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Abstract

The exactly-k constraint is ubiquitous in machine learning and scientific applica-1

tions, such as ensuring that the sum of electric charges in a neutral atom is zero.2

However, enforcing such constraints in machine learning models while allowing3

differentiable learning is challenging. In this work, we aim to provide a “cookbook”4

for seamlessly incorporating exactly-k constraints into machine learning models5

by extending a recent gradient estimator from Bernoulli variables to Gaussian and6

Poisson variables, utilizing constraint probabilities. We show the effectiveness of7

our proposed gradient estimators in synthetic experiments, and further demonstrate8

the practical utility of our approach by training neural networks to predict partial9

charges for metal-organic frameworks, aiding virtual screening in chemistry. Our10

proposed method not only enhances the capability of learning models but also11

expands their applicability to a wider range of scientific domains where satisfaction12

of constraints is crucial.13

1 Introduction14

The exactkly-k constraint, that is, the sum of n variables is equal to k, is not only ubiquitous in15

machine learning such as learning sparse features [Chen et al., 2018] and discrete variational auto-16

encoders [Rolfe, 2016], but also critical to scientific applications such as charge-neutral scenarios in17

computational chemistry [Raza et al., 2020] and count-aware cell type deconvolution [Liu et al., 2023].18

In the former cases, the variables are binary while in the latter cases, the variables are continuous19

or integer, depending on the applications. Such tasks can involve optimizing the expectation of an20

objective function with respect to variables satisfying the exactkly-k constraint, whose distributions21

are parameterized by neural networks. This optimization problem is challenging since the expectation22

can be intractable and thus gradient estimation is required. Existing estimators include score-function-23

based ones that suffer from high variance and reparameterization-based ones that require relaxation24

and can be highly biased Xie and Ermon [2019]. A recently proposed gradient estimator [Ahmed25

et al., 2023] outperforms the aforementioned estimators by leveraging constraint probability and26

avoiding relaxations. Still, it is limited to the exactkly-k constraint on Bernoulli variables.27

In this work, we aim to carry out a systematic study of gradient estimation for exactkly-k constraints28

over Bernoulli, Gaussian, and Poisson variables, the three most commonly used distributions in29

modeling. We show that on the forward pass, the constrained distributions have closed-form rep-30

resentations, and thus exact sampling from the constrained distribution can be achieved. On the31

backward pass, we reparameterize the gradient of the loss function with respect to the samples as a32

function of the expected marginals of the constrained distributions. Further, we find that under certain33

loss functions, the expected loss under the constrained distribution has a closed-form solution. That34

is, in such cases, we are able to train models under the exactkly-k constraint without any gradient35
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Figure 1: Model formulation under an exactkly-k constraint.

estimations. We include synthetic experiments to evaluate the bias and variance of our proposed36

gradient estimation on Gaussian and Poisson variables. We also include an experiment on predicting37

partial charges for metal-organic frameworks, where our gradient estimation, when combined with an38

ensemble method, achieves state-of-the-art prediction performance.39

2 Problem Statement and Motivation40

We consider models described by the equations41

θ = hv(x), z ∼ pθ(z |
∑

i zi = k), ŷ = fu(z,x), (1)

where x ∈ X and ŷ ∈ Y denote feature inputs and target outputs, respectively, hv : X → Θ and42

fu : Z × X → Y are smooth, parameterized maps. θ are parameters inducing a distribution over43

the latent vector z and the induced distribution pθ(z) is defined as pθ(z) =
∏n

i=1 pθi(zi), with44

pθi(zi) as defined in Table 1, where N (z;µ, σ2) denotes the density of a Gaussian distribution with45

mean µ and variance σ2 at z. An exactkly-k constraint is enforced over the distribution pθ(z),46

inducing a conditional distribution pθ(z |
∑

i zi = k) := pθ(z) · J
∑

i zi = kK/pθ(
∑

i zi = k)47

VARIABLE PARAMETERIZED DISTRIBUTION

Bernoulli pθi(zi = 1) = sigmoid(θi)
pθi(zi = 0) = 1− sigmoid(θi)

Gaussian pθi(zi) = N (zi;µi, σ
2
i ) with θi = (µi, σi)

Poisson pθi(zi) = θzii e−θi/zi!

Table 1: Parameterization of the three distribution settings.

where the denominator denotes the48

constraint probability pθ(
∑

i zi = k).49

This formulation is general and it can50

subsume neural network models that in-51

tegrate the exactkly-k constraint in the52

input, output, or latent space, which we53

visualize in Figure 1.54

The training of such models is per-55

formed by optimizing an expected loss to learn parameters ω = (v,u) in Equation 1 as below,56

L(x,y;ω) = Ez∼pθ(z|
∑

i zi=k)[ℓ(fu(z,x),y)] with θ = hv(x), (2)

where ℓ : Y × Y → R+ is a point-wise loss function. However, the standard auto-differentiation can57

not be directly applied to the expected loss due to two main obstacles. First, for the gradient of L58

w.r.t. parameters u in the decoder network fu defined as59

∇uL(x,y;ω) = Ez∼pθ(z|
∑

i zi=k)[∂ufu(z,x)
⊤∇ŷℓ(ŷ,y)] (3)

with ŷ = fu(z,x) being decoding of a latent sample z, the expectation does not allow closed-60

form solution in general and requires Monte-Carlo estimations by sampling z from the constrained61

distribution pθ(z |
∑

i zi = k). The same issue arises in the gradient of L w.r.t. parameters v in the62

encoder network defined as63

∇vL(x,y;ω) = ∂vhv(x)
⊤∇θL(x,y;ω). (4)

The second obstacle lies in the computation of the gradient of L w.r.t. the encoder as in Equation 464

defined as ∇θL(x,y;ω) := ∇θEz∼pθ(z|
∑

i zi=k)[ℓ(fu(z,x), ŷ)] that requires to compute ∂θz,65

a derivative that is not well-defined and requires gradient estimation for updating θ. In a recent66

work [Ahmed et al., 2023], a gradient estimator called SIMPLE is proposed to tackle these two issues67

by exactly sampling from the constrained distribution and using marginals as a proxy to samples68

respectively, where SIMPLE is able to outperform both score-function-based gradient estimators and69

reparameterization-based ones. However, SIMPLE is limited to Bernoulli variables and whether the70

same gradient estimation can be extended to a larger distribution family remains underexplored.71
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3 Gradient Estimation for Exactly-k72

