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Abstract— Recognizing the category and its ingredient compo-
sition from food images facilitates automatic nutrition estimation,
which is crucial to various health relevant applications, such as
nutrition intake management and healthy diet recommendation.
Since food is composed of ingredients, discovering ingredient-
relevant visual regions can help identify its corresponding
category and ingredients. Furthermore, various ingredient rela-
tionships like co-occurrence and exclusion are also critical for this
task. For that, we propose an ingredient-oriented multi-task food
category-ingredient joint learning framework for simultaneous
food recognition and ingredient prediction. This framework
mainly involves learning an ingredient dictionary for ingredient-
relevant visual region discovery and building an ingredient-
based semantic-visual graph for ingredient relationship modeling.
To obtain ingredient-relevant visual regions, we build an ingre-
dient dictionary to capture multiple ingredient regions and
obtain the corresponding assignment map, and then pool the
region features belonging to the same ingredient to identify
the ingredients more accurately and meanwhile improve the
classification performance. For ingredient-relationship modeling,
we utilize the visual ingredient representations as nodes and the
semantic similarity between ingredient embeddings as edges to
construct an ingredient graph, and then learn their relationships
via the graph convolutional network to make label embeddings
and visual features interact with each other to improve the per-
formance. Finally, fused features from both ingredient-oriented
region features and ingredient-relationship features are used
in the following multi-task category-ingredient joint learning.
Extensive evaluation on three popular benchmark datasets (ETH
Food-101, Vireo Food-172 and ISIA Food-200) demonstrates the
effectiveness of our method. Further visualization of ingredient
assignment maps and attention maps also shows the superiority
of our method.

Index Terms— Image classification, object recognition, deep
learning.
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I. INTRODUCTION

FOOD image analysis has captured numerous attention [1],
[2] in the image processing community for supporting

many food-relevant applications [3], e.g., nutrition estima-
tion [4], food choice [5], food diary [6], health-aware recom-
mendation [7], [8] and self-service restaurants [9]. Single-label
food category recognition and multi-label ingredient prediction
are two basic tasks in food image analysis. Therefore, the
research on food category recognition and ingredient predic-
tion has great application potentials.

Food recognition can be seen as one fine-grained recog-
nition task, and thus it is important to find the subtle
discriminative regions, mainly ingredient regions. Therefore,
mining ingredient regions is of great significance for food
image analysis. Moreover, multi-label ingredient prediction
is generally a harder problem than food recognition. The
visual patterns of ingredients change greatly and they are often
mixed with each other. Besides, mutual relationships among
them highlight their challenges. To fully utilize ingredient
information for food recognition and ingredient prediction,
there exists three factors for consideration:

1) A dish contains various ingredients, and these ingre-
dients appear in various scales and positions. Specifically,
the size, shape, and color of an ingredient can exhibit large
visual differences because of diverse ways of cooking and
cutting, in addition to changes in viewpoints and lighting
conditions. As shown in Fig. 1, all these food contain several
different ingredients, and some food like “Shrimp and grits”
and “Lobster bisque” have more than ten ingredients. For
the ingredient “egg” in “Beef tartare”, “Eggs benedict” and
“Lobster bisque”, there exist large visual differences among
them, and its visual pattern changes greatly, which increases
the difficulty for extracting ingredient-relevant region features.
Therefore, we need to extract various and comprehensive
ingredient region features. Moreover, not all the ingredients
of a certain food will appear in all the corresponding images,
and usually we can only see part of them. Therefore, we should
explore some novel regularizations for discovering ingredient
regions. In this way, the feature expression ability of the
network for ingredients can be further improved.

2) The complicated ingredient composition in the same
food category makes food category and ingredient predic-
tion more challenging. Most dishes are often composed of
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Fig. 1. Some samples from the experimental datasets, where food category
and the ingredients are listed. The detailed ingredient regions of Beef tartare
are also marked.

a variety of ingredients being fuzzily mixed, rather than
separated clearly or non-overlapping food items. Moreover,
some groups of ingredients co-occur more often, and some
ingredients are exclusive. For example, “butter” and “milk”
always appear together, like “beignets”, “bread pudding”,
“carrot cake”, “clam chowder”, and “waffles”. This motivates
us to exploit the mutual relationships among ingredients for
better performance.

3) To increase the robustness of recognition, multi-task
learning is often employed for the classification of food
categories and ingredients [2], [10]–[12]. This is because
multi-task learning can leverage food-related information as
supplementary supervised information. For example, ingre-
dient prediction can help to obtain the detailed ingredient
composition of the food category, which can further promote
the performance of food category recognition [12]. Meanwhile,
food category recognition can guide the network to predict
the corresponding ingredient composition. Therefore, multi-
task learning can help exploit the mutual relationship between
the food category and ingredients, and we need to optimize
the loss function of these two tasks simultaneously to achieve
joint learning.

