Revisiting Depth Representations for Feed-Forward 3D Gaussian Splatting
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DepthSplat + PM-Loss

PM-Loss improves feed-forward 3DGS by using a pointmap prior to correct geometric artifacts common in depth-based

approaches. Methods like DepthSplat [39] rely on unprojected depth to form 3D Gaussians. However, the inherent discontinuities of depth
near boundaries often propagate into distorted 3D point clouds (top left) and degraded rendering (bottom left). Our PM-Loss effectively
addresses this, achieving higher-quality geometry (top right) and rendering (bottom right).

Abstract

Depth maps are widely used in feed-forward 3D Gaus-
sian Splatting (3DGS) pipelines by unprojecting them into
3D point clouds for novel view synthesis. This approach of-
fers advantages such as efficient training, the use of known
camera poses, and accurate geometry estimation. However,
depth discontinuities, which are particularly problematic at
the boundaries of the reconstructed geometry, often lead
to fragmented or sparse point clouds, degrading render-
ing quality—a well-known limitation of depth-based rep-
resentations. To tackle this issue, we introduce PM-Loss,
a novel regularization loss based on a pointmap predicted
by a pre-trained transformer. Although the pointmap it-
self may be less accurate than the depth map, it provides
a powerful prior for geometric coherence and structural
completeness, especially at the very edges where depth pre-
diction falters. With the improved depth map, our method
significantly improves the feed-forward 3DGS across var-
ious architectures and scenes, delivering consistently bet-
ter rendering results. Project page: https://aim-—
uofa.github.io/PMLoss

1. Introduction

Novel view synthesis (NVS) is a long-standing topic in
computer vision and graphics, recently drawing increas-
ing attention due to advances in neural rendering, partic-
ularly 3D Gaussian Splatting (3DGS) [16]. While NVS
models take 2D images as inputs and outputs, their pri-
mary goal is to recover the underlying 3D scene structure.
Hence, coherent and accurate geometry is essential for gen-
erating high-quality novel views. This has led to a series
of research efforts aimed at enhancing visual quality by
learning more precise and consistent geometric representa-
tions [10, 13, 19, 38, 46].

Although 3DGS models have ultra-fast rendering speed,
reconstructing them for unseen scenes requires a time-
consuming per-scene optimization process, limiting their
usability in real-world applications. This challenge has led
to the development of feed-forward 3DGS methods [3, 5],
the main focus of our work. Unlike per-scene tuning meth-
ods that improve visual quality by learning better geometry,
feed-forward 3DGS models typically fall short in geometric
quality, despite significant progress aimed at enhancing ap-
pearance [27, 36, 39, 47, 49, 53]. The core issue lies in the
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representation used by feed-forward methods, which rely on
depth maps. Most feed-forward models predict depth maps
and then unproject them to form 3D Gaussians. Since depth
maps often contain discontinuities, which are especially
pronounced near boundaries [2, 22, 26], directly unproject-
ing them transfers these artifacts to the 3D representation.
This results in degraded geometry quality because neural
networks often fail to predict sharp depth steps, instead pro-
ducing erroneous values at these boundaries. When unpro-
jected, these inaccurate predictions manifest as fragmented
floaters located incorrectly in space or as sparse gaps along
reconstructed edges.

Recently, 3D reconstruction has been dominated by a
new line of research that adopts a representation known
as the pointmap [34]. Unlike depth maps, which repre-
sent a scalar value d € R! in camera space, pointmaps
encode a set of 3D points p € R? in world space, allow-
ing for more structurally coherent and complete modeling
of geometry. In addition, pointmaps simplify the traditional
multi-view stereo (MVS) [12, 43] process by reformulat-
ing it as a direct regression task through a neural network.
These advantageous properties have contributed to the suc-
cess of many recent feed-forward approaches to 3D recon-
struction [28, 30, 31, 33, 40, 48].

