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Abstract

Counterfactuals, or modified inputs that lead to
a different outcome, are an important tool for un-
derstanding the logic used by machine learning
classifiers and how to change an undesirable clas-
sification. Even if a counterfactual changes a clas-
sifier’s decision, however, it may not affect the
true underlying class probabilities, i.e. the coun-
terfactual may act like an adversarial attack and
“fool” the classifier. We propose a new frame-
work for creating modified inputs that change the
true underlying probabilities in a beneficial way
which we call Trustworthy Actionable Perturba-
tions (TAP). This includes a novel verification pro-
cedure to ensure that TAP change the true class
probabilities instead of acting adversarially. Our
framework also includes new cost, reward, and
goal definitions that are better suited to effectu-
ating change in the real world. We present PAC-
learnability results for our verification procedure
and theoretically analyze our new method for mea-
suring reward. We also develop a methodology
for creating TAP and compare our results to those
achieved by previous counterfactual methods.

1. Introduction

As machine learning (ML) classifiers have experienced
widespread adoption in applications that have an out-sized
impact on individuals’ lives (such as credit lending (Leo
etal., 2019), college admissions (Martinez Neda et al., 2021)
and healthcare (Sauer et al., 2022)), the need to understand
classifiers’ decision making and how to avoid undesirable
classifications has become increasingly important. One of
the most important tools for filling this need is the coun-
terfactual: a counterfactual for a given input and classifier
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is a similar input that results in a different classification.
Suppose a classifier is designed to determine whether a loan
application represents a good or bad credit risk. If the classi-
fier determines a loan to be a bad credit risk, a counterfactual
would be a modified loan application that is classified as a
good credit risk, e.g. the individual in a loan application
is a bad credit risk, but an otherwise identical applicant
who is 5 years younger with a $500 higher monthly income
would be a good credit risk. Wachter et al. (2017) first sug-
gested the use of Counterfactuals Explanations (CE) to help
understand classifier decision making. Subsequent works ex-
plored the use of counterfactuals to help individuals change
undesirable classifications (Ustun et al., 2019; Karimi et al.,
2021; Poyiadzi et al., 2020). Returning to the example of
an individual turned down for a loan, this type of counter-
factual would not suggest an individual decrease their age
(clearly impossible), but rather make practical changes such
as pay off all credit card debt and request a 10% smaller
loan. These counterfactuals came to be known as Action-
able Counterfactuals (AC) or Algorithmic Recourses (AR).
Although these counterfactuals change a classifier’s deci-
sion, it can not be assumed they will have the same affect
on the real world (Freiesleben, 2022), e.g. a change that
causes a classifier to determine someone is a good credit risk
may not increase the person’s odds of paying off the loan in
reality. Konig et al. (2023) point out that a counterfactual
could change a classifiers decision without changing the
real world if the modifications are not causally linked to the
output. For example, having a mailing address in an affluent
neighborhood may correlate to higher odds of paying off
a loan and changing the address could affect a classifiers
decision, but there is no causal link. Accordingly, telling an
applicant to change their mailing address to a P.O. box in a
wealthy neighborhood would not improve their chances of
paying off a loan. Konig et al. (2023) proposed a framework
to ensure modifications are causally linked to the output
called Improvement-Focused Causal Recourse (ICR).

In this paper, we focus on tackling new challenges for this
problem, which have not been addressed in prior work.
Trustworthy Actionable Perturbations (TAP) focus on three
novel improvements for affecting real world outcomes.

Trustworthiness Against Adversarial Examples: Szegedy
et al. (2013) showed that ML classifiers are brittle and small
modifications to an input can cause misclassifications in oth-
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Figure 1. a) Overview of the framework for creating Trustworthy Actionable Perturbations (TAP). b) Comparison of objectives and
features of TAP and Counterfactual Explanations (CE) (Wachter et al., 2017), Actionable Counterfactuals/Algorithmic Recourse (AC/AR)
(Ustun et al., 2019; Karimi et al., 2021; Poyiadzi et al., 2020), Improvement-Focused Causal Recourse (ICR) (Konig et al., 2023).

erwise accurate classifiers. Among the various definitions
of adversarial behavior, we use the definition: modifications
to a data point are adversarial if they cause a classifier to be
far less accurate on modified data points than the original
data (Diochnos et al., 2018). These modified inputs are
called adversarial examples and the algorithms that create
them are called adversarial attacks. The algorithms that
create counterfactuals are very similar to adversarial attacks
and Pawelczyk et al. (2022) showed they produce similar
outputs, which leads to the troubling conclusion that many
counterfactuals may act as adversarial examples and change
the classifier decision (individual is now offered a loan)
without changing the true underlying class probabilities
(individual is still likely to default on the loan). The adver-
sarial vulnerability of classifiers is separate from causality
concerns. For this reason, we introduce a novel two step
procedure where (1) we generate a suggested change and (2)
we use an independently trained verifier to certify that this
change is not acting as an adversarial example. We present a
methodology for training this verifier and provide analytical
results showing that it is PAC-learnable (Theorem 2.3).