We tackle the gradient estimation for the exactkly-k constraints by solving the aforementioned two73

subproblems: (P1) how to sample exactly from the constrained distribution pθ(z |
∑

i zi = k) and74

(P2) how to estimate ∇θL(x,y;ω). By combining solutions to these two problems, we manage to75

train the constrained model in an end-to-end manner. Table 3 in the Appendix presents a summary of76

the key components in the proposed gradient estimation.77

3.1 Exact Sampling78

For both Gaussian and Poisson variables, we find that their constrained distributions conform to79

commonly seen closed-form distributions and thus allow efficient sampling by using built-in sampling80

algorithms in deep learning frameworks. We formally state our findings below.81

Proposition 1 (Gaussian Constrained Distribution). Given z = (z1, . . . , zn)
T with zi ∼ N (µi, σ

2
i ),82

the constrained distribution p(z |
∑n

j=1 zj = k) is equivalent to an n− 1 dimensional multivariate83

normal distribution with mean µ ∈ Rn−1 and covariance matrix Σ ∈ R(n−1)×(n−1) with their84

entries defined as below,85

µi =

n−1∑
j=1

(
1 [i = j]σ2

i −
σ2
i σ

2
j∑n

i=1 σ
2
i

)(
c+

µj

σ2
j

)
and Σi,j =

σ2
i −

(σ2
i )

2∑n
i=1 σ2

i
i = j

−σ2
i σ

2
j∑n

i=1 σ2
i

i ̸= j
.

Proposition 2 (Poisson Constrained Distribution). Given z = (z1, . . . , zn)
T with zi ∼ Poisson(θi),86

the constrained distribution p(z |
∑n

j=1 zn = k) is equivalent to a multinomial distribution with87

parameter k and probabilities θ1∑n
j=1 θj

, . . . , θn∑n
j=1 θj

.88

3.2 Conditional Marginals as Proxy89

For estimating gradient ∇θL(x,y;ω), we follow an approximation adopted by Ahmed et al. [2023],90

Niepert et al. [2021] where the main intuition is to use the conditional marginals µ := µ(θ) :=91

{pθ(zj |
∑

i zi = k)}nj=1 as a proxy for samples z, that is,92

∇θL(x,y;ω) ≈ ∂θµ(θ)∇zℓ(x,y;ω), (5)

where the sample z is reparameterized to be a function of the conditional marginals and is assumed93

to be ∂µz ≈ I. In the case of Gaussian and Poisson variables, the reparameterization is achieved94

by using the expected marginals conditioning on the exactkly-k constraint, that is, µ := µ(θ) with95

µj = Epθ(zj |
∑

i zi=k)[zj ] as a function of the parameters θ. For succinctness, we refer to µ as96

expected marginals. The remaining question is how to obtain the expected marginals µ. We find that97

the expected marginals in both cases have closed-form solutions.98

Proposition 3 (Gaussian Conditional Marginal). Given z = (z1, . . . , zn)
T with zi ∼ N (µi, σ

2
i ), the99

conditional marginal p(zi |
∑n

j=1 zj = k) follows a univariate Gaussian distribution with mean100

µ̃i = µi +
σ2
i∑n

j=1 σ2
j
(k −

∑n
j=1 µj) and variance σ̃2

i = σ2
i −

(σ2
i )

2∑n
j=1 σ2

j
, that is, µi = µ̃i.101

Proposition 4 (Poisson Conditional Marginal). Given z = (z1, . . . , zn)
T with zi ∼ Poisson(θi),102

the conditional marginal of p(zi |
∑n

j=1 zn = k) follows a binomial distribution with parameter k103

and probability θi∑n
j=1 θj

, with µi =
kθi∑n
j=1 θj

.104

3.3 Closed-form Expected Loss105

This section focuses on some special cases where the expected loss in Equation 2 has a closed-form106

solution and thus no gradient estimation is needed. We find that when the decoder fu is an identity107

function, that is, y = z, the expected loss defined over Gaussian variables has a closed-form solution108

when the element-wise loss is L1 loss or L2 loss. The same conclusion holds for Poisson variables109

with the element-wise loss being L2 loss. We refer the readers to Proposition 5 and Proposition 6110

respectively in Appendix for details.111
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(a) Bias in Gaussian (b) Variance in Gaussian (c) Bias in Poisson (d) Variance in Poisson

Figure 2: A comparison of our gradient estimation and random estimations on bias and variance.

4 Experiments112

We evaluate our proposed gradient estimation on both synthetic settings and a scientific application.113

Synthetic Experiments. We analyze our proposed gradient estimators for Gaussian and Poisson114

variables using three metrics, bias, variance, and averaged error, in synthetic settings where the115

ground truth gradients can be obtained by taking derivatives of the closed-form expected loss as116

stated in Section 3.3. The distance between the estimated and the ground truth gradient vectors is117

measured by the cousin distance defined as 1 - cosine similarity. We further compare with a random118

estimation as a baseline. Bias and variance results are presented in Figure 2 with additional details119

and results presented in Section C in the Appendix, where our proposed gradient estimator is able to120

achieve significantly lower bias, variances as well as averaged errors than the baseline, indicating its121

effectiveness.122

Partial Charge Predictions for Metal-Organic Frameworks. Metal-organic frameworks (MOFs)123

represent a class of materials with a wide range of applications in chemistry and materials science.124

Predicting properties of MOFs, such as partial charges on metal ions, is essential for understanding125

their reactivity and performance in chemical processes. However, it is challenging due to the complex126

interactions between metal ions and ligands and the requirement that the predictions need to satisfy127

the charge neutral constraint, that is, an exactly-zero constraint.128

METHOD MAD
(charge neutrality enforcement) mean (std)

Constant Prediction 0.324 (7e-3)
Element-mean (uniform) 0.154 (2e-3)
Element-mean (variance) 0.153 (2e-3)

MPNN (uniform) 0.026 (8e-4)
MPNN (variance, reproduced) 0.0251 (8e-4)

Closed-form (ours) 0.0251 (6e-4)
Closed-form + Ensemble (ours) 0.0235 (5e-4)

Table 2: Comparison on prediction performance.