The success of pointmaps in accurate and regression-
based 3D reconstruction motivates us to introduce them as
a strong prior to reduce artifacts in depth map based feed-
forward 3DGS. This is not straightforward, as pointmaps
implicitly encode coarse camera poses [34], while feed-
forward 3DGS performs best with explicitly provided ac-
curate poses [3, 5, 53], making it challenging to lever-
age the geometry prior effectively. Existing methods that
adopt pointmap priors in feed-forward 3DGS often assume
a pose-free setting [25, 44]. While this avoids the pose issue
by ignoring it, novel view evaluation either relies on testing
with a specific dataset already used by the pointmap model
(e.g., ScanNet [45] in Splatt3R [25]) or requires slow test
time pose alignment (e.g., NoPoSplat [44]), both of which
hinder real-world usability. Although one might inject cam-
era poses into pointmap-based feed-forward models using,
for example, Pliicker ray embeddings, this approach is sub-
optimal as it requires expensive retraining to realign the
pose distribution implicitly embedded in pointmaps and
does not enhance the quality of scene details.

We propose a novel method to transfer the geometry
prior from pointmap regression models to feed-forward
3DGS by formulating it as a simple yet effective training
loss. Unlike prior methods [25, 44] that attach an addi-
tional “Gaussian head” to the pointmap backbone, introduc-
ing the pose dilemma and requiring customization for each
specific model, our approach is plug-and-play and avoids
pose issues entirely. In particular, our PM-Loss guides the
learning of point clouds unprojected from predicted depth

by taking the global pointmap predicted by a large-scale 3D
reconstruction model, e.g., Fast3R [40], VGGT [31], as a
pseudo-ground truth. This guidance requires that the source
and target points are in the same space and that efficient
measurements are available. For the former, we find that
the Umeyama algorithm can efficiently align the two point
clouds (see Tab. 5), leveraging the one-to-one correspon-
dence between depth maps and pointmaps. For the latter,
the Chamfer loss is used to directly regularize them in 3D
space, leading to significantly better geometry quality than
those applied in 2D space (see Tab. 4). By distilling the ge-
ometry prior embedded in the pointmap predicted by a pre-
trained 3D reconstruction model, our method mitigates dis-
continuities caused by unprojected depth and significantly
boosts the quality of predicted 3D point clouds and rendered
novel views for feed-forward 3DGS models—see Fig. 1.

To verify the effectiveness of our PM-Loss, we apply it to
train two representative feed-forward 3DGS models, MVS-
plat [5] and DepthSplat [39], on two large-scale bench-
marks, RealEstate10K [51] and DL3DV [18]. Experiments
demonstrate that our PM-Loss improves both the quality of
the 3D Gaussians and the rendered novel views across all
reported metrics. Extensive ablation studies and analysis
further validate architectural design choices, as well as ef-
ficient memory and runtime usage of our PM-Loss. Given
its plug-and-play, efficient, and effective nature, we believe
that PM-Loss will play an important role in training feed-
forward 3DGS in the future. Our contributions are three-
fold:

* We pinpoint an unexposed yet critical issue that leads
to lower-quality 3D Gaussians predicted by feed-forward
3DGS models, rooted in the long-standing discontinuity
issue of depth.

* We introduce a novel training loss, PM-Loss, designed
to improve 3D Gaussian quality by leveraging the geom-
etry prior from pointmaps obtained from pre-trained 3D
reconstruction models.

» Extensive experiments on existing feed-forward 3DGS
models across two large-scale datasets demonstrate the
effectiveness of our PM-Loss in enhancing the quality of
both 3D Gaussians and rendered novel views.

2. Related Work

3D Gaussian Splatting. Novel view synthesis (NVS) tech-
niques have evolved significantly, transitioning from tradi-
tional image-based methods [4, 24] to modern neural ren-
dering approaches [16, 20]. Early neural methods, such
as NeRF [20], represent scenes implicitly. While they can
achieve high-fidelity results, they are typically hampered by
slow rendering speeds and the requirement for dense in-
put views. More recently, explicit representations like 3D
Gaussian Splatting (3DGS) [16] and its subsequent vari-
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Figure 2. Overview of PM-Loss. The process begins by estimating a dense pointmap of the scene using a pre-trained model. This
estimated pointmap then serves as direct 3D supervision for training a feed-forward 3D Gaussian Splatting model. Crucially, unlike
conventional methods relying predominantly on 2D supervision, our approach leverages explicit 3D geometric cues, leading to enhanced

3D shape fidelity.

ants [10, 13, 19, 38, 46] have emerged, offering significantly
faster rendering speeds due to their rasterization-friendly
nature.

