th position of zij is further
quantized into discrete values of 0 or 1:

zdq = sign(zd) =

{
0, if zd < 0.5,

1, otherwise.
(2)

In this way, the codebook is structured within a binary latent space, with K = 2D. The code index
is derived by treating the code as a binary number and converting it into its corresponding decimal
value; this method is also referred to as “look-up free” quantization (LFQ) (Yu et al., 2023). The
sign function can be replaced by Bernoulli sampling, then zq = Bernoulli(z) (Wang et al., 2023).

2.2 MODELING METHODS

Autoregressive (AR) Model Consider a sequence of discrete tokens q = (q1, q2, ..., qL), where
each token ql is drawn from a vocabulary Q of size K. The AR model assumes that the probability of
the current token ql depends only on its preceding tokens (q1, q2, ..., ql−1), framing the generation
task as a ‘next-token’ prediction, using unidirectional attention with the transformer architecture.
Specifically, the network learns the probability p(q) = ΠL

l=1p(ql | q1, · · · , ql−1), with the loss
function:

Lar = −Ex∼p(x) [log p(q)] (3)
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Masked Language Model (MLM) Unlike AR models, MLMs leverage contexts from both direc-
tions to predict the tokens masked by a special [MASK] token, and their predictions are not bound
by sequential order. They are trained by substituting a subset of tokens with [MASK] tokens and
then predicting these tokens based on the unmasked ones. Specifically, There exists a binary mask
m = [ml]

L
l where the token ql is replaced with [MASK] if mi = 1, otherwise, when mi = 1 will

be left intact. Denote qM the result after applying mask m to q. Hence, these models optimize the
following loss function:

Lmlm = −Ex∼p(x)

 ∑
∀l∈[0,L], ml=1

log p(ql | qM )

 (4)

As a dominant modeling approach in the language domain, there have been several attempts to
adapt AR transformer models for image synthesis (Esser et al., 2021; Yu et al., 2022; Team, 2024;
Sun et al., 2024). At the same time, MLMs also gain popularity in the vision domain due to their
sampling efficiency (Chang et al., 2022; Li et al., 2023; Chang et al., 2023).

3 ELUCIDATING THE DESIGN SPACE OF LANGUAGE MODELS FOR IMAGE
GENERATION

In this section, we first analyze the intrinsic difference between vision and language domain based
on the token distribution, which helps us to understand the learning behavior of language models on
the image generation task. Then we comprehensively explore the design space of adopting language
models for vision generation, including the tokenizer choice, modeling choice, model scalability
analysis, vocabulary decomposition strategy with BAE tokenizer, and sampling strategy.

3.1 IMAGE GENERATION VERSUS TEXT GENERATION

While images can be discretized and treated as token sequences, the inherent differences between
vision and text still exist. These disparities result in varying performance while both are trained using
the same model architectures and objectives. In our experiments, we observe that the training loss
did not converge well using either AR or MLM on image tokens, a similar result is also presented
in Henighan et al. (2020). However, the models can still generate high-quality images with a low
Fréchet Inception Distance (FID) (Heusel et al., 2017), indicating that they have learned sufficient
patterns for image generation, although the training loss remains high.

Table 1: KL-divergence between token distribution and Uniform Distribution, along with the per-
plexity of n-gram models.

ImageNet OpenWebText WallStreetJournal

Tokenizer VQGAN-f16 (V=16384) BAE-f16 (V=65536) BPE (V=47589) BPE (V=19979)

unigram bigram unigram bigram unigram bigram unigram bigram

Train 1.00 2.16 0.24 0.17 3.25 3.35 - -

Val 0.90 2.12 0.22 0.03 3.27 1.94 - -

Perplexity 1 368 210 2 52,538 596,855 2087 395 962 170

Token Distribution and Randomness in Image Data Our analysis shows that image tokens ex-
hibit a distribution much closer to a random, uniform distribution when compared to language to-
kens, and they exhibit a lack of orderliness based on bigram distribution and n-gram models’ per-
plexity (see the result in Table 1). These observations lead to several key implications. First, it

1We calculate the perplexity with Laplace smoothing(Gale & Church, 1994). The first 10 percent of the
training data is select the efficiently calculate the perplexity of OpenWebText.

2Although the VQGAN tokenizer exhibits lower perplexity compared to BAE, its extremely low code uti-
lization significantly impacting the tokenizer’s effectiveness.
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suggests that image data lacks the inherent structure and sequential order typically present in lan-
guage data, implying that image generation is less dependent on strict sequential patterns and more
on local patterns relevant to visual reconstruction (Ulyanov et al., 2018). Second, a token distri-
bution close to uniform highlights that the generation task has a higher tolerance for errors. Since
all tokens are nearly equally probable, the model can afford to make less precise token predictions
without significantly impacting the quality of the generated output. This characteristic explains why
our model, despite its high training loss, can still generate high-quality images—a behavior con-
sistent with prior findings on deep learning’s robustness to unstructured data (Zhang et al., 2016;
Arpit et al., 2017). The principles of information theory (Shannon, 1948) also point out that models
dealing with more random data require less precision in capturing global relationships.

