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Abstract

Estimating the homography between two images is crucial for mid- or high-level
vision tasks, such as image stitching and fusion. However, using supervised
learning methods is often challenging or costly due to the difficulty of collecting
ground-truth data. In response, unsupervised learning approaches have emerged.
Most early methods, though, assume that the given image pairs are from the same
camera or have minor lighting differences. Consequently, while these methods
perform effectively under such conditions, they generally fail when input image
pairs come from different domains, referred to as multimodal image pairs.
To address these limitations, we propose AltO, an unsupervised learning framework
for estimating homography in multimodal image pairs. Our method employs a two-
phase alternating optimization framework, similar to Expectation-Maximization
(EM), where one phase reduces the geometry gap and the other addresses the
modality gap. To handle these gaps, we use Barlow Twins loss for the modality gap
and propose an extended version, Geometry Barlow Twins, for the geometry gap.
As a result, we demonstrate that our method, AltO, can be trained on multimodal
datasets without any ground-truth data. It not only outperforms other unsupervised
methods but is also compatible with various architectures of homography estimators.
The source code can be found at: https://github.com/songsang7/AltO

1 Introduction

Homography is defined as the relationship between two planes when a 3D view is projected onto two
different 2D planes. Many mid- or high-level vision tasks, such as image stitching [1], multispectral
image fusion [2], and 3D reconstruction [3, 4], require low-level vision tasks such as image registration
or alignment as preprocessing steps. Image registration is the process of aligning the coordinate
systems of a given pair of images by estimating their geometric relationship. If the relationship
between the image pair is a linear transformation, it is called homography.

Homography estimation for image alignment is known as reducing the geometric gap between a pair
of images as depicted in Figure 1. It has been an active area of research since the pre-deep learning era,
with prominent algorithms such as SIFT [5], SURF [6], and ORB [7]. The advent of deep learning
ushered in the exploration of end-to-end approaches utilizing supervised learning, beginning with
DHN [8]. These studies demonstrated the effectiveness of deep learning in homography estimation.
However, supervised learning assumes the availability of ground-truth data for the relationship
between image pairs or pre-aligned image pairs. The assumption is often unrealistic in real-world
scenarios. Therefore, the rise of unsupervised learning has become essential to overcome these
practical challenges.
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Figure 1: Examples of types of gaps. This paper will address both geometry and modality gaps
simultaneously. Image pairs are introduced by DLKFM [11].

Driven by this necessity, various unsupervised learning methods for homography estimation have
emerged. UDHN [9] and biHomE [10] estimate homography using only unaligned image pairs.
These methods achieve comparable performance to existing supervised learning methods when
applied to image pairs with the same modality or minor lighting differences. However, if there is
a large modality gap, supervised learning methods still succeed in estimating homography due to
the availability of ground-truth data, whereas unsupervised learning methods struggle to function
effectively. Here, ‘modality’ refers to data domain, and ‘modality gap’ denotes differences in types
of representation as shown in Figure 1. To address this modality issue, a simple approach that adding
encoder for modality mapping can be considered. Yet, this approach leads to the trivial solution
problem, which will be detailed in Section 3.2.

As a solution to all these problems, we propose a framework, named AltO, that handles each gap
separately, without relying on ground-truth labels and avoiding the trivial solution problem. The
proposed method leverages metric learning and utilizes two loss functions. The first is for the
Geometry loss, which reduces the geometry gap by making images similar at the feature level. The
second is the Modality loss, which guides the mapping of image pairs with different modalities into
the same feature space. By repeatedly switching between the training of these two losses, our method
achieves outstanding performance than other unsupervised learning-based methods on multimodal
image pairs. Furthermore, our framework is independent of the registration network, so it can benefit
directly from combining with a high-performance registration network.

In summary, the key contributions of this paper are:

• We propose AltO, an unsupervised learning framework for homography estimation on
multimodal image pairs.

• We train the registration network by separately addressing the geometry and modality gaps
through alternating optimization. In this process, we also introduce a new extended form of
the loss function derived from the Barlow Twins loss [12].