Flexible Goal Definition: AC/AR focus solely on the final
classification of a data point, but this may not always be
sufficient or feasible. For instance a valid AC/AR may lead
to a 51% likelihood of paying off a loan, but this may not
satisfy the individual. Additionally, a change that improves
a cancer patient’s odds of survival form 15% to 40% would
not constitute a valid AC/AR even though it would be very
useful. Accordingly, our framework defines goals through
a rarget set of acceptable outcomes that can be tailored to
an individual’s needs, and we demonstrate how these target
sets can be designed. We note that ICR (Konig et al., 2023)
and one of the AC/AR methods (Dandl et al., 2020) propose
the use of goals other than final classification, but our formu-
lation is more flexible and applies to multi-class scenarios.
We develop a principled measure of reward by defining a
distance to the target set using statistical divergence. We

analyze this distance theoretically in Theorem 2.2.

Real World Efficiency: Previous works on CE and AC/AR
reduce the amount of changes made by a counterfactual
by minimizing a weighted ¢-norm of the changes (with the
exception of Ramakrishnan et al. (2020)), however these
norms often fail to represent the real world cost of a change.
Alternatively, we minimize a cost measure built specifically
to reflect real world costs of a change. By using this mea-
sure of real world cost and principled measure of rewards
(distance to target set), TAP can suggest more efficient ad-
vice. We present a few examples of the utility of producing
efficient advice through TAP: (a) Suggest the course of treat-
ment that would double a patient’s odds of survival while
requiring the least staff hours. (b) List the skills an job ap-
plicant could acquire in the least amount of time that would
lead to a high probability of receiving an interview. (c) Find
the cheapest modifications to a product that would bring
it into a more premium price range. We illustrate through
experiments on real world data how the use of application
specific cost functions leads to more efficient advice.

Figure 1(a) illustrates our framework of Trustworthy Action-
able Perturbations (TAP) for using feasible actions, true
cost and an individualized goal to create an efficient change,
which is then verified to ensure that the change affects the
true class probabilities instead of acting adversarially. Our
goal to change the true class probabilities (real world out-
comes) differs from previous CE and AC/AR works that
seek only to change the classifier’s decision. We share
our goal with ICR which is focused on ensuring that only
features causally related to the class are modified. Our
framework, on the other hand, focuses on ensuring that
the changes do not exploit the brittleness of ML classifiers
and cause misclassifications. This can occur regardless of
whether modified features are causally related to the out-
put. Figure 1(b) provides a summary of the objectives and
features of various existing approaches alongside TAP.
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2. Trustworthy Actionable Perturbations

Problem Setting and Goals: Suppose there is an un-
known distribution (x,C') ~ D. Here x is a member
of the input space X C R? and C € {1,...,k} is the
class of x. We define the true class probabilities y(x) :=
(P(C =1|x),...,P(C = k|x)). We let ) denote the k-
simplex and use a classifier M : X — ) to estimate y(x).
Our goal in designing TAP is as follows: Given an input
x with an undesirable classification M (x), find the most
efficient real world actions to create a modified input X such
that the corresponding true probabilities y (X) (and not just
M (X)) are more desirable.

Real World Actionability: TAP should only suggest mod-
ifications that are feasible in the real world (e.g., not de-
creasing an individual’s age). To this end, we introduce:
the Actionable Set A(x) of a data point x as the set of
all perturbations of x that are feasible in the real world.
For example, if X" represents loan applications with z; the
age of the applicant, z5 the applicant’s credit score, z3 the
amount of credit and x4 the loan duration, the actionable
set could be A(x) = {x € X|T1 = z1,T2 = 22}, i.e. the
applicant can change the size and duration of the loan they
request, but not their age or credit score. Previous works
have examined the complexities of actionability including
causal relations between inputs, e.g. one can’t increase their
education without an increase in age (Mahajan et al., 2019;
Karimi et al., 2020b). All of these considerations, as well as
a limiting changes to attributes which are believed to have a
causal link to the output, can be incorporated into A(x).

Efficiency: The definition of the most efficient change de-
pends on the context of the problem and could involve a well
defined value such as “cost in dollars” or more nebulous
value such as “amount of effort required.” We character-
ize this value with a function dy : X x X — R, where
dx(x,%) is the cost of changing x to X. For example, if
x and X represent resumes, then dy (x,X) could represent
the time it would take to acquire the attributes listed on
resume X, but not on x. We note this function may not be
a true distance measure. For example, if d y represents the
difference in financial cost between two courses of medical
treatment, then d x (x, X) should be negative when X is more
affordable than x.

Desirability: We now define what we mean by a desirable
outcome—the goal of a TAP. The Target Set T is the set
of all elements of Y that would be an acceptable result of
a TAP. If we wish to belong to a desirable class w with
probability no less than p, the target set would have the
form T = {z € Y|z, > p}. If our goal is rather to avoid
some undesirable class u, T' could be of the form T' = {z €
V|zu < g} for a fixed q. More generally, if we wish to
belong to a set of desirable classes VV with probability at
least p and we wish to belong to a set of undesirable classes
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Figure 2. Illustration of the partition on ) used to calculate the
distance from the target set 7" in Theorem 2.2. Although the cost
function takes different functional form(s) in the four regions, it is
continuously differentiable in the entire space.
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We must quantify how close an TAP comes to achieving its
goal in a principled manner. To do this, we first choose a
measure of statistical distance D(y||z) (we use Kullback-
Leibler (KL) Divergence). We then denote dy (y,T) as the
distance of y to the target set T, defined as follows:

dy(y,T) := ZiggD(YHZ) 2

‘We may now formally define Trustworthy Actionable Per-
turbations. Let e represent budget —the amount of work
we are willing to perform, and 4 represent tolerance —how
close the final result is to our target set 7.