Several recent works have explored leveraging geometric
priors to optimize the 3D Gaussian representation. Specif-
ically, some methods [8, 52] incorporate depth information
as a prior for optimizing the geometry of the Gaussians.
However, a common limitation of these approaches is their
reliance on monocular depth estimation models [41, 42].
Such monocular priors, especially when estimated inde-
pendently per-image, often suffer from inconsistencies and
multi-view misalignment, hindering geometric accuracy.
Our approach mitigates this multi-view inconsistency by
leveraging supervision from a multi-view consistent 3D
point prior derived from pretrained models.

Feed-Forward 3D Gaussian Splatting. Moving beyond
per-scene optimization, pixelSplat [3] presented a pioneer-
ing feed-forward approach for 3DGS, predicting Gaus-
sian parameters directly from two input views with help
of epipolar transformers. Subsequently, MVSplat [5] im-
proved the efficiency of feed-forward 3DGS by propos-
ing a cost-volume based feature fusion method, enhanc-
ing its practicality. DepthSplat [39] further explored in-
corporating depth priors [41, 42] into the feed-forward
3DGS framework, aiming to improve the geometric ac-
curacy of the predictions. Similar to the previous meth-
ods [6, 8, 11, 15, 21, 35-37, 52], these feed-forward meth-
ods are often challenged by the difficulty in ensuring ac-
curate multi-view consistency during feature processing or
prior fusion, leading to geometric inaccuracies in the gener-
ated 3D Gaussian representation.

3D Reconstruction Using Pointmap. Recent advance-

ments in 3D pointmap reconstruction methods [17, 28,
30-32, 34, 50] that produce highly accurate 3D point
clouds have gained significant attention. Representative
works in this area include DUSt3R [34], which utilizes a
large Transformer-based model for robust multi-view fea-
ture fusion to generate dense 3D points. Building upon
DUSt3R [34], MV-DUST3R [28] further extends its capa-
bility to handle an arbitrary number of input views by facil-
itating information exchange across them, typically consid-
ering one as a reference view. Fast3R [40] focuses on highly
efficient reconstruction, demonstrating the ability to process
over 1000 images in a single forward pass. VGGT [31]
infers key 3D attributes of a scene by combining features
from models like DINO and DPT. While these methods ex-
cel in geometric reconstruction accuracy, they are typically
not designed for direct novel view synthesis and often incur
significant training costs. Our method, PM-Loss, aims to
bridge the gap by combining the strengths of efficient feed-
forward 3DGS networks and the accurate geometric priors
provided by point-map-based large models, resulting in im-
proved geometric quality for feed-forward NVS.

3. Methodology

Our goal is to train a neural network that directly predicts
a 3D Gaussian Splatting (3DGS) model from one or more
input images for novel view synthesis, eliminating the need
for per-scene optimization. To enhance the quality of the
predicted 3D Gaussians, we introduce a novel PointMap
Loss (PM-Loss) that regularizes the predicted 3D structure.
PM-Loss leverages pointmaps—structured 2D-to-3D repre-
sentations regressed from input images using a pretrained
Vision Transformer [9]—to provide image-aligned supervi-
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Figure 3. Qualitative comparisons on DL3DV(top two rows) and RealEstatel0K(bottom two rows). Adding PM-Loss leads to
significant improvements in rendering quality at boundaries. Note the mitigation of blurry artifacts(row 1,3) and black regions(row 2,4) in

the rendered views.

sion for geometry learning. We begin by introducing the
necessary preliminaries, followed by a detailed description
of our PM-Loss design.

3.1. Preliminary

Feed-Forward 3D Gaussian Splatting. The method aims
to reconstruct a set of 3D Gaussians directly from one or
several input images in a single forward pass. The general
architecture involves an encoder-decoder structure. First, an
encoder network processes the input image(s) I to extract
high-level features F':

F = Encoder(T) (1)

These features F' are then typically fused with camera
pose information P, and potentially other supplementary
information S, through a fusion module, Fuse(:). A sub-
sequent Gaussian head network, Ghpeaa(+), then predicts the
parameters for a collection of N 3D Gaussians. These pa-
rameters include the mean (center) u € R3, covariance

¥ € R3*3 (often represented by scale and rotation), opac-
ity a € R, and color ¢ € R3 (or spherical harmonic coeffi-
cients) for each Gaussian:

({,Ufi, Eia Qg ci}ij\i1) = Ghead(Fuse(Fa -Pca.rm Saux)) (2)

