
LONER: LiDAR Only Neural Representations for
Real-Time SLAM

Seth Isaacson∗,1, Pou-Chun Kung∗,1, Mani Ramanagopal1, Ram Vasudevan1, and Katherine A. Skinner1

Abstract—This paper proposes LONER, the first real-time
LiDAR SLAM algorithm that uses a neural implicit scene
representation. Existing implicit mapping methods for LiDAR
show promising results in large-scale reconstruction, but either
require groundtruth poses or run slower than real-time. In
contrast, LONER uses LiDAR data to train an MLP to estimate
a dense map in real-time, while simultaneously estimating the
trajectory of the sensor. To achieve real-time performance, this
paper proposes a novel information-theoretic loss function that
accounts for the fact that different regions of the map may
be learned to varying degrees throughout online training. The
proposed method is evaluated qualitatively and quantitatively
on two open-source datasets. This evaluation illustrates that
the proposed loss function converges faster and leads to more
accurate geometry reconstruction than other loss functions used
in depth-supervised neural implicit frameworks. Finally, this
paper shows that LONER estimates trajectories competitively
with state-of-the-art LiDAR SLAM methods, while also pro-
ducing dense maps competitive with existing real-time implicit
mapping methods that use groundtruth poses.

I. INTRODUCTION

NEURAL implicit scene representations, such as Neural
Radiance Fields (NeRFs), offer a promising new way

to represent maps for robotics applications [1]. Traditional
NeRFs employ a Multi-Layer Perceptron (MLP) to estimate
the radiance and volume density of each point in space, en-
abling dense scene reconstruction and novel view synthesis.
This paper advances neural implicit scene representations for
robotics applications. Specifically, we introduce the first real-
time LiDAR-only SLAM algorithm that achieves accurate
pose estimation and map reconstruction while learning a
neural implicit representation of a scene.

Several recent papers have proposed real-time NeRF-
based visual SLAM systems using monocular or RGB-D
cameras [3, 4, 5]. These systems demonstrate impressive
performance on indoor scenes. For outdoor environments,
prior work has focused on using neural implicit represen-
tations for LiDAR to enable dense 3D reconstruction and
novel view synthesis for large-scale scenes [6, 7, 8]. Recent
methods have even shown promising results for LiDAR
localization and mapping with neural implicit frameworks

∗These two authors contributed equally to this work.
This work was supported by the Ford Motor Company via the Ford-UM

Alliance under award N028603.
1S. Isaacson, P. Kung, M. Ramanagopal, R. Vasudevan, and K. A.

Skinner are with the Department of Robotics, University of Michi-
gan, Ann Arbor, MI 48109. {sethgi, pckung, srmani, ramv,
kskin}@umich.edu.

Fig. 1. LONER reconstruction on a courtyard scene [2]. The top-right is
a mesh reconstruction with the estimated trajectory in red. The surrounding
images are rendered depth images from novel views outside of the training
trajectory, demonstrating LONER’s ability to reconstruct dense novel views
of an environment.

in large-scale outdoor scenes [9, 10]. Still, these LiDAR-
supervised algorithms do not operate in real-time, which is
necessary for robotics applications.
The contributions of this paper are as follows:

1) We propose the first real-time neural implicit LiDAR
SLAM method, which adapts to outdoor environments
and provides accurate online state estimation.

2) We introduce a novel loss function that leads to faster
convergence and more accurate reconstruction than
existing loss functions.

We demonstrate that our proposed method, LONER, runs
in real-time and estimates both trajectories and maps more
accurately than baselines. Figure 1 shows the reconstruction
results on the Fusion Portable dataset [2]. A project page
and code are available at https://umautobots.github.io/loner.
An extended paper with additional experiments has recently
been published in RA-L.

II. RELATED WORKS

A. Neural Implicit Representations for LiDAR

While neural implicit representations were initially devel-
oped for visual applications, several works have introduced
neural implicit representations for LiDAR to improve outdoor
3D reconstruction performance [6, 11, 7]. These methods all
use ground-truth poses, while ours also estimates the camera
trajectory.

https://umautobots.github.io/loner

Fig. 2. LONER system overview. Scans are tracked with ICP, then the
map is updated using our novel loss function.