Taking these factors into consideration, we propose a multi-
task learning framework for simultaneous food category and
ingredient prediction. This framework mainly consists of two
components, namely ingredient-oriented visual region dis-
covery and graph relationship modeling. For the ingredient-
relevant region discovery, we propose to group the feature
map into different ingredient regions and build the cor-
responding ingredient dictionary to discover regions. Then
we can obtain the ingredient assignment map, and further
utilize the attention mechanism to enhance these ingredi-
ent region features. During the ingredient region discovery,
we utilize a regularization term of ingredient occurrence
to facilitate ingredient-relevant region discovery, where we
enforce the prior U-shaped distribution for the occurrence of

each ingredient. Once we can find the corresponding ingredi-
ent regions, the ingredient composition of this food thus can
be obtained, and we will further update the value vectors of
the ingredient dictionary iteratively. For ingredient relationship
modeling, we construct an ingredient-oriented semantic-visual
graph to explore complex ingredient relationships, where we
use the visual representation of ingredients as nodes and
semantic similarity between ingredient word embeddings as
edges. Then we utilize a graph convolutional network to
fuse semantic and visual features simultaneously for better
representations learning, resulting in better performance for
food category and ingredient prediction.

To evaluate our method, we conduct extensive experiments
on three popular food datasets. On western food dataset ETH
Food-101 [13], Chinese food dataset Vireo Food-172 [10]
and mixed food dataset ISIA Food-200 [14], our method all
achieves the performance gain. Moreover, the visualization
of ingredient assignment and attention maps demonstrates
the superiority of our method, and the detailed ingredient
regions prove that our method can discover various meaningful
regions. The comparison of the feature map visualization
shows that our method can discover multiple and expanded
ingredient regions by ingredient relationship modeling.

The contributions of our paper can be summarized as
follows:

• We propose a multi-task learning framework for
simultaneous food category and ingredient prediction,
where we learn an ingredient dictionary for ingredient-
relevant region discovery and build an ingredient-oriented
semantic-visual graph convolutional network for ingredi-
ent relationship learning.

• Our proposed method consists of two branches. The first
branch learns an ingredient dictionary and leverages the
U-shaped prior of ingredient occurrences to facilitate
ingredient-relevant region discovery. The second branch
builds an ingredient-oriented semantic-visual graph, and
then uses the graph convolutional network to make label
embeddings and visual features interact with each other
for ingredient relationship learning.

• We conduct extensive evaluation on three benchmark
datasets to verify the effectiveness of our method. Further
visualization of assignment maps and attention maps
demonstrates the advantage of our method.

II. RELATED WORK

A. Food Recognition

In the earlier years, the mainstream recognition methods
utilized hand-crafted features [13], [15], such as SIFT and
HOG. For instance, Lukas et al. [13] adopted random forests
to mine discriminative patches of food images as visual
representation for food recognition. In the deep learning era,
because of its powerful capacity of feature representation,
more and more works resort to different deep networks
for food recognition [16]–[18]. For example, Qiu et al. [19]
proposed a PAR-Net to mine discriminative food regions
for accurate food recognition. Min et al. [20] proposed a
stacked global-local attention network to jointly learn global
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and local features for food recognition. Due to few samples
for some food categories, Zhao et al. [21] exploited a fusion
learning framework to unify many-shot and few-shot ways for
food recognition. In order to further improve the recognition
performance, context information and external knowledge,
such as ingredients, cuisine and location [10], [14], [22] are
leveraged. For example, Zhou and Lin [22] made full use of
the relationships among ingredients and restaurant information
via the bi-partite graph for food recognition. Min et al. [14]
utilized ingredients as the additional supervised signal to
localize multiple informative regions and fused these regional
features as the final representation for recognition.

Similar to [14], we also utilize ingredient information for
food recognition. Different from these works [14], which
sequentially localizes multiple informative image regions from
category level to ingredient level guidance, we not only mine
various ingredient-relevant regions, but also utilize the ingredi-
ent embeddings and visual features to model the complicated
ingredient relationships via the graph convolutional network
for better food classification and ingredient prediction.

B. Ingredient Prediction

Compared with food category recognition, ingredient pre-
diction is much more challenging as ingredients are small
in size and exhibit larger variance in the appearance.
Bolanos et al. [23] explored the problem of ingredient pre-
diction from a multi-label perspective and solved it by Con-
volutional Neural Network (CNN). In [24], the multimodal
deep Boltzmann machine is applied for ingredient recognition.
Liu et al. [12] proposed an attention fusion network and food-
ingredient joint learning module for fine-grained food and
ingredient recognition. Recently, Chen et al. [5], [10] focused
on zero-shot ingredient identification by building a multi-
relational knowledge graph to model ingredient relationships.
Their recent work [5] built a multi-relational Graph Con-
volutional Network (GCN) to integrate ingredient hierarchy,
attribute and co-occurrence for zero-shot ingredient recogni-
tion. Different from it, we target the problem of ingredient
recognition with sufficient training samples, and evaluate the
proposed method using standard multi-label image classi-
fication metrics. Moreover, we build an ingredient-oriented
semantic-visual GCN to model the complicated ingredient
relationships for ingredient prediction. We also propose to
localize and fuse the detailed ingredient-relevant visual regions
for better prediction performance.