In typical feed-forward 3DGS pipelines, the Gaussian
means (; are derived by unprojecting predicted depth maps.
Specifically, for each pixel (u,v) in an input image, a depth
value d is predicted. This depth, along with the camera in-
trinsic matrix K and camera-to-world transformation ma-
trix Ty = [Rext|text]» is used to compute the 3D position of
the corresponding Gaussian center fi,,:

u

Peam (1, ) = d(u,v) - K~ [ v 3)
1

Huv = Rext : pcam(uy U) + text 4

While this approach is efficient, it often suffers from
geometric inaccuracies due to the discontinuities of pre-



dicted depth. These discontinuities, when unprojected, lead
to fragmented or misplaced Gaussians, thereby degrading
the geometric quality of the 3D scene representation and
subsequently impacting the novel view synthesis quality.
For instance, fragmented floaters create blurry artifacts,
and sparse geometry results in black regions or incomplete
structures in the rendered image—see Fig. 3.
Pointmap Regression. A pointmap is a structured 3D rep-
resentation in which each pixel (u, v) of an input 2D image
I is associated with a 3D point p/,, € R3 in world coor-
dinates. Unlike depth maps, which provide only per-pixel
Z-values, pointmaps directly represent full 3D coordinates
(XYZ). They are typically regressed from images in a feed-
forward manner using pretrained deep neural networks, of-
ten based on Vision Transformer (ViT) [9] architectures.
Let Rym denote such a pointmap regression model. For
each of the njy,g input images I; (with resolution H x W)
and its camera pose Fram,j, Rpm outputs a set of 3D points:

{pgﬁu,v eR’ | (u U €l } Rpm( cam]) ®)

These per-image pointmaps are aggregated to form the
global reference point cloud Xpy = {p} € R3 N“’“‘ I
where Ny ps = Nimg X H X W. This provides a dense
3D geometric prior that is leveraged in our PM-Loss.

3.2. PM-Loss

Existing methods like DepthSplat [39] use 2D-supervised
depth priors to improve geometry, but this may not ensure
3D consistency. Instead, we advocate for directly regu-
larizing geometry learning in 3D space. Given a batch of
Nimg input images of resolution H x W, our feed-forward
3DGS model predicts a set of Gaussian centers, X3pgs.
For supervision, we use a reference point cloud, Xpy, de-
rived from a pretrained pointmap regression model that pro-
vides a 3D point for each pixel. Both point clouds contain
Niotalpts = Mimg X H x W points and are formally defined
as:

Xspas = {ur, € R Nm“] s Xy = {p), € R? Nwm "
(6)
The two point clouds, X3pgs and Xpy, share a natural one-
to-one correspondence since each point pair (g, pj,) origi-
nates from the same source pixel. While the absolute accu-
racy of Xpy might be less than that achievable via finely-
tuned depth map unprojection in well-textured regions, the
pointmaps tend to exhibit better geometric coherence and
structural completeness, especially at the boundaries of the
reconstructed geometry. We leverage this prior as a form
of 3D supervision to guide the feed-forward 3DGS model
toward learning more coherent and consistent geometry.

Efficient Point Cloud Alignment. Although both the pre-
dicted Gaussian centers Xspgs and the reference pointmap

Xpm are in world coordinates, they are often misaligned in
scale, rotation, and translation. This misalignment, stem-
ming from pose errors or the pointmap model’s implicit co-
ordinate system, can create misleading gradients if uncor-
rected. Therefore, accurate alignment is crucial for effective
supervision.

While traditional methods like Iterative Closest Point
(ICP) [I] are too slow for training with dense point
clouds(see Tab. 6), our key insight is that both X3pgs and
Xpwm share a one-to-one correspondence with the input im-
age pixels. This natural pixel-wise correspondence enables
the use of the highly efficient Umeyama algorithm [29] to
find the optimal similarity transformation (scale, rotation,
and translation) in a closed form.

Given the corresponding source points Xpy =

{pk}Nw“I _pts and target pOintS X3DGS {,LL }Nmml pls’
Umeyama algorithm finds the optimal similarity transfor-

mation (s*, R*,t*) that minimizes their mean squared er-
Ior:
1 Nmtul,pts
(s*, R*,t*) = argmin—— E |sRp), +t — x|
s,R,t total_pts 1

(N
We then apply this estimated transformation to the source
pointmap Xpy to obtain the aligned pointmap X}, =
{s*R*p), + t* kNi‘il’”“. This alignment ensures our super-
vision loss is computed in a consistent coordinate frame.