B. Loss for Depth-supervised NeRF

Depth-supervised NeRF frameworks, such as those that
use RGB-D sensors, typically use the difference between
rendered and sensed depth as a loss to learn geometry from
2D images by volumetric rendering [3, 4]. Other works
use depth measurements directly in 3D space to perform
depth-supervision [11, 6, 7, 10]. The Line-Of-Sight (LOS)
loss introduced by URF [6] approximate each LiDAR ray’s
termination depth as a normal distribution centered at the
measured depth. The variance of the distribution is correlated
with a margin parameter ϵ. The loss functions encourage
the network to predict weights along a ray equal to the
PDF of the normal distribution. As training progresses, ϵ is
decayed. While uniformly decaying a margin is successful
offline, using a single margin for all rays is unsuitable for
real-time SLAM, which has incremental input and limited
training samples. Using a uniform margin can force the NeRF
model to forget learned geometry when adding a new LiDAR
scan and can cause slower convergence. Therefore, this paper
proposes a novel dynamic margin loss that applies a different
margin for each ray.

III. METHOD

This section provides a high-level overview of our pro-
posed system, LONER, before explaining each component
in detail.

A. System Overview

An overview of LONER is shown in Fig. 2. As is common
in the SLAM literature [3, 4], the system comprises parallel
threads for tracking and mapping. The tracking thread pro-
cesses incoming scans and estimates odometry using ICP.
In parallel and at a lower rate, the mapping thread uses
the current scan and selected prior scans as KeyFrames,
which are used to update the training of the neural scene
representation.

B. Implicit Map Representation

The scene is represented as an MLP with the hierarchical
feature grid encoding from [12]. During online training, the
parameters Θ of the MLP and the feature grid are updated
to predict the volume density σ of each point in space.
To train the network and estimate depths, we follow the
standard volumetric rendering procedure [1]. In particular,
for a LiDAR ray r⃗ with origin o⃗ and direction d⃗, we choose
distances ti ∈ [tnear, tfar] to create NS samples si = o⃗+tid⃗.
LiDAR intrinsics dictate tnear, while tfar depends on the
scale of the scene. The feature grid and MLP, collectively
F(si; Θ), are queried to predict the occupancy state σi. Then,
weights transmittances Ti and weights wi are computed
according to:

Ti = exp(−
i−1∑
j=1

σjδj) (1)

wi = Ti(1− exp(−σiδi)) (2)

where δj = tj+1 − tj , and σi is the density at sample si
predicted by the MLP. The weights wi are used by the loss
function and represent the probability that the ray terminates
at each point. Therefore, the expected termination depth of
a ray D̂(r⃗) can be estimated as

D̂(r⃗) =

N∑
i=1

witi. (3)

C. Mapping

The mapping thread receives LiDAR scans from the track-
ing thread and determines whether to form a KeyFrame. If 3
seconds have passed since the previous KeyFrame, the scan
is accepted as a KeyFrame.

1) Optimization: Each time a KeyFrame is accepted, the
map is updated. Eight total KeyFrames are used in the update,
including the current KeyFrame and seven random selected
past KeyFrames. The map is jointly optimized with the poses
of KeyFrames in the optimization window. The poses are
used to parameterize the rays, and 512 rays are sampled
at random from the LiDAR scan. In the backward pass,
gradients are computed for MLP and feature grid parameters,
as well as the poses. At the end of the optimization, the final
poses are sent to the tracking thread, such that future tracking
is performed relative to the optimized poses.

D. JS Dynamic Margin Loss Function

The primary loss function in our system is a novel dynamic
margin loss. This is combined with terms for depth loss and
sky loss as follows:

L(Θ) = LJS + λ1Ldepth + λ2Lsky. (4)

Each of these terms is explained below.