• Our method has achieved superior performance both quantitatively and qualitatively com-
pared to existing unsupervised learning-based approaches in multimodal conditions. More-
over, it has achieved performance nearly comparable to that of supervised learning.

2 Related Work

2.1 Hand-Crafted Homography Estimation

Homography estimation has advanced significantly with the development of the feature-based match-
ing pipeline, especially after the introduction of SIFT [5]. This pipeline typically consists of feature
detection, feature description, feature matching, and homography estimation. Various methods, such
as SURF [6] and ORB [7], have been developed as variants for specific steps within this process.
However, these methods do not account for the modality gap and are thus unsuitable for multi-
modal environments. Recently, feature-based matching methods that handle multimodality, such as
RIFT [13] and POS-GIFT [14], have been introduced. Despite these advances, their overall perfor-
mance remains insufficient compared to learning-based methods. One of the main reasons is that
most of them are based on HOG [15], which assumes planar cases without considering perspective
effects.
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2.2 Supervised Learning Homography Estimation

The first method to employ an end-to-end approach in the deep learning era is DHN [8]. This method
trains a VGG [16]-based backbone network from a given pairs of images to predict offsets between
four corresponding point pairs. The predicted offsets are then converted into a homography using
the DLT [17] algorithm. Furthermore, the paper proposes a method for synthesizing datasets for
training, which has been continually cited in subsequent research. Another supervised learning-based
method is IHN [18], which, compared to DHN, uses a correlation volume to iteratively predict offsets,
gradually reducing error. In addition, this method also experiments with a multimodal dataset and
has demonstrated only minor error of alignment. This approach was also adopted in RHWF [19],
which replaces some convolution layers with a transformer [20] blocks.

2.3 Unsupervised Learning Homography Estimation

Supervised learning requires ground-truth data, which is the homography between two images, for
training. In practice, collecting such datasets, including the ground-truth labels, is nearly impossible.
To overcome this limitation, unsupervised learning-based methods have emerged. The first proposed
unsupervised learning method is UDHN [9]. It predicts offsets between a pair of input images,
like DHN [8], and converts them into homography using the DLT [17]. It then warps one of the
input images with this homography and compares it at the pixel level with the other image to
measure similarity. Another method, biHomE [10], addresses the challenge of lighting variations
through unsupervised learning. It utilizes a ResNet-34 [21] encoder that has been pre-trained on
ImageNet [22], benefiting from the variety of lighting conditions in the dataset. This feature makes
biHomE less susceptible to differences in lighting. However, it struggles when the input distribution
significantly diverges from that of ImageNet, such as with multimodal image pairs. To address these
cases, MU-Net [23] has been introduced and adopts CFOG [24]-based loss function. Although this
demonstrates that CFOG can be integrated into an unsupervised learning framework and handle
modality gap, CFOG still has weaknesses in handling geometric distortions such as rotation and
scale.

3 Background

3.1 Homography

Homography is a 3×3 transformation matrix that maps one plane to another. It has a form of
projection transformation and maps an arbitrary point p in the image to p′ as follows:

p′ ∼ Hp =⇒ w

[
x′

y′

1

]
=

[
h11 h12 h13

h21 h22 h23

h31 h32 h33

][
x
y
1

]
(1)

In Equation (1), H represents the homography matrix and the symbol ∼ denotes homogeneous
coordinates, and w indicates the scale factor that allows the use of equality in the equation. In the
matrix H, h13 and h23 are related to translation, while h11, h12, h21, and h22 are associated with
rotation, scaling, and shearing. Additionally, h31 and h32 are related to perspective effects and are set
to 0 when perspective effects are not considered. Generally, when all effects are considered, it has 8
degrees of freedom (DOF), while in special cases where perspective effects are not considered, it has
6 DOF or fewer.