We adopt the same model as in Raza et al. [2020]129

where the charges are assumed to be Gaussian130

variables and the element loss is L1 loss, and131

address this problem by training the model lever-132

aging our observation in Section 3.3 and using133

gradients of the expected loss. We further ob-134

serve that using an ensemble of such models135

gives predictions that also satisfy the charge-136

neutral constraint. The prediction performance137

of our two proposed approaches is presented in138

Table 2, compared with baseline approaches re-139

ported by Raza et al. [2020]. Results show that140

training using closed-form expected loss achieves the same performance as MPNN(variance) which141

is considered to be the strongest baseline approach, and when further combined with the ensemble142

method, our approach achieves significantly better predictions.143

5 Conclusion144

In this work, we provide an extensive study on differentiable learning under exactkly-k constraints145

given various distribution families. We further provide empirical studies of our proposed gradient146

estimation on both synthetic experiments and a scientific application.147
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VARIABLE SAMPLING EXPECTED MARGINALS EXPECTED LOSS

Bernoulli Proposition 2 Theorem 1 —in Ahmed et al. [2023] in Ahmed et al. [2023]
Gaussian Proposition 1 Proposition 3 Proposition 5
Poisson Proposition 2 Proposition 4 Proposition 6

Table 3: Summary of exact sampling, expected marginals, and closed-form expected loss.

A Related Work188

A substantial amount of research has been devoted to estimating gradients for categorical random189

variables. Maddison et al. [2016] Jang et al. [2016] proposed to refactor the non-differentiable190

sample from a categorical distribution with a differentiable sample from a novel Gumbel-Softmax191

distribution, which enables automatic differentiation. This paper investigates a more complex192

distribution, k-subset distribution. Gradient estimation under exactkly-k constraints has been widely193

studied. Existing methods either employ the score function and straight-through estimator or suggest194

custom relaxation [Kim et al., 2016, Chen et al., 2018, Grover et al., 2019, Xie and Ermon, 2019].195

Xie and Ermon [2019] extends the Gumbel-softmax technique to k-subsets, enabling backpropagation196

for k-subset sampling. However, this comes at the trade-off of introducing some bias in the learning197

process due to the use of relaxed samples. While score function estimators offer a seemingly simple198

solution, it is widely acknowledged that they are prone to exhibiting exceedingly high variance.199

A recently introduced gradient estimator known as SIMPLE [Ahmed et al., 2023] surpasses its200

predecessors but is constrained to Bernoulli random variables.201

Extensive research has been conducted on numerical sampling from multivariate normal distributions202

while adhering to various constraints. Altmann et al. [2014] reviewed classical Gibbs Sampling on203

a standard simplex (samples are positive and sum to one) and proposed using Hamiltonian Monte204

Carlo(HMC) methods. Efficient sampling method for multivariate normal distribution truncated by205

hyperplanes(Ax = b, where dim(x) = N and rank(A) = n < N ) were investigated by Maatouk206

et al. [2022] and Cong et al. [2017]. These studies focus on numerical simulations, whereas our207

approach aims to derive a closed-form solution for the multivariate normal distribution subject to the208

exactkly-k constraint.209

B Theoretical Results210

Proposition 5 (Closed-form Expected Loss under Gaussian). Let z = (z1, . . . , zn)
T , where zi ∼211

N (µi, σ
2
i ). Let b = (b1, b2, . . . , bn)

T be the ground truth vector subject to the equality constraint212 ∑n
j=1 bj = k. The L1 loss of z subject to the constraint

∑n
j=1 zj = k is given by213

L(θ) =

n∑
i=1

σ̃i

√
2

π
exp

(
− (µ̃i − bi)

2

2σ̃2
i

)
+ (µ̃i − bi) erf

(
µ̃i − bi√

2σ̃2
i

)
,

where µ̃i and σ̃2
i are the mean and variance of the conditional marginal of zi subject to the constraint.214

µ̃i = µi +
σ2
i∑n

j=1 σ2
j
(k −

∑n
j=1 µj) and σ̃2

i = σ2
i −

(σ2
i )

2∑n
j=1 σ2

j
. Further, the L2 loss of z subject to the215

constraint
∑n

j=1 zj = k is given by216

L(θ) =

n∑
i=1

(µi −
σ2
i

∑n
j=1 µj∑n

j=1 σ
2
j

)2

+ σ2
i −

(σ2
i )

2∑n
j=1 σ

2
j

− 2bi

(
µi −

σ2
i

∑n
j=1 µj∑n

j=1 σ
2
j

)
+ b2i

 .

Proposition 6 (Closed-form Expected Loss under Poisson). Let z = (z1, . . . , zn)
T , where zi ∼217

Poisson(θi). Let b = (b1, b2, . . . , bn)
T be the ground truth vector subject to the equality constraint218
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∑n
j=1 bj = k. The L2 loss of z subject to the constraint

∑n
j=1 zj = k is given by219

L(θ) =

n∑
i=1

k( θi∑n
j=1 θj

)(
1− θi∑n

j=1 θj

)
+ k2

(
θi∑n
j=1 θj

)2

− 2kbi

(
θi∑n
j=1 θj

)
+ b2i

 .

C Additional Experiment Results in Synthetic Settings220

We carried out a series of experiments to analyze the effectiveness of our gradient estimator from221

Gaussian and Poisson variables. Our focus lies on three pivotal metrics: bias, variance, and the average222

error. Since, we only care about the direction of the gradients, we employed the cosine distance,223

namely 1 - cosine similarity, to measure the deviation of our gradient estimators from the ground truth224

vector. The ground truth logits, n, are sampled from N (0, I) satisfying the constraint. We plotted the225

three metrics against the dimension of z, namely n, and graphed the standard deviations. For each n,226

we randomly generated 10 sets of parameters and calculated the metrics for each set. Then, we take227

average of these 10 repeats and computed their standard deviations. We compare our results with228

random guess. The randomly generated gradients are sampled from N (0, I).229

Gaussian We use the L1 loss function L(θ) = Ez∼pθ(z|
∑

i zi=0)[∥ z− b ∥1]. The constraint, k, is230

set to 0. We observe that the bias and average error remain relatively stable across various values of231

n, with biases hovering around 0.1 and average errors hovering around 0.3. The variance steadily232

decreases and converges to a relatively low value. Our estimator outperforms the baseline across all233

dimensions in all three metrics.

Figure 3: Synthetic Experiment with Gaussian Variables.