Chen et al. [2] provides an insightful analysis of three com-
pelling issues in ingredient recognition, including learning in
either single or multi-task manner. Our method is different
from it in the following two aspects: (1) Motivation. The
paper [2] aims to solve the problem of limited datasets avail-
able with ingredient labels, and it proposes Vireo Food-251
and an insightful analysis of three compelling issues for ingre-
dient recognition. In contrast, our proposed method is designed
for simultaneous food category recognition and ingredient pre-
diction. (2) Methodology. The paper [2] presents two methods
for ingredient recognition. The first method utilizes the global
image features for ingredient recognition, and the second one

predicts ingredient labels at local image regions. Different
from it, our method proposes to discover and extract ingredient
region features and model their relationships, where we learn
an ingredient dictionary for ingredient-relevant visual region
discovery and build an ingredient-based semantic-visual graph
for ingredient relationship modeling.

C. Multi-Task Food Attribute Learning

Multi-task learning [25] simultaneously solves multiple
tasks at once for enhancing performance and improving
generalization. This strategy has been widely used in food
analysis [10], [26], [27]. For example, Zhang et al. [11]
incorporated the cooking attribute recognition into multi-
task learning. Ege et al. [26] has proved that simultaneously
learning food categories, ingredients and calories can boost
the performance of all tasks than single-task. Min et al. [24]
proposed a multimodal multi-task deep belief network to learn
joint image-ingredient representation regularized by different
attributes. Recently, Liang et al. [27] proposed a novel multi-
view attention network within the multi-task learning frame-
work to incorporate multiple semantic features into the food
recognition task for both ingredient recognition and recipe
modeling.

Our method also utilizes a joint learning framework
for simultaneous food category and ingredient prediction
like [12], [27]. However, their methods ignore the relationships
among ingredients, which has been utilized by introducing
an ingredient-oriented semantic-visual graph for modeling
their relationships in our method. Moreover, we also propose
to discover various ingredient-relevant region features, and
introduce one U-shaped prior of ingredient occurrence that
facilitates ingredient discovery during learning.

III. OUR METHOD

As shown in Fig. 2, in this section, we introduce
the proposed ingredient-oriented multi-task food-ingredient
joint learning framework, which mainly consists of two
components, namely Ingredient-oriented Visual Region Dis-
covery (IVRD) and Ingredient-oriented Graph Relationship
Learning (IGRL). In IVRD, when one food image is fed into
the proposed network, we first extract the feature map from
the last convolution layer and learn a dictionary of ingredient
regions by grouping 2D feature maps into detailed ingredient
regions. During this process, we also apply one U-shaped
prior for the occurrence of ingredients to facilitate ingredient
discovery during learning. Thereafter, we pool these ingredient
features, followed by an attention mechanism to select a subset
of ingredient regions for classification. In IGRL, we construct
an ingredient-oriented semantic-visual graph to explore the
relationships of various ingredients, where we utilize all the
visual ingredient representations as nodes and the similarity
between all ingredient semantic embeddings as edges. Then
we introduce a graph convolutional network to learn various
relations among ingredients. Finally, for the output of two
branches IVRD and IGRL, we fuse them together and feed
it to the classifiers, and optimize the model in a multi-task
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Fig. 2. The framework of the proposed method.

learning way for simultaneous food category and ingredient
prediction.

A. Ingredient-Oriented Visual Region Discovery

Most foods have multiple ingredients, and the ingredi-
ents in most food images have various scales and views.
It is difficult to assign these visual regions into different
ingredients. To solve it, we propose to extract region-based
ingredient features. Specifically, we design one ingredient
dictionary D = [d1, d2, . . . , dk, . . . , dK ] for each category,
where each vector dk denotes the unique ingredient concept
from the corresponding food category, and K is the total
number of ingredients of this category. We build D according
to the statistics of the ingredients and initialize it randomly.
Then we take the feature map X ∈ RC×H×W from the last
convolution layer and the ingredient dictionary D together to
learn their detailed region features, where C , H and W are
the channel number, height, and width of the feature map.
In details, we compare the feature map X and the ingredient
dictionary D to generate a soft ingredient assignment map
S = [sk

i j ] ∈ RK×H×W , where sk
i j means the probability of

feature vector xi j in X being assigned to the kth ingredient
dk . Besides, we employ the U-shaped distribution as prior to
control the ingredient occurrence probability, which can help
to better discover various ingredient regions during ingredient
assignment. Thereafter, we pool X to obtain the ingredient
region features M ∈ RC×K based on S and D. Then we utilize
M to update the value vectors of D iteratively for generating
more precise assignment maps. Finally, we re-weight these
region features by a region attention α.