Single-Directional Chamfer Loss. Given the aligned point
clouds X3pgs and X}y, we define the PM-Loss Lpy as a
single-directional Chamfer distance from Xspgs to Xfy.
This formulation ensures that, for each point in Xspgs, we
can efficiently identify its nearest neighbor in X}, to pro-
vide reliable geometric supervision.

Formally, the loss is defined as:

- e =213
min
> o Pz

N,
total_pts 1€ XanGs
(®)

This formulation effectively acts as a regularisation term,
penalizing deviations of the predicted Gaussian centers
from the geometry prior suggested by the pointmap. We
adopt a simple mean squared error (MSE) averaged over all
3D Gaussian centers, which promotes stable training and
ensures smooth gradient propagation.

Lem(Xapcs, Xpy) =

A key insight of our proposed PM-Loss is to re-compute
the nearest neighbor in 3D space for supervision, rather
than directly relying on the natural one-to-one pixel corre-
spondence, which degenerates to a depth loss. This design
makes the supervision more robust to pose misalignments
and prediction noise. We conduct ablation studies and re-
port the quantitative results in Tab. 4.
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Figure 4. Qualitative comparison of unprojected 3D Gaussians on DL3DV dataset. Our method effectively regularizes the 3D Gaus-
sians, significantly reducing floating artifacts and noise that arise from inaccurate depth predictions.
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Figure 5. Qualitative comparison of unprojected 3D Gaussians on the DTU benchmark.

Table 1. Quantitative results in the boundary-aware setting.
Both MVSplat [5] and DepthSplat [39] show better rendering qual-
ity with the addition of PM-Loss.

Method DL3DV [18] RealEstatel10K [51]
PSNRT SSIM?T LPIPS| PSNRT SSIM?T LPIPS|
DepthSplat 18.46 0.689 0.261 2043  0.788 0.218
DepthSplat+PM  20.77 0.705  0.245 2248 0814 0.194
MYVSplat 1679 0.592 0.322 19.52  0.757 0.231

MYVSplat+PM 19.25  0.615 0.291 22.18 0.787 0.199

4. Experiments
4.1. Experimental Settings

Datasets. We evaluated our method using three datasets:
DL3DV, RealEstatel0K, and DTU. DL3DV [18] is a

DepthSplat + PM-Loss

challenging large-scale collection comprising 10,510 real-
world scenes. Following [39], we used the DL3DV-
Benchmark (140 scenes) for Novel View Synthesis (NVS)
testing and the remaining DL3DV scenes for training.
RealEstate 10K [51], comprising camera trajectories from
80,000 YouTube video clips (10M frames), is split into
67,477 training and 7,289 testing scenes. We used its test
split for NVS evaluation, excluding scenes with too few
views. DTU [14] features 128 scenes from controlled lab
environments with ground truth models from a structured
light scanner and corresponding depth maps. We assessed
Gaussian splat geometric quality on 16 of these scenes, fol-
lowing [7] and [43].

Baselines. To evaluate our proposed method, we apply
it to two representative feed-forward 3D Gaussian Splat-
ting (3DGS) models: MVSplat [5] and DepthSplat [39].
Our experiments compare the performance of models fine-



Table 2. Quantitative comparison on DTU with varying in-
put numbers. Adding PM-Loss consistently improves geometry
across different numbers of input views.

Input Method Accl Comp/ Overall|
Mean Med. Mean Med. Mean Med.

DepthSplat 0.264 0.200 0.101 0.051 0.182 0.125
DepthSplat+PM  0.232  0.166 0.099 0.045 0.165 0.106

DepthSplat 0.169 0.117 0.066 0.022 0.123 0.051
DepthSplat+PM  0.156 0.076 0.069 0.022 0.113 0.049

DepthSplat 0.162 0.070 0.048 0.017 0.105 0.044
DepthSplat+PM  0.150 0.068 0.053 0.016 0.102 0.042

2-view

4-view

6-view

tuned with PM-Loss against that of the same models fine-
tuned with their original training objectives, ensuring both
are evaluated in a fine-tuned state. For a fair comparison
under otherwise identical conditions, both sets of models
started from public pre-trained weights and were subse-
quently fine-tuned on the DL3DV dataset using the same
batch size and total number of training iterations.

