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Abstract
We study how to best spend a budget of noisy
labels to compare the accuracy of two binary
classifiers. It’s common practice to collect and
aggregate multiple noisy labels for a given data
point into a less noisy label via a majority vote.
We prove a theorem that runs counter to conven-
tional wisdom. If the goal is to identify the bet-
ter of two classifiers, we show it’s best to spend
the budget on collecting a single label for more
samples. Our result follows from a non-trivial
application of Cramér’s theorem, a staple in the
theory of large deviations. We discuss the im-
plications of our work for the design of machine
learning benchmarks, where they overturn some
time-honored recommendations. In addition, our
results provide sample size bounds superior to
what follows from Hoeffding’s bound.

1. Introduction
Data annotators are the “AI revolution’s unsung heros,”
Gray & Suri (2019) argued. The labor of human annota-
tors has powered a growing industry of machine learning
datasets and benchmarks since the 1980s (Hardt & Recht,
2022). Human labels are a precious, yet unreliable re-
source. Errors easily creep into data labor at scale. The
designer of a benchmark has to cope with the reality of
conflicting labels for the same data point.

Many benchmarks follow a common strategy. Each data
point in a sample gets noisy labels from multiple human
annotators. The candidate labels then determine a single
label via an aggregation function, such as a majority vote
in the case of binary labels. For a sample of size n and
a choice of m labels per data point, the cost of this design
scales as mn. Although ubiquitous, we prove that this strat-
egy is wasteful for creating the test set.
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When the goal is to compare the population accuracy of bi-
nary classifiers, it is better to sample mn data points and
collect a single noisy label for each. The basis of our main
result is a simple mathematical model that captures the es-
sential question. Data points are independent and identi-
cally distributed. For each data point, we can request an
odd number m ≥ 1 of binary labels, drawn independently
from a distribution that picks the correct label with some
probability strictly greater than chance. We then aggregate
the m labels into a single label using a majority vote. Fix
two classifiers, one better than the other in terms of popu-
lation accuracy by some positive margin. We have a budget
k to spend on labels. Given an annotator number m, we
can create a labeled sample of size n = k/m. We pick the
classifier with the higher empirical accuracy on this sam-
ple. How should we pick an annotator number m so as to
maximize the probability of picking the better classifier?
Our main theorem provides the answer.

Theorem 1 (Informal). For a sufficiently large sample bud-
get k, the probability of identifying the better of two binary
classifiers is maximized at m = 1 labels per data point.

As a rough intuition, the gains in label accuracy from ag-
gregation are outweighed by the loss in sample size and
information about classifier disagreements. Formally, our
result follows from a non-trivial—and rather lengthy—
reduction to Cramér’s theorem. Cramér’s theorem is fun-
damental to the theory of large deviations. It provides pre-
cise control over tail probabilities, based on the Legendre
transform of the logarithmic moment generating function.
The theorem is asymptotic with respect to n, complicating
the application to our problem. However, standard concen-
tration inequalities, such as Hoeffding’s bound, are insuffi-
cient for our purposes as they only provide upper bounds.

Our theorem extends to the case where label errors are cor-
related with classifier errors, possibly even in a data de-
pendent way. It only fails in the unusual cases where label
noise systematically aligns in favor of the worse classifier,
the effect of aggregation on label quality systematically
aligns in favor of the better classifier, or the cost of unla-
belled data is large. While we prove our main theorem for
sufficiently large sample sizes, we conjecture that the state-
ment holds for all n ≥ 1. We have verified the conjecture
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numerically in a vast parameter sweep spanning more than
four billion values. The numerical tool we created for veri-
fying the conjecture also serves as an effective way to cal-
culate tight sample size requirements for given parameters
and is available at https://labelnoise.is.tuebingen.mpg.de.

Our result applies to the case of many classifiers via the
union bound. Here, it gives an answer to the question how
many classifiers we can reliably rank in a machine learning
benchmark. This question is commonly answered in theory
by combining the union bound with Hoeffding’s inequality.
We demonstrate that our bound permits exponentially more
comparisons than the standard argument for the same sam-
ple budget. Figure 1 illustrates the improvement.

There is a common belief that benchmark designers should
invest in cleaning noisy labels through aggregation. Our
result suggests a surprising departure. For the purpose of
comparing and ranking binary classifiers, quantity beats
quality. A single label per data point is optimal.

1.1. Related Work
Label aggregation in dataset creation. Human-
provided labels are at the heart of modern machine
learning, both in industry (Gray & Suri, 2019) and aca-
demic benchmarking. Many important datasets have been
labeled by humans, with “gold standard” labels produced
by aggregating multiple annotators’ labels: In image
recognition, labels for CIFAR-10 (Krizhevsky et al., 2009)
were verified by the work’s authors after being initially
labeled by others, while labels in ImageNet (Russakovsky
et al., 2015) are aggregated from multiple crowdworker
annotations. Similarly, the target label for medical datasets
is often established by a majority vote over expert annota-
tors like sonographers (Tanno et al., 2019) or radiologists
(Nguyen et al., 2022). In natural language processing,
classic benchmarks like MSRP (Dolan & Brockett, 2005),
SST (Socher et al., 2013), SICK (Marelli et al., 2014)
and MNLI (Bowman et al., 2015) all base labels on a
per-instance majority vote after collecting multiple labels
for each instance. More recently, label aggregation has
been used to define test labels in Kaggle’s Jigsaw Unin-
tended Bias in Toxicity Classification challenge (Jigsaw,
2019) and for evaluating the safety of LLama2 (Touvron
et al., 2023). Similarly, OpenAssistant (Köpf et al., 2023)
aggregates users’ rankings for the same list of model
outputs into a “consensus opinion”. Recht et al. (2019)
suggest to “employ a separate labeling process for the test
set that relies on more costly expert annotations.” In line
with this, it is common to collect a larger amount of labels
per instance for testing than for training (Williams et al.,
2017; Dorner et al., 2022; Nguyen et al., 2022) to increase
label quality.

The impact of label aggregation on learning. While la-
bel aggregation is a common practice in dataset and bench-
mark creation, its impacts on training and evaluation are not
fully understood: On the theoretical side, Crammer et al.
(2005) provide performance bounds that depend on the
quality and size of training data and can be used to heuris-
tically choose between data sources. Wei et al. (2023)
analyze whether duplicate labels for the same data point
should be aggregated or treated independently for empiri-
cal risk minimization and find the latter to perform better if
disagreement is common. Empirically Sheng et al. (2008)
show that for certain decision tree learners, a large number
of noisy labels per instance x beats single labels for more
data points when labels are very noisy. On the other hand,
Chen et al. (2021) provide empirical evidence that for real-
istic label noise, the opposite is true for finetuning modern
language models. In line with that, Lin et al. (2014) show
that the benefits of relabeling can depend both on the prob-
lem domain and hyperparameters of the learning algorithm.
In contrast to these works, our work focuses on comparing
already learnt classifiers, not classifier training.

Annotator disagreement as a feature. Aroyo & Welty
(2013) argue that due to the lack of objective ground truth
for many tasks, taking annotator disagreement into account
is essential. The authors suggest to to use non-binary la-
bels that encompass disagreement. Ramponi & Leonardelli
(2022) and Sandri et al. (2023) use predicting annotator
disagreement as an auxillary task for detecting offensive
language, while Cheplygina & Pluim (2018) show that an-
notator disagreement itself can be an informative feature
in medical image analysis. Meanwhile, Tanno et al. (2019)
and Davani et al. (2022) suggest to predict individual anno-
tators’ responses. This approach, combined with focusing
on annotators relevant for a given contexts, is also used to
mitigate majoritarian biases caused by aggregation (Gor-
don et al., 2022; Fleisig et al., 2023). As these approaches
require annotator-level labels, it is often recommended for
dataset creators to release these rather than already aggre-
gated labels (Prabhakaran et al., 2021; Denton et al., 2021).
Our work is orthogonal: We focus on cases where the target
label is agreed upon to be given by a (fictitious) majority
vote over the whole crowdworker population. In this set-
ting, we demonstrate that collecting and aggregating multi-
ple labels per data point is statistically suboptimal in terms
of identifying the better of two classifiers.

The theory of benchmarking. Benchmarking plays an
important role in machine learning, but is rarely studied.
An exception is work on adaptive overfitting: For the test
error to estimate the population risk without bias, models
have to be trained without knowledge about the test set,
which is rarely true for real benchmarks. To see whether
this causes problems in practice, Recht et al. (2019) recre-
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(a) Hoeffding-based guarantees for δ = 0.05
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Figure 1. Number of testable classifiers according to the Hoeffding (a) and Cramér-based (b) upper bounds on the error probability and
a union bound (see Section 3.3) for accuracies p = q = 0.75, margin ϵ = 0.1 and error tolerance δ = 0.05. Note the different y axes.

ated the ImageNet test set based on the original procedure.
They find that classifier accuracy on the new test set is
lower, but strongly correlates with the original accuracy
such that model rankings are remarkably stable. Mania &
Sra (2020) theoretically explain these observations based
on correlations between classifiers. Lastly, Blum & Hardt
(2015) show that the impacts of adaptive overfitting can be
reduced by only revealing a classifier’s test accuracy if it is
substantially better than the previous best.

2. Formal Setup
Let D be a distribution of data points x with binary cor-
rect labels yTrue(x) ∈ {0, 1}. For a binary classifier c,
we define the population risk as the expected frequency of
classification errors

R(c) := E
x∼D

[I(yTrue(x) ̸= c(x))],

where I denotes the indicator function. We consider two
arbitrary classifiers cb and cw (where b stands for “better”
and w for “worse”), such that

1− p = R(cw) > R(cb) = 1− p− ϵ

for accuracy p ∈ [0.5, 1] and margin ϵ ∈ (0, 1−p]. We want
to use a limited labeling budget k to create a test set T on
which test accuracy is likely to be higher for the better clas-
sifier, without using any information about the two specific
classifiers at hand. We assume that test sets are created us-
ing the following sampling procedure: Independently (with
replacement) sample a dataset D of n data points x ∼ D.
Then, for each x ∈ D, sample m = k

n labelers l from a
population of crowdworkers Dcrowd, again independently
and with replacement, and have each of them provide a la-
bel yl(x) for x. For a given data point x, we then set the
test label yTest(x) equal to the majority of the labels yl(x).
The main question tackled in this work is then, how to al-
locate the label budget k between n and m in order to have

the best chance of correctly identifying the better classifier
cb using the constructed test set. We will particularly focus
on comparing the case of m = 1 to m > 1, as we find
strong evidence that m = 1 is optimal in most cases.

