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Abstract

Pre-trained vision-language models (VLMs) such as CLIP have shown excellent
performance for zero-shot classification. Based on CLIP, recent methods design
various learnable prompts to evaluate the zero-shot generalization capability on
a base-to-novel setting. This setting assumes test samples are already divided
into either base or novel classes, limiting its application to realistic scenarios. In
this paper, we focus on a more challenging and practical setting: generalized
zero-shot learning (GZSL), i.e., testing with no information about the base/novel
division. To address this challenging zero-shot problem, we introduce two unique
designs that enable us to classify an image without the need of knowing whether
it comes from seen or unseen classes. Firstly, most existing methods only adopt
a single latent space to align visual and linguistic features, which has a limited
ability to represent complex visual-linguistic patterns, especially for fine-grained
tasks. Instead, we propose a dual-space feature alignment module that effectively
augments the latent space with a novel attribute space induced by a well-devised
attribute reservoir. In particular, the attribute reservoir consists of a static vocabulary
and learnable tokens complementing each other for flexible control over feature
granularity. Secondly, finetuning CLIP models (e.g., prompt learning) on seen
base classes usually sacrifices the model’s original generalization capability on
unseen novel classes. To mitigate this issue, we present a new topology-preserving
objective that can enforce feature topology structures of the combined base and
novel classes to resemble the topology of CLIP. In this manner, our model will
inherit the generalization ability of CLIP through maintaining the pairwise class
angles in the attribute space. Extensive experiments on twelve object recognition
datasets demonstrate that our model, termed Topology-Preserving Reservoir (TPR),
outperforms strong baselines including both prompt learning and conventional
generative-based zero-shot methods.

1 Introduction

Young children often exhibit a remarkable capacity to identify novel visual objects only based on
verbal descriptions provided by their caregivers. This phenomenon has spurred considerable interest
in developing learning models with similar feats, known as zero-shot learning (ZSL). Early ZSL
works [1, 2] trained a model on the seen base classes and evaluated the generalization performance
on novel unseen classes. This can be done by aligning the visual features and textual descriptors

∗Work done while visiting The University of Queensland.
†Corresponding author: nnzheng@mail.xjtu.edu.cn.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



(a) Performance comparison on seen (left) and unseen (right) classes

𝑐2

𝑐1
𝜽

(b) CLIP features

𝑐1
𝑐2

𝜽

(c) Finetuned features

(d) Our features

seen features

unseen features

Figure 1: (a) In the challenging and realistic generalized zero-shot learning (GZSL) setting, our
method significantly outperforms the state-of-the-art methods on both seen and unseen classes. (b-d)
Finetuning CLIP will lead to the weak generalization problem [8] on unseen classes. We tackle this
problem by inheriting the topology of CLIP feature space by maintaining the pairwise angles.

into a shared latent space, where the intrinsic visual-linguistic relationship is extracted for zero-shot
classification at test time. However, this conventional ZSL setting assumes test examples only come
from novel classes, limiting its application to realistic scenarios where both base and novel classes
need to be classified. Therefore, a more realistic setting generalized zero-shot learning (GZSL) [3, 4]
has been proposed to recognize both base and novel classes without knowing the base/novel division.
Recent GZSL methods such as CE [5], LSA [6] and ZLAP [7] design various generative models,
which generate the missing visual features for unseen novel classes and then conduct joint base and
novel classification.

The emergence of large vision-language models (VLMs) such as CLIP [9] have demonstrated good
potential for ZSL. For example, CLIP is trained on 400 million image-text pairs, which can effectively
capture the visual-linguistic links essential for ZSL. After training, the model can be applied for zero-
shot classification using a hand-crafted prompt, e.g., ‘a photo of <class>’. Starting from CLIP,
recent works design diverse learnable prompts (e.g., conditional prompt [8], Multi-modal prompt [10],
and self-regulating prompt [11]) to improve CLIP’s performance for downstream zero-shot tasks. We
find that these prompt methods adopt a base-to-novel setting to evaluate their zero-shot generalization
capability, similar to the conventional ZSL setting. In particular, they classify the base and novel
classes separately, with the strong assumption that test samples have already been divided into either
base or novel classes. Driven by the practicality of zero-shot learning, this paper focuses on a more
realistic setting of generalized zero-shot learning (GZSL) under the VLM context.

To tackle the challenging GZSL problem, we introduce a Topology-Preserving Reservoir (TPR)
model to effectively unleash the generalization potential of VLMs for the simultaneous classification
of base and novel categories. To achieve the goal, our proposed TPR embraces two core novel
designs: a dual-space feature alignment module and a feature semantic topology preserving objective.
Considering that most previous methods establish the visual-linguistic relations by employing a single
shared latent space [7, 11, 8, 6], the complex and fine-grained patterns cannot be effectively captured.
To mitigate this key issue, we present a dual-space feature alignment module by enhancing the
latent space with a representative attribute space, which is constructed from a well-devised attribute
reservoir. The reservoir is designed to contain both static and learnable vocabulary tokens. In this
fashion, both prior knowledge and task-specific information can be extracted, enriching the feature
representations and avoiding overfitting to a single task.

Moreover, recent works [8] identify the weak generalizability problem of prompt learning on VLMs,
i.e., the learned prompts on seen classes do not often generalize well to unseen classes (e.g., in
Fig. 1 (a) (right), ProGrad [12] underperforms CLIP on unseen classes). To address this problem,
we propose a new topology-preserving objective (Fig. 1 (b-d)) to maintain the semantic topology
structure of the combined seen and unseen3 classes by referring to the original CLIP embeddings.

3For unseen, we only use the class names without accessing any additional data.
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Specifically, we adopt the Pearson correlation coefficient to constrain the variation of angles between
pairwise categories before and after CLIP finetuning. As a result, after finetuning, our model still
inherits the good generalization ability of CLIP, without suffering from the weak generalization
problem. This can be shown by the superior performance on the unseen classes in Fig. 1(a)(right).

Extensive experiments conducted on twelve object recognition datasets, including both traditional
GZSL benchmarks and prompt learning benchmarks, demonstrate that our proposed method signifi-
cantly improves the recognition performance on unseen classes over our baselines, and outperforms
the state-of-the-art on eleven datasets. Our contributions are summarized as follows:

• Different from the traditional base-to-novel setting, our work emphasizes a challenging yet
practical generalized zero-shot learning problem for VLMs, without knowing the division of
the base and novel categories. In this scenario, our proposed Topology-Preserving Reservoir
model significantly improves the recognition performance compared to prior arts.

• We introduce a dual-space feature alignment module. It enhances the latent space, which is
shared by visual and textual features, with a representative attribute space constructed from
an attribute reservoir. In this manner, we essentially improve the representativeness of the
latent space, leading to better fine-grained alignment between visual and textual features.