3.2 Trivial Solution Problem

As mentioned earlier, our goal is to address both the geometry and modality gaps together using
unsupervised learning. One straightforward approach is to map each image into a shared space via
an encoder and perform registration, similar to UDHN [9], using a reconstruction loss. Another
approach, as in biHomE [10], places the encoder after the registration network, where registration
is performed first, followed by loss calculation through the encoder. However, when all modules
are trained simultaneously, both approaches collapse into a trivial solution: the encoder outputs a
constant value, and the registration network predicts the identity matrix as the homography. It appears
as if the encoder and registration network collaborate to minimize the loss in a trivial way. To avoid
this, special techniques are needed to prevent collapse into trivial solutions.
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3.3 Metric Learning

Metric learning refers to a method that trains models to increase the similarity between data points.
Specifically, it is well-known within the field of self-supervised learning, which includes methods
such as NPID [25], SimCLR [26], Simsiam [27], Barlow Twins [12], and VIC-Reg [28]. These
methods commonly involve multiple input data and Siamese networks, and they focus on how to
compare each output so that the model can learn good representations.
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Figure 2: Conceptual Diagram of the Barlow
Twins Method [12]

Barlow Twins, which we adopt, requires further
explanation for the subsequent sections. Fig-
ure 2 illustrates the conceptual diagram of the
Barlow Twins method. The encoder extracts
the representations rA and rB from inputs xA

and xB , then produces embedding vectors vA

and vB by passing these rA and rB through the
projector. At this point, the dimension of both
embedding vectors becomes (N,Dv), where N
is the batch size and Dv is the feature dimension.
By calculating the similarity matrix between
them, we obtain a matrix of size (Dv, Dv). In
this process, the similarity is calculated using the correlation coefficient Cij in Equation (2), for the
i-th element of C from vA and the j-th element of C from vB . The bar over each vector (v̄A and v̄B)
denotes that the vectors have been mean-centered. The objective of the loss function L is to make
the computed similarity matrix as close to the identity matrix as possible. This involves a balancing
factor between the diagonal and off-diagonal elements. Especially, the term related with off-diagonal
is called as ‘Redundancy Reduction’. The formula is expressed as follows:

L =
∑
i

(1− Cii)
2 + λ

∑
i

∑
j ̸=i

C2
ij , where Cij =

∑
n(v̄

A
(n,i)v̄

B
(n,j))√∑

n(v̄
A
(n,i))

2
√∑

n(v̄
B
(n,j))

2
(2)

4 Method

4.1 Alternating Optimization Framework

We present a visualized overview of our training framework at Fig. 3. Our objective is to train a
registration network R that takes a moving image IA and a fixed image IB as input, each from
modalities A and B. It predicts a homography matrix ĤAB that could warp (ω) image IA to
ĨA = ω(IA, ĤAB) which aligns with IB .

Our training framework goes through two phases of optimization per mini-batch of data given, which
are ‘Geometry Learning’ (GL) phase and the ‘Modality-Agnostic Representation Learning’ (MARL)
phase. This framework optimizes alternatively, similarly to the Expectation-Maximization (EM) [29]
algorithm and it can be expressed as follows:

GL Phase : θt ← argmin
θ

[GeometryGap(θt−1, ηt−1, ϕt−1)] (3)

MARL Phase : ηt, ϕt ← argmin
η,ϕ

[ModalityGap(θt, ηt−1, ϕt−1)] (4)

In expressions (3) and (4), t represents the time step, and θ, η, and ϕ denote the parameters of
the registration network, encoder, and projector, respectively. The GL phase aims to maximize the
similarity of local features of ĨA and IB , enabling the registration network to learn how to align the
two images. The MARL phase is designed to learn a representation space that is modality-agnostic,
so that the corresponding features of ĨA and IB can optimally match. The two phases of optimization
will be further detailed in the following sections.