For a fixed data point x, we set q(x) ∈ (0.5, 1] to the prob-
ability that a crowdworker label yl(x) is correct, marginal-
ized over l, i.e. q(x) := Pl(yl(x) = yTrue(x)). Similarly,
q denotes the same probability marginalized over both x
and l: q := Px,l(yl(x) = yTrue(x)). We note, that in this
setup, the case of collecting m labels yl(x) for a given x
with correctness probability q(x) yields the same distribu-
tion of labels as collecting a single label with correctness
probability q′(x) = Mm(q(x)), where

Mm(q) := P(Majority of m independent voters correct)

under the assumption that each voter is correct with prob-
ability q. To compare the two classifiers cb and cw on our
test set, we define the gap indicator G

G :=


1 : cb(x) = yTest(x) ̸= cw(x)

−1 : cw(x) = yTest(x) ̸= cb(x)

0 : cw(x) = cb(x)

,

where x and yTest are sampled as described above. The
gap indicator G describes the unnormalized accuracy gap
between the classifiers cb and cw on the test set, as we can
express

1

n

n∑
i=1

Gi = AccTest(cb)−AccTest(cw)

for independent copies Gi of G, where AccTest(c) :=
1
n

∑n
i=1 I(yTest(x) = c(x)). In particular

∑n
i=1 Gi is pos-

itive if and only if our test set correctly identifies the better
classifier cb.
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3. Parameterizing the Gap Indicator
We begin by considering the fully independent case in
which the error events cw(x) ̸= yTrue(x), cb(x) ̸=
yTrue(x) are independent of each other and the label ac-
curacy q(x). We will treat the gap indicator G as a func-
tion of q and assume homogeneous label errors over x, i.e.
q(x) = q. This assumption allows us to use the equiv-
alence of a single labeler with accuracy Mm(q(x)) and
m labelers with accuracies q(x) each, to compare G(q)
and G(Mm(q)) rather than explicitly parameterizing G by
m. We note that this assumption yields the best case for
the m−label approach: If the label accuracy q(x) depends
strongly on x, majority voting might not actually yield no-
ticeable benefits in terms of label accuracy. As an extreme
example, if q(x) only takes on values in {0, 1}, majority
voting has no benefits at all. Formally, Jensen’s inequal-
ity and the well-known concavity of the majority vote in
Mm(z) in z for z ∈ (0.5, 1] (Boland et al., 1989) imply
Ex[Mm(q(x))] ≤ Mm(Ex[q(x)]) = Mm(q). This means
that Mm(q) can only overestimate label quality for the m-
label case. The following proposition provides a precise
parametric characterization for G with m = 1 in that case,
and is proven in Appendix B.

Proposition 1. Assuming mututally independent classifier
and labeler errors, G can be written as follows:

G(q, p, ϵ) =


1 w.p. qϵ+ (1− p− ϵ)p

−1 w.p. (1− q)ϵ+ (1− p− ϵ)p

0 else p(p+ ϵ) + (1− p− ϵ)(1− p)

,

for label accuracy q, classifier accuracy p and margin ϵ.

The expectation of the random variable G(q, p, ϵ) thus
equals (2q − 1)ϵ, which is positive as q > 0.5.

We are now interested in whether using an m−majority
vote of the noisy crowdworker labels provides more infor-
mation about which of the two classifiers is better than us-
ing m times as many data points with a single label each.
More precisely, we would like to find out whether the better
classifier is more likely to win with a single label and more
data points, or with aggregated labels. In technical terms,
we thus want to know whether

P

(
mn∑
i=0

Gi(q, p, ϵ) > 0

)
> P

(
n∑

i=0

Gi(Mm(q), p, ϵ) > 0

)

for independent copies Gi of G. For small n and m we
can calculate the exact probabilities of identifying the bet-
ter classifier cb using test sets with different levels of label
accuracy q. According to a large scale grid search over the
possible values of p, q and ϵ that evaluated nearly five bil-
lion configurations, detailed in Appendix A, using m = 1
labels is consistently the best approach. Figure 2 demon-

strates this, showing the exact probabilities for fixed accu-
racy p = 0.8, margin ϵ = 0.01 and varying values of the
label accuracy q and label budget k.

3.1. Hoeffding Bounds
Hoeffding’s inequality yields the following lemma proven
in Appendix C that allows us to lower bound the probability
that cb beats cw on a test set:

Lemma 1. For independent copies Xi of any random vari-
able X with E[X] > 0 and values in [−1, 1], we can bound

P

(
n∑

i=0

Xi ≤ 0

)
≤ e

−n E[X]2

2 =: B(X,n).

We will use this lemma to gain some initial intuition about
the quality of test sets constructed with m = 1, compared
to m > 1 labelers per data point x. Specifically, we get
a higher lower bound for P(

∑mn
i=0 Gi(q, p, ϵ) > 0) than for

P(
∑n

i=0 Gi(Mm(q), p, ϵ) > 0), whenever

nmE[Gi(q, p, ϵ)]
2 > nE[Gi(Mm(q), p, ϵ)]2. (1)

Informally, equation (1) states that the gains in terms of
squared expectation from aggregating multiple labels do
not outweigh the simple factor m achieved by labeling mul-
tiple data points. It is equivalent to

√
m >

E[Gi(Mm(q), p, ϵ)]

E[Gi(q, p, ϵ)]
=

2Mm(q)− 1

2q − 1
. (2)

For m = 3, this becomes

√
3 >

6q2 − 4q3 − 1

2q − 1
= 1 + 2(1− q)(q),

with the right side maximized at q = 0.5, with a value of
1.5 < 1.73 ≈

√
3, such that (2) is true for all q ∈ (0.5, 1].

In Appendix C, we prove that B(G(q, p, ϵ),mn) <
B(G(Mm(q), p, ϵ), n) holds for any m > 1.

3.2. Correlated Classifiers
The previous Sections assumed both classifiers and the la-
bels to be independent, which is unlikely in practice, as
certain examples might be more difficult than others. In
this Section, we relax this assumption by modelling the
worse classifier cw to be correct with probability pw ∈
[0.5, 1]. Then, the better classifier cb is correct with prob-
ability p0b ∈ [0.5, 1] conditional on cw being incorrect
on a given datapoint x and p1b ∈ [0.5, 1] conditional on
cw being correct. The assumption that cb has lower risk
than cw implies (1− pw)p

0
b + pwp

1
b > pw or equivalently

(1− pw)p
0
b + pw

(
p1b − 1

)
> 0. We also model correla-

tions between the two classifiers and the labels by denoting
qb ∈ (0.5, 1] as the probability that the label is correct,
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Figure 2. Probability of identifying cb for accuracy p = 0.8, margin ϵ = 0.01, budget k = 1500 (a), label accuracy q = 0.8 (b).

conditional on the event Eb that cb is correct and cw is in-
correct, and qw ∈ (0.5, 1] as the probability that the label
is correct in the case that cb is incorrect and cw is correct,
termed Ew.1

Proposition 2. Assuming correlated classifiers and labels
with the above parameterization, we have:

G(q, p) =



1 w.p. qb(1− pw)p
0
b

+(1− qw)pw
(
1− p1b

)
−1 w.p. (1− qb)(1− pw)p

0
b

+qwpw
(
1− p1b

)
0 else

.

Then, the expectation of the gap indicator G equals

(2qb − 1)(1− pw)p
0
b − (2qw − 1)pw

(
1− p1b

)
,

which is larger than zero if and only if

(2qb − 1) > (2qw − 1)
pw
(
1− p1b

)
(1− pw)p0b

.

The factor
pw(1−p1

b)
(1−pw)p0

b
is smaller than one, as long as

(1− pw)p
0
b − pw

(
1− p1b

)
> 0, which is true as cb has

lower risk than cw. This means that G is guaranteed to
have positive expectation, whenever qb ≥ qw. This essen-
tially ensures that cw is not overfit to the label noise more
than cb. We assume this to be true:

Assumption 1. No biased label accuracy: qb ≥ qw.

An alternative interpretation of assumption 1 is, that the
examples in Ew for which the better classifier is incorrect
are be more “difficult” than the ones in Eb. For example,

1As data points x for which both agree do not influence the
gap indicator, label accuracy can be arbitrary for such points, i.e.
x that are neither in Eb nor in Ew.

consider cb correct on all but for the top 10% most diffi-
cult examples, and cw random. Then Ew is a subset of
the top 10% most difficult examples, such that annotators
make more errors and qw is low. At the same time, Eb only
contains examples in the bottom 90%, such that qb is large.

If assumption 1 does not hold, for example because cw was
trained on parts of the test set, the expectation of G can be-
come negative, such that P(

∑n
i Gi > 0) converges to zero.

In these cases, narrowing the gap between qb and qw by
aggregating labels (Mm(qw) ≈ Mm(qb) for large m) can
have large benefits by causing the expectation to become
positive, thus flipping the limit of P(

∑n
i Gi > 0) from zero

to one.

For the m−label case, we again focus on (conditionally)
homogeneous label errors over x, i.e. q(x) = qb when
x ∈ Eb and q(x) = qw when x ∈ Ew, so that we can
replace G(qb, qw) by G(Mm(qb),Mm(qw)) rather than ex-
plicitly parameterizing G by m. Note that in this case, ho-
mogeneity in the label accuracy q(x) is not necessarily the
best case for m > 1 any more: Heterogeneity lowering
the label accuracy of the majority vote can be beneficial as
long it is restricted to Ew, where cb is incorrect. We as-
sume that heterogeneity does not disproportionately harm
label accuracy when the better classifier is incorrect:

Assumption 2. No biased heterogeneity:

(1− pw)p
0
b

pw(1− p1b)

(
Mm(qb)− E

x
[Mm(q(x))|Eb]

)
≥ Mm(qw)− E

x
[Mm(q(x))|Ew]. (3)

The (1−pw)p0
b

pw(1−p1
b)

factor is larger than one as cb is more accu-

rate than cw. Because qb > qw and M3(x) is more con-
cave for larger x > 0.5, this means that for m = 3 as-
sumption 2 is expected to hold whenever there are similar
levels of heterogeneity conditional on the events Eb and
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Ew. For simplicity of notation, we will sometimes use p as
a shorthand for pw, p0b , p

1
b , q as a shorthand for qb, qw and

Mm(q) as a shorthand for Mm(qb),Mm(qw), again obtain-
ing B(G(q, p), nm) > B(G(Mm(q), p), n) for any m > 1
under assumption 1, as proven in Appendix C.