Fig. 3. Illustration of the difference between the JS loss and the LOS loss.
The LOS loss sets a uniform margin ϵ for rays pointing to both learned
and unobserved regions. This strategy corrupts the learned information by
forcing learned regions to predict higher variances. In contrast, the proposed
JS loss sets the dynamic margin ϵ for each ray depending on the similarity
between goal distribution and predicted sample distribution. The JS loss sets
higher margins for rays in unobserved regions to improve convergence, and
sets lower margins for rays in learned regions to refine learned geometry.

1) JS Loss Formulation: The LOS loss used by [6, 7] uses
a single margin for all rays; we use a similar formulation
but introduce a novel strategy based on the Jensen-Shannon
Divergence to assign a unique margin to each ray. For a given
LiDAR ray r⃗, the samples along the ray are si = o⃗+tid⃗, and
z∗ denotes the measured depth along the ray. ti denotes the
distance of individual training samples along the ray, and wi

represents a corresponding weight prediction from an MLP,
as defined in Equation 2. We define a truncated Gaussian
distribution Kϵ that has a bounded domain parameterized by
margin ϵ, with Kϵ = N (0, (ϵ/3)2) as the training distribu-
tion. Thus, target weights are given by w∗

i = Kϵ(ti − z∗).
The JS loss is defined as

LJS(Θ) = ∥w∗
i − wi∥1︸ ︷︷ ︸

Primary Loss

+ ∥1−
∑
i

wi∥1︸ ︷︷ ︸
Opacity Loss

, (5)

where the opacity loss (explained in more detail by [7])
ensures weights along each ray sum to one and thus form a
probability distribution. Note that while URF [6] uses an L2
loss to compute the LOS loss, we follow [7] and use an L1
loss. The effect of this is discussed in Section IV-B.

In [6, 7], the margin decays exponentially throughout
training and, at each iteration, a single margin is shared by
all of the rays. In contrast, we present a JS divergence-based
dynamic margin that computes a unique margin for each
ray to improve the training convergence and reconstruction
accuracy.

In a SLAM application, continuous optimization, sparse
sampling, and incremental input lead to different regions
of the map being learned to varying degrees during online

training. As shown in Fig. 3, using a uniform ϵ in the
LOS loss causes forgetting in regions that have already been
learned. The idea of the JS dynamic margin is to use a
larger margin for rays pointing toward regions of the map
with unknown geometry while using a smaller margin for
rays pointing toward well-learned regions. This allows the
system to learn new regions while preserving and refining
learned geometry. We use the JS divergence to measure the
dissimilarity between the goal distribution and the sample
distribution for each ray, which represents how well the
map has learned along the ray. Learned regions have similar
goal and sample distributions, which lead to smaller JS
divergence. We define a goal distribution G = N (z∗, σ∗),
where σ∗ = ϵmin/3. Further, we define the sample distribu-
tion S = N (µ̄w, σ̄w), where µ̄w and σ̄w denote mean and
standard deviation of the predicted weights along a particular
ray. The dynamic margin is then defined as

ϵdyn = ϵmin(1 + αJ∗) (6)

J∗ =


0 JS(G||S) < JSmin

JSmax JS(G||S) > JSmax

JS(G||S) otherwise,
(7)

where α is a constant scaling parameter. JSmax denotes the
upper bound of the JS score, and JSmin denotes a threshold
for scaling. Once the JS score is smaller than JSmin, ϵdyn is
equal to ϵmin. In practice, we set JSmin = 1, JSmax = 10,
and ϵmin = 0.5.

2) Depth Loss: As in [6], we use the depth loss as an
additional term in the loss function. The depth loss is the
error between rendered depth and LiDAR-measured depth
along each ray. The loss is defined as

Ldepth(Θ) = ∥D̂(r⃗)− z∗∥22 (8)

We found the depth loss contributes to blurry reconstruc-
tion with limited training time, but still provides good hole-
filling. Hence, unlike [6] which weights depth loss and
LOS loss equally, we down-weight the depth loss by setting
λ1 = 5× 10−6.

Finally, similar to [6], we add an additional loss to force
weights on rays pointing at the sky to be zero. We identify
holes in the LiDAR scan and assume them to correspond
to sky regions, then add a loss forcing weights along those
corresponding rays toward zero.