• We introduce a new feature semantic topology-preserving objective that is designed to
maintain the semantic topology structure of finetuned features. In this fashion, finetuned
features will not severely overfit to seen classes. Thus, we can effectively preserve the
generalization capability of VLMs on unseen categories.

2 Related Works

Zero-shot Learning. Zero-shot Learning (ZSL) [2, 13, 14, 15] aims to recognize unseen objects
by leveraging auxiliary knowledge such as tags, attributes, or textual descriptions to bridge the gap
between seen and unseen classes. Generalized Zero-shot Learning (GZSL) [16, 17, 18] extends
the scope of ZSL by considering a more realistic scenario where both seen and unseen classes are
present during testing. Several methods [19, 20, 21, 22, 23, 16, 24] seek to learn a latent space where
visual and linguistic data are aligned and the inference is performed by searching which class has the
highest similarity score. Besides, generative models [25, 26, 27, 7, 6, 5, 28] like GANs have been
explored for ZSL/GZSL due to their superior performance. These models generate synthetic samples
for unseen classes based on their semantic descriptions. In the Large Language Model (LLM) era,
many works [24, 29, 30] focus on generating improved visual-linguistic features for better alignment.
While most methods default to utilizing attributes as semantic embeddings, attribute annotation poses
scalability challenges for large-scale datasets. Moreover, attribute annotation exhibits subjectivity
[31], leading to perceptible discrepancies among different annotators.

Vision-Language Models. Vision-Language Models (VLMs) aim to bridge the semantic gap between
visual and textual modalities, enabling tasks such as image captioning, visual question answering,
and image-text retrieval. Inspired by the success of self-supervised learning [32], vision-language
pretraining has emerged as a powerful paradigm for learning rich representations of images and
text. Recent VLMs, such as CLIP [9], ALIGN [33], BLIP [34], VLMO [35], CoCa [36] and FLIP
[37], learn powerful joint representations by using contrastive learning on large amounts of paired
vision-language data. After pretraining on 400M pairs of data, CLIP constructs image classifiers
using the class names of the target dataset in a zero-shot manner and achieves superior performance.
Despite the direct applicability of VLMs to zero-shot recognition, empirical observations show
suboptimal performance on fine-grained tasks [9]. In this work, we propose to align multimodal
representations in a dual-space to improve the fine-grained representation ability of VLMs for GZSL.

Prompt Learning in VLMs. Prompt learning has gained traction in natural language processing as a
powerful approach for adapting pre-trained language models to new tasks with minimal supervision
[38, 39]. In prompt learning, task-specific prompts or templates are designed to guide the language
model to generate outputs tailored to a particular task, enabling effective adaptation to diverse
downstream applications. Recent research [40, 8] has extended the concept of prompt learning to
VLMs. By providing task-specific prompts that incorporate both visual and textual cues, VLMs
can seamlessly integrate knowledge from multiple modalities and generalize to unseen tasks with
limited labeled data [10, 41, 11, 12]. For example, CoOp [40] finetunes the pretrained CLIP model by

3



Dark glossy-

green

cormorant with

a bluish neck,

red face, and y

Strange, long-tailed

tanager-like bird

with thick bill.

Bright yellow throat

and breast, ,

contrasting …

Attribute space

Latent space

Text

Encoder

Image 

Encoder

𝑁1

𝑑𝑎

attribute reservoir 𝐴

𝑁2

𝒙
𝑄

𝐴𝑣
𝑉

𝐴𝑙

𝐾

𝒛

𝑓𝑣

𝑓𝑙

𝑔𝑣

𝑔𝑙

𝑠(𝒙, 𝒛)

𝑠𝑎(𝒙, 𝒛)
input description

class topology

𝑃𝑣

𝑃𝑣
𝑎

𝑃𝑙
𝑎

𝑃𝑙

input image

𝑃𝑣, 𝑃𝑙, 𝑃𝑣
𝑎, 𝑃𝑙

𝑎: learnable projection matrices      CA: cross attention      SA: self-attention            : dot product  

…

𝑐1

𝑐2

𝜽

C
A

A
d

d

N
o

rm

S
A

A
d

d

N
o

rm

Image Projector

C
A

A
d

d

N
o

rm

𝑄

𝑉

𝐾

Text Projector shift

cosine similarity

Bright yellow

throat and breast,

contrasting white

spectacles, and dull

olive-green

upperparts…

…

𝑑𝑎

Figure 2: Overview of our TPR framework. The latent space directly aligns visual and linguistic features
extracted from frozen VLMs. To augment latent space for fine-grained visual-textual pattern mining, we devise
a novel attribute reservoir for constructing a new attribute space. The reservoir consists of both static and
learnable vocabulary tokens, enabling flexible exploration and control of feature granularity for the GZSL
task. Furthermore, we propose a topology-preserving objective to keep the generalization capability of VLMs,
mitigating the weak generalization problem [8].

inserting learnable context vectors into a fixed textual template. However, recent work [8] identified a
weak generalizability problem of prompt learning: the learned prompt is not generalizable to wider
unseen classes. In this work, we devise a novel topology-preserving objective to tackle this problem.

3 Methodology

We propose a Topology-Preserving Reservoir (TPR) framework (Fig. 2) to unleash the generalization
capability of VLMs for GZSL. Specifically, TPR has two unique designs on top of VLMs: (1) Dual-
space feature alignment module to strengthen feature discriminability by aligning visual and linguistic
features in both latent space and attribute space (constructed by the well-devised attribute reservoir);
(2) Feature semantic topology-preserving objective to maintain the generalization capability of VLMs
through preserving both seen and unseen class topology before and after fine-tuning.

Problem Formulation. Different from conventional ZSL or base-to-novel setting, GZSL needs to
address the challenge of recognizing both seen and unseen classes without knowing the seen/unseen
division at test time. During training, only samples from the seen classes are available. Formally, given
a dataset S = {(xs

i , y
s
i , z

s
i )|xs

i ∈ X s, ysi ∈ Ys, zsi ∈ Zs}n1
i=1 consist of n1 samples, where xs

i , ysi , zsi
denote the visual feature, class label, and textual description feature of the i-th seen image, respectively.
Meanwhile, another dataset U = {(xu

j , y
u
j , z

u
j )|xu

j ∈ X u, yuj ∈ Yu, zuj ∈ Zu}n2
j=1 contains n2

samples, where xu
j , yuj , zuj represent the visual feature, class label, and textual description feature

of the j-th unseen image, respectively. The seen and unseen label sets are disjoint: Ys ∩ Yu = ∅.
Following common practice in GZSL, the seen dataset S is split into a training set Ds

tr and a test set
Ds

te, while the unseen dataset U constitutes the test set Du
te. Then, the model is trained on Ds

tr and
evaluated on the union set Ds

te ∪ Du
te. In the following, s and u will be omitted for simplicity.