3.3. Application to Benchmarking
The different bounds on the error probabilities for a single
vs m labels are straightforward to extend to benchmark-
ing, where we compare multiple classifiers: Formally, we
consider a classifier cb with risk R(cb) = 1 − p − ϵ that
is better than k other classifiers ci, i ≤ k with (larger) risk
R(ci) ≥ 1−p. A test set is a good benchmark, if cb has the
highest test accuracy with high probability. We can bound
the probability that the benchmark fails to identify the best
classifier cb using a standard union bound argument:

P
(
AccTest(cb) ≤ max

i≤k
AccTest(ci)

)
≤
∑
i≤k

P(AccTest(cb) ≤ AccTest(ci)).

Now if P(AccTest(cb) ≤ AccTest(ci)) ≤ e−dnϵ2 for some
d > 0 and all i ≤ k as suggested by the Hoeffding bounds
from the last Section, we get

δ := P
(
AccTest(cb) ≤ max

i≤k
AccTest(ci)

)
≤ ke−dnϵ2 .

If we want to bound the probability of not identifying the
best classifier cb to a fixed δ > 0, we can thus test at most
k = ednϵ

2

δ different classifiers. Correspondingly under
the assumptions from before, moving from an e−d1nϵ

2

to
an e−d2nϵ

2

bound for d2 > d1 by not collecting multiple
labels per data point allows us to benchmark e(d2−d1)nϵ

2

times as many classifiers while guaranteeing a given bound
on the error probability δ.

This exponential improvement is illustrated in Figure 1,
which also illustrates the lack of tightness of Hoeffding
bounds in our setting, when compared to the bounds pro-
vided by Cramér’s Theorem discussed in the next Section:
For a label budget of k = 1500, Cramér guarantees the
testability of more than 17 models in the single label case,
while Hoeffding is too loose to provide a guarantee for two
models at error tolerance δ = 0.05.

4. Proof of the Main Theorem
The results proven above text are suggestive, but do not
prove that a single label is optimal. This is because we
compare lower bounds that could have systematically dif-
ferent levels of tightness for the single label compared to
the m−label case. As a large test set not correctly identify-
ing the better classifier is a tail event, we use tools from the

theory on large deviations, more specifically Cramér’s The-
orem to provide a proof for sufficiently large values of n.

Cramér’s Theorem. (Adapted from (Klenke, 2013)) Let
Xi be iid real random variables for i ∈ N such that

Λ(t) := logE[etX1 ] < ∞

for all t ∈ R. Define the Legendre transform

Λ∗(x) := sup
t
(tx− Λ(t)).

Then for all z ∈ R such that z > E[X1], we have

lim
n→∞

1

n
logP

(
Sn =

n∑
i=0

Xi ≥ zn

)
= −Λ∗(z),

where the limit is an upper bound for all n.

We apply the theorem to the random variables X =
−G(Mm(q), p, ϵ) and X ′ = −

∑m
i=0 Gi(q, p, ϵ) at z = 0,

which is possible, as both −X and −X ′ have positive ex-
pectation, such that z = 0 > E[X]. This yields limits

lim
n→∞

1

n
log

(
P

(
n∑
i

Gi(Mm(q), p, ϵ) ≤ 0

))
= −Λ∗

X(0)

and

lim
n→∞

1

n
log

(
P

(
mn∑
i

Gi(q, p, ϵ) ≤ 0

))
= −Λ∗

X′(0)

respectively. Because P(X ≤ 0) = 1− P(X > 0) for any
random variable X , we can conclude that

P

(
mn∑
i

Gi(q, p, ϵ) > 0

)
> P

(
n∑
i

Gi(Mm(q), p, ϵ) > 0

)
will be true for sufficiently large n as long as −Λ∗

X(0) >
−Λ∗

X′(0). Figure 3 a) illustrates the convergence implied
by Cramér’s theorem for a fixed set of parameters. As the
Cramér rates are upper bounds, we can conclude that the
single label approach is better, as soon as the absolute gap
between the Cramér rates exceeds the maximum of the ap-
proximation errors (here around k = 1800). Meanwhile,
Figure 3 b) shows the tightness of Cramér’s bound com-
pared to Hoeffding’s bound. While both are very close
when labels are random (q = 0.5), Cramér’s bound be-
comes a lot smaller when labels are accurate.

To prove −Λ∗
X(0) > −Λ∗

X′(0), we make use of the simple
ternary structure of G and the following lemma character-
ising −Λ∗

X(0) for ternary random variables:

Lemma 2. For X ternary with P(X = 1) = x,
P(X = −1) = y, and P(X = 0) = z,

−Λ∗
X(0) = log (2

√
xy + z).
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Figure 3. a): Convergence of normalized log error rates to the values implied by Cramér’s Theorem for label accuracy q = 0.75, classifier
accuracy p = 0.7, margin ϵ = 0.1 and m ∈ {1, 3}. b): Upper bounds on normalized log error rate for Cramér’s bound compared to
Hoeffding’s bound.

For sums of independent copies Xi of ternary variables
Sn =

∑n
i=0 Xi,

−Λ∗
Sn

(0) = n log (2
√
xy + z).

Lemma 2 can then be used to prove our main theorem:

Theorem 2. For G as defined as in Section 3.2, m > 1 and
qb, qw, pw, p

0
b , p

1
b fixed such that assumption 1 holds, there

exist an N ∈ N such that for n > N

P

(
n∑
i

Gi(Mm(q), p) > 0

)
< P

(
mn∑
i

Gi(q, p) > 0

)
.

Under assumption 2, this implies that the single label strat-
egy outperforms the m−label strategy for these n.

In other words, under the assumptions from Section 3.2 on
the joint distribution of the labels and classifiers and suffi-
ciently large label budgets mn, it is always better to collect
a single label for mn data points rather than m labels for
n data points, when it comes to classifier comparison. We
note that the assumptions in Section 3.2 generalize those
from Section 2 by taking into account correlations between
classifiers and labels, such that Theorem 2 also holds for
the independent case discussed in Section 2.

We begin by sketching the proof on a high level: First, we
observe that −mΛ∗

X(0) = −Λ∗
X′(0) whenever q = qb =

qw = 0.5, as Mm(0.5) = 0.5. As both of these terms have
to be negative, this establishes −Λ∗

X(0) > −mΛ∗
X(0) =

−Λ∗
X′(0). We then show that in the setting of Section 2,

the derivative of −Λ∗
X(0) + Λ∗

X′(0) with respect to q is
always positive, establishing the independent case. Then,
we extended the same argument to the case of correlated
classifiers, before decoupling qb and qw for the fully corre-
lated case from Section 3.2, setting qb = qw + δ for δ ≥ 0
based on assumption 1. Noting that by the previous proof,

the theorem is correct for δ = 0, we again establish con-
sistently positive derivatives of −mΛ∗

X(0) = −Λ∗
X′(0),

this time with respect to δ. Finally, after establishing
−Λ∗

X(0) > −Λ∗
X′(0), and thus the first half of the theo-

rem statement, we use assumption 2 to reduce the case of
heterogeneous label accuracies q(x) to the homogeneous
case via stochastic dominance.

We continue with additional details for the independent
case: Setting

d := ϵ(1− p− ϵ)p+ ((1− p− ϵ)p)
2
,

f∗(q) := Mm(q)(1−Mm(q))ϵ2 + d,

g∗(q) := q(1− q)ϵ2 + d,

c := 1− ϵ− 2p(1− p− ϵ),

it is possible to rewrite

− Λ∗
X(0) + Λ∗

X′(0)

= log
(
2
√

f∗(q) + c
)
−m log

(
2
√

g∗(q) + c
)
.

such that

d

dq
(−Λ∗

X(0) + Λ∗
X′(0))

=
f∗′

(q)(
2f∗(q) + c

√
f∗(q)

) −m
g∗

′
(q)(

2g∗(q) + c
√

g∗(q)
) .

This is positive whenever

f∗′
(q) ≥ mg∗

′
(q)

(
2f∗(q) + c

√
f∗(q)

)
(
2g∗(q) + c

√
g∗(q)

) . (4)

To establish inequality (4), we calculate

g∗
′
(x) = ϵ2(1− 2q)

7
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and

f∗′
(x) = ϵ2(1− 2Mm(q))m

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2 ,

where the last equation uses the well known equality of

M2n+1(q) = (2n+ 1)

(
2n

n

)∫ q

0

xn(1− x)
n
dx

(Boland et al., 1989). Using various algebraic manipula-
tions to get rid of additive constants, this allows us to re-
duce (4) to

2Mm(q)− 1

2q − 1

(
m− 1
m−1
2

)
q

m+1
2 (1− q)

m+1
2

≤ Mm(q)(1−Mm(q)). (5)

Using an additive recursion for Mm(q), we then show that
both sides of the inequality approach zero for q → 1. We
conclude with a series of further algebraic manipulations
to establish that the right hand side has a smaller derivative
than the left hand side, thus growing faster as q is decreased
starting from q = 1.

The proof of the general case again centers around equation
(4), now interpreted as a function of δ. However, f∗(δ) and
g∗(δ) become substantially more complicated, as they now
involve both Mm(qw) and Mm(qw + δ) terms that need to
be treated separately. The proof again makes heavy use of
the additive recursion for Mm(q), as well as algebraic ma-
nipulations that simplify inequalities of fractions by allow-
ing us to ignore certain terms, eventually reducing equation
(4) to equation (5) again. For the sake of brevity, we defer
further details to Appendix D.

5. Conclusion
Our results suggest that while collecting multiple labels per
instance can be useful for better understanding disagree-
ment about a classification task, collecting a single label per
instance is optimal for comparing binary classifiers’ accu-
racy in terms of the annotators’ majority label. Thus, while
we agree with Aroyo & Welty (2015) that “one [label] is
enough” is a myth when it comes to a fine-grained under-
standing of annotator labels, we find that one label is all
you need for simple benchmarking, where a model’s per-
formance is for better or worse reduced to its test accuracy.