3.2 TOKENIZER CHOICE: VQGAN VERSUS BAE
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Figure 2: BAE-16 exhibits a higher code utilization than VQGAN-f16. This figure shows a
log count number of the appearance of codes on the ImageNet training dataset in sorted order. (a)
BAE-16, with a code dimension of 16, has 65,536 unique codes and achieves 100% code utilization,
with no code showing extremely low usage. In contrast, (b) VQGAN-f16, with a codebook size of
16,384, only utilizes around 1,000 codes, and many of these codes have extremely low utilization.

In VQGAN, “code collapse” is a critical issue where a large portion of the codebook remains un-
used as the codebook size increases, severely limiting the model’s efficiency and scalability Zhu
et al. (2024); Baykal et al. (2024). This problem does not occur in BAEs, where discrete codes are
generated using scalar quantization (Mentzer et al., 2023). This approach guarantees 100% code
utilization (see Figure 2) and achieves better reconstruction capabilities (Appendix A.3). Based on
the above reasons, we build our generation model on BAE tokenizer instead of VQGAN.

For BAE, we observe that the introduction of Bernoulli Sampling during quantization improves im-
age generation performance (Table 8). Incorporating this probabilistic element reduces the model’s
sensitivity to prediction errors (Englesson & Azizpour, 2021), leading to a more robust generation.

3.3 MODELING METHOD CHOICE: AR VERSUS MLM
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Figure 3: Comparison of AR and MLM on image generation with 50,000 generated samples.
AR consistently outperforms MLM across various model sizes.

In this subsection, we evaluate the performance of both vanilla AR and MLM in image generation
with the same BAE-f16 tokenizer with a vocabulary size of 216 and training strategy (see implemen-
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tation details in Appendix A.4). Figure 3 presents the FID score and Inception Score (IS) (Salimans
et al., 2016) on the 256×256 ImageNet benchmark over the training epochs for both AR and MLM.
The results show that AR consistently outperforms MLM across various model sizes. Additionally,
AR exhibits higher training efficiency compared to MLM, particularly as the model size increases.
Research in the language domain has widely recognized that AR models possess greater generative
capabilities than MLMs, particularly as model scales increase (Radford et al., 2019; Raffel et al.,
2020; Henighan et al., 2020). Our findings align with these research works. Besides, for MLM-XL
and MLM-XXL, a clear divergence between FID and IS is observed in the later stages of training,
where FID continues to improve, while IS declines. Studies point out that when models overfit to
generate highly realistic samples (low FID), they may sacrifice diversity, which negatively impacts
IS (Chong & Forsyth, 2020; Benny et al., 2021). This issue does not occur with AR models, further
highlighting the superiority of AR models over MLMs in maintaining both quality and diversity.

3.4 LEARNING AND SCALING BEHAVIOR

To further understand the model’s learned patterns, we visualize the attention maps of different AR
models. These visualizations revealed that the attention mechanism were primarily focused on local
regions of the image, indicating that the AR transformer models effectively learn the importance of
local patterns for image generation (Vaswani et al., 2017). This finding is notable because the model
was trained without any inductive biases tailored to image data, highlighting the strong capability of
AR transformer models across different domains.

Additionally, the scaling law (Henighan et al., 2020; Kaplan et al., 2020) holds for AR models in
image generation tasks, as reflected in lower training loss (Figure 14), improved generation perfor-
mance, and an enhanced ability to capture global information as the model size increases. As for
the attention pattern, models of varying sizes showed subtle differences: the L-sized model mainly
focused on local information, struggling to capture long-term information. In contrast, larger models
(XL and XXL) exhibited longer-range attention in certain layers, suggesting they had also learned
global features (Figure 4). Specifically, in the first layer (layer 0), attention generally captures global
information, while deeper layers show a more localized focus, with recent tokens receiving greater
attention. In XL and XXL models, which have more layers, some deeper layers still capture global
information. However, in L-sized models, the deeper layers also focus on local tokens, with little
attention to long-term dependencies. The incorporation of global information positively impacted
overall generation performance, as evidenced by the lower FID score and better visual image quality
as shown in Figure 8.
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Figure 4:
Visualization of
average attention
score of head 0 in
AR models over 100
images. From the top
row to the bottom
row, we show the
results of L, XL, and
XXL models with the
BAE 2-10 tokenizer,
respectively. All
models effectively
learned to focus on
localized informa-
tion across different
layers. However,
larger model learns to
capture richer global
information, a behav-
ior rarely observed in
the L-sized models.

3.5 VOCABULARY DESIGN
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Figure 5: AR model performance with different
BAE tokenizers.