E. Meshing

To form a mesh from the implicit geometry, a virtual
LiDAR is placed at estimated KeyFrame poses. We compute
weights along LiDAR rays, then bucket the weights into a 3D
grid. When multiple weights fall within the same grid cell,
the maximum value is kept. Marching cubes is then used
to form a mesh from the result. This process runs offline
for visualization and evaluation, and is not a part of online
training.

TABLE I
Pose tracking results on Fusion Portable and Newer College sequences.
Reported metric is RMS APE (m). An ✗ indicates the algorithm failed.

MCR Canteen Garden Quad
LeGO-LOAM 0.052 0.129 0.161 0.126
NICE-SLAM 0.248 ✗ ✗ -
LONER w./ LURF 0.047 0.952 0.928 0.931
LONER w./ LCLONeR 0.034 0.071 0.073 0.306
LONER 0.029 0.064 0.056 0.130

IV. EXPERIMENTS

This section evaluates the trajectory estimation and map-
ping accuracy of LONER against state-of-the-art baselines.
Refer to the extended paper on the project website for
additional comparisons and ablation studies.

A. Baselines

We evaluate against NICE-SLAM [4] and LeGO-LOAM
[13], which represent state-of-the-art methods in neural-
implicit SLAM and LiDAR SLAM respectively. Addition-
ally, we evaluate our SLAM pipeline with the loss functions
from CLONeR [7] and URF [6]. We refer to these approaches
as “LONER w./ LCLONeR” and “LONER w./ LURF” respec-
tively. Finally, mapping performance is compared to SHINE
mapping, which is run with groundtruth poses [8].

We evaluate performance on two open source datasets,
Fusion Portable [2] and Newer College [14]. Collectively, the
chosen sequences represent a range of scales and difficulties.
For testing the Fusion Portable RGB-D sequences with
NICE-SLAM, we simulate RGB-D from stereo using RAFT
[15].

B. Performance Analysis

1) Trajectory Tracking Evaluation: Trajectory estimates
from each algorithm are evaluated using the open-source
EVO package, which aligns the trajectories and then com-
putes RMS APE (absolute pose error), denoted tAPE . Table I
compares trajectory performance to state-of-the-art methods
[13, 4]. Our method offers performance competitive with
or better than existing state-of-the-art LiDAR SLAM, while
outperforming the neural-implicit baselines.

2) Map Evaluation: To evaluate maps, point clouds are
created by generating a mesh, then sampling a point cloud
from the mesh. Point clouds are then downsampled to 5cm
resolution for all scenes except MCR, and 1cm for MCR.

Map metrics include accuracy (mean distance from each
point in the estimated map to each point in the groundtruth
map) and completion (mean distance from each point in the
groundtruth map to each point in the estimated map) [3, 4].
Additionally, precision and recall are computed with a 0.1m
threshold. Table II shows quantitative evaluation for map
reconstruction performance. LONER performs competitively
with or better than the baselines in all tests. LONER and
SHINE Mapping out-perform the other baselines. Note only
SHINE was run with ground-truth poses.

TABLE II
Comparison of map Acccuracy (m), Completion (m), Precision, and

Recall between proposed and baseline algorithms. A ‘-’ indicates invalid
configurations, while ‘✗’ indicates that the algorithm failed.

NICE SHINE LONER w./ LONER w./ LONERSLAM LCLONeR LURF

M
C

R

Acc. 0.621 0.164 0.110 0.153 0.186
Cmp. 0.419 0.075 0.080 0.102 0.069
Prec. 0.124 0.624 0.665 0.449 0.473
Rec. 0.476 0.757 0.940 0.884 0.932

C
an

te
en

Acc.

✗

- - - -
Cmp. 0.116 0.220 0.190 0.105
Prec. - - - -
Rec. 0.753 0.524 0.846 0.878

G
ar

de
n Acc.