3.1 Dual-Space Feature Alignment

Attribute Reservoir Construction. We devise the attribute reservoir to construct a new attribute
space, which can exploit the meticulous features overlooked by a simple latent space. This further
facilitates the effective mining of complex visual-linguistic patterns for better GZSL. The reservoir
design takes into account both the generalization capability and task-specific adaptation. Initially, we
curate an extensive array of attribute terms sourced from diverse literature repositories, including
CUB [42], MIT-States [43], MAD [31], VAW [44] and LSA [45], which collectively delineate the
shape, color, motion, material, texture, and part of an object. After eliminating redundancies, we
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obtain a base attribute vocabulary of size N1, including attributes such as washing up, on stick, and
pinstriped. Subsequently, we employ a pre-trained LLM [46] to extract features of this base attribute
vocabulary for GZSL, obtaining A1 ∈ RN1×da . The attribute vocabulary covers extensive attribute
repositories to facilitate the generalization to unseen classes, but it is impossible to exhaustively
include all conceivable attributes lying in image and textual data. Therefore, we introduce the flexible
learnable attribute tokens, denoted as A2 ∈ RN2×da , to augment the base attribute vocabulary.
These tokens have two functions: (1) they learn complementary attribute knowledge absent in the base
attribute vocabulary in a data-driven manner, and (2) they incorporate the task-specific information
into the reservoir for better downstream task adaptation. Eventually, the two components of reservoir
are concatenated together to form our attribute reservoir A ∈ RN×da , where N = N1 +N2.

Multi-Modality Encoding. Given an input image, we initially utilize the pre-trained CLIP image
encoder to extract its visual feature x ∈ R1×d. Subsequently, we project the visual feature into both a
latent space and an attribute space (i.e., dual-space). To achieve this, we transform the visual feature
and attribute reservoir into the same dimension with two linear layers (Pv, P

a
v ):

x← xPv ∈ R1×d, Av = AP a
v ∈ RN×d. (1)

The visual feature x is then encoded into the dual-space:

x′ = Attn(x,Av, Av) , x
′′ = Attn(x′, x′, x′) , fv = x′′ + x ∈ R1×d , gv = fvA

T
v ∈ R1×N , (2)

where Attn(·, ·, ·) is the attention function [47]: Attn(Q,K,V) = softmax(QKT /
√
d)V , fv

denotes the visual feature encoded in the latent space, and gv represents the visual feature encoded in
the attribute space. On the text side, given the textual description corresponding to the image, we
utilize the CLIP text encoder to extract the linguistic feature z ∈ R1×d. Subsequently, we transform
z and the attribute reservoir to d-dimension using two additional linear layers (Pl, P

a
l ):

z ← zPl ∈ R1×d, Al = AP a
l ∈ RN×d. (3)

The linguistic feature z is then encoded into the dual-space using cross-attention:

z′ = Attn(z,Al, Al) , fl = z′ + z ∈ R1×d , gl = flA
T
l ∈ R1×N , (4)

It is notable that only cross-attention is employed to encode the linguistic feature, as overly intricate
operations on the textual side may lead to overfitting.

Multi-Modality Alignment. We use the contrastive loss [48] to align the visual-linguistic features
within the dual-space. Specifically, the contrastive loss in the latent space is defined as:

Lcl(fv, fl) = − log
exp(fv · fT

l /τ)∑
j exp(fv · fT

l,j/τ)
− log

exp(fl · fT
v /τ)∑

j exp(fl · fT
v,j/τ)

, (5)

where fv,j and fl,j are the ℓ2-normalized features of the j-th input image and text, respectively. τ is
a temperature hyperparameter. The contrastive loss in the attribute space is formulated as follows:

Lca(gv, gl) = − log
exp(gv · gTl /τ)∑
j exp(gv · gTl,j/τ)

− log
exp(gl · gTv /τ)∑
j exp(gl · gTv,j/τ)

, (6)

where gv,j and gl,j denote the ℓ2-normalized visual and linguistic attribute representations of the j-th
input image and text, respectively.

3.2 Feature Semantic Topology Preservation

Compared with conventional ZSL, the GZSL problem is more challenging: the model needs to decide
between both seen and unseen classes without knowing whether the test example comes from seen or
unseen classes. Previous GZSL methods [5, 49] observed the domain bias problem: trained model
is seriously biased towards seen classes in the testing phase. The bias arises because the model
is only trained on seen classes and, therefore, learns features and patterns specific to those classes.
This phenomenon often leads to inferior performance on unseen classes in the GZSL evaluation
setting. For VLM methods such as prompt learning [8, 10, 11], although the model weights are
frozen, another problem called weak generalizability problem is observed [8]: the learned prompt is
not generalizable to unseen classes within the same dataset. A reasonable explanation is the learned
task-specific prompt overfits the seen base classes when finetuing VLMs. CoCoOP [8] try to alleviate
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this problem by using instance-conditioned prompt, but the evaluation is only in the base-to-novel
setting rather than the more challenging GZSL setting 4. To our knowledge, in the VLM context, no
prior work has evaluated the challenging GZSL setting, let alone a principled solution to tackle the
generalization problem under this setting.

In this paper, we tackle the weak generalizability problem in the feature space, particularly our
newly introduced attribute space. Intuitively, the design of base attribute vocabulary has the effect of
combating overfitting to some extent. But here, we are looking for a more effective and principled
solution. A straightforward idea is to avoid overfitting to the seen classes by regularizing the features
during the model finetuning process. For example, we can constrain the rank of image features
to be no-decreasing, which boils down to maximizing the nuclear norm of the feature matrix [50].
However, this method empirically proves less effective. Then, we observe that the pre-trained VLMs
such as CLIP perform equally well on both seen and unseen classes (Fig. 1 and also [8, 10, 11]).
This motivates us to inherit the generalization capability of CLIP to prevent overfitting to seen
classes during the finetuning process, as shown in Fig. 1(b-d). Specifically, we want to maintain
the class topology of CLIP embedding space as a way for generalization inheritage. The class
topology is composed of all pairwise class angles, which can be calculated by cosine similarities
(CLIP embedding is ℓ-2 normalized). Denote the textual description features of all c (seen+unseen)
classes in CLIP’s embedding space as Z = {z1, z2, . . . , zc} ∈ Rc×d. The corresponding features in
the attribute space are denoted as Gl = {g1l , g2l , . . . , gcl } ∈ Rc×N . Finally, in order to preserve the
class topology in attribute space to be similar to that in CLIP embedding space, we adopt the Pearson
correlation coefficient to define a topology-preserving loss as follows:

Ltp(Z,Gl) = −
∑c

i,j(wij − 1
c2

∑c
ij wij)(w̃ij − 1

c2

∑c
ij w̃ij)√∑c

ij (wij − 1
c2

∑c
ij wij)

2
√∑c

ij (w̃ij − 1
c2

∑c
ij w̃ij)

2
, (7)

where wij =
zi·zjT

||zi||2||zj ||2 , w̃ij =
gi
l ·g

j
l

T

||gi
l ||2||g

j
l ||2

, i, j = 1, 2, .., c. Note that Eq. 7 maintains the pairwise
feature angles between categories before and after finetuning. Hence, both seen and unseen classes
can leverage the class topology of CLIP for better GZSL classification. More importantly, with
Ltp(Z,Gl), the finetuned model is less likely to be seriously biased towards seen classes, thus
improving the generalization to unseen classes.