1) Ingredient Region Assignment: For better discovering
various ingredient regions in the food images, we utilize a
similar projection unit [28] for ingredient assignment. For a
feature vector xi j ∈ RC at position (i, j) on X , we can obtain

its corresponding value sk
i j in the assignment matrix S, where

k indexes the ingredient. sk
i j is calculated as:

sk
i j = ex p(− ‖ (xi j − dk)/βk ‖2

2 /2)∑
k ex p(− ‖ (xi j − dk)/βk ‖2

2 /2)
(1)

where βk ∈ (0, 1) is a learnable factor for dk . Then we
can assemble all the sk

i j ∈ RK to generate the ingredient
assignment S. Because of the softmax normalization, sk

i j > 0
and

∑
k sk

i j = 1.
2) Ingredient Occurrence Regularization: During ingredient

region assignment, in order to better discover various and com-
prehensive ingredient regions in images, we enforce a prior
U-shaped distribution for the occurrence of each ingredient dk

in a set of image features X1:N to regularize the learning.
Specifically, after obtaining the ingredient assignment S,

we need to detect the occurrence of each ingredient dk .
We utilize a Gaussian kernel and a max-pooling operation
as ingredient detectors tk = maxi j � ∗ Sk , where � is a
Gaussian kernel and ∗ is the convolution operation. tk ∈ (0, 1).
Thereafter, we utilize this ingredient detector tk over the kth

ingredient assignment Sk to determine the occurrence of each
ingredient. Finally, we concatenate all the outputs of k ingre-
dient detectors into an occurrence vector γ = [t1, t2, . . . , tk]T .

For regularizing the occurrence of each ingredient, we align
the empirical distribution of ingredient occurrence with the
prior U-shaped distribution. In details, we let p(dk|X1:N ) the
conditioned probability of ingredient dk occurrence in X1:N ,
and we can calculate this empirical distribution p(dk|X1:N )
by concatenating all occurrence vectors γn, n = 1, 2, . . . , N
into a matrix Û = [γ1, γ2, . . . , γN ]. Meanwhile, we assume a
prior known distribution p̂(dk|X1:N ), which is the U-shaped
distribution in our method. Then we use the Earth Mover
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Distance [29] to align p(dk|X1:N ) with p̂(dk|X1:N ) as:
E M D(p(dk |X1:N ), p̂(dk|X1:N ))

=
∫ 1

0
| F−1(z) − F̂−1(z) | dz (2)

where F(·) and F̂(·) are the Cumulative Distribution Func-
tion (CDFs) for the empirical and prior distribution and
z ∈ [0, 1].

By applying this regularization, our method can capture
more reasonable and comprehensive ingredient regions. Take
“Greek salad” for example, some indispensable and common
ingredients are always presented in most of the images, like
tomato, onion, and cucumber, such that the switch is always
on. However, for some preferred ingredients like thyme and
chives, the switch will be activated only for some images.
Therefore, we regularize the learning to make their occurrence
probability close to this prior and discover the correct ingre-
dient regions as possible.

3) Ingredient Dictionary: After obtaining the ingredi-
ent assignment S, we pool it to obtain the ingredient
region features. The ingredient region feature set M =
[m1, m2, . . . , mk] ∈ RC×K from input feature maps can be
obtained. We then utilize these to update the value vectors
of the ingredient dictionary D, which can help the model to
improve the ability of discovering more reasonable ingredient
regions. For the ingredient dictionary D, we build the corre-
sponding one for each food category in the dataset, and its
length is determined by the number of the ingredients per
category. The dictionary is randomly initialized and then it
will be updated by the learned region features.

4) Ingredient Attention: In order to highlight the pivotal
regions for classification, we need to attach a higher attention
vector to it. We transform the feature set of ingredient regions
M into fm(M), where fm contains multiple 1×1 convolutions
with batch norm and ReLU. Next, we utilize the attention
mechanism to predict the importance for each ingredient
region in M:

α = so f tmax( fm(M)) (3)

Therefore, we can obtain the attention vector α ∈ RK for each
ingredient region.

Finally, we re-weight fm(M) by the attention vector α, and
get the final ingredient region features fregion :

fregion = fm(M)α (4)

B. Ingredient-Oriented Graph Relationship Learning

There exist various ingredients and discovering the cor-
responding regions can improve the performance of food
category recognition and ingredient prediction. In addition,
exploring the relationship between ingredients can further
bring more performance gain, like co-occurrence and exclu-
sion. For example, some ingredients are correlated as they
share the same cutting or cooking methods (e.g., diced tomato
and diced red bell peppers). Other ingredients may be asso-
ciated because they often co-occur with each other in a dish
(e.g., shallots and garlic). Therefore, modeling the relation-
ships among ingredients is significant, and we utilize GCN to

explore their interactions and further learn representations of
ingredient graphs.

1) Ingredient Semantic-Visual Graph: Particularly, we build
up an ingredient-oriented semantic-visual graph for each
image, where the nodes represent the visual representations of
different ingredients and the edges indicate semantic relations
between ingredients.