The vocabulary size K in BAE tokenizer is de-
termined by the code dimension D, i.e., K =
2D. However, when the vocabulary size ex-
ceeds a certain threshold, such as 216 (i.e.,
65,536), next-token prediction becomes signif-
icantly more challenging (Ali et al., 2023). For
even larger vocabulary sizes, such as those ex-
ceeding 220, it becomes infeasible due to mem-
ory constraints. Despite these limitations, the
tokenizer’s effectiveness largely depends on the
code dimension, as demonstrated by the results
in Figure 5, which shows that increasing the
code dimension improves reconstruction ability. Recent research also indicates that a stronger tok-
enizer leads to a better generation performance in AR models (Tao et al., 2024).

To address the challenge of large vocabulary sizes, we leverage the flexibility of binary-quantized
codes that allows us to decompose each code into multiple subcodes (Yu et al., 2023). For instance,
an 8-bit code like [1, 0, 1, 0, 0, 0, 1, 1] can be split into two 4-bit codes: [1, 0, 1, 0] and [0, 0, 1, 1].
These two subcodes can then be converted into decimal values to generate corresponding indices.
As a result, we convert the embedding matrix from a size of 28×Dfeature into two matrices of size
24×Dfeature, where Dfeature is the feature dimension within the AR model. The final embedding
is achieved by concatenating the two indexed embeddings and applying a projection to restore the
dimension to Dfeature. Separate prediction heads are applied to generate the logits.

We conduct experiments using AR models with BAE that have varying code dimensions (D = 16,
20, 24, and 32). We treat quantizers with and without code decomposition as distinct tokenizers; for
example, for D = 16, “1-16” means the original tokenizer and “2-8” denotes the code is split into
two 8-bit subcodes. The results in Figure 5 reveal several key insights:

• Optimal decomposition. A decomposition into two subcodes is generally optimal, which also
reduces computational costs, leading to more efficient and effective generation (see the detailed
result in Table 10). When dealing with two sub-vocabularies of smaller size, the prediction at
each position is split into two independent classification tasks, each with a more manageable set of
possible outcomes, largely reducing the cognitive load on the model (Ali et al., 2023; Yang, 2024).
Further increasing the number of subcodes significantly raises the prediction complexity, and the
model struggles to optimize across three or more dimensions (Limisiewicz et al., 2023). This is
evidenced by the increasing training loss observed when moving from tokenizers 2-8 to 3-8 and 4-8
in XL and XXL models (see Figure A.4). The added complexity in managing multiple classification
heads impairs the model’s generalization, leading to suboptimal outcomes in image synthesis.

• Vocabulary complexity and model capacity. Larger code dimensions generally lead to improved
generation performance but introduce more complex vocabularies, making it harder for the model
to predict the next token. As a result, more complex tokenizers require more powerful models for
effective learning (Tao et al., 2024). For example, the 2-10 tokenizer is optimal for L and XL models,
while the 2-12 tokenizer performs best with the XXL model.

These findings demonstrate the trade-offs between model scale, vocabulary complexity, and decom-
position strategies, highlighting the potential of the AR model’s ability to effectively handle complex
tokenization while maintaining high performance across model scales.

3.6 SAMPLING STRATEGY

Sampling strategy plays a crucial role in vision generation, applicable to both diffusion models
(Karras et al., 2022; Ma et al., 2023) and language models (Chang et al., 2022; Sun et al., 2024). In
this study, we thoroughly explore the sampling strategies for both AR and MLM, including classifier-
free guidance (Ho & Salimans, 2022) (CFG) scale, the introduction of randomness, and the number
of generation iterations for the MLMs.

Firstly, regarding the CFG scale, we discover that a gradually increasing CFG scale performs better
than a constant one. We test various CFG scale scheduling methods (as illustrated in Figure 16) and
find that linear scheduling yields the best results (see the result in Table 11).
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Secondly, regarding the introduction of randomness, for the AR model, randomness primarily de-
rives from the k value in the top-k filter used when selecting next-token indices based on their confi-
dence scores; a larger k introduces more randomness. For the MLM, randomness mainly stems from
the coefficient τ of Gumbel noise added to the confidence of the [MASK] token predictions; a larger
τ results in greater randomness. We observed that for both methods, a high degree of randomness is
crucial during the sampling process (see Figure 6, 7 and Table 12). This finding is consistent with
the natural randomness of image token distribution discussed in Section 3.1. Moreover, as model
size and vocabulary increase, the need for randomness diminishes, indicating that larger models
are capable of capturing a broader range of patterns and making more accurate predictions. This
observation aligns with the attention and scalability analysis discussed earlier, where larger models
demonstrated enhanced capacity to manage both local and global information, reducing the need for
stochasticity to generate realistic samples.