3.3 Learning Objective and Inference

The overall learning objective is:

L(θ) = Lcl + ηLca + βLtp, (8)

where η and β are loss weights, and θ denotes model’s trainable parameters. During inference, given
a testing sample, we first extract its visual feature fv and perform the nearest neighbor search from
all seen and unseen classes:

argmax
y∈Ys∪Yu

fv · fT
l,y, (9)

where fl,y is the linguistic feature of class y (all vectors are ℓ2-normalized).

4 Experiments

Datasets and Metrics. We validate the effectiveness of TPR on four widely-used datasets in GZSL:
AwA2 [51], CUB [42], FLO [52], and SUN [53]. We follow the commonly-used dataset split [26]
but use the generated textual descriptions instead of attribute annotation. To further evaluate the
generalization ability, we conduct experiments on eight other object recognition datasets: FGVC-
Aircraft [54], Country [9], StanfordCars [55], EuroSAT [56], DTD [57], UCF101 [58], Food101 [59],
and OxfordPets [60]. These datasets are divided into seen and unseen classes in a similar way. Note
that under the GZSL setting, the model can only be trained on seen classes and evaluated on both
seen and unseen classes to evaluate its generalization ability. We report the average per-class top-1
accuracy on seen classes (S) and unseen classes (U ), respectively. To balance the two metrics, we
also report the harmonic mean (H) of the seen and unseen accuracy: H = 2× S×U

S+U .

4In Table 1, we evaluate CoCoOP under GZSL setting, but the performance is unsatisfying on unseen classes.
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Table 1: Comparison with state-of-the-art methods in generalized zero-shot learning (GZSL) setting. The
proposed TPR obtains the best harmonic mean (H) in 11 out of 12 datasets. Among them, TPR performs the
best on all fine-grained datasets (marked with *), and best (bolded) or second best (underlined) on almost all
other datasets. Besides CLIP, TPR also works well with other VLMs: †CoCa [36] (ViT-B/32) and ‡EVA-02 [62]
(ViT-B/16). Equipped with the latter, we can further push forward existing SOTA by a large margin.

AwA2 CUB* FLO* SUN FGVC-Aircraft* Country
Model S U H S U H S U H S U H S U H S U H

CLIP [9] 81.69 77.66 79.62 29.88 29.61 29.74 53.91 51.16 52.50 46.28 49.51 47.84 18.25 11.15 13.84 13.16 12.13 12.62
CoOp [40] 81.36 69.42 74.92 22.23 18.23 20.03 56.27 50.65 53.31 49.85 49.31 49.57 17.13 12.10 14.18 12.86 9.73 11.08

CoCoOp [8] 78.53 73.81 76.10 23.53 19.81 21.51 60.21 50.22 54.76 49.53 49.51 49.52 18.81 13.60 15.79 13.59 8.03 10.09
MaPLe [10] 78.04 71.25 74.49 22.46 20.66 21.52 59.88 48.39 53.52 46.82 48.68 47.73 21.75 15.20 17.89 12.96 9.54 10.99

PromptSRC [11] 84.04 70.73 76.82 30.92 16.32 21.37 60.68 54.45 57.40 47.83 49.24 48.52 23.44 13.10 16.81 14.42 6.87 9.30
ProGrad [12] 81.73 67.46 73.91 22.97 21.38 22.15 61.21 50.53 55.36 52.71 49.44 51.03 19.00 11.00 13.93 13.99 8.77 10.78

CE [5] 76.69 67.80 71.97 31.80 19.01 23.80 63.02 44.09 51.88 44.11 47.15 45.58 28.63 25.25 26.83 12.80 8.07 9.90
LSA [6] 77.16 65.87 71.07 37.35 19.54 25.66 77.51 41.03 53.66 45.66 48.19 46.89 29.44 27.85 28.62 12.21 7.51 9.30

ZLAP [7] 76.35 74.74 75.54 32.41 25.51 28.55 68.22 54.77 60.76 48.18 47.29 47.73 29.38 27.10 28.19 12.64 10.42 11.32
TPR 87.10 76.81 81.63 41.22 26.87 32.53 77.58 64.52 70.45 50.47 45.40 47.80 36.88 29.65 32.87 18.75 16.03 17.28

TPR† 80.52 71.70 75.86 42.42 25.97 32.22 82.62 62.99 71.48 50.08 45.49 47.67 34.63 31.25 32.85 20.18 15.68 17.65
TPR‡ 95.60 78.81 86.39 53.10 32.55 40.36 83.75 64.65 72.97 58.29 52.08 55.01 43.50 31.30 36.41 27.82 23.31 25.37

StanfordCars* EuroSAT DTD UCF101* Food101* OxfordPets*
Model S U H S U H S U H S U H S U H S U H

CLIP [9] 46.65 37.78 41.75 21.13 11.25 14.68 36.39 41.39 38.73 53.72 64.92 58.79 67.74 73.05 70.29 82.67 65.83 73.29
CoOp [40] 49.86 38.47 43.43 29.89 12.27 17.40 44.34 36.56 40.07 62.13 47.41 53.78 71.82 64.64 68.04 73.47 57.66 64.61

CoCoOp [8] 51.93 37.84 43.78 52.64 18.34 27.21 42.19 35.94 38.82 58.29 60.62 59.43 72.55 60.42 65.93 72.53 58.97 65.05
MaPLe [10] 55.29 35.67 43.36 30.72 19.52 23.87 42.25 39.72 40.95 55.37 62.51 58.73 72.16 71.47 71.82 75.87 56.01 64.45