Metrics. For Novel View Synthesis (NVS) evaluation, we
designed a boundary-aware setting to assess the geomet-
ric quality improvement. Specifically, target views were
selected to lie adjacent to the spatial region of the con-
text views. This approach intentionally frames the scene to
make its geometric boundaries visible, thereby evaluating
the quality of the reconstruction’s periphery. Tab. | presents
the results for this boundary-aware evaluation. In addition
to NVS, to quantitatively assess the geometric quality of
the generated 3D Gaussians, we treat the centers (i) of all
3D Gaussians as a point cloud and compare this represen-
tation against the ground truth (GT) point clouds provided
by DTU. We use three standard point cloud metrics: Accu-
racy (Acc), Completeness (Comp), and the Overall Cham-
fer Distance (Overall), all where lower values indicate better
performance. For each of these metrics, we report both the
Mean and Median (Med.) values, see in Tab. 2.

Implementation Details. Our method was implemented
in PyTorch. The Chamfer distance computation within our
PM-Loss utilizes the implementation from PyTorch3D [23].
All experiments were conducted on a single NVIDIA A100
GPU. We used the AdamW optimizer, fine-tuning each
model variant (i.e., original base models and PM-Loss en-
hanced models) for 100, 000 iterations with a learning rate
of 2 x 10~*. For the pointmap supervision component
of PM-Loss, we adopted VGGT [31] to generate pseudo
ground truth, specifically using its publicly available 1B
parameter model. The weighting coefficient for PM-Loss,
Apn, was set to 0.005. Training and testing resolutions
adhered to the original configurations of the base models:
256 x 448 for DepthSplat and 256 x 256 for MV Splat. Fur-
ther training details are provided in the Appendix.

Table 3. Ablation on pointmap supervision based on Depth-
Splat. Note that w/o pointmap refers to the baseline DepthSplat
model. While better pointmap models yield better results, the im-
provement of adding PM-Loss is consistent.

DL3DV [18] RealEstatel10K [51]
PSNR1 SSIMft LPIPS| PSNRf SSIMfT LPIPS|

w/o pointmap 18.46 0.689 0.261 2043 0.788 0.218
Fast3R [40] 20.51  0.690 0.257 2243 0812  0.197
VGGT [31] 20.77 0.705 0.245 2248 0.814 0.194

Pointmap

Table 4. Comparison of different distance measurements. Our
3D nearest-neighbor” Chamfer loss outperforms the 2D “one-to-
one” depth loss, highlighting the benefits of 3D regularization.

Overall|
Mean Med. Mean Med. Mean Med.

Measurement Accl Comp]

2D depth loss
3D chamfer loss

0.254 0.179 0.096 0.048 0.175 0.114
0.232 0.166 0.099 0.045 0.165 0.106

4.2. Main Results

In this section, we present detailed experimental results and
analysis to verify the assumptions and effectiveness of our
PM-Loss, covering rendered view quality, 3D point cloud
quality, alternative design choices, memory and time effi-
ciency of each component.

Visual Quality Improvement. By regularizing the pre-
dicted point clouds, our PM-Loss improves 3D Gaussian
quality and, in turn, novel view rendering. Tab. 1 shows
our PM-Loss boosts baseline performance on two large-
scale datasets by over 2 dB in PSNR. We hypothesize that
this improvement stems from the enhanced geometric co-
herence our method provides. Our PM-Loss is particularly
effective in addressing the errors that arise from predicted
depth discontinuities. These are most severe in challeng-
ing areas—for example, where a foreground element meets
a distant background, or at the periphery of the captured
views. As supported by the qualitative results in Fig. 3,
the baseline’s failure to handle these discontinuities leads
to two types of rendering flaws: misplaced Gaussians that
create blurry artifacts within the image, and sparse geome-
try at the scene’s edge that results in black regions.

Point Cloud Quality Improvement. We qualitatively com-
pare point cloud quality on DL3DV in Fig. 4, where our
PM-Loss produces cleaner point cloud than DepthSplat, re-
ducing noisy artifacts. For quantitative analysis on scenes
with ground truth point clouds, we evaluate on the DTU
benchmark. As shown in Tab. 2 and Fig. 5, our PM-Loss
improves accuracy, completeness, and overall scores, con-
firming our qualitative findings. These improvements are



Table 5. Timing breakdown of PM-Loss. Our PM-Loss is effi-
cient, with a total time of 65.0 ms for a typical operation.