For the visual nodes in the ingredient graph, we use visual
representations of all the ingredients. Specifically, we use
the weights of the fully connected layer in the ingredient
classifier as the channel attention for different ingredients.
Then we multiply these attentions with the last feature map
X ∈ RC×H×W , and pool the generated visual representations
into the visual embeddings for each ingredient. Therefore,
these embeddings can serve as the nodes in the ingredient
graph, and are defined as:

Qn = 1

H × W

H∑
i=1

W∑
j=1

wn X (i, j) (5)

where X (i, j) is the value of position (i, j) in the feature map
X , wn is the weight in the fully connected layer for the nth

ingredient. Therefore, the embedding of the ingredient Qn ∈
N × N can be obtained, and N is the total number of all
ingredients in the dataset.Then it can serve as the node in the
ingredient graph.

For the semantic edge in the ingredient graph, we use
Word2vec [30] for each ingredient word to obtain the cor-
responding semantic embedding v. Then we can compute the
cosine similarity between two ingredient embeddings as:

ai, j = cos < vi , v j >= vi · v j

|vi ||v j | (6)

where cos < . > means the cosine similarity between two
ingredient embeddings. Then we utilize these similarities ai, j

to form the graph adjacency matrix A = [ai, j ], and further
employ these similarities as the edges of the constructed graph.

2) Graph Convolutional Network: Then we can explore the
ingredient graph for their relationship learning. We utilize
GCN to learn various relationships among ingredients from the
ingredient graph. The convolutional operation in GCN follows
the layer-wise propagation:

H (l+1) = σ(Ô− 1
2 ÂÔ− 1

2 H (l)W (l)) (7)

where H (l) = (Q(l)
1 , Q(l)

2 , . . . , Q(l)
n )T denotes the feature

matrix of nodes in the lth GCN layer, and Qn is computed
using the Equation 5. A ∈ RN×N denotes the graph adjacency
matrix and N is the total number of all ingredients in the
dataset, and it is obtained by Equation 6. Ô = ∑

j Ai j denotes

the sum of elements in the adjacency matrix. Â is a normalized
version of the graph adjacency matrix A. W (l) is a parameter
matrix and σ is a non-linear operation like ReLU.

Finally, we can obtain the output G from GCN, which is the
same size as A. Thus we employ the global average pooling
fG AP to get the final output features fgraph as:

fgraph = fG AP (G) (8)

During ingredient graph learning, we consider both visual
and semantic embeddings, and utilize GCN to make label
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embeddings and visual features interact with each other. There-
fore, the learned representations are more comprehensive.

C. Multi-Task Learning

In this paper, we propose to couple food categorization
problem, which is a single-label problem, together with
ingredient recognition, which is a multi-label problem, for
simultaneous learning. In this paper, we directly add two
classifiers to the current network, and train the whole network
end-to-end.

After obtaining the ingredient features fregion and fgraph ,
we fuse them together and feed them into two classifiers.
For food category recognition, we use the cross-entropy loss
function Lc during model optimization:

Lc = −
n1∑

i=1

yilog(ŷi) (9)

where n1 means the total number of food categories.
For ingredient prediction, we choose the binary cross-

entropy function Lb:

Lb = −
m∑

j=1

n2∑
i=1

{yi j log(ŷi j ) + (1 − yi j )log(1 − ŷi j )} (10)

where m is the total number of images in a batch and n2 is
the total number of ingredients. yi , yi j are the ground truth
label of the input and ŷi , ŷi j are the corresponding predicted
probability vectors.

Moreover, our model is also trained by minimizing the
Earth Mover Distance in Equation 2 for ingredient occurrence
regularization. Therefore, the total loss function can be written
as follows, and λ is the balance ratio.

L = Lc + Lb + λE M D (11)

D. Inference

During inference, our model utilizes the corresponding
learned dictionary to assign the feature map and obtain ingre-
dient region features, then re-weight these using the attention
vector. Furthermore, our model uses the trained weights of
fully connected layers in the ingredient classifier (the total
ingredient weights are fixed according to the training set
and N is the same value) multiplying with the feature map
from the last convolutional layer and ingredient semantic
embeddings to build the ingredient graph for each image, and
feed it to the graph convolutional network. Finally, we con-
catenate the outputs from two branches for food category
and ingredient prediction. Specifically, our model can learn
different ingredient dictionary D for each food category and
a decision function y = ϕ(Xi , D; θ) is obtained after end -to-
end training, where ϕ(·) takes both the feature maps Xn and
the corresponding ingredient dictionary D to predict the food
categories and its ingredients, and θ are the parameters.