In order to better understand ambiguities in their task def-
inition and how annotators’ identity influences their labels
(Denton et al., 2021), we still encourage practitioners to ini-
tially collect multiple annotations for a small sample of in-
stances when designing a new benchmark based on crowd-
sourced labels. This understanding can then be used to ad-
just the task instructions and annotator pool such that the
expected annotator label for each instance reflects the in-
tended task as well as possible, and in particular such that

q > 0.5. Achieving that might require a data-dependent
annotator pool, preferentially assigning annotators to in-
stances for which they possess relevant expertise.

Once the task description and annotator pool are fixed and
it comes to evaluation at scale, we generally recommend
practitioners to build their test set using a large number of
instances with a single label each, according to their bud-
get. The only exceptions are if a) estimating the precise risk
R(c) of a classifier c is more important than ranking clas-
sifiers, b) the cost of unlabeled data is not negligible, or c)
there is good reason to believe that one of our assumptions
is violated, i.e. label errors are more common when the
better classifier cb is correct or there is substantially more
heterogeneity in q(x) when the worse classifier cw is cor-
rect. In the latter case, using single labels can still often be
preferable, and we provide a calculator for the exact prob-
abilities at https://labelnoise.is.tuebingen.mpg.de.

While we do not study the effects of aggregation for
datasets that have already been constructed using multiple
labels per instance, we would like to reiterate Denton et al.
(2021)’s recommendation to “Consider what valuable in-
formation might be lost through such aggregation”. If such
a dataset is, privacy permitting, released with all annota-
tors’ labels, users have to choice whether and how to aggre-
gate labels (Prabhakaran et al., 2021). If only majority la-
bels are released, it is impossible for others to obtain infor-
mation about annotator disagreement, or even simply use a
different aggregation method more suited to their needs.

Our work opens up multiple theoretical problems. First,
while we consistently observe the single label approach
outperform m > 1 in our experiments, our main theorem
is asymptotic. We conjecture, that this is always true:

Conjecture 1. For G defined as in Section 3.2 with m > 1,

P

(
n∑
i

Gi(Mm(qb),Mm(qw), pw, pb) > 0

)

< P

(
mn∑
i

Gi(qb, qw, pw, pb) > 0

)
for all n > 0 as long as assumption 1 holds. Under as-
sumption 2, this implies that the single label strategy out-
performs the m−label strategy.

Proving this conjecture likely requires different methods
than employed in the current paper, as Cramér’s theorem
is not particularly tight for small n.

Second, as our proofs involve a series of non-tight inequal-
ities, assumptions 1 and 2 could likely be further relaxed at
the cost of additional complexity.

Third, while binary classification is at the heart of many
contemporary human-labeled tasks, most notably reward
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modelling for Reinforcement Learning from Human Feed-
back (RLHF) (Ouyang et al., 2022), multiclass classifica-
tion remains an important task. Extending our results to
that setting is a challenging open problem. Solving this
likely requires precise modelling of class-conditional error
probabilities and results might depend on details of the ag-
gregation procedure: For example, when there are more
than three labelers, plurality and absolute majority can di-
verge, and it is conceivable that plurality voting could ex-
tract sufficient additional signal to make collecting multiple
labels competitive in some scenarios. Similarly, smarter
adaptive labeling strategies, like first collecting two labels
and only collecting a third in case of a tie, could make col-
lecting multiple labels more competitive in the binary case,
but these strategies are harder to implement and analyse.
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A. Numerical Evidence
We conducted a large scale parameter sweep for

n ∈ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 100, 101, 1000, 1001],

m ∈ [3, 11]

and
qb, qw, pw, p

0
b , p

1
b ∈ S5,

where S is a set of 50 evenly spaced points s ∈ [0.5, 1] with a resolution of 0.01. For all of the almost five billon grid
points that fulfilled (1− pw)p

0
b + pwp

1
b > pw, we both explicitly calculated

P

(
mn∑
i=0

Gi(q, p, ϵ) > 0

)
and

P

(
n∑

i=0

Gi(Mm(q), p, ϵ) > 0

)
(using iterated convolutions of the base variable G, sped up via exponentiation by squaring) and additionally approximated
the probabilities based on sampling each of the sums 100 times. Under the assumptions from section 3.2, the exact
calculations consistently yielded

P

(
mn∑
i=0

Gi(q, p, ϵ) > 0

)
≥ P

(
n∑

i=0

Gi(Mm(q), p, ϵ) > 0

)
,

with the only exceptions happening when both probabilities are extremely close to 1 (maximal distance of the order 1e −
12). These exceptions do not provide meaningful evidence against our conjecture, as they are most likely caused by
numerical instability (notably, they often coincide with calculated probabilities that exceed one). In particular, there were
no parameters for which both the exact probabilities and the sampled probabilities were better for the m−label case, even
though this happened for the sampled probabilities alone in 1.6% of the cases (as to be expected from the relatively small
sample size of 100). As an additional sanity check, the sampled probabilities generally approximated the exact probabilities
well, with the average distance over all parameters being on the order of 1e− 7, and the average MSE of the order 0.01 for
both the single and the m−label case.

Notably, the single label approach still performed better in two thirds of the parameter configurations with qw > qb,
with this number slowly decreasing for larger values of qw. This suggests that our (already not particularly restrictive)
assumptions could be relaxed substantially further.

B. Parameterizations of the Gap Indicator
Proposition 1. Assuming mututally independent classifier and labeler errors, G can be written as follows:

G(q, p, ϵ) =


1 w.p. qϵ+ (1− p− ϵ)p

−1 w.p. (1− q)ϵ+ (1− p− ϵ)p

0 else p(p+ ϵ) + (1− p− ϵ)(1− p)

,

for label accuracy q, classifier accuracy p and margin ϵ.

Proof. The better classifier cb wins for a given x (i.e. G = 1) if cb(x) and the label yTest(x) are correct, while cw(x)
is not, or if both cb(x) and the label yTest(x) are incorrect, while cw(x) is correct. The former happens with probability
((p+ ϵ)(1− p)q), and the latter with probability ((p)(1− p− ϵ)(1− q)). Summing up yields

P(G = 1) =((p+ ϵ)(1− p)q) + (p)(1− p− ϵ)(1− q)

= qp− qp2 + qϵ− qpϵ+ (1− q)
(
p− p2 − pϵ

)
= qp− qp2 + qϵ− qpϵ+ p− p2 − pϵ− qp+ qp2 + qpϵ

= qϵ+ p− p2 − pϵ = qϵ+ p(1− p− ϵ).

12
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For the worse classifier cw to win (G = −1), we get the opposite cases conditional on the label, with respective probabilities
of ((p+ ϵ)(1− p)(1− q)) and ((p)(1− p− ϵ)q. These sum up as follows:

P(G = −1) = ((p+ ϵ)(1− p)(1− q)) + (p)(1− p− ϵ)q

=
(
p+ ϵ− p2 − pϵ

)
(1− q) + qp− qp2 − qpϵ

= p+ ϵ− p2 − pϵ− qp− qϵ+ qp2 + qpϵ+ qp− qp2 − qpϵ

= p+ ϵ− p2 − pϵ− qϵ

= (1− p− ϵ)p+ (1− q)ϵ.

Adding up both probabilities yields

P(G ̸= 0) = 2p(1− p− ϵ) + ϵ

= 2p− 2p2 − 2pϵ+ ϵ

= 1− p(p+ ϵ) + 2p− p2 − pϵ+ ϵ− 1

= 1− p(p+ ϵ)− (1− p− ϵ)(1− p),

which makes sense as the gap indicator G(p, q, ϵ) is zero whenever both classifiers produce the same answer, independent
of the label.

Proposition 2. Assuming correlated classifiers and labels with the above parameterization, we have:

G(q, p) =



1 w.p. qb(1− pw)p
0
b

+(1− qw)pw
(
1− p1b

)
−1 w.p. (1− qb)(1− pw)p

0
b

+qwpw
(
1− p1b

)
0 else

.

Proof. The better classifier cb “wins” on a given datapoint, whenever it and the label are correct, while the worse classifier
is not, or if the label and the better classifier are incorrect, while the worse classifier is correct. The former happens with
probability qb(1− pw)p

0
b and the latter with probability (1− qw)pw

(
1− p1b

)
. The case of the worse classifier winning is

symmetric, with qi and 1− qi reversed. This yields

G
(
qb, qw, pw, p

0
b , p

1
b

)
=


1 w.p. qb(1− pw)p

0
b + (1− qw)pw

(
1− p1b

)
−1 w.p. (1− qb)(1− pw)p

0
b + qwpw

(
1− p1b

)
0 else

.

C. Details on Hoeffding Bounds
We first establish, that it is sufficient to focus on the case of m uneven, as going from m uneven to m+ 1 even reduces the
number of data points we can label n, while reducing Mm(q) due to additional ties, rather than increasing it:

Lemma C.1. For even k > 1, we have that

Mk(q) < Mk−1(q).

Proof. For even k, a majority can only be obtained, if there is already a majority for the first k − 1 votes. In that case, the
majority is always retained, unless the margin was exactly one, and the new vote goes against the majority. For our case,
this means that

Mk(q) = Mk−1(q)−
(
k − 1

k
2

)
q

k
2 (1− q)

k
2 < Mk−1(q).

13
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We proceed by proving lemma 1:

Lemma 1. For independent copies Xi of any random variable X with E[X] > 0 and values in [−1, 1], we can bound

P

(
n∑

i=0

Xi ≤ 0

)
≤ e

−n E[X]2

2 =: B(X,n).

Proof. For independent copies Xi of any random variable X with values in [−1, 1], we have

n∑
i=0

Xi ≤ 0 ⇐⇒
n∑

i=0

(Xi − E[X]) ≤ −nE[X] ⇐⇒
n∑

i=0

(−Xi − E[−X]) ≥ nE[X].

If E[X] > 0, we can then apply Hoeffding’s inequality to −X to obtain

P

(
n∑

i=0

Xi ≤ 0

)
= P

(
n∑

i=0

(−Xi − E[−X]) ≥ nE[X]

)
≤ e

−2n2 E[X]2

4n = e
−n E[X]2

2 .