Definition 2.1 ((€, §)-Trustworthy Actionable Perturbation).
X is an (e, 0)-trustworthy actionable perturbation for x and
a target set 7' if

1. dx(X, ~) <e
2. dy(y(x),T) <6
3. x € A(x).

In order to verify the second condition we must be able
to calculate dy. Fortunately, the optimization problem in
(2) has a differentiable closed form solution when D(y||z)
is an f-divergence: a broad class of measures including
KL-divergence, total-variation (TV) and other commonly
used statistical distances. An f-divergence is defined as

D(yl||z) = Zle z; f (Z—), where f is a convex function

satisfying f(1) = 0 and f(0) = lim, .o+ f(z) (Polyanskiy
& Wu, 2024). Theorem 2.2 describes the solution to (2).
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Theorem 2.2. If D(y||z) is an f-Divergence with twice
differentiable f and T is of form (1), then

0 ifyeA

pf STW)Jr(l—p)f(%) ify € B

dy(y, T)={af (%) + (1 -a)f () iryec

pf(52) +af (%) ify €D
+1-p—q)f (%)

3)

where Sy = Y .oV Su = Doy Yi and the sets
A, B,C and D are a partition of Y defined and visual-
ized in Figure 2. Furthermore, dy(y,T) is continuously
differentiable in y over its entire domain.

Equation (3) in Theorem 2.2 is easily calculable and con-
tinuously differentiable despite its piece-wise form, which
will be significant when creating TAP (see Section 3). The
proof of Theorem 2.2 involves showing that optimization
problem (2) is convex and finding a value z that satisfies the
KKT conditions. This proof and additional results about dy,
are found in the Appendix A.1.

Real-world Verifiability of TAP: Note that TAP are defined
with respect to the true class probabilities y (X) because TAP
should have an effect in the real world. Notwithstanding,
y(X) is unknown and we must use M (X) to create our TAP
(more details in Section 3), which introduces the risk that
we might produce an X that has the desired effect on M (X)
but not y(x) (like an adversarial example). This is of partic-
ular concern because TAP and all other counterfactuals are
created by solving an optimization problem of the form

X = argmin loss(X,w) + A - dist(X,x), (€))

which is precisely how most adversarial examples are cre-
ated (Pawelczyk et al., 2022). When counterfactuals were
first introduced to ML (Wachter et al., 2017), the concern
that counterfactuals would act as adversarial examples was
dismissed because the adversarial attacks of the time 1) mod-
ified many more features than counterfactuals and 2) were
targeted almost exclusively at image data whereas counter-
factuals were proposed for use on tabular data. Since that
time, Gourdeau et al. (2021); Su et al. (2019) demonstrated
that adversarial attacks can be effective when changing a
very small number of features, and several works (Ballet
et al., 2019; Mathov et al., 2020; Cartella et al., 2021; Kumar
et al., 2021) have shown that adversarial examples exist on
tabular data sets. This implies that verification is necessary
to achieve results that can be trusted to change the true class
probabilities.

Verifying X may appear similar to detecting adversarial
examples, which has been the object of significant research
(Yang et al., 2020; Roth et al., 2019; Fidel et al., 2020;

Carlini & Wagner, 2017a) with no satisfactory solution.
Fortunately, we have an important advantage over detecting
adversarial examples: we know the original data point x
and exactly how it was modified, i.e., X. To capitalize on this
knowledge, we propose a novel verification procedure using
aclassifier V : X x X — [0, 1] which compares two inputs
simultaneously and predicts the probability of the inputs
belonging to the same class: the value of V' (x, X) estimates
P(C' = C|x,%). Because V has a different classification
task from M, attacks targeted against M should not be
effective against V', and we can use the discrepancy between
estimates of M and V' to determine if an X acts adversarially
on M. In order to make this comparison, we use the fact
that P(C' = C|x,%) can also be estimated using M by
calculating Zle M;(x)M;(%). If X acts adversarially we
would expect Zle M,;(x)M;(%X) to be very small while
V(x, %) is large. If X is not adversarial we would expect
similar values from both Zle M;(x)M; (%) and V (x, X).
Accordingly, we define

A(x,X) == V(x,fc)—ZMi(x)Mi(fc) NG

and verify that an X is trustworthy only if A(x,%) < 7. In
Section 3, we describe how we selected the threshold .

Training a Verifier & PAC Learnability: In order to cre-
ate V', we must have data on which it can be trained. We
build this difference training data by creating all possible
pairs of elements from our original training data and label-
ing the pairs by whether they belong to the same class (1
for the same class, 0 for different classes). If the original
training data is {x(?), C()}7_,  the difference training data
is {(x, x0)), Z(i’j)hgi,jgn, where z(47) = 1[C) =
CU)]. We use the same architecture for V as M (only
changing the number of inputs and outputs), but differing ar-
chitectures could also be used. Now that we have a method
for training V', we show that training in this way leads to a
generalizable verifier. To this end, we next present a proba-
bly approximately correct (PAC) bound on V’s generaliza-
tion gap which depends on n (number of training samples),
k (number of classes), and d (data dimensionality).

Theorem 2.3. Let R(V) be the true risk of a verifier V over
data drawn from D and Rs(V) be the empirical risk over a
sample S of labelled point pairs drawn i.i.d. from D. Both
risks are defined using a bounded loss function £(-,-) < Bj.
Also let V' be selected from a function class V. Then for any
d € (0,1), with probability (1 — §), the following bound on
the generalization gap holds.