234

Poisson We use the L2 loss function L(θ) = Ez∼pθ(z|
∑

i zi=0)[∥ z− b ∥22]. The constraint is set to235

k = n. Since, the bias, variance, and average error for our estimators are very small, we opt to take236

their logarithms. In all dimensions and using all three metrics, our estimator surpasses the baseline.

Figure 4: Synthetic Experiment with Poisson Variables.

237
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D Additional Experimental Details for Partial Charge Predictions238

Model Architecture Our model architecture extends the Message Passing Neural Network (MPNN)239

Raza et al. [2020] framework and incorporates exact-k constraint for Gaussian variables, ensuring240

strict adherence to the critical constraint. The core innovation involves replacing the conventional241

L1 loss with the closed-form Gaussian loss function 5. This loss function penalizes deviations242

from the exact-k constraint while considering the probabilistic nature of Gaussian variables. This243

comprehensive approach not only enables our model to capture complex structural relationships in244

MOFs but also ensures accurate predictions of partial charges while respecting the crucial exact-k245

constraint, enhancing its applicability in a wide range of graph-based applications, including those246

pertaining to metal-organic frameworks.247

Additionally, we also devise an ensemble methodology to enhance the predictive performance and248

robustness of our exact-k constrained MPNN model. To achieve this, we adopt a systematic approach249

encompassing model variability, aggregation strategies and cross-validation. Two instances of the250

exact-k constrained MPNN model are trained with variations in initialization. We apply the averaging251

aggregation technique to combine the predictions from these models. Performance assessment252

is conducted through cross-validation techniques. The ensemble’s performance is evaluated on a253

separate test dataset to ascertain its generalization ability. This ensemble approach not only elevates254

predictive accuracy but also fortifies the model’s resilience, rendering it highly effective for complex255

tasks, including those pertaining to metal-organic frameworks.256

Training Here, we describe our training and evaluation process for the exact-k constrained MPNN.257

We conducted a random partitioning of the dataset containing 2266 charge-labeled MOFs, creating258

distinct training, validation, and test sets (70/10/20%). We use the training set for direct model259

parameter tuning, while the validation set aids in hyperparameter selection to prevent overfitting. The260

test set plays a crucial role in providing an unbiased assessment of the final model’s performance.261

Hyperparameter Tuning To optimize our model’s performance, we conduct a systematic hyperpa-262

rameter tuning process, sequentially optimizing six key hyperparameters: Learning rate, Batch size,263

Time steps, Embedding size, Hidden Feature size, and Patience Threshold. After thorough tuning, we264

set the hyperparameters to their optimal values: lr = 0.005, batch size = 64, time steps = 4, embedding265

size = 20, hidden feature size = 40, and patience threshold = 150, achieving peak model performance.266

E Proofs267

E.1 Proposition 1268

Proof. Let z = (z1, . . . , zn)
T , where zi ∼ N (µi, σ

2
i ). We attempt to compute a closed-form269

solution for the conditional distribution p
(
z |
∑n

j=1 zj = k
)

.270

p

z |
n∑

j=1

zj = k

 =
p
(
z ∩

∑n
j=1 zj = k

)
p
(∑n

j=1 zj = k
)

=
p (z) · [

∑n
j=1 zj = k]

p
(∑n

j=1 zj = k
)

where [
∑

zi = k] is an indicator function. Notice that the denominator p(
∑n

j=1 zj = k) is the271

probability distribution function of Y =
∑n

j=1 zj evaluated at k. Since Y is a linear combination of272

independent Gaussian random variables, Y ∼ N (
∑n

j=1 µj ,
∑n

j=1 σ
2
j ). Thus,273

p

 n∑
j=1

zj = k

 =
1√

2π
∑n

j=1 σ
2
j

exp

− 1

2
∑n

j=1 σ
2
j

k −
n∑

j=1

µj

2
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The joint distribution function p (z), the numerator, follows a multivariate normal distribution with274

mean µ = (µ1, µ2, . . . , µn)
T and variance Σ = diag

(
σ2
i

)
Thus, the conditional distribution can be275

rewritten as276

p

z |
n∑

j=1

zj = k

 =

∏n
i=1

1√
2πσ2

i

exp
[
− 1

2σ2
i
(zi − µi)

2
]

1√
2π

∑n
j=1 σ2

j

exp

[
− 1

2
∑n

j=1 σ2
j

(
k −

∑n
j=1 µj

)2] [ n∑
j=1

zj = k]

Let C =

(
1√

2π
∑n

j=1 σ2
j

exp

[
− 1

2
∑n

j=1 σ2
j

(
k −

∑n
j=1 µj

)2])−1

. We can express our result as277

p

z |
n∑

j=1

zj = k

 = C · [
n∑

j=1

zj = k] ·
n∏

i=1

1√
2πσ2

i

exp

[
− 1

2σ2
i

(zi − µi)
2

]
= C · f (z)

where f (z) is the joint p.d.f. of the multivariate normal distribution z To deal with the indicator278

function, let’s assume zn = k −
∑n−1

j=1 zj . Then, the joint p.d.f. of z becomes279

f (z) =
1√
2πσ2

n

exp

− 1

2σ2
n

(
k −

n−1∑
i=1

zi − µn

)2
 ·

n−1∏
i=1

1√
2πσ2

i

exp

[
− 1

2σ2
i

(zi − µi)
2

]

= (2π)−
n
2

(
n∏

i=1

σi

)−1

exp

−
(

k2−2k
∑n−1

i=1 zi−2kµn+(
∑n−1

i=1 zi)
2+2µn

∑n−1
i=1 zi+µ2

n

σ2
n

+
∑n−1

i=1
z2
i −2ziµi+µ2

i

σ2
i

)
2


Now, we only consider the terms in the exponential function without − 1

2 .280

n−1∑
i=1

z2i
σ2
i

+

n−1∑
i=1

(
− 2k

σ2
n

+
2µn

σ2
n

− 2µi

σ2
i

)
zi +

(
−2kµn

σ2
n

+
k2

σ2
n

+
µ2
n

σ2
n

+

n−1∑
i=1

µ2
i

σ2
i

)
+

(
∑n−1

i=1 zi)
2

σ2
n

Notice that (
∑n−1

i=1 zi)
2 =

∑n−1
i=1 z2i +

∑n−1
i=1

∑n−1
j=1,j ̸=i zizj . Then, our equation becomes281

n−1∑
i=1

z2i
σ2
i

+

n−1∑
i=1

(
− 2k

σ2
n

+
2µn

σ2
n

− 2µi

σ2
i

)
zi +

(
−2kµn

σ2
n

+
k2

σ2
n

+
µ2
n

σ2
n

+

n−1∑
i=1

µ2
i

σ2
i

)