PromptSRC [11] 55.56 39.85 46.41 28.71 14.40 19.18 51.30 42.56 46.52 61.92 59.89 60.89 77.06 56.31 65.07 78.60 52.99 63.30
ProGrad [12] 52.20 35.36 42.16 59.14 17.12 26.55 54.62 39.78 46.03 60.10 58.76 59.42 73.48 64.26 68.56 72.53 59.95 65.64

CE [5] 56.62 40.94 47.52 61.61 32.88 42.88 44.79 29.61 35.65 54.78 34.66 42.46 70.48 53.88 61.07 71.07 59.54 64.80
LSA [6] 59.19 41.41 48.73 55.10 24.89 34.29 45.64 27.72 34.49 51.76 37.22 43.30 69.10 53.82 60.51 73.73 59.27 65.71

ZLAP [7] 49.60 43.22 46.19 74.59 23.22 35.41 46.94 30.94 37.30 56.89 42.65 48.75 70.20 60.86 65.20 72.93 59.89 65.77
TPR 69.48 46.33 55.59 82.78 45.73 58.91 55.47 42.06 47.84 69.14 66.88 67.99 93.67 85.41 89.35 90.60 66.39 76.63

TPR† 88.09 70.84 78.53 75.60 61.43 67.78 62.70 45.39 52.66 74.20 61.81 67.44 82.37 74.22 78.08 84.07 71.32 77.17
TPR‡ 87.25 73.57 79.83 76.07 56.41 64.78 68.95 46.39 55.46 75.01 74.57 74.79 88.87 79.97 84.18 92.27 70.17 79.72

Textual Description Generation. We propose employing ChatGPT [61] to autonomously generate a
descriptive paragraph for each class, leveraging its extensive knowledge base learned from diverse
sources in the Internet. To facilitate this process for each dataset, we advocate employing the
following prompt structure: “I have never seen images of <type>. The following is a good description
of <class name>, so I can easily recognize <class name>.” Here, the placeholder <type> corresponds
to categories such as animals, birds, flowers, etc., while <class name> denotes the specific name of
each class. As an illustration, consider the antelope class from the AwA2 dataset, where the generated
description reads as follows: “Antelopes are herbivorous mammals known for their slender bodies
and long, curved horns. They are often found in grasslands and open savannas, where they graze on
vegetation and use their speed and agility to escape predators.”

Training Details. We employ pretrained ViT-B/32 CLIP as the feature extractor, which outputs
512-dimensional visual and linguistic features. In total, we collect N1 = 5, 996 attribute words and
we use pretrained Bert [46] to extract attribute features of dimension da = 768. For all datasets, TPR
is trained for 200 epochs with a batch-size of 512 via Adam optimizer on a single NVIDIA RTX4090
GPU. Overall, optimal hyperparameters of TPR are chosen from the following ranges: learning rate
∈ {1e-5, 3e-5, 5e-5, 7e-5, 1e-4}, η ∈ {0.2, 0.5, 1.0, 2.0}, β ∈ {1e-4, 5e-4, 1e-3}, τ ∈ {0.03, 0.05,
0.07, 0.10}, and N2 ∈ {100, 200, 300, 400}, which are tuned on the validation set via grid search.

4.1 Comparison with the SoTA

We compare with the state-of-the-art methods including prompt learning and generative-based GZSL.
We adapt them to our description-based GZSL setting for a fair comparison. (1) Prompt learning
methods, including CoOp [40], CoCoOp [8], MaPLe [10], PromptSRC [11] and ProGrad [12], fine-
tune the pretrained CLIP through integrating trainable prompt tokens within a predefined template. To
adapt these methods for GZSL, we input (image, label) pairs while omitting the utilization of textual
descriptions. Notably, our setting differs from the base-to-novel setting [40] typically used in these
methods, which originally predicts the seen and unseen classes separately. Instead, we conduct the
comparison in the GZSL setting [26] where the prediction space includes both the seen and unseen
classes, thereby posing a more challenging task than the base-to-novel setting. (2) Generative-based
GZSL methods, including CE [5], LSA [6] and ZLAP [7], are adapted by substituting the input
semantic features derived from attribute annotations with those obtained from textual descriptions.
For a fair comparison, all methods adopt the same backbone and dataset split.
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Figure 3: Impact of the size of the attribute vocabulary (i.e., N1) on model performance.

Figure 4: Impact of the number of learnable attribute tokens (i.e., N2) on model performance.

The performance analysis presented in Table 1 reveals that TPR outperforms other methods in terms
of H metric in 11 out of 12 datasets. Compared with prompt learning methods, TPR obtains an
average absolute performance improvement of 12.46%, 9.46%, and 11.94% on S, U and H metrics,
respectively. Similarly, in comparison with generative-based GZSL methods, TPR demonstrates
an average absolute performance gain of 11.24%, 9.29%, and 10.68% on S, U and H metrics,
respectively. Remarkably, TPR achieves the best performance on all fine-grained datasets (marked
with *), underscoring its exceptional fine-grained data perception capability. Furthermore, while
the recognition performance of many baselines, such as CoCoOp, deteriorates for unseen classes
compared to zero-shot CLIP, TPR continues to achieve outstanding results. This indicates TPR’s
proficiency to effectively preserve CLIP’s generalization capability to unseen classes. To verify
the applicability of TPR to different VLMs, we utilize two VLMs, CoCa [36] and EVA-02[62],
as backbone networks for feature extraction from input images and text descriptions. The results,
presented at the bottom of Table 1, demonstrate TPR’s robust generalization across various VLMs.

4.2 Ablation Study

Loss Functions. We study the efficacy of two novel module designs in Table 2. By augmenting the
latent space with the attribute space (Lcl → Lcl + Lca), the accuracy of unseen classes is improved
by 4.26%, 2.78%, and 3.81% for the three datasets. This underscores the attribute space’s adeptness
in capturing attribute features overlooked by the latent space, thus promoting the perception of unseen
classes. Meanwhile, the inclusion of topology-preserving objective (Lcl + Ltp) results in a notable
accuracy improvement for unseen classes, manifesting as an increase of 6.36%, 2.91%, and 1.81%
across the three datasets. Finally, incorporating both objectives (Lca and Ltp) into our full model,
the accuracy outperforms each single objective on almost all metrics (seen, unseen and harmonic)
except for seen on CUB, demonstrating the complementary effect of two devised modules: dual-space
feature alignment (Lca) and topology-preserving objective (Ltp).

Attribute Reservoir. We conduct an ablation study across various configurations of the attribute
reservoir, as presented in Table 2. Notably, competitive performance is attained when solely relying
on the static attribute vocabulary. Conversely, utilizing solely learnable attribute tokens exhibits
improved performance on seen classes, albeit with a decrease in accuracy for recognizing unseen
classes. Optimal H performance is achieved when both types of attribute knowledge are combined.