With this, we focus on

Proposition C.1. For any uneven m > 1, equation (2) is true, i.e.

√
m >

2Mm(q)− 1

2q − 1
.

Correspondingly, for any m > 1
B(G(q, p, ϵ), nm) < B(G(Mm(q), p, ϵ), n),

where B is the Hoeffding lower bound on the success probability.

Proof. To prove proposition C.1, we need the following lemma:

Lemma C.2. Setting σ(m, q) =
∑m−2

k uneven

(
k

⌈ k
2 ⌉
)
q⌈

k
2 ⌉(1− q)

⌈ k
2 ⌉ for uneven m, we have that

Mm(q) = q + (2q − 1)σ(m, q).

Proof. Let bn(q, k) be the probability of k successes in a binomial with n trials and with probability of success p for a
single trial. Then:

Mm(q) = Mm−2(q) + q2bm−2

(
q, ⌊m− 2

2
⌋
)
− (1− q)

2
bm−2

(
q, ⌈m− 2

2
⌉
)

= Mm−2(q) + q2
1− q

q
bm−2

(
q, ⌈m− 2

2
⌉
)
− (1− q)

2
bm−2

(
q, ⌈m− 2

2
⌉
)

= Mm−2(q) +
(
q − q2 − 1 + 2q − q2

)
bm−2

(
q, ⌈m− 2

2
⌉
)

= Mm−2(q) +
(
3q − 2q2 − 1

)
bm−2

(
q, ⌈m− 2

2
⌉
)

= Mm−2(q) + (1− q)(2q − 1)bm−2

(
q, ⌈m− 2

2
⌉
)

= Mm−2(q) + (1− q)(2q − 1)

(
m− 2

⌈m−2
2 ⌉

)
q⌈

m−2
2 ⌉(1− q)

⌈m−2
2 ⌉−1

= Mm−2(q) + (2q − 1)

(
m− 2

⌈m−2
2 ⌉

)
q⌈

m−2
2 ⌉(1− q)

⌈m−2
2 ⌉

.

14
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The first equation captures the fact that a majority of m trials consists of all events that have a majority for the first m− 2
trials (first term), except for those with a margin of one that simultaneously have two misses in the last two trials (third
term), in addition to all events that miss a majority in the first m − 2 trials by a margin of one, but have two successes in
the last two trials (second term). The statement of the Lemma then follows by unrolling the additive recursion.

With Lemma C.2, (2) can be rewritten as

√
m >

2Mm(q)− 1

2q − 1
=

2q + 2(2q − 1)σ(m, q)− 1

2q − 1
= 1 + 2σ(m, q). (6)

We can control the right term using another Lemma:

Lemma C.3.

1 + 2σ(m, q) ≤ 1 +
1√
π
(2

√
m− 1

2
− 1)

Proof. We use an upper bound version of Stirling’s approximation based on Theorem 2.6 in (Stanica, 2001):(
m− 1
m−1
2

)
<

4
m−1

2√
πm−1

2

,

the fact that q(1− q) is maximized at q = 0.5 and the monontonicity of 1√
k

to estimate

2σ(m, q) = 2

m−2∑
k uneven

(
k

⌈k
2 ⌉

)
q⌈

k
2 ⌉(1− q)

⌈ k
2 ⌉ = 2

m−2∑
k uneven

(
k

k+1
2

)
q

k+1
2 (1− q)

k+1
2

= 2

m−2∑
k uneven

k+1
2

k + 1

(
k + 1
k+1
2

)
q

k+1
2 (1− q)

k+1
2 =

m−2∑
k uneven

(
k + 1
k+1
2

)
q

k+1
2 (1− q)

k+1
2

≤
m−2∑

k uneven

4
k+1
2√

π k+1
2

q
k+1
2 (1− q)

k+1
2 ≤

m−2∑
k uneven

1√
π k+1

2

=
1√
π

m−1∑
k>0 even

1√
k
2

=
1√
π

m−1
2∑

k=1

1√
k

=
1√
π

1 +

m−1
2∑

k=2

1√
k

 ≤ 1√
π

(
1 +

∫ m−1
2

k=1

1√
k

)

=
1√
π

(
1 + 2

√
m− 1

2
− 2

)
=

1√
π

(
2

√
m− 1

2
− 1

)
.

With this, (2) reduces to

1− 1√
π
+

√
2

π
(m− 1) = 1 +

1√
π

(
2

√
m− 1

2
− 1

)
<

√
m.

At m = 3, this becomes

1.56 ≈ 1 +
1√
π

<
√
3 ≈ 1.73.
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On the other hand the derivative of the gap with respect to m,

d

dm

(
√
m− 1 +

1√
π
−
√

2

π
(m− 1)

)
=

1

2
√
m

− 1√
2π

√
m− 1

is positive whenever
1

2
√
m

>
1√

2π
√
m− 1

or

1.25 ≈
√
2π

2
>

√
m

m− 1
=

√
1 +

1

m− 1
.

For m ≥ 3, the right side is clearly at most
√
1 + 1

3−1 ≈ 1.22, such that the derivative is positive for all m > 3 and (2)
holds for m ≥ 3.

Next, we focus on the general case with correlated classifiers and labels:

Proposition C.2. When classifiers and labels are correlated, as long as qb ≥ qw and (1− pw)p
0
b + pwp

1
b > pw,

B(G(q, p), nm) < B(G(Mm(q), p), n)

holds for any m > 1, where B is the Hoeffding lower bound on the success probability.

Proof. In this setting, Equation (1) becomes

√
m >

(2Mm(qb)− 1)(1− pw)p
0
b − (2Mm(qw)− 1)pw

(
1− p1b

)
(2qb − 1)(1− pw)p0b − (2qw − 1)pw(1− p1b)

. (7)

To prove this, we need the following Lemma:

Lemma C.4. Let A,B,C,D, c1, c2 be positive constants such that Ac1−Bc2 > 0 and Cc1−Dc2 > 0. Then Ac1−Bc2
Cc1−Dc2

≤
A
C is true if and only if CB ≥ DA.

Proof.

Ac1 −Bc2
Cc1 −Dc2

≤ A

C
⇐⇒ Ac1 −Bc2 ≤ A(Cc1 −Dc2)

C

⇐⇒ C(Ac1 −Bc2) ≤ A(Cc1 −Dc2)

⇐⇒ CAc1 − CBc2 ≤ CAc1 −DAc2

⇐⇒ −CBc2 ≤ −DAc2

⇐⇒ CB ≥ DA

With this, we set
A = 2Mm(qb)− 1,

B = 2Mm(qw)− 1,

C = 2qb − 1,

D = 2qw − 1,

and
c1 = (1− pw)p

0
b ,

c2 = pw
(
1− p1b

)
.
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Then, CB ≥ DA is equivalent to

(2qb − 1)(2Mm(qw)− 1) ≥ (2qw − 1)(2Mm(qb)− 1),

i.e.
2Mm(qw)− 1

2qw − 1
≥ 2Mm(qb)− 1

2qb − 1
,

which is equivalent to
1 + 2σ(m, qw) ≥ 1 + 2σ(m, qb),

and holds for qb ≥ qw as σ(m,x) is clearly monotonically decreasing in x. Lemma C.4 combined with Equation (6) thus
allows us to upper bound

(2Mm(qb)− 1)(1− pw)p
0
b − (2Mm(qw)− 1)pw

(
1− p1b

)
(2qb − 1)(1− pw)p0b − (2qw − 1)pw(1− p1b)

≤ 2Mm(qb)− 1

2qb − 1
≤

√
m,

proving the proposition.

D. Proving Theorem 2
Theorem 2. For G as defined as in Section 3.2, m > 1 and qb, qw, pw, p

0
b , p

1
b fixed such that assumption 1 holds, there

exist an N ∈ N such that for n > N

P

(
n∑
i

Gi(Mm(q), p) > 0

)
< P

(
mn∑
i

Gi(q, p) > 0

)
.

Under assumption 2, this implies that the single label strategy outperforms the m−label strategy for these n.

The proof of theorem 2 is based on Cramér’s Theorem:

Cramér’s Theorem. (Adapted from (Klenke, 2013)) Let Xi be iid real random variables for i ∈ N such that

Λ(t) := logE[etX1 ] < ∞

for all t ∈ R. Define the Legendre transform

Λ∗(x) := sup
t
(tx− Λ(t)).

Then for all z ∈ R such that z > E[X1], we have

lim
n→∞

1

n
logP

(
Sn =

n∑
i=0

Xi ≥ zn

)
= −Λ∗(z),

where the limit is an upper bound for all n.

This means that P(Sn =
∑n

i=0 Xi ≥ zn) is eventually roughly of the order e−nΛ∗(z). Furthermore, a glance at the prove
of Cramér’s Theorem, reveals that this exponential is actually an upper bound for the error probability independent of n
in our case of z = 0. We want to eventually apply the theorem to X = −G(Mm(q), p, ϵ) and X ′ = −

∑m
i=0 Gi(q, p, ϵ)

respectively. Because these random variables have negative expectation, the theorem can be applied to z = 0 > E[X],
yielding limits for

1

n
logP(Sn ≥ 0) :=

1

n
log

(
P

(
n∑
i

Gi(Mm(q), p, ϵ) ≤ 0

))
=

1

n
log

(
1− P

(
n∑
i

Gi(Mm(q), p, ϵ) > 0

))

and
1

n
logP(S′

n ≥ 0) :=
1

n
log

(
1− P

(
mn∑
i

Gi(q, p, ϵ) > 0

))
.
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If we can prove that
−Λ∗

X(0) > −Λ∗
X′(0), (8)

it follows that there is an N ∈ N such that for n > N we have

1

n
log

(
1− P

(
n∑
i

Gi(Mm(q), p, ϵ) > 0

))
>

1

n
log

(
1− P

(
mn∑
i

Gi(q, p, ϵ) > 0

))
and thus by monotonicity

P

(
n∑
i

Gi(Mm(q), p, ϵ) > 0

)
< P

(
mn∑
i

Gi(q, p, ϵ) > 0

)
.

We first consider a general ternary X with negative expectation:

X =


1 w.p. x
−1 w.p. y
0 w.p. z

for y > x .