4.2 Geometry Learning

In this phase of optimization, we fix η and ϕ, the weights of encoder E and projector P , and then train
the registration networkR. Our ultimate goal is to train the networkR that predicts a homography
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Figure 3: Overview of architecture. Upper diagram shows static view and lower diagrams illustrate
phase switching between Geometry Learning (GL) phase and Modality-Agnostic Representation
Learning (MARL) phase.

matrix ĤAB which could warp a moving image IA to align with a fixed image IB . Explicitly
following this objective, we warp (ω) image IA to acquire ĨA = ω(IA, ĤAB) and maximize the
geometric similarity between the warped image ĨA and the fixed image IB . For the Geometry loss
to use in training, we propose Geometry Barlow Twins (GBT) loss, a modified version of Barlow
Twins [12] objective for 2-dimensional space. The features of two images ĨA and IB are extracted
with a shared encoder E , and the output feature maps are used to compute the GBT loss. The GBT
loss Lg , is different from the original Barlow Twins in that we consider the spatial axis of the features
as the batch dimension of the original Barlow Twins formula:

Lg = En

[∑
i

(1− C(n,ii))
2+λ

∑
i

∑
j ̸=i

C2
(n,ij)

]
,

where C(n,ij) =

∑
h,w(f̄

A
(n,i,h,w)f̄

B
(n,j,h,w))√∑

h,w(f̄
A
(n,i,h,w))

2
√∑

h,w(f̄
B
(n,j,h,w))

2

(5)

where f̄A
(n,i,h,w) and f̄B

(n,i,h,w) are feature vectors in RN×D×H×W corresponding to ĨA and IB ,
respectively, mean-normalized along the spatial dimensions, by subtracting the spatial mean from
each unit. n and h,w each denote the batch and the spatial (horizontal and vertical) index and i, j
denote the index of channel dimension. Our objective can be considered as applying redundancy
reduction on the spatial dimension of an image pair, maximizing the similarities of the local features
at corresponding regions. By minimizing the geometric distance, or in other words, maximizing the
geometrical similarity, the networkR learns to geometrically align the given image pair. Visualization
of our Geometry Learning (GL) phase can be found at the bottom-left of Figure 3.

4.3 Modality-Agnostic Representation Learning

Images of different modalities are susceptible to form a different distribution in the deep feature
space. Maximizing the similarity of images from different modalities in such feature space may not
lead to our desired result. Hence, for the model to successfully perform homography estimation
given two images from different modalities, it should extract geometric information independent of
modality. To help the GL phase to successfully work, the goal is to train an encoder which could
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(a) Google Map (b) Google Earth (c) Deep NIR

Figure 4: Examples of image pair for each datasets. Google Map and Google Earth are introduced by
DLKFM [11]. Deep NIR is proposed in [31]

form a modality-agnostic representational space of image features, so that our Geometry loss could
properly work as intended. This process is referred to as Modality-Agnostic Representation Learning
(MARL). During this phase, the registration network is fixed, and the encoder E and a projector P
are trained. The standard form of the Barlow Twins loss [12] is adopted as the training loss, defined
as follows:

Lm =
∑
i

(1− Cii)
2 + λ

∑
i

∑
j ̸=i

C2
ij , where Cij =

∑
n(z̄

A
(n,i)z̄

B
(n,j))√∑

n(z̄
A
(n,i))

2
√∑

n(z̄
B
(n,j))

2
(6)

where z̄A(n,i) ∈ RN×D and z̄B(n,j) ∈ RN×D are the projected vectors of fA
(n,i,h,w) and fB

(n,j,h,w),
respectively, mean-normalized along the batch dimension, by subtracting each unit with the batch-
mean value. n and i, j denote the batch and the index of channel dimension. The Modality loss
aims to constrain zA(n,i) and zB(n,j) to share a similar representational space, agnostic to the image’s
modality. To capture global feature information, we employ global average pooling (GAP) [21, 30],
which removes the spatial dimensions to produce a feature vector. The necessity of GAP is discussed
in Section 6.2.

Inspired by biHomE [10], the architecture uses the initial layers of ResNet-34 [21] as the encoder E
and the latter layers as the projector P . ResNet-34 comprises a stem layer, four stages, and a fully
connected (FC) layer. Each stage halves the spatial resolution and contains 3 to 6 residual blocks.
To retain finer structural details, we remove the max pooling layer after the first convolution in the
stem layer. The stem layer and stages 1 and 2 serve as the encoder, while stage 3, along with GAP,
functions as the projector. Section 6.4 confirms that this structure is the optimal division within
ResNet-34. Stage 4 is optional, and the subsequent FC layer, excluding GAP, is omitted. As shown in
Figure 3, encoders for ĨA and IB share weights, as do the projectors.