Component Time (ms)

Alignment (Umeyama) 0.9
Chamfer Distance 64.1

Total 65.0

Table 6. Computation time comparison of alignment methods.
Our alignment method (Umeyama) is significantly more efficient
than the commonly used ICP method.

Method Time (ms)

Umeyama 0.9
ICP 238.3

consistent across varying numbers of input views (2 to 6),
demonstrating our method’s robustness.

4.3. Ablation Studies and Analysis

Impact of Varying Pointmaps. To assess how pointmap
quality affects our PM-Loss, we compared our default
pointmap source, VGGT, with another state-of-the-art
model, Fast3R. As shown in Tab. 3, using Fast3R’s
pointmaps yields slightly lower performance than VGGT
but still significantly outperforms the baseline. This con-
firms that while our PM-Loss benefits from higher-quality
pointmaps, it is not tied to a specific generator architecture.
We also note that VGGT’s performance gain over Fast3R
is larger on the more complex DL3DV dataset. We also
observe a larger gain from VGGT over Fast3R on DL3DV
(+0.2dB PSNR) than on RE10K (+0.05dB PSNR), indicat-
ing that our PM-Loss is particularly effective in more com-
plex real-world scenarios.

Impact of Varying Distance Measurement. As discussed
in Sec. 3.2, PM-Loss is designed to regularize geometry in
3D space to avoid strict pixel-alignment. To validate this,
we compare our method against a “2D depth loss” base-
line in Tab. 4. Specifically, this baseline computes the Lo
distance between the predicted point cloud X3pgs and the
aligned reference pointmap X5, by strictly enforcing their
inherent one-to-one pixel correspondence. The results show
that our 3D nearest-neighbor Chamfer loss consistently out-
performs this 2D alternative on point cloud metrics. We at-
tribute this to the fact that the nearest-neighbor search in
world space provides more robust supervision against slight
pose misalignments compared to rigid pixel-aligned corre-
spondence.

Efficiency and Cost Analysis. The main computational
overhead of our PM-Loss comes from point cloud align-
ment and Chamfer loss calculation. Pointmap generation

Table 7. Memory usage of PM-Loss. We report our max
GPU memory usage during training depthsplat with VGGT-1B
pointmap model.

Method Max VRAM (GB)
DepthSplat 51.79
DepthSplat+PM 52.75

itself (e.g., 0.3s/scene for VGGT) is an offline preprocess-
ing step and does not add to the training time. As shown in
Tab. 5, our PM-Loss’s online components add only a minor
overhead of 65ms for a large volume of over 450k 3D Gaus-
sians(4 views with 256 x 448 resolution and pixel-aligned
prediction). This efficiency is partly due to the point-to-
point correspondence between the pointmap and the depth-
unprojected point clouds, which allows fast alignment us-
ing Umeyama [29]. In contrast, a method like ICP [1]
would take 250ms for the same number of 3D Gaussians
(see Tab. 6), highlighting the benefit of our choice of using
pointmap as geometry prior.

Regarding memory, we evaluate the VRAM usage when
pointmap generation is handled as an offline preprocessing
step. As shown in Tab. 7, our PM-Loss introduces only a
minor VRAM increase of 0.96GB during training. Such
a modest memory footprint is entirely acceptable and con-
firms the efficiency of our approach. Furthermore, our PM-
Loss is a training-time-only regularization and does not in-
troduce any additional cost during testing.

5. Conclusion

We present PM-Loss, a simple yet effective training loss
that leverages geometry priors from pointmaps to improve
feed-forward 3DGS. By regularizing in 3D space using
global pointmaps as pseudo ground truth, PM-Loss alle-
viates depth-induced discontinuities near boundaries, lead-
ing to significantly improved geometry and rendering qual-
ity. Our PM-Loss can be seamlessly integrated into exist-
ing training pipelines and introduces no inference overhead.
We believe PM-Loss offers a practical solution for training
more robust and accurate feed-forward 3DGS models. Ulti-
mately, our work validates that bridging NVS and 3D recon-
struction through direct, aligned geometric supervision of-
fers a highly efficient path to quality improvement, surpass-
ing the limitations of purely image-based learning without
requiring complex architectural changes.

Limitation. The effectiveness of our PM-Loss is bounded
by the quality of the pre-trained pointmap model, as errors
in the pointmap may propagate into the feed-forward 3DGS
model through our loss. Leveraging stronger pointmap
models from future 3D reconstruction advances is a promis-
ing direction.
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