For MLMs, the range of sampling iterations during generation varies from 1 to the total sequence
length (i.e., 16×16 = 256). We conclude that the optimal number of iterations is around 10 (Figure
17), which reflects the sampling efficiency of MLMs compared to AR models.
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Figure 6: The results of different τ with MLM.
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Figure 7: The results of different top-k with AR.

3.7 ELM MODEL

After thoroughly exploring the design space of language models for image generation, via combin-
ing the better design trick, we reach our final Elucidated Language model for iMage generation
(ELM). ELM adopts BAE as the image tokenizer and AR as the modeling method. According
to our previous results, ELM splits the quantized image code into two subcodes. When choosing
the vocabulary, the capacity of the model should be considered. Larger vocabularies require more
powerful models to handle next-token prediction (2-12 tokenizer works best for ELM-XXL), while
smaller models perform better with simpler vocabularies (ELM-L and XL perform better with 2-10
tokenizer). For sampling strategy, we choose a high randomness because it will bring in large di-
versity, and we use linear CFG. Finally, we construct four ELM versions: ELM-L (2-10), ELM-XL
(2-10), ELM-XXL (2-12), and ELM-2B (2-12), with parameters ranging from 315M to 1.9B.

4 EXPERIMENTS

4.1 CONDITIONAL IMAGE GENERATION

In this section, we compare our ELM models with other AR models for image generation. Our
experiments are conducted on the 256×256 ImageNet (Deng et al., 2009) dataset. We generate
50,000 samples to evaluate performance using FID, IS, Precision, and Recall following Dhariwal
& Nichol (2021). Implementation details can be found in the Appendix A.4. The comparison
result is presented in Table 2. Our method (ELM) exhibits scaling law behavior, with performance
improving as model size increases, also achieves state-of-the-art (SOTA) results. Given that our
tokenizer (BAE) is only trained on ImageNet (Deng et al., 2009), we believe further training on
larger datasets, like OpenImages (Kuznetsova et al., 2020), would enhance the tokenizer and further
boost the generation capability of our ELMs.
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Table 2: Comparison of AR models on class-conditional image generation on 256×256 ImageNet.
* indicates that the model generates samples at a resolution of 384×384, which are then resized to
256×256. -re denotes rejection sampling is used.

Type Model Params. FID↓ IS↑ Precision↑ Recall↑

Diff.

DiT-L/2 (Peebles & Xie, 2023) 458M 5.02 167.2 - -
DiT-XL/2 675M 2.27 278.2 0.83 0.57
SiT-XL/2 (ODE) (Ma et al., 2024) 675M 2.15 258.1 0.81 0.60
SiT-XL/2 (SDE) 675M 2.06 277.5 0.83 0.59

MLM MaskGIT 227M 6.18 182.1 0.8 0.51
MaskGIT-re 227M 4.02 355.6 - -

AR

VQGAN (Esser et al., 2021) 227M 18.65 80.4 0.78 0.26
VQGAN-re 1.4B 5.20 280.3 - -
LlamaGen-L (Sun et al., 2024) 343M 3.81 248.3 0.83 0.52
LlamaGen-XL 775M 3.39 227.08 0.81 0.54
LlamaGen-XXL 1.4B 3.09 253.61 0.83 0.53
LlamaGen-3B 3.1B 3.05 222.33 0.80 0.58
LlamaGen-3B* 3.1B 2.18 263.33 0.81 0.58

VAR

VAR-d16 (Tian et al., 2024) 310M 3.30 274.4 0.84 0.51
VAR-d20 600M 2.57 302.6 0.83 0.56
VAR-d24 1.0B 2.09 312.9 0.82 0.59
VAR-d30 2.0B 1.97 334.7 0.81 0.61
VAR-d30-re 2.0B 1.80 356.40 0.83 0.57

MAR
MAR-B (Li et al., 2024) 208M 2.31 281.7 0.82 0.57
MAR-L 479M 1.78 296.0 0.81 0.60
MAR-H 943M 1.55 303.7 0.81 0.62

AR
ELM-L (2-10) 315M 2.17 288.59 0.82 0.55
ELM-XL (2-10) 757M 1.79 332.99 0.80 0.59
ELM-XXL (2-12) 1.4B 1.58 330.43 0.80 0.60
ELM-2B (2-12) 1.9B 1.54 332.69 0.81 0.60

4.2 VISUALIZATION OF THE SCALING LAW

According to the scaling law of ELM transformers, both loss and performance improve as train-
ing data and model parameter size increase. In our experiments, although the original image data
(ImageNet) remains unchanged, the token set effectively scales up through the token decomposition
strategy. We present generated samples using different sizes of ELM models (L, XL, XXL) and
tokenizers (1-16, 2-10, 2-12) to illustrate the scaling behavior of ELM models in image generation.
Following Tian et al. (2024), we maintain the same seed and teacher-forced initial tokens across
models. The results in Figure 8 clearly demonstrate performance improvements as both the token
set and model size scale up.