5 Experiments

5.1 Multimodal Datasets

Google Map is a multimodal dataset proposed in DLKFM [11]. It consists of pairs of satellite images
and corresponding maps, which have different representation styles. There are approximately 9k
training pairs and 1k test pairs of size 128×128.

Google Earth is another DLKFM dataset that provides multimodality by consisting of images of the
same area taken in different seasons. The amount of data is about 9k for training and 1k for test. The
input image size is also 128×128.

Deep NIR is a dataset proposed in [31]. It is an extension of the RGB-NIR scene dataset proposed by
M. Brown et al. [32] through cropping and image-to-image translation. The RGB-NIR scene dataset
consists of pairs of images, one captured by an RGB camera and the other by an NIR sensor at the
same location. In this experiment, we use the oversampled ×100 Deep NIR dataset. The dataset
consists of approximately 14k training pairs and 2k test pairs. In this experiment, we resize these
images to 192×192 and then apply dynamic deformation as proposed by DHN [8]. Finally, we obtain
image pairs with a size of 128×128.

6



5.2 Implementation Details

Registration networks are selected to aim at demonstrating that our method can universally operate
with various types of registration networks. To cover unique modules such as CNN, RNN, and Trans-
former [20], we chose DHN [8] (plain CNN), RAFT [33] (CNN+RNN), IHN [18] (CNN+iterative
process), and RHWF [19] (Transformer+iterative process). In the case of DHN, following bi-
HomE [10], the backbone network was switched from VGG [16] to ResNet-34 [21]. Additionally,
IHN and RHWF employed a 1-scale network, which we refer to as IHN-1 and RHWF-1, respectively.
In iterative process-based networks like RAFT, IHN, and RHWF, our AltO framework was applied at
every time step, replacing the use of ground-truth labels. Further details are provided in the appendix.

Experimental settings of ours include using the PyTorch 1.13 library and an Nvidia RTX 8000
GPU with 48GB of VRAM for training each model. The models were optimized using the AdamW
optimizer [34], a one-cycle learning rate schedule [35], a maximum learning rate of 3e-4, and a
weight decay of 1e-5. Additionally, gradient clipping of ±1.0 is applied during the backward pass
for the Geometry loss. The training protocol repeats for a total of 200 epochs with a batch size set
to 16. Regarding the loss parameters, λ is set to 0.005, consistent with standard settings of Barlow
Twins [12].

5.3 Evaluation Metric

The evaluation metric used is Mean Average Corner Error (MACE). Corner error is the Euclidean
distance between the positions warped by the correct homography HAB and the predicted homogra-
phy ĤAB for a corner of IA. ACE is the average corner error across four corners, and MACE is the
overall mean of ACE across the dataset.

MACE(HAB , ĤAB) = E
n∈N

[
E
c∈C

[
||ω(c,HAB)− ω(c, ĤAB)||2

]]
(7)

In Equation (7), C is the set of corner points of IA and N is the set of samples. In this evaluation, a
lower MACE indicates less error and better performance.

Table 1: Experimental results on three benchmarks, Google Map [11], Google Earth [11] and Deep
NIR [31]. We report the Mean Average Corner Error (MACE) for evaluation. Our approach shows
state-of-the-art performance among unsupervised methods, with robust compatibility across diverse
network architectures for homography estimation.