Static Vocabulary Size N1. In general, a larger N1 entails the inclusion of a greater number
of attribute words, facilitating a finer-grained representation of objects and potentially enhancing
recognition performance. The findings depicted in Fig. 3 substantiate this notion. It is evident that as
N1 increases, the model performance improves significantly, especially for unseen classes. Overall,
the harmonic mean H tends to saturate beyond 4,000 attribute words on the coarse-grained AwA2
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Table 2: Ablation on different regularizers and reservoir components.

Setting AwA2 CUB FLO
S U H S U H S U H

full model 87.10 76.81 81.63 41.22 26.87 32.53 77.58 64.52 70.45

objective
Lcl 85.70 68.14 75.92 41.55 23.24 29.81 74.01 60.45 66.55

Lcl+Lca 84.69 72.40 78.06 40.77 26.02 31.77 74.41 64.26 68.96
Lcl+Ltp 84.44 74.50 79.16 40.72 26.15 31.85 76.72 62.26 68.74

reservoir static vocabulary 86.71 75.23 80.56 41.11 26.12 31.94 74.62 64.11 68.97
learnable tokens 87.69 64.58 74.38 41.27 20.85 27.70 82.72 60.71 70.03

Table 3: Ablation on the topology preserving loss Ltp.

Setting AwA2 CUB FLO
S U H S U H S U H

w/o Ltp 84.69 72.40 78.06 40.77 26.02 31.77 74.41 64.26 68.96
nuclear norm 87.88 72.48 79.44 41.09 25.36 31.36 74.72 64.47 69.22
orthogonality 87.15 74.87 80.55 40.36 26.13 31.72 73.68 64.95 69.04

Llat
tp 86.93 77.00 81.67 40.61 26.00 31.70 74.65 64.34 69.11

Ltp 87.10 76.81 81.63 41.22 26.87 32.53 77.58 64.52 70.45

Table 4: Comparison with the state-of-the-art prompt learning methods under base-to-novel setting [8].
EuroSAT DTD Food101

Method Base Novel HM Base Novel HM Base Novel HM

CLIP [9] 56.48 64.05 60.03 53.24 59.90 56.37 90.10 91.22 90.66
CoOp [40] 92.19 54.74 68.69 79.44 41.18 54.24 88.33 82.26 85.19

CoCoOp [8] 87.49 60.04 71.21 77.01 56.00 64.85 90.70 91.29 90.99
MaPLe [10] 94.07 73.23 82.35 80.36 59.18 68.16 90.71 92.05 91.38

PromptSRC [11] 92.90 73.90 82.32 83.37 62.97 71.75 90.67 91.53 91.10
TPR 95.12 76.66 84.90 84.80 59.39 69.86 94.03 91.15 92.57

dataset, while H continues to increase on the fine-grained CUB and FLO datasets. This again verifies
the effectiveness of our model in capturing the fine-grained complex patterns.

Learnable Tokens Quantity N2. As shown in Fig. 4, the accuracy of unseen classes on the AwA2
dataset exhibits improvement with increasing N2. However, for the CUB and FLO datasets, the
accuracy of unseen classes tends to plateau around 200 tokens, diverging from the pattern on AwA2.
We conjecture that an excessive number of learnable tokens may lead to overfitting on seen classes
for fine-grained datasets, thereby limiting further enhancement.

Topology-Preserving Constraint. We ablate on various choices of the topology-preserving loss.
These variants encompass: (1) nuclear norm: maximizing the nuclear norm to ensure that visual
features span the entire space; (2) orthogonality: enforcing orthogonality among class text features
in the attribute space; (3) topology-preservation in latent space (Llat

tp ): maintaining pairwise angles
between class features (Eq. 7) in the latent space; (4) our topology preservation in attribute space
(Ltp). From Table 3, we observe that both nuclear norm and orthogonality cannot consistently
improve the performance, possibly due to the lack of reference on CLIP. As to the topology-preserving
objective, enforcing it on the novel attribute space yields consistently superior performance, which
again reveals the better expressivity of the proposed attribute space.

Base-to-Novel Evaluation. As the prompt learning methods originally evaluate on the base-to-novel
setting, we compare with them on standard prompt learning benchmarks for completeness and better
understanding of the GZSL setting. Comparing Table 1 and Table 4, we notice that the performance
of all methods in base-to-novel setting surpasses the corresponding GZSL results, corroborating that
GZSL is a more challenging task. Moreover, our method outperforms or at least on-par-with the
prompt learning methods in the base-to-novel setting.

5 Conclusion and Future Work

In this paper, we tackle the challenging GZSL problem by designing a Topology-Preserving Reservoir
(TPR) model. Specifically, TPR embraces two unique designs for VLMs: a dual-space feature
alignment module and a feature semantic topology preserving objective. First, a reservoir containing
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both static and learnable vocabulary tokens is devised to construct a representative attribute space
to enhance the latent space, which facilitates the exploitation of complex and fine-grained visual-
linguistic patterns. Second, we propose a topology-preserving objective, which inherits the good
generalization ability of CLIP to mitigate the weak generalization problem of prompt learning
methods. In particular, topology-preserving objective constrains the variations of angles between
pairwise categories before and after CLIP finetuning. Comprehensive experiments are conducted
on twelve object recognition datasets, validating the superior performance of our method in the
challenging and more practical GZSL setting. In the future, we want to investigate TPR on other
applications such as few-shot learning and other modalities such as video.

Limitations. Text alone may not fully capture the nuances of fine-grained datasets like CUB, while
attribute annotations, though more accurate, are costly. Thus, a more desirable solution would be
combining the knowledge from expert-provided attribute annotations with LLM-generated text to
enhance performance. Additionally, our method may face challenges in aligning visual features
of generic scenes with description features in the attribute space, especially when descriptions are
not sufficiently specific. This could be alleviated by providing more distinct and human-refined
descriptions.
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A Appendix

A.1 Dataset Statistics

We present statistical information on the 12 datasets used in the experimental evaluations, as depicted
in Table 5. The first four rows correspond to benchmark datasets widely employed in GZSL, with
dataset splits provided in previous works[4]. The remaining eight datasets are commonly used for
object recognition and encompass natural objects, textures, actions, scenes, etc. We adhere to a
similar data split methodology in [4], dividing these eight datasets into seen and unseen classes.

Table 5: Detailed dataset statistics.