5 RELATED WORK

Large Language Models. Language models are foundational tools in natural language processing,
designed to predict the likelihood of sequences of words or tokens, using Transformer architectures
with self-attention mechanism (Vaswani et al., 2017). There are two primary types: autoregressive
(AR) models, like GPT (Radford et al., 2019; Brown, 2020; Achiam et al., 2023), LLaMA (Touvron
et al., 2023a;b; Dubey et al., 2024), etc., which generate text one token at a time in a left-to-right
fashion, and masked language models (MLM), such as BERT (Devlin, 2018), T5 (Raffel et al.,
2020), etc., which predict masked tokens within a sequence using bidirectional context. AR models
are particularly effective for text generation due to their sequential nature, while MLMs are bet-
ter suited for representation learning by leveraging global context (Chang & Bergen, 2024). The
scaling law (Henighan et al., 2020; Kaplan et al., 2020), which describes the relationship between
the growth of model parameters, dataset sizes, computational resources, and performance improve-
ments, highlights the immense potential of AR models.

Vision Generation. Vision generation is a key focus in the current AIGC field, primarily relying on
diffusion probabilistic models, which generate images by progressively denoising a random Gaus-

9
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Figure 8: Scaling up behavior of tokenizer and model size. From left to right and top to bottom,
there is a trend of improved image detail and structure. It reflects the enhanced generation ability
that comes with more refined tokenizer and larger model.

sian noise (Song et al., 2020; Peebles & Xie, 2023; Chen et al., 2023). Transformer architectures
are also the dominant backbone in these tasks. Language models have also been applied to vision
tasks. Researches like Chang et al. (2022), Li et al. (2023), and Chang et al. (2023) use bidirectional
MLMs for image generation, meanwhile Esser et al. (2021), Yu et al. (2022), Sun et al. (2024), and
Tian et al. (2024) employ AR models. Moreover, AR models offer a path toward developing unified
models for general artificial intelligence across different modalities, as seen in systems like Gemini
(Team et al., 2023) and Chameleon (Team, 2024). While previous research has explored the use
of language models in vision generation, our work is the first to analyze fundamental differences
between text and image and the optimization behavior of language models in vision domain.

6 CONCLUSION

In this work, we investigate the use of language models for image generation. We analyze the
differences between image and text token distribution, demonstrating how these distinctions affect
training behavior, and offering insights that extend beyond current research on language models
for image generation. We further elucidate the design space of language models for vision genera-
tion, including tokenizer choice, model choice, model scalability, vocabulary design, and sampling
strategy through extensive comparative experiments. Through our analysis, we have the following
findings: (1) binary autoencoder (BAE) demonstrates superior performance as an image tokenizer
compared to traditional VQGAN approaches; (2) AR models consistently outperform MLMs and
show a strong scaling law, (3) larger vocabulary size and a decomposition design benefit the image
generation, (4) sampling strategies should also allow for greater randomness; gradually increased
CFG scale, larger top-k are important for a better FID score. By combining these designs, we reach
our final ELM model, and it achieves state-of-the-art performance on ImageNet. We hope this work
will motivate further usage of the AR model across other domains.
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A APPENDIX

Figure 9: Selected samples in different classes with ELM-2B (2-12).
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A.1 ADDITIONAL ROBUSTNESS ANALYSIS OF ELM MODELS

We conduct additional experiments to demonstrate the robustness of the elucidated language models
in the vision domain, including zero-shot generalization, higher-resolution generation, and evalua-
tions on different datasets.

A.1.1 PERFORMANCE ON ZERO-SHOT GENERALIZATION
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Figure 10: Zero-shot generalization performance of ELM. Class interpolation generate images with
interpolated class condition, i.e., αA+(1−α)B,α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Image editing allows
the model to edit the masked region based on specific class condition.

We evaluated the model’s performance on generating images with interpolated class conditions,
specifically, αA+ (1−α)B, where A and B are two distinct class labels, α ∈ [0, 1]. This approach
effectively tests how the model learns and adapts to conditions, especially under complex scenarios.
The results show that the model effectively learns the conditional information, rather than simply
memorizing it. Interestingly, when the interpolated classes share similarities, such as a golden re-
triever and a husky, the model generates images that blend features of both classes when α is around

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0.5. In contrast, for unrelated classes like a sorrel and a beer bottle, the generated images only re-
flect the features of the class with the higher weight. The image editing results further highlight the
flexibility of ELM across various application tasks.

A.1.2 PERFORMANCE ON HIGHER RESOLUTION

Figure 11: Generated 512×512 images.
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Table 3: Comparisons on class-conditional ImageNet 512×512 benchmark.