IV. EXPERIMENT

A. Datasets

To further verify the effectiveness of our method, we mainly
conduct experiments on three typical food datasets, which
contain both food category and ingredient composition
annotations, and they are very suitable for our task. The
detailed introduction of three datasets is as follows: ETH
Food-101 [13] is one typical western food dataset, and con-
tains 101,000 images from 101 food categories. There are
1,000 images including 750 training images and 250 test
images for each category. Following [14], we use the same
ingredient list, and its total size is 174. Vireo Food-172 [10]
is a Chinese food dataset. It consists of 110,241 food images
from 172 categories and the size of the ingredient list is
353. Similar to [10], 60%, 10%, 30% of images are ran-
domly selected for training, validation and testing, respec-
tively. ISIA Food-200 [14] is a mixed food dataset. It contains
197,323 images with 200 categories and 399 ingredients.
60%, 10%, 30% of the total images are selected for training,
validation and testing, respectively.

Notice that we only use the number of visible ingredients
for the construction of ingredient dictionary in IRA and
extracts their features. There are two main reasons. First,
these visible ingredients are the main components of the food,
the corresponding features also become the critical features
for recognition. Second, visible ingredient regions can be
discovered and obtained via the ingredient assignment map,
and then the relevant ingredient features can be obtained.

B. Experimental Setup

For our method, we utilize ResNet-101 pre-trained on Ima-
geNet as our backbone. All the parameters are jointly learned
on the target dataset. The ingredient dictionary is randomly
initialized following [31]. We adopt the similar parameters
setting for the U-shaped prior like [32]. For the balance raito
λ in the Equation 11, we set this as 0.1 for three datasets
following [32], and this parameter is uniform for all datasets.
For the ingredient word embeddings in the ingredient graph,
we use Word2vec [30] trained on the cooking instructions of
Recipe1M [33]. For ingredient prediction, we set the threshold
value of 0.5 for the activation function sigmoid. We use
standard stochastic gradient descent with a batch size of 80 and
momentum of 0.9 for all datasets. The learning rate is set to
10−2 initially and divided by 10 after 60 epochs. The input
images are resized to 448×448. Data augmentation including
random crop, random horizontal flip and color jittering are
applied. We use Pytorch to implement our algorithm. For
performance evaluation, Top-1 accuracy (Top-1 acc.) and Top-
5 accuracy (Top-5 acc.) are employed for single-label food
category recognition. As ingredient recognition is a multi-label
problem, we utilize Micro-F1 and Macro-F1 as evaluation
metrics, which can take both precision and recall of ingredient
prediction into account. The Micro-F1 can be expressed as
follows:

T P = 1

N

N∑
i=1

T Pi
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TABLE I

ABLATION STUDIES FOR FOOD RECOGNITION ON THREE DATASETS (%)

TABLE II

ABLATION STUDIES FOR INGREDIENT PREDICTION ON THREE DATASETS (%)

F P = 1

N

N∑
i=1

F Pi

F N = 1

N

N∑
i=1

F Ni

micro-P = T P

T P + F P
, micro-R = T P

T P + F N

Micro-F1 = 2 × micro-P × micro-R

micro-P + micro-R
(12)

where N is the number of ingredients, T Pi , F Pi and F Ni

are the true positive, false positive and false negative sample
quantity of category i ingredients respectively. micro-P and
micro-R represent the accuracy and recall rates of all category
samples, and Micro-F1 is the harmonic average of them.

The Macro-F1 can be expressed as follows:

Pi = T Pi

T Pi + F Pi

Ri = T Pi

T Pi + F Ni

macro-P = 1

N

N∑
i=1

Pi , macro-R = 1

N

N∑
i=1

Ri

Macro-F1 = 2 × macro-P × macro-R

macro-P + macro-R
(13)

where Pi and Ri respectively represent the accuracy and recall
rates of category i ingredients samples, macro-P and
macro-R respectively represent the average accuracy and
recall rates of all category, and Macro-F1 is the harmonic
average of them.

C. Experiment on ETH Food-101
1) Ablation Studies on Different Components of Our

Method: In our experiment, we first verify the effect of joint
learning framework and then we conduct ablation studies
on the food category recognition and ingredient prediction.
We just utilize the backbone for food category recogni-
tion (FCR) and ingredient prediction (IP), then we conduct
the same experiments in a joint learning way (JL). As shown
in Table I and II, we can see that the performance of JL
exceeds the single task, which means that these two tasks
can boost each other. Furthermore, we compare the effect of
different components in our method, when we add ingredient
region assignment (IRA) into the JL, the Top-1 accuracy
and Macro-F1 increase 2.23% and 3.08% respectively. Then
when we combine the ingredient attention (IA) to enhance
it, we can obtain further improvement. When we add IGRL
into JL, the performance of multi-label ingredient prediction
is improved incrementally, which means that exploring the
ingredient relationships is crucial in our method. Note that
for ETH Food-101, the performance of JL+IGRL is slightly
lower than JL+IRA+IR, the probable reason is that the food
in this dataset is western food, and it is easy to obtain obvious
and discriminative ingredient region features. However, for the
remaining two food datasets, their ingredients are mixed and
exploring their relationships is more significant and thus can
obtain better performance.