‘S/lél;)) R(V) — RS(V)‘ =0 ((\/nzkzw) 1/d> (6)

Here the terms with explicit dependence on 6 have been
suppressed because they are dominated by the term in (6).
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The precise generalization bound is presented in (43) in the
Appendix A.2.

To prove Theorem 2.3, we construct a definition of risk that
fits this new learning scenario (i.e., learning if two samples
are from the same class or not, as opposed to conventional
classification). This risk takes into account that we expect
large imbalances between the number of point pairs from
the same class and from different classes. In order to obtain
the bounds on the generalization gap, we expand this risk
into a sum of terms which can be bounded with existing
Rademacher complexity PAC-methods. Finally, we bound
the growth of these Rademacher complexity terms as a
function of n, k and d to arrive at (6). The complete proof,
including detailed definitions of R(V) and Rg(V) as well
as additional discussion, is presented in the Appendix A.2.

Remark 2.4. The bound in Theorem 2.3 is small as long
as n > k2 and n is exponentially larger than d. The re-
lation between n and k is crucial because it implies that
the denominator v/n2 — k2n ~ n? >> k. This differs from
typical PAC bounds where the primary requirement is n be
exponentially larger than d (Theorem 4.3 in Gottlieb et al.
(2016)) and have mild dependence on the number of classes
k. The key implication of this result is: when using a verifier
as described in this paper, as the data sets used increase
in number of classes k, it is essential that the amount of
training data increases at a rate of VEk.

3. Generating TAP

Two Step Creation Method: We now present and dis-
cuss the general optimization framework for creating TAP.
Ideally, we would like to solve the following optimization
problem: arg minge 4(x) dy (¥, T') + Adx (X, x), where the
scalar parameter A balances the effort(e)-reward(§) trade-
off. Solving this optimization would be guaranteed to create
an effective TAP; unfortunately y (%) is unknown and we
cannot solve this problem directly. Instead propose the fol-
lowing two-step procedure where: in Step 1, we treat M (X)
as a surrogate for y (%), and in Step 2, we use a verification
algorithm to ensure that X is not just fooling the classifier.

Step 1:arg *H}i? : dy(M(x),T) + Mx(x,x)  (7)
xXCcA(x

1
Step 2: Verify M (%) ~ y(X) i.e. A(x,%X) <~ (8)
i
TAP

Solving Step 1: We solve (7) using gradient descent which
requires us to use differentiable models M and formulate
d x in a differentiable manner (dy is differentiable accord-
ing to Theorem 2.2). We modify our gradient descent to
address two challenges. (1) We must insure that our so-

Algorithm 1 Generating TAP
Input: Classifiers M & V, point x, target family 7,
learning rate «, verification-cut off ~y
XX
while X not converged do
g — Vi (dy(M (%), T) + Adx (%, %) + b(X) + p(%))
g; < 0 for all immutable features j.
X+—X—ag
end while
X% = cond(X) (project onto the coherent space)
€,0 =dy(x,x),dy(M(x),T)
if € and § requirements NOT met then
Adjust X (see text for explanation)
Return to while loop
end if
if |V (x,%) — 32| My(x)M;(X)| > ~ then
Adjust problem parameters (see text for explanation)
Restart algorithm
end if
return X

lution is actionable: X € A(x). (2) Our solution X must
follow any formatting rules associated with the data set
(for instance, Boolean variables must be either O or 1, cat-
egorical features must respect one-hot encoding, etc.). A
perturbation that follows these formatting rules is called
coherent. To solve these two difficulties, we first assume
A(x) = {x|l; < %; < w1 < i < d} for some set of lower
bounds {/;}¢_, and upper bounds {u;}¢_;. An attribute is
immutable if l; = u;. We ensure actionability by setting
all elements of the gradient corresponding to immutable
features to zero and adding a large penalty b(X) term to the
objective function which punishes points for leaving the
actionable set. To ensure coherence, we project the result
of our gradient descent onto the coherent space by using a
function cond : R™ — X which performs the appropriate
value rounding to make an input coherent. We found it use-
ful to introduce a second penalty term p(X) which requires
that any one-hot encoded features sum to 1. This ensures
our answers never stray too far from a coherent point and
improves robustness. Details on b, p and cond are found in
the Appendix A.3.3. In practice we also found it useful to
replace regular gradient descent with the ADAM algorithm
(Kingma & Ba, 2014).

Solving Step 2: In Section 2, we discussed the necessity
of verification and suggested that an TAP can be trusted
if A(x,%) = ’V(X7 %) -k Mi(x)Mi(i)’ is smaller
than a threshold . Our process for choosing v starts with
deciding on an acceptable risk of eliminating a truly effec-
tive TAP (we use 10%). To find the v corresponding to
this risk, we calculate A(x(?), x()) for a sufficiently large
number of pairs (x(V, x(9)) from the testing data such that
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Dataset Adult Income Law School Success Diabetes Prediction German Credit
Target Set 7| > 90% of high income > 85% chance of passin < 25% chance of Diabetes > 80% chance of repayment
£ g
Weekly hours BMI, smoking, fruit, Loan size, loan duration,
Mutable . vegetable and alcohol .
worked, education Law School Grades, constmption. healthcare telephone, money in
Features level, job type, location of BAR exam ‘ption, ’ checking account, money
employer type education, income, in savings account
physical activity
Cost Combination of time Combination of effort to Effort required to loose
to improve education improve grades and weight, change health Total monetary difference
Measure and hours worked per physical distance to habits, education and in- in Deutsche Marks (DM)
dx week travel to take BAR come as weighted 2-norm
Age, sex, blood pressure, Age, sex, marital status
Tmmutable | g s e | S [T s, | SISk | e e L
arital stz 3 e P ’ ’ ’
Features marital status undergraduate GPA and general health, length and type, housing,
difficulty walking credit history, collateral
Accuracy 80% 7% 75% 75%

Figure 3. Table containing details on data sets used for testing.