Model Tokenizer Params. train. steps FID↓ IS↑ Precision↑ Recall↑
DiT-XL/2 VAE 675M 3000k 3.04 240.82 0.84 0.54

MaskGIT VQGAN 227M 1500k 7.32 156.0 0.78 0.50

ELM-L BAE 2-8 312M 250k 4.82 246.87 0.81 0.59

To showcase the versatility of the elucidated model, we conducted experiments on higher-resolution
datasets. Specifically, we trained an ELM-L with a 2-8 tokenizer on 512x512 ImageNet. The model
was initialized with parameters from a version pretrained on 256x256 datasets and further trained
for only 50 epochs (250,000 training iterations with 256 batch size). The selected images and the
quantitative results presented in Table 3 demonstrate ELM’s potential on higher-resolution datasets.
This approach also offers a more applicable way to train image generation models for high reso-
lutions, as training directly on higher resolutions can be challenging and the data is often scarce.
However, with ELM models, we can start training on abundant data at lower resolutions, and the
model can be easily adapted to higher resolutions without any modifications.

A.1.3 PERFORMANCE ON DIFFERENT DATASETS

Figure 12: Generated human face images with 256×256.

braided bubbly chequered crystalline gauzy honey-combed interlaced waffledpleated zigzagged

Figure 13: Generated special texture images with 256×256.
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We conduct experiments on specialized datasets distinct from ImageNet to assess the robustness and
versatility of ELM models. Specifically, we select CelebA (Liu et al., 2015), which includes 202,599
human face images across 10,177 identities, and the Describable Texture Dataset (DTD) (Cimpoi
et al., 2014) that comprises 5,640 images across 47 different categories. We train an ELM-L model
with a 2-8 tokenizer on each dataset for 400 epochs using a batch size of 256. The qualitative results
(Figure 12 and 13) from these experiments demonstrate the high performance of our model across
diverse types of tasks.

A.2 INTRINSIC DIFFERENCE BETWEEN LANGUAGE AND IMAGES

We choose ImageNet from the image domain; OpenWebText and Shakespeare3 from the language.
The information of the tokenized dataset is shown in Table 4 and the KL-divergence between uni-
form distribution is shown in Table 1.

We can see that from Table 1, compared to text generation, image generation exhibits a higher
randomness. Note that although VQGAN-f16 generates tokens with a lower level of randomness,
the major reason is the low code utilization-only less than 10% code from the vocabulary is used,
and the generated image quality is not satisfying due to the extremely low token utilization.

Table 4: Vocabulary (Codebook) information of image and text.

ImageNet OpenWebText WallStreetJournal4

Tokenizer VQGAN-f16 BAE-f16 BPE BPE

Vocab size 16384 65536 47589 19979
Token num of train set 327M 327M 9B 38M
Token num of val set 12M 12M 4M 1.5M

A.3 COMPARISON BETWEEN BAE AND VQVAE

We trained BAE on the ImageNet dataset using the same model architecture and loss functions as
VQGAN from the taming transformers framework (Esser et al., 2021). For a fair comparison, we
evaluated the VQGAN-f16-16384 model5 that also trained on the ImageNet dataset, and assessed
its code utilization (see Figure 2. The results clearly demonstrate that BAE outperforms VQGAN,
achieving lower reconstruction FID (rFID) (Table 5) and generation FID (gFID) (Table 6) and
significantly higher code utilization (100% v.s. 8%).

Table 5: Reconstruction FID of the image tokenizers. All tokenizer are trained on the ImageNet.
* indicates the value is directly copy form https://github.com/CompVis/taming-transformers.

VQGAN-f16 BAE-f16

codebook size 1024 16384 216 220 224 232

rFID 10.54* 7.41* 3.32 2.24 1.77 1.68

A.4 ADDITIONAL EXPERIMENT RESULTS

Implementation Details For the BAE tokenizer, we followed the configuration in Wang et al.
(2023), utilizing Bernoulli sampling during quantization, and trained it for 400 epochs on the Im-
ageNet dataset. For the transformer model, we adopted the LLaMA-2 (Touvron et al., 2023b) ar-
chitecture, as referenced in Sun et al. (2024). The depth and feature dimensions of each model
size are detailed in Table 7. All language models were trained on 80GB A800 GPUs with a batch
size of 256, for 400 epochs, using a constant learning rate of 1e-4, weight decay of 0.05, and the

3Obtainted from https://github.com/karpathy/nanoGPT
4The information is obtained from Standford lecture note: https://web.stanford.edu/ jurafsky/slp3/3.pdf
5Downloaded from https://github.com/CompVis/taming-transformers
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Table 6: Generation FID of AR-L with different image tokenizers. AR model is trained on the
ImageNet for 1,000,000 iterations, 200 epochs. We generate 30,000 samples for each model. ‘cfg1-
3’ denotes classifier-free guidance (cfg) scale gradually increased to 3.0 following a linear schedule
across inference iteration. ‘cfg1.5’ denotes the cfg remains fixed at 1.5 during inference.

tokenizer code dim vocab. size & top-k cfg1-3 gFID cfg1.5 gFID rFID

VQGAN-f16 256 16,384 6.71 8.12 7.41

BAE-f16 16 65,536 2.78 3.87 3.32

AdamW optimizer with β1 0.9 and β2 0.95. The L and XL-sized models were trained on 8 A800
GPUs, requiring approximately 6.4 and 10 days, respectively, to complete 400 epochs. The XXL-
sized model, trained on 16 A800 GPUs (2 nodes with 8 GPUs each), took around 12 days to finish
training.