+

∑n−1
i=1 z2i +

∑n−1
i=1

∑n−1
j=1,j ̸=i zizj

σ2
n

=

n−1∑
i=1

(
1

σ2
i

+
1

σ2
n

)
z2i +

n−1∑
i=1

(
− 2k

σ2
n

+
2µn

σ2
n

− 2µi

σ2
i

)
zi +

(
−2kµn

σ2
n

+
k2

σ2
n

+
µ2
n

σ2
n

+

n−1∑
i=1

µ2
i

σ2
i

)

+

∑n−1
i=1

∑n−1
j=1,j ̸=i zizj

σ2
n

=

n−1∑
i=1

[(
1

σ2
i

+
1

σ2
n

)
z2i +

∑n−1
j=1,j ̸=i zj

σ2
n

zi +

(
− 2k

σ2
n

+
2µn

σ2
n

− 2µi

σ2
i

)
zi

]

+

(
−2kµn

σ2
n

+
k2

σ2
n

+
µ2
n

σ2
n

+

n−1∑
i=1

µ2
i

σ2
i

)
Then, we consider an arbitrary n− 1 dimensional multivariate normal distribution with mean µ and282

variance Σ.It’s p.d.f. is given by283

(2π)
−n−1

2 detΣ
− 1

2 exp

(
−1

2
(z − µ)TΣ

−1
(z − µ)

)

9



We also only consider the terms in the exponential function without − 1
2 . Let µi denotes the i-th284

element of the mean µ and ai,j denotes the i,j-th element of the inverse of the variance and covariance285

matrix Σ
−1

.286

=zTΣ
−1

z − zTΣ
−1

µ− µTΣ
−1

z + µTΣ
−1

µ

=

n−1∑
i=1

zi

n−1∑
j=1

ai,jzj

−
n−1∑
i=1

zi

n−1∑
j=1

ai,jµj

−
n−1∑
i=1

µi

n−1∑
j=1

ai,jzj

+

n−1∑
i=1

µi

n−1∑
j=1

ai,jµj


After apply the identity

∑n−1
i=1 zi(

∑n−1
j=1 ai,jzj) =

∑n−1
i=1 ai,iz

2
i +

∑n−1
i=1

∑n−1
j=1,j ̸=i ai,jzizj , the287

equation becomes288

=

n−1∑
i=1

ai,iz
2
i +

n−1∑
i=1

n−1∑
j=1,j ̸=i

ai,jzizj −
n−1∑
i=1

zi(

n−1∑
j=1

ai,jµj)−
n−1∑
i=1

µi(

n−1∑
j=1

ai,jzj)

+

n−1∑
i=1

µi(

n−1∑
j=1

ai,jµj)

=

n−1∑
i=1

ai,iz2i + zi

n−1∑
j=1,j ̸=i

ai,jzj −

n−1∑
j=1

(ai,j + aj,i)µj

 zi

+

n−1∑
i=1

µi

n−1∑
j=1

ai,jµj

Now, we consider the terms in the exponent of this arbitrary n− 1 dimensional multivariate normal289

distribution and the n− 1 dimensional multivariate normal distribution we derived previously.290

n−1∑
i=1

[(
1

σ2
i

+
1

σ2
n

)
z2i +

∑n−1
j=1,j ̸=i zj

σ2
n

zi +

(
− 2k

σ2
n

+
2µn

σ2
n

− 2µi

σ2
i

)
zi

]
(6)

+

(
−2kµn

σ2
n

+
k2

σ2
n

+
µ2
n

σ2
n

+

n−1∑
i=1

µ2
i

σ2
i

)
291

n−1∑
i=1

ai,iz2i + zi

n−1∑
j=1,j ̸=i

ai,jzj −

n−1∑
j=1

(ai,j + aj,i)µj

 zi

+

n−1∑
i=1

µi

n−1∑
j=1

ai,jµj (7)

Equation (6) is the term in the exponent of an arbitrary n − 1 dimensional multivariate normal292

distribution, and Equation (7) is the term in the exponent of previously derived n− 1 dimensional293

multivariate normal distribution. We get the following three equations by comparing the first few294

terms.295

ai,i =

(
1

σ2
i

+
1

σ2
n

)
(8)

ai,j =
1

σ2
n

(9)

−
n−1∑
j=1

(ai,j + aj,i)µj =

(
− 2k

σ2
n

+
2µn

σ2
n

− 2µi

σ2
i

)
(10)

Equation (8) and (9) define the inverse of the variance and covariance matrix Σ
−1

. We attempt to296

compute Σ. Notice that Σ
−1

is equivalent to A +B, where A = diag( 1
σ2
i
) and every element in297

matrix B is 1
σ2
n

.298

A =



1
σ2
1

0 0 . . . 0

0 1
σ2
2

0 . . . 0

0 0 1
σ2
3

. . . 0

...
...

...
...

0 0 0 . . . 1
σ2
n−1

B =



1
σ2
n

1
σ2
n

1
σ2
n

. . . 1
σ2
n

1
σ2
n

1
σ2
n

1
σ2
n

. . . 1
σ2
n

1
σ2
n

1
σ2
n

1
σ2
n

. . . 1
σ2
n

...
...

...
...

1
σ2
n

1
σ2
n

1
σ2
n

. . . 1
σ2
n
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Consider the following Lemma Miller [1981]299

Lemma 1. Let G and H be arbitrary square matrices of the same dimension. If G and G+H are300

nonsigular and H has rank one, then301

(G+H)−1 = G−1 − 1

1 + g
G−1HG−1

where g = tr
(
HG−1

)
302

Since detA and det(A+B) are nonzero, we know that A and A+B are nonsigular. B is a rank 1303

matrix. By the above lemma, we have304

(A+B)−1 = A−1 − 1

1 + g
A−1BA−1

where g = tr
(
BA−1

)
This is equivalent to305

Σ = A−1 − 1

1 + tr(BA−1)
A−1BA−1

Equation (6) and (7) imply that Σ
−1

is a symmetric and positive definite matrix. Its inverse Σ is also306

a symmetric and positive definite matrix. We attempt to find an expression for each element of Σ.307

We first consider BA−1.308

BA−1 =



1
σ2
n

1
σ2
n

1
σ2
n

. . . 1
σ2
n

1
σ2
n

1
σ2
n

1
σ2
n

. . . 1
σ2
n

1
σ2
n

1
σ2
n

1
σ2
n

. . . 1
σ2
n

...
...