Learning Type Method Google Map [11] Google Earth [11] Deep NIR [31]
(No warping) 23.98 23.76 24.75

Supervised

DHN [8] 4.00 7.08 6.91
RAFT [33] 2.24 1.9 3.34
IHN-1 [18] 0.92 1.60 2.11
RHWF-1 [19] 0.73 1.40 2.06

Unsupervised

UDHN [9] 28.58 18.71 24.97
CAU [36] 24.00 23.77 24.9
biHomE [10] 24.08 23.55 26.37
DHN [8] + AltO (ours) 6.19 6.52 12.35
RAFT [33] + AltO (ours) 3.10 3.24 3.60
IHN-1 [18] + AltO (ours) 3.06 1.82 3.11
RHWF-1 [19] + AltO (ours) 3.49 1.84 3.22

5.4 Evaluation Results

The experimental results are shown in Table 1. When image pairs are unaligned, or if the identity
matrix is used as the homography, MACE typically exceeds 23 px. Thus, any method yielding MACE
above this threshold can be considered unsuccessful in training. Most conventional unsupervised
methods fail to train effectively on the benchmark datasets. UDHN [9], which directly compares IB

and ĨA in pixel space, is highly sensitive to modality changes, resulting in failed training on most
datasets except Google Earth [11]. Although the Google Earth dataset is multimodal, its image pairs
have similar intensity distributions, allowing only limited training in pixel space. Similarly, CAU [36],
which addresses only minor lighting variations, suffers from modality gaps and large displacements,
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Figure 5: Visualization of homography estimation using center box. The first row shows the state
before applying homography (green rectangles). Subsequent rows compare the results after applying
ground-truth (green) and predicted (red) homography matrices. Our method, AltO, closely matches
supervised learning-based methods, while other unsupervised approaches underperform.

leading to consistently low performance across all datasets, including Google Earth. biHomE [10],
structurally similar to our method, uses an ImageNet [22] pre-trained ResNet-34 [21] as the encoder,
which struggles with images outside the ImageNet distribution.

In contrast, our proposed method achieves significantly higher performance than existing unsupervised
approaches. Additionally, it is compatible with any registration network architecture, R, showing
only a marginal performance gap compared to supervised training. Although this gap may appear
quantitatively large, it would be negligible in practical applications. Figure 5 illustrates the qualitative
results, showing boxes warped using ground-truth and estimated homography matrices. While
conventional unsupervised methods fail to align boxes, our method achieves high alignment accuracy,
with only minor differences compared to supervised methods using the sameR. These results indicate
that our method, AltO, can replace supervision from ground-truth homography matrices.

In the appendix, there are additional qualitative results with another way of demonstration. There are
comparisons of IA, IB , and ĨA for each method.
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6 Ablation Study

6.1 The Effectiveness of Alternating

Table 2: MACE for methods with and without alternating and MARL

No Alternating Alternating
Method with MARL w/o MARL with MARL

DHN [8] + AltO 24.09 24.27 6.19
RAFT [33] + AltO 26.21 25.91 3.10
IHN-1 [18] + AltO 24.37 23.14 3.06
RHWF-1 [19] + AltO 18.88 24.07 3.49

In our AltO, the key
technique is alternating,
designed to address the
trivial solution problem
from unintended collab-
oration, as discussed in
Section 3.2. This ablation
study demonstrates its ef-
fectiveness by comparing
cases with and without alternating. The experiment was conducted on the Google Map dataset [11],
measuring the MACE values described in Section 5.3. Table 2 presents the experiment conducted
with and without Modality-Agnostic Representation Learning (MARL) when alternating is absent.
As expected, the result shows that effective learning occurs only with alternating.

6.2 The Necessity of Global Average Pooling

Table 3: MACE for methods with and without global
average pooling (GAP) [30].

Method w/o GAP with GAP
DHN [8] + AltO 24.07 6.19
RAFT [33] + AltO 24.07 3.10
IHN-1 [18] + AltO 24.01 3.06
RHWF-1 [19] + AltO 24.08 3.49

In Section 4.3, we stated that global average
pooling (GAP) [30] is applied at the end of the
projector P . This ablation study compares per-
formance with and without GAP. The exper-
iment was conducted using the Google Map
dataset [11], with the result presented in Ta-
ble 3. As shown by the result, effective learn-
ing occurs only with GAP. This is because,
without GAP, local features are forced to be
similar by comparing fine details before the registration network is fully trained, which leads to the
trivial solution problem discussed in Section 3.2.

6.3 Combination of Loss Functions

Table 4: Ablation study on Geometry and
Modality losses, exploring all combinations of
three popular contrastive losses and MSE for
Geometry loss.