C® = CU), Finally, we pick y such that only the desired
percentage of A(x(¥),x0)) values (e.g. 10%) are above 7.
The verification procedure is now reduced to eliminating
any X that results in A(x,X) > 7.

Adjusting for Suitability and Verifiability: When creating
TAP we will often have a particular budget (¢) or tolerance
(6) bound we need to satisfy. To find a suitable TAP we
repeat Step 1 of our process adjusting A until the desired
budget or tolerance is met: increasing A to decrease € and
decreasing A to decrease §. It may also be appropriate to
use a variety of A values and plot the € and § values of each
resulting TAP (see Figure 4). The user may then select a
TAP they see as offering particularly good value. When a
TAP fails the verification step, there are a few recourses.
(1) Sometimes it is sufficient to decrease A, putting greater
emphasis on reaching the target set. (2) “Shrink” the target
set (increase the value of p and decrease the value of ¢) in
order to force the algorithm to find more effective changes.
(3) Add a random perturbation to x in order to move the
starting point away from the adversarial example. The entire
procedure is described in Algorithm 1.

4. Experimental Results

Data Sets: We compare TAP, counterfactuals and adver-
sarial attacks on four data sets from different fields; data
set details are found in Figure 3 and the Appendix A.3.1.

The associated code can be found at https://github.

com/JesseFriedbaum/TAP_code.

Adult Income (Kohavi & Becker, 1996): This data set con-
tains demographic information on Americans labelled by
whether they had a high income. The actionable set A(x)
allows individuals to increase their education, change jobs
and adjust their weekly work hours. The cost function d »
sums the expected number of years to improve education, a
one-year cost to change jobs and the square of the change
in hours worked (weighted so an additional 3 hours of work

per week is equal to a year spent on education).

Law School Success (Wightman, 1998): This data set con-
tains information on law school students labelled by whether
they passed the BAR exam. A(x) allows changes to law
school grades (through more studying) and the region where
the exam is taken. The cost function d y sums the increase in
grades and the physical distance travelled to take the BAR.
Moving to an adjacent region (Far West to North West) is
weighted equal to increasing grades one standard deviation.
Diabetes Prediction (for Disease Control & , CDC): The
individuals in this data set are labelled by whether they
have diabetes. We define A(x) to allow changes in health
habits, BMI, education and income. We use a weighted
2-norm for dy to represent the relative difficulty of making
changes. For example, starting to get regular physical activ-
ity is weighted the same as dropping one BMI.

German Credit (Hofmann, 1994): This data set contains
loan applications. In A(x), we allow for changes to the
loan duration and size and funds in the checking and sav-
ings accounts. We use d y to measure the total difference in
Deutsche Marks (DM) over all elements of the application.

Other Methods: We compare our results against coun-
terfactuals created using the original method proposed to
create counterfactuals (Wachter et al., 2017) and the diverse
counterfactuals (DICE) method in (Mothilal et al., 2020),
the most cited methods in the literature. These methods
use an £, norm based cost function that often fails to reflect
real world costs (see examples on the next page). We also
compare TAP against the Carlini & Wagner (2017b) ¢ ad-
versarial attack, one of the most well known and effective
adversarial attacks. The counterfactuals belong to the same
actionable set as the TAP, but the adversarial examples are
not limited to an actionable set and may not be coherent.

Models: Gradient boosted tree algorithms (Friedman, 2001)
are considered state of the art architectures for tabular data
classification (Shwartz-Ziv & Armon, 2022). Unfortunately,
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(a) Law School Example

(b) Adult Income Example

Figure 4. Cost-Benefit plots of TAP and counterfactuals for an individually from the Law School data set with grades measured in standard
deviations from the mean (a) and an individual in the Adult Income data set (b).

these models are not differentiable and cannot be used with
our framework. Instead we use neural networks which
we tuned until they provide accuracy on par with gradi-
ent boosted tree models on the same data set. Details on our
models’ structure and training are given in Appendix A.3.2.

Representative Examples of TAP and Trade-off between
cost/desirability: We first examine two representative ex-
amples of how TAP behave differently than counterfactuals
for specific individuals. Figure 4 shows a plot of the ¢/d
values of TAP and counterfactuals for one individual in the
Law School data set and one individual in the Adult Income
data set. We examine the results from the Law School data
set: The TAP labelled TAP-1 suggests only a mild (0.2 stan-
dard deviation) increase in grades and the relatively short
move from the Far West to the Great Lakes region result-
ing in a small 11% increase in the chance of passing the
BAR. On the other hand, TAP-2 suggest a larger increase
in grades and a longer move which results in a much larger
34% increase to the odds of success. Finally the counter-
factual CF-1 suggest an enormous increase in grades and
massive cross country move to achieve 51% increase in the
odds of success. Turning our attention to the Adult Income
example: TAP-3 suggests a relatively simple increase in
education to the masters level resulting in a 20% increase to
the odds of a high income. Alternatively, TAP-4 achieves an
71% increase by suggesting far more changes including a
professional degree and becoming self-employed. The coun-
terfactual CF-2 does not suggest becoming self-employed

and produces a smaller 67% increase in the odds of high
income despite also suggesting a professional degree and a
drastic 16 hour increase in the hours worked per week.