Datasets Classes Seen classes Unseen classes Training &
validation classes

Training &
validation size Testing size

AwA2 50 40 10 27+13 23,527 13,795
CUB 200 150 50 100+50 7,057 4,731
FLO 102 82 20 62+20 4,401 3,788
SUN 717 645 72 580+65 10,320 4,020

FGVC-Aircraft 100 80 20 55+25 6,400 3,600
Country 211 151 60 101+50 33,220 30,080

StanfordCars 196 136 60 95+41 7,891 8,294
EuroSAT 10 6 4 4+2 10,200 16,800

DTD 47 32 15 21+11 2,304 3,336
UCF101 101 70 31 48+22 5,973 7,347
Food101 101 72 29 49+23 50,400 50,600

OxfordPets 37 25 12 17+8 3,500 3,890

A.2 Textual Description Exemplars

Exemplars of textual descriptions of 12 classes in the AwA2 dataset generated by ChatGPT are
shown in Table 6. Notably, the generated descriptions almost cover the visual characteristics of the
corresponding class.

A.3 Additional Experiments

Multiple Textual Description Evaluation. Prior work [29] has demonstrated that using multiple
textual descriptions for each class can capture its semantic characteristics more comprehensively,
because these descriptions may complement one another. Therefore, we undertake an investigation
into the influence of multiple descriptions on model performance on CUB. In this endeavor, we
employ ChatGPT to generate five distinct descriptions for each class [29]. Subsequently, we randomly
select between 1 and 5 descriptions, denoted as n, to form multiple descriptions for each class. To
conduct experiments in the multiple text setting, we adapt the loss functions by integrating multi-view
contrastive learning techniques [63]. As depicted in Fig. 5, we present the performance for each n
by repeating the sampling process 10 times. Notably, when n is small, the recognition performance
exhibits more significant fluctuations, attributed to substantial differences among each sampled text.
As n increases, the model’s performance stability improves, and all three accuracy metrics gradually
enhance, particularly the accuracy for recognizing unseen classes (U ). The results underscore the
advantages of leveraging multiple descriptions in improving overall model performance, with a
notable impact on recognizing unseen classes.

Textual Description Evaluation. Although ChatGPT demonstrates significant generation capabilities,
a comprehensive evaluation of the quality of the generated text descriptions has not yet been conducted.
In this study, we approximately evaluate the quality of these text descriptions by calculating the cosine
similarity between the description features and the corresponding attribute features (if available)
for each class. As illustrated in Fig. 6, empirical analyses are performed on the AwA2 and CUB
datasets, both of which provide ground-truth attribute annotations. The findings indicate a high
similarity between the description features and the corresponding ground-truth attribute features,
thereby suggesting a high quality of the generated descriptions.

Correlation between Attributes. We curate an extensive attribute vocabulary to comprehensively
encapsulate various characteristics. As described in the main paper, TPR can still achieve relatively
good results even if most of the items are removed from the attribute vocabulary. Here, we present
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Classes Images Textual descriptions

antelope Antelopes are herbivorous mammals known for their slender bodies and long, curved
horns. They are often found in grasslands and open savannas, where they graze on
vegetation and use their speed and agility to escape predators.

grizzly bear Grizzly bears are large, omnivorous mammals with a distinctive hump of muscle on
their shoulders. They have shaggy fur that can range from blond to dark brown and
are known for their strength and ability to catch fish from rivers.

killer whale Killer whales, also known as orcas, are marine mammals known for their striking
black and white coloration. They are highly intelligent and social, often traveling in
pods. Orcas are skilled predators that feed on fish, seals, and even other whales.

beaver Beavers are semi-aquatic rodents known for building dams and lodges. They have
webbed feet and a flat, scaly tail, which they use for swimming and steering. Beavers
are herbivores and primarily consume tree bark and aquatic plants.

dalmatian Dalmatians are a breed of dog known for their distinctive black spots on a white coat.
They are energetic and often associated with firehouses. Dalmatians are known for
their friendly demeanor and strong guarding instincts.

persian cat Persian cats are known for their long, luxurious fur and distinctive flat faces. They
are a calm and gentle breed, often found as indoor pets. Persian cats require regular
grooming due to their thick coats.

horse Horses are large, hoofed mammals often used for riding, racing, and work. They
come in various breeds and colors, with distinctive features such as a flowing mane
and tail. Horses have played a crucial role in human history for transportation and
agriculture.

german shepherd German Shepherds are a breed of dog known for their intelligence, loyalty, and
versatility. They have a distinctive appearance with a strong, muscular body and a
double coat. German Shepherds are often used as working dogs in roles like police
work and search and rescue.

blue whale Blue whales are the largest animals on Earth, with a long and streamlined body that
is predominantly blue-gray in color. They are filter feeders, using baleen plates to
capture krill and other small marine organisms.

siamese cat Siamese cats are known for their striking blue almond-shaped eyes and color-pointed
fur, with a pale body and dark ears, face, paws, and tail. They are vocal and social
cats with a strong bond to their owners.

skunk Skunks are small mammals known for their distinctive black and white coloring and
the ability to spray a foul-smelling liquid as a defense mechanism. They have bushy
tails and are omnivorous, feeding on insects, small animals, and plants.

mole Moles are burrowing mammals with velvety fur, small eyes, and powerful forelimbs
equipped for digging. They primarily feed on insects and earthworms and create
intricate tunnel systems underground.

Table 6: Textual description demonstrations for 12 classes in AwA2, which are generated by ChatGPT.
Best viewed in color.
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Figure 5: Effects of multiple textual descriptions on CUB. For each class, we randomly sample n
textual descriptions 10 times.

Figure 6: The cosine similarity between textual description features and corresponding attribute
annotation features on AwA2 (left) and CUB (right).

Figure 7: Correlation matrix between the features of attribute vocabulary items (left) and correlation
matrix between the features of learnable attribute tokens. Best viewed in color.

the correlation matrix for the attribute vocabulary items and the correlation matrix for the learnable
attribute tokens, as illustrated in Fig. 7. The figure demonstrates that many items in the attribute
vocabulary are highly correlated, indicating redundancy within the vocabulary. Consequently, re-
moving highly similar items does not significantly affect the final performance. In contrast, the
correlation between learnable attribute tokens is much lower, requiring only a few hundred tokens to
achieve performance gains. While it may seem possible to achieve the same recognition accuracy
with a significantly smaller attribute vocabulary [64, 65], this paper primarily focuses on enhancing
the fine-grained discrimination ability of features. We will address the issue of obtaining a more
condensed attribute vocabulary in our subsequent work, potentially utilizing principal component
analysis to achieve this objective.

Visual Features Visualization. In Fig. 8, we present the distribution of visual representations in the
attribute space for the AwA2 and CUB datasets. For each dataset, the features of 500 samples are
visualized with the t-SNE technique. The visualization reveals that samples from the same class are
well clustered in the attribute space, while those from different classes are separated. In contrast,
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Figure 8: t-SNE visualization of visual representations on AwA2 and CUB. Instances of the same
class are marked with the same color. Best viewed in color.