Geometry loss Modality loss MACE

Barlow Twins
[12]

Barlow Twins 3.06
Info NCE [37] 3.73
VIC-Reg [28] 3.36

Patch NCE
[38]

Barlow Twins 3.56
Info NCE 4.71
VIC-Reg 3.4

VIC-Reg
Barlow Twins 21.47

Info NCE 4.95
VIC-Reg 23.99

MSE
Barlow Twins 3.74

Info NCE 3.97
VIC-Reg 3.18

Our proposed AltO requires both Geometry and
Modality losses. While we suggest using Bar-
low Twins [12] for both, this section examines
the performance impact of alternative losses. For
the experiments, the registration networkR is set
to IHN-1 [18], and the dataset used is Google
Map [11]. We compare with Info NCE [37] and
VIC-Reg [28], widely used contrastive losses in
Siamese self-supervised learning, and additionally
test Mean Squared Error (MSE) for the Geometry
loss. Modality loss is used in its original form,
while Geometry loss is expanded to include spa-
tial dimensions, as described in Section 4.2. In
this case, Info NCE is introduced as Patch NCE in
CUT [38].

Table 4 presents the MACE results for different
combinations of loss functions. It is known from
SimCLR [26] that using Info NCE or Patch NCE
benefits from a larger number of contrasting in-
stance pairs. However, in our implementation, the batch size affecting the Modality loss is limited
to 16, and the spatial resolution impacting the Geometry loss is only 32 by 32 (1024 pairs), which
is relatively small. This likely leads to a decline in performance. Additionally, VIC-Reg exhibited
instability due to the three separate balance factors required for its components: variance, invariance,
and covariance. MSE is another choice that could be used as a distance metric to compute the
geometrical gap. This option of loss leads to a fair performance, but short in comparison to our
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Barlow Twins-based objective. We hypothesize the reason for this observation as below: even if
image pairs are at corresponding locations, the information at those locations may not have identical
feature representations. For example, while one image may include detailed edge descriptions, the
other might lack such details due to differences in representation style. This difference in infor-
mation quantity results in discrepancies in the embedded features. Essentially, while features at
corresponding locations should be similar, they cannot be exactly the same for this reason.

In contrast, our proposed Barlow Twins-based losses do not suffer from the weaknesses present in
other losses. First, unlike Info NCE and Patch NCE, they do not require a large number of contrasting
pairs, as shown in the original Barlow Twins paper [12]. Additionally, they use only one balancing
factor, making them significantly more stable than VIC-Reg. Lastly, unlike MSE, they do not require
the embedded features to be exactly identical but instead aim to increase similarity, which is more
applicable to real-world scenarios. These advantages allow our proposed combination to achieve
superior performance.

6.4 Architecture of Encoder and Projector

Table 5: Encoder and projector config-
urations within ResNet-34 [21]. Each
number represents a ResNet stage; all
encoders include the stem layer, and all
projectors end with GAP [30].

Encoder Projector MACE(Stage No.) (Stage No.)
1 2, 3 3.82
1 2, 3, 4 3.78
1,2 3 3.06
1,2 3, 4 3.07
1,2,3 4 9.76

As mentioned in Section 5.2, we have adapted ResNet-
34 [21] by dividing it into an encoder and a projector.
In doing so, there were several cases regarding which
stages to use as the encoder and which to designate as
the projector. This ablation study aims to measure the
performance for each of these configurations. The Google
Map dataset [11] is used, with IHN-1 [18] as the registra-
tion networkR. The indices used in Table 5 represent the
sequential order of ResNet stages.

The result indicates that the encoder performs best when at
least two stages are utilized. While using three stages can
enhance the encoder’s mapping capabilities, the resolution
is halved, leading to decreased precision. Conversely,
using only one stage results in better resolution compared to two stages, but the mapping capabilities
are inadequate. The experiments reveal that the sweet spot between resolution and mapping ability
trade-offs is achieved with two stages. For the projector, using stages beyond the third does not
significantly affect performance, except when only the shallowest, the fourth stage, is used.