These examples illustrates two trends: 1) TAP offer both
low-cost/low-reward (large-d/small-€) and high-cost/high-
reward options, whereas counterfactual methods (Wachter
et al., 2017; Mothilal et al., 2020) offer only high-cost op-
tions. This is because TAP are defined by distance to the
target set, but counterfactuals are defined as belonging to
the desirable class. That rules out any advice that doesn’t
result in the desirable class being the most likely class. 2)
Counterfactuals are prone to suggesting very high-cost out-
liers. This has two main causes: (a) The ¢; norm used to
create the counterfactuals does not accurately represent real
world effort. For example this norm considers any move
in region to cost the same regardless of actual distance. (b)
Because counterfactuals do not use a target set, they are
prone to “overshooting” the desired goal. For example C'F}
resulted in a 95% chance of passing the BAR when our goal
was only 85%.

Comparison of TAP vs. Other Approaches: We now com-
pare TAP, counterfactuals (Wachter et al., 2017; Mothilal
et al., 2020) and CW attacks (Carlini & Wagner, 2017b)
over the entire data sets. In Figure 5: Each bar chart refers
to a particular data set and desired distance § to the target
set T'. Each bar shows the percentage of individuals that
a method was able to move inside the goal ¢ at a variety



Trustworthy Actionable Perturbations

B TAP (our work)

I Single Counterfactual

B DICE B Carlini Wagner

Low reward: § =1

Moderate reward: § = 0.5

High reward: § =0

100

100 100
g g g
" 5 & 75 ® 75
— ~ —
2 50 2 50 2 50
5 S IS
= 25 =25 = 25
wn wn [9p]
0 0 0
7000 DM 0 7000 DM 0 7000 DM

cost/e

cost/e

(a) Performance comparison over entire German credit dataset

Low reward: § =1

Moderate reward: § = 0.5

cost/e

High reward: § =0

100 100 1
[} (] [}
§ 80 45 80 *é 801
% 60 ZJ; 60 % 60
§ 40 § 40 § 40
n 20 n 20 n 204
0 12 BMI 07
COSt/G 0 COSt/G 12 BMI 0 COSt/E 12 BMI
(b) Performance comparison over entire Diabetes prediction dataset
Adult income Law school success Diabetes prediction German credit
(cost in years of education)| (cost in o grade increase)| (cost in BMI point change) |(cost in Deutsche marks (DM))
COSt/E 6 12 18 2 4 6 4 8 12 0 3,500 7,000
TAP 34% 76% 81% 78% 99% |[100% | 93% 95% 98% 73% 100% | 100%
(O’LL’I“ work) 31% 62% | 67% 75% 99% (100% | 56% 59% 62% 58% 81% 85%
Counterfactual | 78% | 71% | 78% | 51% | 95% | 99% | 14% | 47% | 64% 0% 62% | 81%
Wachter et al. (2017) 6% 44% 45% 48% 91% | 95% | 8.1% 29% 35% 0% 42% 58%
DICE 17% 69% 78% 39% 93% [100% | 21% 55% 1% 0% 46% 77%
Mothilal et al. (2020) 12% 49% 59% 38% 92% | 98% 14% 37% 47% 0% 35% 58%
Carlini Wagner 7.5% 7.5% | 7.5% 90% 98% | 99% 0% 0% 0% 3.8% 31% 31%
Carlini and Wagner (2017b)] 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
(c) Percentage of individuals moved within § = 0.5 of target (Top red cells unverified, bottom green cells verified)

Figure 5. a) & b) show average success rate for moving individuals within a variety of distances (§) to the target set. The y-axis shows the
percentage of individuals within the goal distance, and the x-axis, represents different costs (e values). c) Summarizes success values for
all data sets. The upper (red) value for each row is the success rate before the verification procedure and the lower (green) value is the
success rate after verification with a 10% chance of rejecting valid examples.

of costs €. (Bar charts for all data sets are found in the
Appendix A.3.4.) The table summarizes this information
for all data sets with the upper (red) value in each cell rep-
resenting the data before the verification procedure and the
lower (green) value the success rate after the verification
procedure. Consider the bar chart on the top middle which
refers to the German Credit data and a goal of § = 0.5 from
the target (the same information as the last three columns of
the table). At a e = 0 Deutsche Marks (DM) cost, TAP are
able to move 73% of individuals within the goal range by
closing empty accounts. Counterfactuals do not match this
success until the cost e = 7, 000DM, and CW attacks never
achieve more than a 31% success rate. TAP outperform
counterfactuals in all of the test scenarios.

Impact and Effectiveness of Verifier: The first important

take away from the success rates after verification is that the
verifier was 100% effective at eliminating Carlini Wagner
adversarial examples (visible in the bottom row of the table
in Figure 5 c), implying that the verification method does
indeed eliminate inputs that fool the classifier. Importantly,
the verification procedure also removes a significant number
of TAP and counterfactuals. Consider the second column
of Figure 5 c¢: Out of all TAP generated 14% appeared
effective but were eliminated by the verification procedure.
Counterfactual methods fared even worse with 20% to 27%
of counterfactuals eliminated. This reinforces the necessity
of a verification procedure.