For the AR model, we implement mainly follow Sun et al. (2024), except for the 2B-sized model.
The MLM and AR models use the same model architecture. For the MLMs training strategy, we
mainly follow Chang et al. (2022). Specifically, at each training step, we sample a mask ratio for
each sample, mask tokens based on this ratio, and train the model to predict the masked tokens. The
mask ratio follows a cosine schedule across the generation iterations, meaning the process transitions
from less to more information. Early in training, most tokens are masked; as training progresses, the
mask ratio sharply decreases, revealing more tokens for the model to handle in later stages.

Table 7: Transformer model architecture information with different sizes.

Size depth dimension num of head

ELM-L 24 1024 16
ELM-XL 36 1280 20
ELM-XXL 48 1536 24
ELM-2B 48 1792 28

Table 8: The influence of Bernoulli sampling with BAE on FID (30k) of generation. We test on
AR-L model with BAE-f16 with D = 16, and the model is trained for 150 epochs.

cfg constant 2 linear1-3

w. Bernoulli 4.72 2.88
w.o. Bernoulli 5.05 3.13

Comparison of Tokenization w. and w.o Bernoulli Sampling When using BAE to tokenize im-
age feature codes into discrete tokens, the process can either be deterministic, by directly converting
values to 0 or 1 based on a threshold, or nondeterministic by incorporating Bernoulli sampling dur-
ing quantization. We compared both methods to assess their impact on the generation task. As
shown in Table 8, the nondeterministic approach clearly performs better. This result aligns with
the inherent randomness of image token distribution, as discussed in Section 3.1, and offers greater
tolerance for classification errors during next-token prediction.

Comparison Between AR Model and MLM Table 9 shows the detailed final result of the
different-sized AR models and MLMs using the basic BAE-f16 on the ImageNet 256×256 dataset.
Clearly, AR models always show better performance than MLMs.

Scaling Behavior of AR Models Figure 14 show the loss trends of all sized AR models (L, XL,
XXL and 2B) with 2-12 tokenizer. All models successfully converged, and the final loss consistently
decreased as model size increased.
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Table 9: Comparison of AR and MLM on ImageNet 256×256. The auto-encoder is BAE-f16 with
code dimension 16. The FID results are obtained on 30K generation images.

Size Method FID↓ sFID↓ IS↑ Precision↑ Recall↑

L MLM 3.67 5.34 272.23 0.8561 0.4597
AR 2.38 4.78 271.54 0.8201 0.5650

XL MLM 3.13 4.95 261.59 0.8159 0.5355
AR 2.14 4.92 289.33 0.8162 0.5834

XXL MLM 3.12 4.86 281.75 0.8393 0.4947
AR 2.10 4.89 301.22 0.8284 0.5839
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Figure 14: AR exhibits a good scaling law. Training losses of all AR models are with the BAE
2-12 tokenizer. All models were trained for 2,000,000 iterations, equivalent to 400 epochs, except
the 2B model, which had to be stopped earlier due to time constraints.

Comparison Between Code-decomposition Strategies Table 10 shows the detailed results of
AR models with different BAE tokenizers. The code decomposition strategy significantly influ-
ences the model parameter size and the generation performance. For the code decomposition strat-
egy, splitting a large vocabulary into two smaller sub-vocabularies yields optimal performance by
balancing vocabulary size with the number of classification heads. In general, larger code dimen-
sions improve generation performance by offering finer granularity, but they also introduce more
complex vocabularies, making it increasingly challenging for the model to predict the next token
accurately.
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(a) AR-XL with 2-8 and 3-8 tokenizer
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(b) AR-XXL with 3-8 and 4-8 tokenizer

Figure 15: Different vocabulary decomposition strategies vary a lot on the training losses.
Clearly, introducing more than two classification heads will increase the model’s training complexity
and learning effectiveness.

Comparison Between Sampling Strategies For MLMs, we conduct a search to find the optimal
CFG scale, iteration number, and temperature τ for the Gumbel noise (see Figure 6). For AR
models, we search for the best CFG scale and top-k threshold. During the search process, we
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Table 10: Comparisons of AR models on class-conditional ImageNet 256×256 benchmark.