2) Comparison With the State-of-the-Arts: We compare
against the state-of-the-art methods in Table III and Table IV
on two tasks. For food category recognition, we can see
that our method surpasses all other methods, and can obtain
1.77% performance improvement than the current best method
MSMVFA [1]. This indicates the superiority of exploring
the ingredient composition and modeling their relationships.
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TABLE III

THE PERFORMANCE COMPARISON OF FOOD CATEGORY
RECOGNITION ON ETH FOOD-101 (%)

TABLE IV

THE PERFORMANCE COMPARISON OF INGREDIENT
PREDICTION ON ETH FOOD-101 (%)

Moreover, PAR-Net [19] also proposes to mine the discrimi-
native food regions, but ignores the complicated relationships
among regions. Our method outperforms PAR-Net by 3.06%,
which proves that employing GCN to fully explore the rela-
tionships between ingredients has brought larger performance
gains. Note that our method has slightly lower performance
for Top-5 accuracy compared with WISeR [17], the probable
reason is that WISeR is specifically designed to identify
western food, especially traditional western food categories
in ETH Food-101. For ingredient prediction, since there exist
few methods for evaluation on this dataset, we utilize some
basic networks like ResNet-101 and some recently proposed
multi-label image classification methods like SGTN [52] and
DSDL [53] for performance comparison. From Table IV,
we can see that our method outperforms all compared state-
of-the-arts with significant F1 advantages, and it exceeds

TABLE V

THE PERFORMANCE COMPARISON OF FOOD CATEGORY
RECOGNITION ON VIREO FOOD-172 (%)

TABLE VI

THE PERFORMANCE COMPARISON OF INGREDIENT

PREDICTION ON VIREO FOOD-172 (%)

SENet154 [45] by nearly 10% and DSDL by nearly 3%, which
suggests that discovering specific ingredient regions can help
us better identify the corresponding ingredients, and further
verifies the effectiveness of our method.

D. Experiment on Vireo Food-172

Similar to the experiments on ETH Food-101, we first
compare various components on Vireo Food-172. As shown
in Table I and II, we can see that our method achieves the best
performance, which further proves the effectiveness of these
components. Table V shows experimental results of Vireo
Food-172 about food category recognition. We can see that
the performance of our method is better than other methods
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TABLE VII

THE PERFORMANCE COMPARISON OF FOOD CATEGORY
RECOGNITION ON ISIA FOOD-200 (%)

TABLE VIII

THE PERFORMANCE COMPARISON OF INGREDIENT

PREDICTION ON ISIA FOOD-200 (%)

for both Top-1 accuracy and Top-5 accuracy. Table VI shows
the performance of ingredient prediction on Vireo Food-172.
The result of our method is better than all the other methods.
For fair comparison, we conduct the experiments under the
same backbone as AFN+BFL [12], which is the highest per-
formance for ingredient prediction methods currently. We can
see that our method surpasses it by nearly 1.5%. We also
utilize the same multi-task strategy in [2] and compare the
results with ours, and these results further prove the superiority
of our framework. Some recently published methods are also
employed for comparison, like DSDL [53] and ASL [54], and
we can see that our method also surpasses them. Moreover,
the improvement of Vireo Food-172 is less than the one on
ETH Food-101. The probable reason is that Vireo Food-172 is
a Chinese food dataset, and most ingredients in Chinese food
are mixed, which is more difficult to discover them and model
their relationships.

E. Experiment on ISIA Food-200

As shown in Table I and II, for the experimental results from
various components of our method on ISIA Food-200, we can
see that the full model achieves the best 69.47% in Top-1
accuracy and 92.98% in Top-5 accuracy, 64.74% in Micro-
F1 and 62.61% in Macro-F1. The food category recognition
and ingredient prediction performance from different methods
are summarized in Table VII and Table VIII. Because ISIA
Food-200 is a newly published dataset and some typical
ingredient prediction methods have not experimented on this
dataset, we conduct different baselines and some general

Fig. 3. The assignment maps and attention maps of some samples from our
method. For the ingredient assignment maps, different colors mean different
ingredient regions, and thus the regions belonging to the same ingredient have
been painted with the same color.

multi-label image classification methods are used for the
ingredient prediction task. The experimental results including
VGG, ResNet and DSDL are listed. From Table VII we
can see that our method achieves the state-of-the-art perfor-
mance. This again verifies the effectiveness of the proposed
method. For the experimental results for ingredient prediction
in Table VIII, we can see that our method surpasses all other
methods for Micro-F1, even recently proposed method like
DSDL(ResNet-101) [53] and SGTN(ResNet-101) [52]. Notice
that our method is weaker than ASL(ResNet-101) [54] for
Macro-F1, the probable reason is ASL adopts the asymmetric
loss to solve the ground-truth mislabeling problem and high
negative-positive imbalance, which makes it discard misla-
beled samples and emphasize features learning from both
positive and negative samples. Therefore, it can cope well
the imbalance distribution of the datasets, and the average
precision and the average precision and recall of all categories
can be improved, resulting in the improved Macro-F1 of ASL.