Concluding Remarks & Future Work: In this work,
we proposed Trustworthy Actionable Perturbations (TAP)
which leverage ML classifiers to find efficient actions to
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achieve real world results. Our proposed framework intro-
duces a novel verification procedure, flexible definition of
goals, and principled reward measure for use in generat-
ing counterfactuals. We demonstrated their effectiveness
when compared to other methods on data sets from multiple
fields. Finally we note that our framework is flexible enough
to incorporate contributions from previous works on coun-
terfactuals such as individualized cost measures (De Toni
et al., 2023), causal relations between inputs (Mahajan et al.,
2019; Karimi et al., 2020b), causal relationships to the out-
put (Ko6nig et al., 2023), and advanced optimization methods
(Guidotti et al., 2018; Karimi et al., 2020a).

Impact Statement

As the use of Al and ML expands into critical applica-
tions such as healthcare, criminal justice, and hiring, the
importance of explaining decisions deemed unfavorable and
providing recourse to such users has grown significantly.
In this context, our paper introduces a novel contribution
aimed at making recourse mechanisms more trustworthy.
We present a flexible framework, Trustworthy Actionable
Perturbations (TAP), designed to generate cost-effective re-
course which can ensure that the recourse being provided
to users results in real-world changes. TAP can be useful
to both end-users and institutions that suggest the recourse.
The technical tools and the analytical results developed in
the paper (including a flexible target set, and a novel pair-
wise verification procedure) can also find use and lead to
new insights for other problems such as cost-sensitive learn-
ing and adversarial defense.
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A. Appendix
The Appendix is organized as follows:

A.1 Proof of Theorem 2.2 (Analysis of statistical distance dy to the target set 7")
A.2 Proofs of Theorem 2.3 (PAC generalization bounds for Verifier)
A.3 Additional details about the implementation of experiments
A.3.1 Details about data sets and their corresponding cost functions
A.3.2 Details about the models used
A.3.3 Details about the objective function used for optimization
A.3.4 Additional experimental results showing the comparative performance of TAP vs. other methods.

A.1. Proof of Theorem 2.2 (Analysis of statistical distance dy to the target set T’

Recall that our target sets have the form

T—{zéy

where either VW or U could be empty. Also recall

dy(y,T) = mme (¥|z) mmZzl ( > )

We must prove three facts: A) dy (¥, 7T) has the closed form found in equation (3), B) This function is continuous, C) the
derivative of the function is continuous. We begin by proving the closed form equation.

Our proof of the closed form of dy, (3, T') will be made easier by introducing notation A" = (W UU)® as the neutral classes
that are neither desirable nor undesirable. We will use the fact that 1 = Sy, + Sy + Spr to rewrite (3) as

0 lfSW >pand81,{<q
pf 5—;2)+(1—p)f(%M 1fSW<pand$u<(1—SW)< p)
dy(y,T) =< af 57“)+(1—(I)f (% if Sy > gand Sy > (1 — Sy) ( )

)

pf TW) +af (‘%“) +(1-p—q)f (fg,q) if Sy > (1—Sw) (q)
and Syy < (1 — Sy) (1%)

where Syy = > .o Uis Su = D iy Ui and Sy = D i nr G

The case where y € T is obvious so we consider only the case where y ¢ T', First note that f-divergence D¢ (y||z) is
convex in z. Furthermore 7" is a convex set. Therefore any z satisfying the KKT conditions is a minimizer. The KKT

12
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conditions for this problem can be written as

VL(z) =0 (10)
k
Z zi = 1D
i=1
p— z<0 (12)
iew
> s—a<0 (13)
ieU
P, p2 =0 (14)
i (p— > z) =0 (15)
iEew
iz (q - Z%) =0, (16)
iU
where the Lagrangian is defined by
k 7 k
L(z) = Zzlf <zz> +/\Zzi+ﬂl (p Z zl> + g (Zzz q) .
i=1 i=1 iEW €U

Note that we have neglected to explicitly state the requirement that 0 < z; < 1 for all ¢. This is because our eventual
solution will satisfy these bounds anyways, and omitting these bounds will drastically simplify our calculations. We now
rewrite (10) as

f(yi>yz-f,<yi)ﬂmo i€w (17)
Z; Zi Zi
f<w>—%f<%>+A+m=0 ieu (18)
f(?)_wf(%>+A:o ieN (19)
We now propose a solution can be found where that the ratios Z— are constant in each of the sets W, U, N/. That is
zi = Cwii iew
zi = Cyyi el
zi = COnYi ieN.

In that case we can satisfy conditions (17), (18) and (19) (originally (10)) by setting
A= Cy (O = (G
= A+ F(C) = O '(C))
po = =A=f(Cy ") + G (G )
We can now reformulate (14) so that it is easier to analyze. We will first define h(x) = = f'(x) — f(z). Note that because

f(z) is convex h/(z) = x f""(x) > 0 for all z > 0 and h(z) is increasing. We can then rewrite our formulas for A, 11 and
p2 ((17), (18) and (19)) as
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Then w1 > 0 becomes
h(Cx') = h(Cyy)
O_/Ifl Z Cljvl
Cy < COw,
and po > 0 similarly becomes C'ys > Cyy. This implies (14) is equivalent to
Cy < Cy < Cw. (20)

Our choice of A, i1 and ps (defined in (17), (18) and (19)) satisfy (10), so we must now find values of Cy,, Cyy and Cys
that satisfy (11) through (16). We will consider 3 cases illustrated in Figure 6.