Lemma 2. For X ternary with P(X = 1) = x, P(X = −1) = y, and P(X = 0) = z,

−Λ∗
X(0) = log (2

√
xy + z).

For sums of independent copies Xi of ternary variables Sn =
∑n

i=0 Xi,

−Λ∗
Sn

(0) = n log (2
√
xy + z).

Proof. We have that

−Λ∗
X(0) = −

(
sup
t

0 · t− ΛX(t)

)
= inf

t
ΛX(t)

Here,
ΛX(t) = logE[etX ] = log

(
xet + ye−t + z

)
.

Differentiating yields
d

dt
ΛX(t) =

xet − ye−t

xet + ye−t + z
.

The numerator is positive for large positive t and negative for large negative t, with a unique zero at xet = ye−t, i.e.
y
x = e2t or t = 0.5 log y

x , such that Λ(t) is minimized at this t. This means that

inf
t
ΛX(t) = log

(
xe0.5 log y

x + ye−0.5 log y
x + z

)
= log

(
x
√
elog

y
x + y

1√
elog

y
x

+ z

)
= log

(
x

√
y

x
+ y

√
x

y
+ z

)
= log(2

√
xy + z).

Now for Sn, we get

ΛSn(t) = logE[etSn] = log

n∏
i=0

E[etXi ] = n log
(
xet + ye−t + z

)
.

The optimization is not affected by multiplying by n, so we get

inf
t
ΛSn

(t) = n log(2
√
xy + z)
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D.1. Independent Classifiers
We first focus on the independent case with

G(q, p, ϵ) =


1 w.p. qϵ+ (1− p− ϵ)p

−1 w.p. (1− q)ϵ+ (1− p− ϵ)p

0 else p(p+ ϵ) + (1− p− ϵ)(1− p)

,

where qb = qw = q, pw = p and p0b = p1b = p+ ϵ as defined in section 2 and apply Lemma 2 to

X = −G(Mm(q), p, ϵ)

and

X ′ = −
m∑
i=0

Gi(q, p, ϵ)

to obtain

−Λ∗
X(0) = log

(
2

√
Mm(q)(1−Mm(q))ϵ2 + ϵ(1− p− ϵ)p+ ((1− p− ϵ)p)

2
+ 1− ϵ− 2p(1− p− ϵ)

)
.

and

−Λ∗
X′(0) = m log

(
2

√
q(1− q)ϵ2 + ϵ(1− p− ϵ)p+ ((1− p− ϵ)p)

2
+ 1− ϵ− 2p(1− p− ϵ)

)
.

To get some intuition, we fix p = 0.5, such that

−Λ∗
X(0) = log

(
2

√(
Mm(q)(1−Mm(q))− 1

4

)
ϵ2 +

1

16
+

1

2

)
,

which for the aggregated case yields an asymptotic error rate of

e−Λ∗
X(0)n =

(
2

√(
Mm(q)(1−Mm(q))− 1

4

)
ϵ2 +

1

16
+

1

2

)n

The error rate has a second order taylor expansion around ϵ = 0 of

e−nΛ∗
X(0) ≈ 1 + (4(Mm(q)(1−Mm(q))− 1))nϵ2.

For q = Mm(q) = 1, we thus get
e−nΛ∗

X(0) ≈ 1− nϵ2,

which is consistent with the statistical intuition that n ≫ 1
ϵ2 samples are needed to detect a coin with a bias of order ϵ.

Meanwhile as q goes to 0.5, Mm(q)(1−Mm(q)) approaches 4 and the amount of required samples explodes.

Back to general p ≥ 0.5, we note that by the AM-GM inequality, 2
√
xy+ z ≤ x+ y+ z = 1 for any x, y, z that describe a

ternary random variable as above with equality only if x = y, which cannot happen for G under our assumptions because
of its positive expectation. This means that the logarithms in the Λ∗ are always strictly negative. In particular, at q = 0.5
and q = 1, Mm(q) = q such that the terms in the logarithm are equal and we get −Λ∗

X(0) ≥ −mΛ∗
X(0) = −Λ∗

X′(0). In
general, we have

− Λ∗
X(0) + Λ∗

X′(0) (9)

= log

(
2

√
Mm(q)(1−Mm(q))ϵ2 + ϵ(1− p− ϵ)p+ ((1− p− ϵ)p)

2
+ 1− ϵ− 2p(1− p− ϵ)

)
−m log

(
2

√
q(1− q)ϵ2 + ϵ(1− p− ϵ)p+ ((1− p− ϵ)p)

2
+ 1− ϵ− 2p(1− p− ϵ)

)
.
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Because (8) holds for q = 0.5 independent of ϵ and p as both terms are the same except for the factor m in that case, it is
sufficient to show that (9) always has a positive derivative in q. To show this, we set

f∗(q) = Mm(q)(1−Mm(q))ϵ2 + ϵ(1− p− ϵ)p+ ((1− p− ϵ)p)
2
,

g∗(q) = q(1− q)ϵ2 + ϵ(1− p− ϵ)p+ ((1− p− ϵ)p)
2

and
c = 1− ϵ− 2p(1− p− ϵ),

such that
−Λ∗

X(0) + Λ∗
X′(0) = log

(
2
√
f∗(q) + c

)
−m log

(
2
√
g∗(q) + c

)
. (10)

Differentiating yields

d

dq
(−Λ∗

X(0) + Λ∗
X′(0)) =

d

dq
log
(
2
√
f∗(q) + c

)
−m

d

dq
log
(
2
√

g∗(q) + c
)

=

d
dq2
√

f∗(q)(
2
√

f∗(q) + c
) −m

d
dq2
√

g∗(q)(
2
√
g∗(q) + c

)

=

f∗′ (q)√
f∗(q)(

2
√

f∗(q) + c
) −m

g∗′ (q)√
g∗(q)(

2
√
g∗(q) + c

)
=

f∗′
(q)√

f∗(q)
(
2
√

f∗(q) + c
)

−m
g∗

′
(q)√

g∗(q)
(
2
√

g∗(q) + c
) .

Correspondingly using (9), (8) reduces to

f∗′
(q) ≥ mg∗

′
(q)

√
f∗(q)

(
2
√
f∗(q) + c

)
√
g∗(q)

(
2
√
g∗(q) + c

) (11)

We can calculate
g∗

′
(x) =

d

dq
q(1− q)ϵ2 = ϵ2(1− 2q)

and

f∗′
(x) = ϵ2

d

dq
Mm(q)(1−Mm(q))

= ϵ2(1− 2Mm(q))
d

dq
Mm(q)

= ϵ2(1− 2Mm(q))m

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2 ,

where the last equation uses the equality of

M2n+1(q) = (2n+ 1)

(
2n

n

)∫ q

0

xn(1− x)
n
dx

(Boland et al., 1989). Correspondingly, (11) holds if and only if

(1− 2Mm(q))m

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2 ≥ m(1− 2q)

√
f∗(q)

(
2
√

f∗(q) + c
)

√
g∗(q)

(
2
√

g∗(q) + c
) .
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For 0.5 < q < 1, this is equivalent to

2Mm(q)− 1

2q − 1

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2 ≤

√
f∗(q)

(
2
√
f∗(q) + c

)
√

g∗(q)
(
2
√
g∗(q) + c

) . (12)

Lemma D.1. Let 0 < x < y and c > 0. Then, 2x+c
√
x

2y+c
√
y ≥ x

y

Proof.

2x+ c
√
x

2y + c
√
y
≥ x

y
⇐⇒

(
2x+

√
xc
)
y ≥ (2y +

√
yc)x

⇐⇒ 2xy + c
√
xy ≥ 2xy + c

√
yx

⇐⇒
√
xy ≥ √

yx

⇐⇒ y
√
y
≥ x√

x

⇐⇒ √
y ≥

√
x

⇐⇒ y ≥ x

As f∗(q) and g∗(q) can be written as Mm(q)(1−Mm(q))ϵ2 + d and q(1− q)ϵ2 + d respectively for d = ϵ(1− p− ϵ)p+

((1− p− ϵ)p)
2, and because k(x) = x(1− x) is monontonously falling in x while Mm(x) grows in m, g∗(x) ≥ f∗(x),

and Lemma D.1 implies that it is sufficient to show

2Mm(q)− 1

2q − 1

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2 ≤ f∗(q)

g∗(q)
. (13)

Lemma D.2. Let 0 < x < y and d > 0. Then, x+d
y+d ≥ x

y

Proof.

x+ d

y + d
≥ x

y
⇐⇒ y(x+ d) ≥ x(y + d)

⇐⇒ xy + yd ≥ yx+ xd

⇐⇒ y ≥ x

Lemma D.2 implies that (13) can be reduced to

2Mm(q)− 1

2q − 1

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2 ≤ ϵ2Mm(q)(1−Mm(q))

ϵ2q(1− q)
. (14)

Lemma C.2 allows to rewrite (14) as

(1 + 2σ(m, q))

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2

=
2q + 2(2q − 1)σ(m, q)− 1

2q − 1

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2

≤ Mm(q)(1−Mm(q))

q(1− q)
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or equivalently

(1 + 2σ(m, q))

(
m− 1
m−1
2

)
q

m+1
2 (1− q)

m+1
2 ≤ Mm(q)(1−Mm(q)). (15)

We note that both sides approach zero from above as q → 1, such that (15) holds for q = 1. It is thus sufficient to show,
that the right side grows faster than the left side when decreasing q, i.e.

d

dq

(
(1 + 2σ(m, q))

(
m− 1
m−1
2

)
q

m+1
2 (1− q)

m+1
2

)
≥ d

dq
(Mm(q)(1−Mm(q))). (16)

We have

d

dq
(Mm(q)(1−Mm(q))) = (1− 2Mm(q))m

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2

Meanwhile,

d

dq
(1 + 2σ(m, q))

(
m− 1
m−1
2

)
q

m+1
2 (1− q)

m+1
2

= (1 + 2σ(m, q))
m+ 1

2
(1− 2q)

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2 +

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2 q(1− q)2

d

dq
σ(m, q)

=

(
m− 1
m−1
2

)
q

m−1
2 (1− q)

m−1
2

(
(1 + 2σ(m, q))

m+ 1

2
(1− 2q) + q(1− q)2

d

dq
σ(m, q)

)
.