...
...

1
σ2
n

1
σ2
n

1
σ2
n

. . . 1
σ2
n




σ2
1 0 0 . . . 0
0 σ2

2 0 . . . 0
0 0 σ2

3 . . . 0
...

...
...

...
0 0 0 . . . σ2

n−1



=



σ2
1

σ2
n

σ2
2

σ2
n

σ2
3

σ2
n

. . .
σ2
n−1

σ2
n

σ2
1

σ2
n

σ2
2

σ2
n

σ2
3

σ2
n

. . .
σ2
n−1

σ2
n

σ2
1

σ2
n

σ2
2

σ2
n

σ2
3

σ2
n

. . .
σ2
n−1

σ2
n

...
...

...
...

σ2
1

σ2
n

σ2
2

σ2
n

σ2
3

σ2
n

. . .
σ2
n−1

σ2
n


Notice that tr(BA−1) =

∑n−1
i=1

σ2
i

σ2
n

, so 1 + tr(BA−1) =
∑n

i=1
σ2
i

σ2
n

. Then we compute A−1BA−1309

A−1BA−1 =


σ2
1 0 0 . . . 0
0 σ2

2 0 . . . 0
0 0 σ2

3 . . . 0
...

...
...

...
0 0 0 . . . σ2

n−1





σ2
1

σ2
n

σ2
2

σ2
n

σ2
3

σ2
n

. . .
σ2
n−1

σ2
n

σ2
1

σ2
n

σ2
2

σ2
n

σ2
3

σ2
n

. . .
σ2
n−1

σ2
n

σ2
1

σ2
n

σ2
2

σ2
n

σ2
3

σ2
n

. . .
σ2
n−1

σ2
n

...
...

...
...

σ2
1

σ2
n

σ2
2

σ2
n

σ2
3

σ2
n

. . .
σ2
n−1

σ2
n



=



(σ2
1)

2

σ2
n

σ2
2σ

2
1

σ2
n

σ2
3σ

2
1

σ2
n

. . .
σ2
n−1σ

2
1

σ2
n

σ2
1σ

2
2

σ2
n

(σ2
2)

2

σ2
n

σ2
3σ

2
2

σ2
n

. . .
σ2
n−1σ

2
2

σ2
n

σ2
1σ

2
3

σ2
n

σ2
2σ

2
3

σ2
n

(σ2
3)

2

σ2
n

. . .
σ2
n−1σ

2
3

σ2
n

...
...

...
...

σ2
1σ

2
n−1

σ2
n

σ2
2σ

2
n−1

σ2
n

σ2
3σ

2
n−1

σ2
n

. . .
(σ2

n−1)
2

σ2
n
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The variance and covariance matrix Σ becomes310


σ2
1 0 0 . . . 0
0 σ2

2 0 . . . 0
0 0 σ2

3 . . . 0
...

...
...

...
0 0 0 . . . σ2

n−1

− 1∑n
i=1 σ

2
i



(σ2
1)

2

σ2
n

σ2
2σ

2
1

σ2
n

σ2
3σ

2
1

σ2
n

. . .
σ2
n−1σ

2
1

σ2
n

σ2
1σ

2
2

σ2
n

(σ2
2)

2

σ2
n

σ2
3σ

2
2

σ2
n

. . .
σ2
n−1σ

2
2

σ2
n

σ2
1σ

2
3

σ2
n

σ2
2σ

2
3

σ2
n

(σ2
3)

2

σ2
n

. . .
σ2
n−1σ

2
3

σ2
n

...
...

...
...

σ2
1σ

2
n−1

σ2
n

σ2
2σ

2
n−1

σ2
n

σ2
3σ

2
n−1

σ2
n

. . .
(σ2

n−1)
2

σ2
n


Thus, we have the following result:311

Σi,j =

σ2
i −

(σ2
i )

2∑n
i=1 σ2

i
i = j

− σ2
i σ

2
j∑n

i=1 σ2
i

i ̸= j

Next, we derive an expression for µ. Since Σ
−1

is symmetric, Equation (10) can be transformed into312

−
n−1∑
j=1

2ai,juj =

(
− 2k

σ2
n

+
2µn

σ2
n

− 2µi

σ2
i

)
n−1∑
j=1

ai,juj =

(
k

σ2
n

+
µi

σ2
i

− µn

σ2
n

)
This is equivalent to313

Σ
−1

µ = c1+ µreduced ⊘ σreduced

where c = k−µn

σ2
n

, µreduced = (µ1, . . . , µn−1)
T , σreduced = (σ2

1 , . . . , σ
2
n−1)

T , and ⊘ denotes314

element-wise division of vectors. The mean µ is expressed as315

µ = Σ(c1+ µreduced ⊘ σreduced) (11)

We also attempt to find an element-wise expression for the mean µ Let’s define si.j = Σi,j . Then we316

have317

si,j = 1 [i = j]σ2
i −

σ2
i σ

2
j∑n

i=1 σ
2
i

From the equation for µ, we know that318

µi =

n−1∑
j=1

si,j(c+
µi

σ2
i

)

=

n−1∑
j=1

(
1 [i = j]σ2

i −
σ2
i σ

2
j∑n

i=1 σ
2
i

)(
c+

µj

σ2
j

)

Finally, we deal with the constant terms in the exponent.319

−2kµn

σ2
n

+
k2

σ2
n

+
µ2
n

σ2
n

+

n−1∑
i=1

µ2
i

σ2
i

(12)

n−1∑
i=1

µi

n−1∑
j=1

ai,jµj (13)

Equation (12) is the constant term in the exponential function in the probability distribution function320

derived by taking the cross section of our n dimensional multivariate normal distribution and a hyper-321

plane. Equation (13) is the constant term in the exponential function in the probability distribution322