Model Tokenizer Params. FID↓ sFID↓ IS↑ Precision↑ Recall↑

L

1-16 443M 2.38 4.78 271.54 0.8201 0.565
2-8 312M 2.34 4.86 281.29 0.8190 0.5573
2-10 316M 2.17 4.83 288.59 0.8168 0.5536
2-12 328M 2.34 5.12 316.08 0.8197 0.5487

XL

1-16 900M 2.14 4.92 289.33 0.8162 0.5834
2-8 737M 2.01 4.50 298.99 0.8069 0.5979
2-10 741M 1.73 4.50 332.38 0.8183 0.5823
2-12 757M 1.79 4.82 328.99 0.8027 0.5903
3-8 740M 1.99 5.29 329.66 0.8070 0.5906

XXL

1-16 1.56B 2.10 4.89 301.22 0.8284 0.5839
2-10 1.37B 1.65 4.33 328.08 0.8144 0.5933
2-12 1.39B 1.58 4.78 330.43 0.8034 0.6091
3-8 1.37B 1.67 4.99 325.06 0.8020 0.6054
4-8 1.37B 2.02 5.66 321.37 0.7913 0.602

2B 2-12 1.90B 1.54 4.81 332.69 0.8093 0.5968

calculate the FID score using only 30k samples for efficiency, noting that the FID values obtained in
this way are consistently higher than those calculated with 50k samples.

Classifier-free guidance (CFG) plays a crucial role in conditional image generation, but it involves
balancing the trade-off between image diversity and individual image quality. We searched for the
optimal CFG scale for all models. Additionally, we found that using a dynamic CFG schedule
significantly improves performance. We tested several CFG scheduling methods (see Figure 16),
with the results summarized in Table 11.

Table 11: Different CFG strategies varies a lot on FID. All results are based on AR-L with
tokenizer 2-10.

CFG-scale 1.5 2 2.5 cos1-4 log1-4 linear1-4 square1-4 r-square1-4

FID (30k) 2.98 3.35 3.58 2.86 2.70 2.48 4.94 3.57

Figure 16: Curves of CGF scale with respect to iteration times under different CFG schedules.

A.5 ELM IS FLEXIBLE TO GENERATE ANY-SIZE IMAGE

To further explore the capability of AR models in image generation, we generate images with more
than 16×16 tokens without modifying the model (Figure 18). Although the model’s receptive field
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Table 12: The influence of top-k in sampling process on 30k-FID scores for AR models with
decomposed vocabulary.

2-8 2-10 2-12

k 180 210 256 800 900 1024 2600 2800 3000

L 2.97 2.84 2.74 2.55 2.50 2.48 2.68 2.56 2.67

XL 2.46 2.36 2.40 2.13 2.11 2.03 2.11 2.10 2.11

XXL - - - 2.08 2.04 1.95 1.90 1.90 1.95
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Figure 17: The influence of iteration time (differnt mask ratio) in sampling process on FID
scores for MLMs.

Table 13: The best sampling strategy regards to FID score for all models.

Method Tokenizer Model Best Strategy

MLM 1-16 L linear CFG 1-3; τ=9.0, iteration number=10
1-16 XL & XXL linear CFG 1-3; τ=5.0, iteration number=10

AR

1-16 L& XL & XXL linear CFG 1-3; top-k=65536 (all)
2-8 L linear CFG 1-4; top-k=256 (all)
2-8 XL & XXL linear CFG 1-4; top-k=210
2-10 L linear CFG 1-4; top-k=1024 (all)
2-10 XL & XXL linear CFG 1-5; top-k=1024 (all)
2-12 L & XL & XXL linear CFG 1-5; top-k=2800
3-8 XL & XXL linear CFG 1-5; top-k=180
4-8 XXL linear CFG 1-5; top-k=180

is limited to 256 tokens, we can easily generate ‘streaming’ images by looking back at a few tokens.
This demonstrates the greater flexibility of AR models compared to diffusion models, highlighting
the potential of AR models for applications in other domains.

A.6 LIMITATION

Our work has limitations. While we propose several improvements for AR models, the fundamental
issue of optimizing highly random token distributions remains. Traditional next-token prediction
using classification loss may not be the most optimal training objective for such tasks, suggesting
that more suitable objectives should be explored in future research. For instance, MAR (Li et al.,
2024) has made promising progress by introducing diffusion loss into AR models, while VAR (Tian
et al., 2024) presents a valuable perspective by altering the image tokenization approach. We hope
our analysis will inspire further exploration and innovation in utilizing language models for vision
generation, as well as other modalities.
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Figure 18: AR models are flexible to generate images with any size based on previous context.

A.7 MORE GENERATED SAMPLES

We present more generated samples here to straightforwardly show the performance of our model.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 19: Randomly sampled images from classes 88 (macaw), 130 (flamingo), and 145 (king
penguin).
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Figure 20: Randomly sampled images from classes 258 (Samoyed), 248 (Husky), and 291 (lion).
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Figure 21: Randomly sampled images from classes 107 (jelly fish), 980 (volcano), and 511 (con-
vertible).
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