Because
(m−1

m−1
2

)
q

m−1
2 (1− q)

m−1
2 > 0 for q < 1, (16) or

d

dq
(1 + 2σ(m, q))

(
m− 1
m−1
2

)
q

m+1
2 (1− q)

m+1
2 ≥ d

dq
(Mm(q)(1−Mm(q)))

holds whenever
(1 + 2σ(m, q))

m+ 1

2
(1− 2q) + q(1− q)2

d

dq
σ(m, q) ≥ m(1− 2Mm(q)). (17)

Dividing by the (negative) 1− 2Mm(q) term yields

(1 + 2σ(m, q))
m+ 1

2

(1− 2q)

1− 2Mm(q)
+

q(1− q)

1− 2Mm(q)
2
d

dq
σ(m, q) ≤ m.

which is equivalent to
m+ 1

2
+

q(1− q)

1− 2Mm(q)
2
d

dq
σ(m, q) ≤ m

as (1−2q)
1−2Mm(q) =

1
1+2σ(m,q) . Rewriting yields

m− 1

2
= m− m+ 1

2
(18)

≥ − q(1− q)

2Mm(q)− 1
2
d

dq
σ(m, q)

= −2
q(1− q)

2Mm(q)− 1
(1− 2q)

m−2∑
k uneven

k + 1

2

(
k

k+1
2

)
q

k−1
2 (1− q)

k−1
2

= 2
2q − 1

2Mm(q)− 1

m−2∑
k uneven

k + 1

2

(
k

k+1
2

)
q

k+1
2 (1− q)

k+1
2

= 2
1

1 + 2σ(m, q)

m−2∑
k uneven

k + 1

2

(
k

k+1
2

)
q

k+1
2 (1− q)

k+1
2 (19)
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We can upper bound

m−2∑
k uneven

k + 1

2

(
k

k+1
2

)
q

k+1
2 (1− q)

k+1
2 ≤ m− 2 + 1

2

m−2∑
k uneven

(
k

k+1
2

)
q

k+1
2 (1− q)

k+1
2

=
m− 1

2
σ(m, q)

such that (18) reduces to
m− 1

2
≥ m− 1

2

2σ(m, q)

1 + 2σ(m, q)
, (20)

which is clearly true, as x
1+x < x

x = 1 for all x > 0.

D.2. Correlated Classifiers
We now analyze the case of correlated classifiers discussed in 3.2, at first keeping q = qb = qw fixed to be equal. As a
reminder, we now have

G(q, p, ϵ) =


1 w.p. q(1− pw)p

0
b + (1− q)pw

(
1− p1b

)
−1 w.p. (1− q)(1− pw)p

0
b + qpw

(
1− p1b

)
0 else

.

with expectation

(2q − 1)(1− pw)p
0
b − (2q − 1)pw

(
1− p1b

)
= (2q − 1)

(
(1− pw)p

0
b + pw

(
p1b − 1

))
> 0.

We also note that

P(G(q, p, ϵ) = 0) = 1− P(G(q, p, ϵ) = 1)− P(G(q, p, ϵ) = −1)

= 1− q(1− pw)p
0
b − (1− q)pw

(
1− p1b

)
− (1− q)(1− pw)p

0
b − qpw

(
1− p1b

)
= 1− (1− pw)p

0
b − pw

(
1− p1b

)
=: c0

is constant in q. Repeating the argument from above, we now obtain

Λ′∗
X(0)

= m log

(
2
√
P(G(q, p, ϵ) = 1)P(G(q, p, ϵ) = −1) + c0

)
= m log

(
2

((
q(1− pw)p

0
b(1− q)(1− pw)p

0
b + q(1− pw)p

0
bqpw

(
1− p1b

))
+ (1− q)pw

(
1− p1b

)
(1− q)(1− pw)p

0
b + (1− q)pw

(
1− p1b

)
qpw

(
1− p1b

)) 1
2

+ c0

)
= m log

(
2
√
q(1− q)c1 + qqc2 + (1− q)(1− q)c3 + (1− q)qc4 + c0

)
,

where the ci are constants that do not depend on q. We also note, that pw
(
1− p1b

)
(1− pw)p

0
b = c2 = c3.

We now consider

f∗(q) = (c1 + c4)Mm(q)(1−Mm(q)) + c2

(
Mm(q)

2
+ (1−Mm(q))

2
)

= (c1 + c4)Mm(q)(1−Mm(q)) + c2

(
Mm(q)

2
+ 1− 2Mm(q) +Mm(q)

2
)

= (c1 + c4)Mm(q)(1−Mm(q)) + c2

(
2Mm(q)

2 − 2Mm(q)
)
+ c2

= (c1 + c4)Mm(q)(1−Mm(q))− 2c2(Mm(q)(1−Mm(q))) + c2

= (c1 + c4 − 2c2)Mm(q)(1−Mm(q)) + c2
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and
g∗(q) = (c1 + c4 − 2c2)q(1− q) + c2,

such that
−Λ∗

X(0) + Λ∗
X′(0) = log

(
2
√

f∗(q) + c0

)
−m log

(
2
√
g∗(q) + c0

)
,

where c0 does not depend on q. This is exactly (10) with c0 replacing c. A brief glance reveals that

(1− pw)
2(
p0b
)2

+
(
1− p1b

)2
(pw)

2

2
≥
(
(1− pw)p

0
bpw

(
1− p1b

))
by the AM-GM inequality, such that

c1 + c4 − 2c2 > 0.

This means that f∗(q) and g∗(q) are exactly of the form d1Mm(q)(1−Mm(q)) + d2 and d1q(1− q) + d2 for constants
d1 = c1 + c4 − 2c2 > 0 and d2 = c2 > 0. As it did not rely on the specific values for these constants beyond their
positivity, the reasoning from the last section (where d1 = ϵ2 and d2 = ϵ(1− p− ϵ)p+ ((1− p− ϵ)p)

2) can be repeated
one to one, proving our main result for correlated classifiers,

D.3. Correlated Classifiers and Labels
As in 3.2, we now consider

G(q, p, ϵ) =


1 w.p. qb(1− pw)p

0
b + (1− qw)pw

(
1− p1b

)
−1 w.p. (1− qb)(1− pw)p

0
b + qwpw

(
1− p1b

)
0 else

.

with expectation

(2qb − 1)(1− pw)p
0
b − (2qw − 1)pw

(
1− p1b

)
> 0.

We note that

P(G(q, p, ϵ) = 0) = 1− P(G(q, p, ϵ) = 1)− P(G(q, p, ϵ) = −1)

= 1− qb(1− pw)p
0
b − (1− qw)pw

(
1− p1b

)
− (1− qb)(1− pw)p

0
b − qwpw

(
1− p1b

)
= 1− (1− pw)p

0
b − pw

(
1− p1b

)
still does not depend on either of the qi, nor their difference. By assumption 1, we can reparameterise qb = qw + δ = q+ δ
for δ ≥ 0 and we know by the previous calculations that (8) holds for δ = 0. We now obtain

−Λ′∗
X(0) = m log

(
2

(
(q + δ)(1− q − δ)c1 + (q + δ)qc2 + (1− q)(1− q − δ)c3 + (1− q)qc4

) 1
2

+ c0

)
,

where the constants ci are as before and neither depend on q nor δ. We set

f∗(δ) = c1Mm(q + δ)(1−Mm(q + δ)) + c2

(
Mm(q)Mm(q + δ) + (1−Mm(q))(1−Mm(q + δ))

)
+ c4(1−Mm(q))Mm(q)

and
g∗(δ) = c1(q + δ)(1− q − δ) + c2(q(q + δ) + (1− q)(1− q − δ)) + c4(1− q)q,

such that
−Λ∗

X(0) + Λ∗
X′(0) = log

(
2
√

f∗(δ) + c0

)
−m log

(
2
√
g∗(δ) + c0

)
,
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and we again have to show (11), i.e.

f∗′
(δ) ≥ mg∗

′
(δ)

√
f∗(δ)

(
2
√
f∗(δ) + c0

)
√

g∗(δ)
(
2
√
g∗(δ) + c0

)
as we already know −Λ∗

X(0) + Λ∗
X′(0) to be positive for δ = 0. This time,

g∗
′
(δ) = c1(1− 2(q + δ))− c2(1− 2q)

and

f∗′
(δ) = c1(1− 2Mm(q + δ))m

(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q − δ)

m−1
2

+ c2Mm(q)m

(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q + δ)

m−1
2

− c2(1−Mm(q))m

(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q + δ)

m−1
2

= (c1(1− 2Mm(q + δ))− c2(1− 2Mm(q)))m

(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q − δ)

m−1
2 .

We note that
c1 − c2 =

(
(1− pw)p

0
b

)2 − (1− pw)p
0
bpw

(
1− p1b

)
,

which is positive if
(1− pw)p

0
b − pw

(
1− p1b

)
> 0,

i.e.
(1− pw)p

0
b + pw

(
p1b − 1

)
> 0,

which we assumed to be true. Correspondingly, c1 > c2 and because 1− 2(q + δ) and 1− 2Mm(q + δ) are monotonously
falling in δ, both f∗′

and g∗
′

are negative. As such, (11) reduces to

f∗′

mg∗′ =

(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q − δ)

m−1
2

(c1(1− 2Mm(q + δ))− c2(1− 2Mm(q)))

c1(1− 2(q + δ))− c2(1− 2q)

≤

√
f∗(δ)

(
2
√

f∗(δ) + c0

)
√
g∗(δ)

(
2
√

g∗(δ) + c0

) .
To get a better handle on this inequality, we need the following lemma:

Lemma D.3. Let c1, c2 be positive and A,B,C,D be negative constants such that c1A− c2B < 0 and c1C − c2D < 0.
Then c1A−c2B

c1C−c2D
≤ A

C is true if and only if CB ≥ DA.