12



function of an arbitrary n− 1 dimensional multivariate normal distribution. The scaling term from323

the exponential term is given by324

− 2kµn

σ2
n

+
k2

σ2
n

+
µ2
n

σ2
n

+

n−1∑
i=1

µ2
i

σ2
i

−
n−1∑
i=1

µi

n−1∑
j=1

ai,jµj

=
(µn − k)2

σ2
n

+ 1T (µreduced,squared ⊘ σreduced)− µTΣ
−1

µ

where µreduced,squared = (µ2
1, . . . , µ

2
n−1)

T . We define325

D = exp

[
−1

2

(
(µn − k)2

σ2
n

+ 1T (µreduced,squared ⊘ σreduced)− µTΣ
−1

µ

)]
This is our scaling term from the exponent. Finally, we consider the constant term in the front.326

(2π)−
n
2

(
n∏

i=1

σi

)−1

= (2π)−
1
2
(
∏n

i=1 σi)
−1

detΣ
− 1

2

· (2π)−
n−1
2 detΣ

− 1
2

(2π)−
n
2 (
∏n

i=1 σi)
−1 is the constant term of the multivariate normal truncated by the hyperplane, and327

(2π)−
n−1
2 detΣ

− 1
2 is the constant term of an arbitrary n− 1 dimensional multivariate normal. The328

scaling term is E = (2π)−
1
2
(
∏n

i=1 σi)
−1

detΣ
− 1

2
. Thus, our conditional distribution is a n− 1 dimensional329

multivariate normal distribution with p.d.f. given by330

p

z |
n∑

j=1

zj = k

 = C ·D · E · (2π)−
n−1
2 detΣ

− 1
2 exp

(
−1

2
(z− µ)TΣ

−1
(z− µ)

)

where z = (z1, . . . , zn−1)
T .331

E.2 Proposition 2332

Proof. Let z = (z1, . . . , zn)
T , where zi ∼ Poisson(θi). We attempt to compute a closed-form333

solution for the conditional probability p
(
z |
∑n

j=1 zj = k
)

.334

p

(z|
n∑

j=1

zj = k

 =
p (z ∩

∑
zi = k)

p
(∑n

j=1 zj = k
)

Let Y =
∑n

j=1 zj . The denominator is the p.d.f. of Y evaluated at k. Since Y is a linear combination335

of independent Poisson random variables, we know Y ∼ Poisson(
∑n

j=1 θj). Thus,336

p

 n∑
j=1

zj = k

 =
e−

∑n
j=1 θj

(∑n
j=1 θj

)k
k!

Next, let’s consider the numerator.337

p(z ∩
n∑

j=1

zj = k) =

{
p(z)

∑n
j=1 zj = k

0
∑n

j=1 zj ̸= k

13



where p(z) =
∏n

i=1 f(zi) =
∏n

i=1
e−θiθ

zi
i

zi!
. Thus, our conditional distribution is given by338

p(z|
n∑

j=1

zj = k) =


e
−

∑n
i=1 θi

∏n
i=1 θ

zi
i∏n

i=1
zi!

e
−

∑n
i=1

θi (
∑n

i=1
θi)

k

k!

∑n
j=1 zj = k

0
∑n

j=1 zj ̸= k

=

{
k!

∏n
i=1 θ

zi
i

(
∑n

i=1 θi)k
∏n

i=1 zi!

∑n
j=1 zj = k

0
∑n

j=1 zj ̸= k

=

{
1

(
∑n

i=1 θi)k
· k!∏n

i=1 zi!

∏n
i=1 θ

zi
i

∑n
j=1 zj = k

0
∑n

j=1 zj ̸= k

=

{
k!∏n

i=1 zi!

∏n
i=1

(
θi∑n

j=1 θj

)zi ∑n
j=1 zj = k

0
∑n

j=1 zj ̸= k

= f

(
z; k,

θ1∑n
j=1 θj

, . . . ,
θn∑n
j=1 θj

)

where f
(
z; k, θ1∑n

j=1 θj
, . . . , θn∑n

j=1 θj

)
is the probability mass function of a multinomial distribution339

with parameter k and θ1∑n
j=1 θj

, . . . , θn∑n
j=1 θj

.340

E.3 Proposition 3341

Proof. Let z = (z1, . . . , zn)
T , where zi ∼ N (µi, σ

2
i ). We attemp to compute a closed-form solution342

for the conditional marginal of zi, p(zi |
∑n

j=1 zj = k). We first derive the joint distribution of zi343

and
∑n

j=1 zj . Consider the following affine transformation344

Az =

(
0 . . . 1 . . . 0
1 . . . 1 . . . 1

)

z1
...
zi
...
zn

 =

(
zi∑n
j=1 zj

)

The first row of matrix A has 1 at i-th column and 0 everywhere, and the last row of matrix A has 1345

everywhere.346

Theorem 2. Let Y ∼ Nn(µ,Σ), and let A be an m × n matrix of rank m. Then, AY ∼347

Nm(Aµ,AΣAT ) Gut [2009]348

Since matrix A is full rank, by Theorem 2, (zi,
∑n

j=1 zj)
T follows a 2 dimensional multivariate349

normal distribution with mean and variance computed as follows.350

Aµ =

(
0 . . . 1 . . . 0
1 . . . 1 . . . 1

)

µ1

...
µi

...
µn

 =

(
µi∑n
j=1 µj

)

AΣAT =

(
σ2
i σ2

i

σ2
i

∑n
j=1 σ

2
j

)
Theorem 3. Suppose that Y, µ, and Σ are partitioned as Y =

(
Y1

Y2

)
,µ =

(
µ1

µ2

)
,Σ =351 (

Σ11 Σ12

Σ21 Σ22

)
, and Y ∼ N (µ,Σ). It can be shown that the conditional distribution of Y1 given Y2352

14



is also multivariate normal, Y1 | Y2 ∼ N(µ1|2,Σ1|2), where µ1|2 = µ1 +Σ12Σ22
−1(Y2 − µ2),353

and Σ1|2 = Σ11 −Σ12Σ22
−1Σ21 Holt and Nguyen [2023]354

We apply Theorem 3 to derive the conditional distribution. zi |
∑n

j=1 zj ∼ N (µ̃i, σ̃
2
i ), where the355

mean and variance are computed as follows:356

µ̃i = µi +
σ2
i∑n

j=1 σ
2
j

(k −
n∑

j=1

µj)