F. Qualitative Analysis and Visualization

Our method achieves the state-of-the-art performance on
food category recognition and ingredient prediction. We fur-
ther visualize the assignment maps and attention maps from
our method in Fig. 3. We can see that our method can
discover various coherent ingredient regions and mark them
with different colors, and the discriminative region can be
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Fig. 4. The detailed ingredient regions from the assignment map. The food
category name (in black) and ingredients (in red) are listed in the left.

further attended in the attention map. Take “Bread pudding”
for example, some ingredients like bread and egg can be
localized,and the regions belonging to the same ingredients
are painted with the same color. Besides, we also notice that
ingredients cannot be localized very precise. In some cases,
the large scale regions are often attended, while small-size
ingredients are overlooked. Moreover, there exists an invisible
relationship between these two maps. The most discriminative
region bread has been discovered in the attention map, and the
attended region is exactly the area where the bread is localized
in the assignment map.

Moreover, we also display the detailed ingredient regions
from our method in Fig. 4. Because different food categories
contain different quantities of ingredients, they can be grouped
into the corresponding number of ingredient regions. For
“Bruschetta” in Fig. 4, we can see that our method can group
it into four regions, which are tomato, baguette, garlic and
basil. These qualitative results show that our method is able
to discover meaningful ingredient regions and extract those
regions are discriminative for final recognition.

In order to further reveal the effectiveness of modeling
ingredient relationship, we further utilized Grad-CAM to visu-
alize the feature maps of our method for some samples, and
compared it with the one w/o IGRL. The experimental results
are shown in Figure 1, we can see that for the same food, the
complete method can discover expanded ingredient regions,
like “Chicken curry”. Furthermore, it can extract multiple
ingredient regions and obtain a more comprehensive visual
representation. For example, the method without IGRL only
can find one ingredient region for “Eggs benedict” in Fig. 5,
while the complete method can obtain three detailed ingredient
regions. The probable reason is that IGRL can model the
ingredient relationship by GCN and it can further find those
co-occurrence ingredients.

In addition, Fig. 6 shows some experimental results of some
samples from our method. The true positive, false positive and
false negative ingredients are attached with different colors,
respectively. Note that only test results are reported because
we only intend to show its generalization capabilities on new
data. However, it is not always true for ingredient prediction
in Fig. 6. The probable reasons include mixed ingredients

Fig. 5. Visualization results of proposed method and the one without IGRL
on some samples.

Fig. 6. The experimental results of some samples from our method. True
positive ingredients in green, false positive ingredients in red and false
negative ingredients in orange. GT means the ground truth.

without clear division, too small ingredients and the change of
spatial structure of ingredients, etc. In these cases, our method
probably fails to recognize them correctly, just like “Greek
salad” and “Caesar salad” in Fig. 6. From Fig. 6, we can
see that our model makes a wrong prediction for the “Greek
salad”. The probable reason is that the visual patterns for
these two foods are very similar, and they have some common
ingredients like lettuce and garlic.

V. CONCLUSION

In this paper, we propose a multi-task learning framework
for simultaneous food category and ingredient prediction,
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where we learn an ingredient dictionary and leverage one
U-shaped prior for region-based ingredient discovery, and
we also propose to utilize an ingredient-oriented semantic-
visual graph convolutional network for ingredient relationship
modeling. For the ingredient region discovery, we build the
corresponding ingredient dictionary and employ it to group
the feature maps into various ingredient regions and further
re-weight them with attention. For ingredient relationship
modeling, we explore both semantic and visual information
for ingredient graph construction, and utilize GCN for better
representation learning. These two branches can promote
each other via multi-task learning. Comprehensive experi-
mental results on three popular datasets have demonstrated
the effectiveness of our method. Further visualization of
ingredient assignment maps and attention maps show the
superiority of our method. Such improvement benefits from
both region-based ingredient discovery and the ingredient-
oriented semantic-visual graph convolutional network.

Future work includes: (1) The ingredient distribution among
most food datasets is imbalanced, which may seriously influ-
ence performance, and thus we need to explore re-balanced
samplings [60] or balance loss [12], [61], [62] to solve
this problem. (2) We plan to explore transformers for food
recognition, which have made a tremendous impact on image
recognition [63]–[65], and the performance is higher than
CNNs. Therefore, transformer-based recognition methods can
be explored to further improve the performance of food
category recognition and ingredient prediction in the future.
(3) Note that we only use visible ingredients for the region-
based ingredient discovery in IAR, and thus IAR can only
discover visible ingredients. However, many ingredients can-
not be seen and need to be reasoned, like sugar and salt,
which play an important role in the food nutritional eval-
uation. Therefore, exploring the invisible ingredients needs
further study, and we plan to create a hierarchical structure
relationship [5], [37] of ingredients and extend the model to
reason invisible ingredients.
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