✗

- - - -
Cmp. 0.130 0.333 0.539 0.157
Prec. - - - -
Rec. 0.657 0.469 0.623 0.784

Q
ua

d

Acc. - 0.301 0.663 0.552 0.380
Cmp. - 0.148 0.543 0.895 0.373
Prec. - 0.453 0.150 0.127 0.327
Rec. - 0.717 0.602 0.484 0.809

C. Runtime

Runtime performance was evaluated on a computer with
an AMD Ryzen 5950X CPU and an NVidia A6000 GPU,
which is similar to the platform used to benchmark NICE-
SLAM [4]. Each tracking step takes an average of 14ms to
compute, which is faster than is needed by the 5Hz config-
uration. In the mapping step, the system finishes processing
a KeyFrame in under the 3 seconds allotted per KeyFrame.
This ensures the system can keep up with input sensor data.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed LONER, the first real-time LiDAR
SLAM algorithm with an implicit neural map representation.
To achieve real-time SLAM, we presented a novel loss
function for depth-supervised training. Results demonstrated
that the JS loss outperforms current loss functions in both
reconstruction accuracy and hole-filling while maintaining
low computational costs. Tests demonstrated that LONER
achieves state-of-the-art map and trajectory quality, while
providing an implicit geometry representation to support
novel view depth rendering.

REFERENCES
[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-

thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields
for view synthesis,” Commun. ACM, vol. 65, no. 1, p. 99–106, Dec
2021.

[2] J. Jiao, et al., “Fusionportable: A multi-sensor campus-scene dataset
for evaluation of localization and mapping accuracy on diverse plat-
forms,” IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3851–3856, 2022.

[3] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “imap: Implicit mapping
and positioning in real-time,” 2021 IEEE/CVF International Confer-
ence on Computer Vision, pp. 6209–6218, 2021.

[4] Z. Zhu, et al., “Nice-slam: Neural implicit scalable encoding for
slam,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

[5] A. Rosinol, J. J. Leonard, and L. Carlone, “Nerf-slam: Real-time
dense monocular slam with neural radiance fields,” ArXiv, vol.
abs/2210.13641, 2022.

[6] K. Rematas, et al., “Urban radiance fields,” IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022.

[7] A. Carlson, M. S. Ramanagopal, N. Tseng, M. Johnson-Roberson,
R. Vasudevan, and K. A. Skinner, “Cloner: Camera-lidar fusion for
occupancy grid-aided neural representations,” IEEE Robotics and
Automation Letters, vol. 8, no. 5, pp. 2812–2819, 2023.

[8] X. Zhong, Y. Pan, J. Behley, and C. Stachniss, “Shine-mapping:
Large-scale 3d mapping using sparse hierarchical implicit neural
representations,” arXiv preprint arXiv:2210.02299, 2022.

[9] J. Deng, et al., “Nerf-loam: Neural implicit representation for large-
scale incremental lidar odometry and mapping,” arXiv preprint
arXiv:2303.10709, 2023.

[10] D. Yan, X. Lyu, J. Shi, and Y. Lin, “Efficient implicit neural recon-
struction using lidar,” arXiv preprint arXiv:2302.14363, 2023.

[11] K. Deng, A. Liu, J.-Y. Zhu, and D. Ramanan, “Depth-supervised nerf:
Fewer views and faster training for free,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 12 882–12 891.

[12] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Trans. Graph.,
vol. 41, no. 4, pp. 102:1–102:15, July 2022.

[13] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2018, pp. 4758–4765.

[14] M. Ramezani, Y. Wang, M. Camurri, D. Wisth, M. Mattamala, and
M. Fallon, “The newer college dataset: Handheld lidar, inertial and
vision with ground truth,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2020, pp. 4353–4360.

[15] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for
optical flow,” in European Conference on Computer Vision, A. Vedaldi,
H. Bischof, T. Brox, and J.-M. Frahm, Eds. Springer, 2020, pp. 402–
419.

	Introduction
	Related Works
	Neural Implicit Representations for LiDAR
	Loss for Depth-supervised NeRF

	Method
	System Overview
	Implicit Map Representation
	Mapping
	Optimization

	JS Dynamic Margin Loss Function
	JS Loss Formulation
	Depth Loss

	Meshing

	Experiments
	Baselines
	Performance Analysis
	Trajectory Tracking Evaluation
	Map Evaluation

	Runtime

	Conclusions and future work