σ̃2
i = σ2

i − σ2
i

1∑n
j=1 σ

2
j

σ2
i = σ2

i −
(σ2

i )
2∑n

j=1 σ
2
j

357

E.4 Proposition 4358

Proof. Let z = (z1, . . . , zn)
T , where zi ∼ Poisson(θi). We attempt to compuate a closed-form359

solution for the conditional marginal p(zi |
∑n

j=1 zn = k).360

p

zi |
n∑

j=1

zj = k

 =
∑

· · ·
∑

(z1,...,zi−1,zi+1,...,zn);
∑n

j=1 zj=k
p(z |

∑
zi = k)

=
∑

· · ·
∑

(z1,...,zi−1,zi+1,...,zn);
∑n

j=1 zj=k
f

(
z; k,

θ1∑n
j=1 θj

, . . . ,
θn∑n
j=1 θj

)
Since the marginal of each variable of a multinomial distribution is a binomial distribution, then the361

conditional marginal is362

p

zi |
n∑

j=1

zj = k

 =

(
k

zi

)(
θi∑n
j=1 θj

)zi (
1− θi∑n

j=1 θj

)n−zi

This is the probability mass function of a binomial distribution with parameter k and probability363
θi∑n

j=1 θj
.364

E.5 Proposition 5365

Proof. Let z = (z1, . . . , zn)
T , where zi ∼ N (µi, σ

2
i ). Let b = (b1, b2, . . . , bn)

T be the ground366

truth logits subject to the equality constraint
∑n

j=1 bj = k. We attempt to derive a closed-form367

solution for the L1 loss of z subject to the constraint
∑n

j=1 zj = k.368

L(θ) = Ez∼pθ(z|
∑

i zi=0)[∥ z− b ∥1]

=

n∑
i=1

Ez∼pθ(z|
∑

i zi=0)[∥ zi − bi ∥1]

From previous derivation, we know that the conditional distribution of zi subject to the equality369

constraint is an univariate normal distribution wit mean µ̃i = µi +
σ2
i∑n

j=1 σ2
j
(k −

∑n
j=1 µj) and370

variance σ̃2
i = σ2

i − (σ2
i )

2∑n
j=1 σ2

j
. Let’s define yi = zi − bi. Then, yi ∼ N

(
µ̃i − bi, σ̃2

i

)
. Thus,371

Ez∼pθ(z|
∑

i zi=0)[| yi |] is the mean of a folded normal distribution.372

n∑
i=1

Ez∼pθ(z|
∑

i zi=0)[| yi |] =
n∑

i=1

σyi

√
2

π
exp

(
−µ2

yi

2σ2
yi

)
+ µyi

erf

 µyi√
2σ2

yi


=

n∑
i=1

σi

√
2

π
exp

(
− (µi − bi)

2

2σ2
i

)
+ (µi − bi) erf

µi − bi√
2σ2

i
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We also attempt to derive a closed-form solution for the L2 loss of z subject to the constraint373 ∑n
j=1 zj = k.374

L(θ) = Ez∼pθ(z|
∑

i zi=0)[∥ z− b ∥22]

=

n∑
i=1

Ez∼pθ(z|
∑

i zi=0)[z
2
i ]− 2

n∑
i=1

Ez∼pθ(z|
∑

i zi=0)[zibi] +

n∑
i=1

Ez∼pθ(z|
∑

i zi=0)[b
2
i ]

Since we assume zi and bi are independent, and b is the constant ground truth vector.375

L(θ) =

n∑
i=1

Ez∼pθ(z|
∑

i zi=0)[z
2
i ]− 2

n∑
i=1

biEz∼pθ(z|
∑

i zi=0)[zi] +

n∑
i=1

b2i

=

n∑
i=1

Ezi∼pθ(zi|
∑

i zi=0)[z
2
i ]− 2

n∑
i=1

biEzi∼pθ(zi|
∑

i zi=0)[zi] +

n∑
i=1

b2i

From previous derivation, we know that the conditional distribution of zi is p
(
zi |

∑n
j=1 zj = k

)
=376

f
(
zi; µ̃i = µi +

σ2
i∑n

j=1 σ2
j
(k −

∑n
j=1 µj), σ̃

2
i = σ2

i −
(σ2

i )
2∑n

j=1 σ2
j

)
. The expectation in the first term is377

the second moment of this gaussian distribution.378

n∑
i=1

Ezi∼p(zi|
∑

i zi=0)[z
2
i ] =

n∑
i=1

(µi −
σ2
i

∑n
j=1 µj∑n

j=1 σ
2
j

)2

+ σ2
i −

(σ2
i )

2∑n
j=1 σ

2
j


Likewise, the expectation in the second term is the mean of this gassuain distribution.379

n∑
i=1

biEzi∼pθ(zi|
∑

i zi)
=

n∑
i=1

bi

(
µi −

σ2
i

∑n
j=1 µj∑n

j=1 σ
2
j

)
380

E.6 Proposition 6381

Proof. Let z = (z1, . . . , zn)
T , where zi ∼ Poisson(θi). Let b = (b1, b2, . . . , bn)

T be the ground382

truth vector subject to the equality constraint
∑n

j=1 bj = k. We attempt to derive a closed-form383

solution for the L2 loss of z subject to the constraint
∑n

j=1 zj = k.384

L(θ) = Ez∼pθ(z|
∑

i zi=0)[∥ z− b ∥22]

=

n∑
i=1

Ezi∼pθ(zi|
∑

j zj=0)[z
2
i ]− 2

n∑
i=1

biEzi∼pθ(zi|
∑

j zj=0)[zi] +

n∑
i=1

b2i

Since the conditional marginal distribution is a binomial distribution, it’s second moment is given by385

n∑
i=1

Ezi∼pθ(zi|
∑

j zj=0)[z
2
i ] =

n∑
i=1

k( θi∑n
j=1 θj

)(
1− θi∑n

j=1 θj

)
+ k2

(
θi∑n
j=1 θj

)2


It’s first moment(mean) is given by386

−2

n∑
i=1

biEzi∼pθ(zi|
∑

j zj=0)[zi] = −2k

n∑
i=1

bi

(
θi∑n
j=1 θj

)
Thus, we have387

n∑
i=1

Ezi∼pθ(zi|
∑

j zj=0)[z
2
i ] =

n∑
i=1

k( θi∑n
j=1 θj

)(
1− θi∑n

j=1 θj

)
+ k2

(
θi∑n
j=1 θj

)2


−2k

n∑
i=1

bi

(
θi∑n
j=1 θj

)
+

n∑
i=1

b2i

388
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