Proof.

c1A− c2B

c1C − c2D
≤ A

C
⇐⇒ c1A− c2B ≥ A(c1C − c2D)

C

⇐⇒ C(c1A− c2B) ≤ A(c1C − c2D)

⇐⇒ c1CA− c2CB ≤ c1CA− c2DA

⇐⇒ −c2CB ≤ −c2DA

⇐⇒ CB ≥ DA
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We set
A = (1− 2Mm(q + δ)),

B = (1− 2Mm(q)),

C = (1− 2(q + δ)),

D = (1− 2q),

such that CB ≥ DA is equivalent to

(1− 2(q + δ))(1− 2Mm(q)) ≥ (1− 2q)(1− 2Mm(q + δ)),

or

(1− 2Mm(q)) ≤ (1− 2q)
(1− 2Mm(q + δ))

(1− 2(q + δ))
,

i.e.
(1− 2Mm(q))

(1− 2q)
≥ (1− 2Mm(q + δ))

(1− 2(q + δ))
,

which is equivalent to
1 + 2σ(m, q) ≥ 1 + 2σ(m, q + δ),

which holds as σ(m,x) is clearly monotonically decreasing in x for x > 0.5.

Lemma D.3 allows us to upper bound

(c1(1− 2Mm(q + δ))− c2(1− 2Mm(q)))

c1(1− 2(q + δ))− c2(1− 2q)
≤ (1− 2Mm(q + δ))

1− 2(q + δ)

= 1 + 2σ(m, q + δ).

Correspondingly, (11) reduces to(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q − δ)

m−1
2 (1 + 2σ(m, q + δ))

≤

√
f∗(δ)

(
2
√
f∗(δ) + c0

)
√
g∗(δ)

(
2
√
g∗(δ) + c0

) . (21)

To control this, we need another lemma:

Lemma D.4. Let c, f1, f2, g1, g2 > 0; f1 ≤ g1 and f2 ≥ g2. Then

f1
g1

≤ 2(f1 + f2) + c
√
f1 + f2

2(g1 + g2) + c
√
g1 + g2

Proof. We first note that
(f1 − g1)f1g1 ≤ g21f2 − f2

1 g2,

as the left side is always negative because f1 ≤ g1, while the right side is always positive as g1 ≥ f1 and f2 ≥ g2. With
this, we calculate

(f1 − g1)f1g1 ≤ g21f2 − f2
1 g2

⇐⇒ f2
1 g1 + f2

1 g2 ≤ g21f1 + g21f2

⇐⇒ f2
1 (g1 + g2) ≤ g21(f1 + f2)

⇐⇒ f1
√
g1 + g2 ≤ g1

√
f1 + f2.
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With this,

f1
g1

≤ 2(f1 + f2) + c
√
f1 + f2

2(g1 + g2) + c
√
g1 + g2

⇐⇒ f1
(
2(g1 + g2) + c

√
g1 + g2

)
≤ g1

(
2(f1 + f2) + c

√
f1 + f2

)
⇐⇒ f1

(
2g2 + c

√
g1 + g2

)
≤ g1

(
2f2 + c

√
f1 + f2

)
.

The inequality now holds for the second terms on each side by our previous calculations, and for the first terms on each
side as f1 ≤ g1 and g2 ≤ f2.

We set
f1 = c1Mm(q + δ)(1−Mm(q + δ)) + c4(1−Mm(q))Mm(q),

g1 = c1(q + δ)(1− q − δ) + c4(1− q)q,

as well as
f2 = c2(Mm(q)Mm(q + δ) + (1−Mm(q))(1−Mm(q + δ))),

and
g2 = c2(q(q + δ) + (1− q)(1− q − δ)),

such that
f1 + f2 = f∗(δ)

and
g1 + g2 = g∗(δ).

If we can prove the preconditions for D.4, (21) will reduce to(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q − δ)

m−1
2 (1 + 2σ(m, q + δ)) ≤ f1

g1
. (22)

f1 ≤ g1 is easy to see, based on the increasingness of Mm(q) in m, and the decreasingness of x(1− x) in x for x > 0.5.
We can thus focus on showing g2 ≤ f2, i.e.

(q(q + δ) + (1− q)(1− q − δ)) (23)
≤ (Mm(q)Mm(q + δ) + (1−Mm(q))(1−Mm(q + δ))).

At δ = 1− q, (23) becomes
q ≤ Mm(q),

which is clearly true. At δ = 0, we get

q2 + (1− q)
2 ≤ Mm(q)

2
+ (1−Mm(q))

2
.

We note that
x2 + (1− x)

2
= 1 + 2

(
x2 − x

)
has the derivative 4x−2, which is positive for x > 0.5. Correspondingly, the Mm(q) term is larger than the q term. Having
shown that (23) holds at both extreme values for δ, it is sufficient for Lemma D.4 to hold to show that the second derivative
of

(q(q + δ) + (1− q)(1− q − δ))− (Mm(q)Mm(q + δ) + (1−Mm(q))(1−Mm(q + δ)))

with respect to δ is positive, such that the function is convex. As the left term is linear in δ, this derivative equals

−Mm(q)
d2

d2δ
Mm(q + δ) + (1−Mm(q))

d2

d2δ
Mm(q + δ),
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which equals

(1− 2Mm(q))
d2

d2δ
Mm(q + δ)

and thus has the opposite sign of d2

d2δMm(q + δ), which is negative due to the well-known concavity of the majority vote
in Mm(x) in x for x > 0.5 (Boland et al., 1989).

To prove (22), we need one last lemma:

Lemma D.5. Let A,B,C,D > 0 and AD ≤ BC. Then, A
C ≤ A+B

C+D

Proof.

A

C
≤ A+B

C +D
⇐⇒ AC +AD ≤ AC +BC ⇐⇒ AD ≤ BC

We set
A = c1Mm(q + δ)(1−Mm(q + δ)),

B = c4(1−Mm(q))Mm(q),

C = c1(q + δ)(1− q − δ),

D = c4(1− q)q,

such that
f1 = A+B

and
g1 = C +D.

If we can show that AD ≤ BC, (22) would reduce to(
m− 1
m−1
2

)
(q + δ)

m−1
2 (1− q − δ)

m−1
2 (1 + 2σ(m, q + δ))

≤ Mm(q + δ)(1−Mm(q + δ))

(q + δ)(1− q − δ)
, (24)

which is equivalent to (14) and true by the calculations in section D.1. AD ≤ BC is equivalent to

Mm(q + δ)(1−Mm(q + δ))(1− q)q ≤ (1−Mm(q))Mm(q)(q + δ)(1− q − δ).

This is again clearly true for δ = 0 where both sides are equal, such that it is sufficient to show that

Mm(q + δ)(1−Mm(q + δ))(1− q)q

(1−Mm(q))Mm(q)(q + δ)(1− q − δ)

or
(1− q)q

(1−Mm(q))Mm(q)

Mm(q + δ)(1−Mm(q + δ))

(q + δ)(1− q − δ)

is maximized at δ = 0. As the first term does not depend on δ, we only need to analyze the second term. Reparameterizing
x = q + δ, it is thus sufficient to show that

Mm(x)(1−Mm(x))

x(1− x)

decreases monotonously in x. We take derivatives with respect to x, obtaining

(1− 2Mm(x))m
(m−1

m−1
2

)
x

m+1
2 (1− x)

m+1
2 −Mm(x)(1−Mm(x))(1− 2x)

x2(1− x)
2 .
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This is negative, whenever

(1− 2Mm(x))m

(
m− 1
m−1
2

)
x

m+1
2 (1− x)

m+1
2 ≤ Mm(x)(1−Mm(x))(1− 2x)

or equivalently
1− 2Mm(x)

1− 2x
m

(
m− 1
m−1
2

)
x

m+1
2 (1− x)

m+1
2 ≥ Mm(x)(1−Mm(x)),

i.e.

(1 + 2σ(m,x))m

(
m− 1
m−1
2

)
x

m+1
2 (1− x)

m+1
2 ≥ Mm(x)(1−Mm(x)).

As both sides tend to zero for x → 1, it is sufficient to show that the right term increases more slowly as x decreases, i.e.

d

dq

(
(1 + 2σ(m,x))m

(
m− 1
m−1
2

)
x

m+1
2 (1− x)

m+1
2

)
≤ d

dq
(Mm(x)(1−Mm(x))). (25)

Note, that this equation is the reverse of (16), but with an additional factor of m on the left side. Repeating the calculations
from Section D.1, (25) reduces to

m

(
m+ 1

2
+

q(1− q)

1− 2Mm(q)
2
d

dq
σ(m, q)

)
≥ m

or
m+ 1

2
+

q(1− q)

1− 2Mm(q)
2
d

dq
σ(m, q) ≥ 1.

The q(1−q)
1−2Mm(q)2

d
dqσ(m, q) term is positive, as both the first and the second factor are clearly negative, such that the equation

holds, finishing our proof of

P

(
n∑
i

Gi(Mm(q), p) > 0

)
< P

(
mn∑
i

Gi(q, p) > 0

)
.

It remains to show that for fixed qb ≥ qw and m > 1 uneven, G in the heterogeneous case stochastically dominates G
for the homogeneous whenever assumption 2 holds. This would imply that the sum of Gi follows the same dominance
relation, such that the probability of correctly identifying cb is larger for the m−label case assuming homogeneity rather
than explicitly modelling heterogeneity. We note that P(G(q, p) = 0) does not depend on q, such that it is sufficient to
show that P(G(q, p) = 1) is larger in the homogeneous case. We rewrite

(1− pw)p
0
b

pw(1− p1b)

(
Mm(qb)− E

x
[Mm(q(x))|Eb]

)
≥ Mm(qw)− E

x
[Mm(q(x))|Ew]

⇐⇒ (1− pw)p
0
b

(
Mm(qb)− E

x
[Mm(q(x))|Eb]

)
≥ pw

(
1− p1b

)(
Mm(qw)− E

x
[Mm(q(x))|Ew]

)
⇐⇒ (1− pw)p

0
bMm(qb)− pw

(
1− p1b

)
Mm(qw)

≥ (1− pw)p
0
b E

x
[Mm(q(x))|Eb]− pw

(
1− p1b

)
E
x
[Mm(q(x))|Ew]

⇐⇒ (1− pw)p
0
bMm(qb)− pw

(
1− p1b

)
(1−Mm(qw))

≥ (1− pw)p
0
b E

x
[Mm(q(x))|Eb]− pw

(
1− p1b

)(
1− E

x
[Mm(q(x))|Ew]

)
⇐⇒ P(G(Mm(qb),Mm(qw), p) = 1)

≥ P
(
G
(
E
x
[Mm(q(x))|Eb],E

x
[Mm(q(x))|Ew], p

)
= 1
)
,

showing that the heterogeneous case is dominated by the homogeneous case under assumption 2.
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