7 Conclusion

We propose AltO, a new learning framework, capable of training on multimodal image pairs through
unsupervised learning. By alternating optimization, like Expectation-Maximization [29], AltO
handles both geometry and modality gaps separately. This framework employs two types of loss
functions, using the Barlow Twins [12] and its extended version, to effectively address both gaps.
Experimental results demonstrate that the registration network is stably trained within our framework
across various backbones. Furthermore, it outperforms other unsupervised learning-based methods
in MACE evaluations and achieves performance close to that of supervised learning-based methods
across multiple datasets.

8 Limitation and Future Work

Despite its advantages, our method encounters some limitations. Firstly, applying the same registration
network results in slightly reduced performance compared to supervised learning, which directly
utilizes ground-truth labels. Secondly, our framework requires training additional modules to replace
ground-truth labels, which slows down the training process.

To address these limitations, future work could explore new designs, such as integrating Transform-
ers [20] into the encoder and projector to improve performance. Additionally, reducing training time
is essential, motivating efforts to develop a single-phase framework that avoids the trivial solution
problem mentioned in Section 3.2.
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A Appendix

A.1 Additional Visualization of the Results from the Main Experiment

We provide additional results of our method and baseline methods for comparison as below.

Deep NIRGoogle EarthGoogle Map

IHN-1
(Supervised)

RHWF-1
(Supervised)

UDHN

biHomE

IHN-1
+AltO
(Ours)

RHWF-1
+AltO
(Ours)

Figure 6: Moving, fixed, and warped images. The first row displays the moving image (IA), the
second row shows the fixed image (IB), and the remaining rows present the warped images (ĨA)
derived from IA for each method.
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A.2 Integration of Iterative Registration Networks into AltO

In this section, we provide a detailed explanation of integrating a registration network with an
iterative process into AltO. In the main experiment, we used DHN [8], RAFT [33], IHN-1 [18], and
RHWF-1 [19] as the registration networkR. Among these, RAFT, IHN-1, and RHWF-1 employ an
iterative process, predicting intermediate homographies over multiple time steps for each homography
estimation. When supervised learning is applied, the loss function is used for homographies output
at each time step. Since AltO is also intended as a replacement for supervision, we similarly apply
the Geometry loss to the homography output at each time step. For RAFT, originally designed for
optical flow estimation, we implicitly incorporate DLT [17] to convert optical flow into homography.
Figure 7 illustrates this process.

Geometry Learning (GL) Phase

Geometry
loss

Modality
loss

GL 
Module
( )

Geometry
loss

Simplified Representation of GL Phase

GL 
Module
( )

Geometry loss (Final)

…

Geometry loss

…

Geometry loss

Geometry loss

Details when has an iterative framework (cases of RAFT, IHN, or RHWF)

is borrowed from the paper
that proposed
the registration network ( )

Figure 7: Visualization of the iterative registration process in AltO. For RAFT [33], DLT [17] is
implicitly used to transform optical flow into homography across time steps.
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Answer: [Yes]
Justification: Our contributions and claims are appropriately stated in the introduction and
abstract.
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made in the paper.
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Justification: We described the assumptions of our method’s operation in Section 4 and
demonstrated them through experiments.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
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by formal proofs provided in appendix or supplemental material.
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4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: We explained both the architecture and implementation details in Sections 4.3
and 5.2.
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
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nature of the contribution. For example
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our codes at https://github.com/songsang7/AltO.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details are described in Section 5.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow the experimental setting of homography estimation research com-
munity.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We mentioned the hardware resources in Section 5.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in the paper conforms in every respect with the NeurIPS
Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is focused only on estimating the spatial relationship between two
provided images. It neither creates new false information nor reveals hidden content, and it
does not offer any potential for misuse or adverse social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is focused only on estimating the spatial relationship between two
provided images. It neither creates new false information nor reveals hidden content, and it
does not offer any potential for misuse or adverse social impacts.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the sources we used or referred to, such as datasets.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide our codes at https://github.com/songsang7/AltO.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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