Figure 9: Impact of noisy textual descriptions on model performance on AwA2, and pn denotes the
intensity of the imposed noise.

CLIP image features do not present good clustering characteristics. This observation aligns with
findings in the literature [66], which indicate that CLIP image features tend to be more scattered and
cluttered due to CLIP’s objective of learning the association between images and their corresponding
text, rather than developing compact image features. The visualization result demonstrates that TPR
effectively aligns visual and textual features in a semantically structured attribute feature space.

Robustness to Noisy Textual Descriptions. To examine the impact of noisy text descriptions on
TPR’s performance, we introduce perturbations into the generated text descriptions. Specifically,
we utilize the natural language perturbation tool proposed by EDA [67], which produces noisy text
through four operations: synonym replacement, random insertion, random swap, and random
deletion. Let pn denote the probability of applying these operations. These noisy descriptions are
then used as the textual input for TPR, while the rest of the network remains consistent with the
configuration described in the main paper. The experimental results, shown in Fig. 9, indicate that
TPR maintains robustness against textual perturbations. As the noise intensity pn increases, the
recognition performance of unseen classes significantly degrades, whereas the performance of seen
classes gradually decreases. Notably, even under a 50% noise intensity, TPR consistently achieves a
performance exceeding 78% on the H metric.

Visualization of Multimodal Features in the Attribute Space. We present the distribution of visual
features (gv) and corresponding textual features (gl) in the attribute space. For clarity, we display
the feature values for 14 attributes across 10 categories in AwA2, as illustrated in Fig. 10. The
visual feature values are averaged for each class. The distributions of visual and textual features
for each class exhibit substantial similarity, thereby facilitating zero-shot recognition. Furthermore,
these representation values align with the actual characteristics of each class, such as their visual
appearance. For example, the persian cat class prominently features the attribute with brown eyes.
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Figure 10: Projection visualization of multimodal features, with the left figure illustrating visual
projection and the right figure illustrating textual projection. Best viewed in color.

Figure 11: Impacts of the loss weights η and β.

back rump tail upperwingoriginal image

CLIP

TPR

CLIP

TPR

Figure 12: Textual respondence visualization. We present the response distribution to specific
text within an image by using CLIP surgery [68]. The top row denotes the query text, with each
subsequent row illustrating the heatmap distribution of responses from CLIP and our proposed
method, respectively. Best viewed in color.

Hyperparameter Sensitivity. We investigate the impact of hyperparameter settings, specifically
the loss weights η and β, on model performance on the AwA2 and CUB datasets. As illustrated in
Fig. 11, H initially improves and subsequently declines as both η and β increase, with the maximum
fluctuation being approximately 3%. TPR exhibits robustness to variations in η and β within a
reasonable range.

Textual Respondence Visualization. In Fig. 12, we present a heatmap of textual descriptions in
images using CLIP Surgery [68]. The color intensity represents the response value of the region
to the respective text, with redder colors indicating higher response values. As demonstrated, TPR
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Table 7: Ablation on backbones and pretraining data scale.
Pretraining

data Backbone AwA2 CUB FLO
S U H S U H S U H

400M

RN50 81.64 67.86 74.11 33.22 23.41 27.47 62.76 58.69 60.66
RN101 87.20 71.73 78.71 36.78 29.15 32.52 66.29 63.68 64.96

ViT-B/16 89.34 83.15 86.13 46.21 35.71 40.29 80.04 65.47 72.02
ViT-B/32 87.10 76.81 81.63 41.22 26.87 32.53 77.58 64.52 70.45

2B ViT-B/16 90.77 81.86 86.08 58.56 48.44 53.02 82.02 65.51 72.84
ViT-B/32 86.80 78.41 82.39 47.05 37.02 41.44 81.62 64.78 72.24

Table 8: Results of TPR with text descriptions and TPR with ground-truth attributes. The experiments
are conducted on both textual descriptions and attribute annotations to validate TPR’s compatibility.

AwA2 CUB SUN
Method S U H S U H S U H

attribute 76.73 63.50 69.49 24.39 22.74 23.54 42.98 41.60 42.28
text 87.10 76.81 81.63 41.22 26.87 32.53 50.47 45.40 47.80

localizes objects of interest, which helps to minimize background interference. In contrast, the
heatmap generated by CLIP is more dispersed and tends to capture cluttered objects. However, TPR
may exhibit insufficient focus; for instance, when the query is “back”, regions outside the back still
show large response values. We defer addressing this issue to future work, which will explore the
potential use of attention mechanisms to refine focus on specific regions.

Backbone Networks and Pretraining Data Scale. In Table 7, we delve into the comparison of
four distinct variants of the CLIP visual backbone, each characterized by a considerable number of
parameters. Specifically, the ResNet50 model comprises 102M parameters, the ResNet101 model
comprises 120M parameters, the ViT-B/16 model comprises 150M parameters, and the ViT-B/32
model consists of 151M parameters. It is noteworthy that as the number of model parameters increases,
there is a substantial improvement in all three accuracy metrics across all three datasets. These results
underscore the robust generalizability of TPR across different backbone networks. Subsequently, we
examine the impact of the amount of pretraining data on model performance by extracting visual and
linguistic features using Laion-CLIP (2B pretraining data) [69]. As depicted in Table 7, Laion-CLIP
outperforms CLIP when employing both ViT-B/16 and ViT-B/32 backbones. These findings suggest
that larger pretraining datasets generally result in improved model performance.

Attribute-based GZSL. In addition to utilizing pure text-based descriptions for GZSL, TPR can
also leverage attribute annotations (if available). Specifically, we utilize the CLIP text encoder to
extract attribute-annotated features for each category. Simultaneously, the image encoder is utilized
to extract visual features for each image. The CLIP text and image encoders are kept frozen. The
structure of TPR, except for the modified semantic inputs, remains consistent with the description
provided in the main paper. The results presented in Table 8 underscore the compatibility of TPR
with attribute-annotation-based GZSL.

20



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clarify the research contributions and scope of the study in the abstract and
introduction of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in the Conclusion and Future Work
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail the model network structure and hyperparameter configurations
needed to reproduce the results in the Methodology and Experiments sections.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to the code via the Anonymous GitHub link
(https://anonymous.4open.science/r/TPR-3D0A/).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in the Methodology and Experiments
sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in the appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars in Fig. 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments can be run on a single NVIDIA RTX 4090 GPU with 24GB
RAM.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Running the experiment consumes GPU computational resources, resulting in
carbon dioxide emissions.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We restrict the release of models to academic use only to avoid misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite the creators or original owners of assets in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

25

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We detail the network architecture and training/testing implementations in the
paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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