Su

4 I:I Case 1
. 1
2 Case 2
=
O
= Case 3
& ..
'z Trivial case
<
]
)
g
Z
3
<
e}
o
&
=qfF------------=
kS)
H

> SW
p 1

Total Probability in Desired Classes

Figure 6. The three cases visualized in probability space.

Case: 1 Suppose Syy < pand Sy < (1 — Syy) (1 p)

Let Cyy = and Cy =Cnx = . This implies ps = 0 which satisfies (16) and po > 0 (half of (14)). This also
implies Zl cw %i = p satisfying (12) and (15). We will use the fact S;y + Syr = 1 — Syy in our proof of condition (13).

- 1-
> u= ZCuinﬁSL{

€Sy 1€ESu
1-p q
( I —— ) =4
Su+ Sy 1-—
This proves (13) is satisfied.
Because Syy < p we have
P 1-p 1-p
Cpy=—=—>1> = =C
VT Sy -8y Su+tsy ¥

This implies p1 > 0 and satisfies the other half of (14).
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We have now shown all the KKT conditions are satisfied and we have found a minimizer. We now plug these values into (9)
to find a closed form for the distance.

k ~

~ Yi

dy(y,T) = JE
y(y, ) 1;%1¥1 1Zf<21)

BB g )

zEW

o (52)womr (325

Case: 2 Suppose Sy > g and Syy > (1 — Sy) (1%(1)

Let Cy = g~ and Cyy = Oy = SwjrqSN. This implies ¢1; = 0 which satisfies (15) and p1 > 0 (half of (14)). We also have
Do cu #i = g satisfying (13) and (16). We now prove condition (12) is satisfied.

_ 1-
o= Cwyi:ﬁsw

1ESW 1€Sw
1—g¢q P
>~ = (1-8)— )=
"SWP+SN( “)<1—q> p

Finally we prove C'nr > Cy, implying po > 0 which satisfies the other half of (14)

q 1—gq 1—q
=—<1< = =C
Su 1-Sy  Swrsy WV

Now that we have proven that this is a minimizer we will again plug solution into (9) to find the distance value.

k ~

- . Yi

dy(y,T) = S
y(¥.7) gg_ Zf(%)

i=1

BE(E) B ()

ieu

()0 (5)

Case: 3 Suppose Sy > (1 — Syy) ( ) and Syy < (1 — Sy) ( )

Let Cyy = —W Cy = L and C = = ’/’V 4 in which case ) ,_ ), 2; = p (satisfying (12) and (15)), > ,_;,2i = ¢
(satisfying (13) and (16)) The choice of Cs ensures that (11) is satisfied:

M
Zzi: Z Zi + Zzl—i— Z 2
=1

1€Cy 1€Cy 1€Cn
= CwSw + CySyy + CnSny =1

To show that (14) is satisfied. We note Sy > (1 — Syy) ( ) implies Crr > Cyy and Syy < (1 — Sy) (1%}) p implies
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Cxr < Cyy. this proves (20) which is equivalent to (14) Plugging these minimizing values of z into (9) yields

k ~
dy(y,T) =miny 2 f (%)
=1 B
DYi Sy qyi Su (1 )yv Sy
Y e () s e () ()
iew S p lEZU X q iezv:v SN 1=p—q

Sw Su Sy
21 (22 (82) 40y (15
P q I=p—q
This proves the closed form in equation (3) and we may now proceed to show that this function is continuous. To prove

continuity we need only show continuity the piece-wise boundaries which we will evaluate one at a time.

Boundary 1: Sy, = p. The two functions that share this boundary are 0 and p f (%‘)i) +(1=p)f (f—fg) Plugging the

boundary into the latter function yields

pf(?)ﬂl—p)f(ll__s;v) :pf<i>+(1—p)f<1:§> -0

The two functions are equal on the boundary and the boundary is continuous.

Boundary 2: S;; = q. The two functions that share this boundary are 0 and g f (%‘) +(1-q)f (1 S“) Plugging the
boundary into the latter function yields

501 () (2) -1 (2)-

The two functions are equal on the boundary and the boundary is continuous.

Boundary 3: Sy = (1 — Syy) (13;7)' The two functions that share this boundary are p f (%?l) +(1-=p)f (11_%91) ) and

of ( ) +qf ( ) +(1-p—9q)f (gﬁ) Plugging the boundary into the latter function yields

o (52) v (%) 0 (55525) o (5) v (52),

The two functions are equal on the boundary and the boundary is continuous.

Boundary 4: S,y = (1 — Sy) ( ) The two functions that share this boundary are ¢ f ( ) +(1-9qf (1 S“) and
pf ( ) +qf ( ) +(1-p—0q)f ( SN ) Plugging the boundary into the latter function yields

1-p—gq

() o () o0 s0n (555) ar () - (12)

The two functions are equal on the boundary and the boundary is continuous. We have now shown continuity on all
boundaries and the function is continuous. Now, to show that the derivative of the function is continuous, we need only
show the all partial derivatives exist and agree on the boundaries. We use the closed form equation (3) found in the body of
the paper (which is equivalent to the one found in the beginning of the proof) but suppresses Sxr. This makes it easier to
differentiate with respect to y;, i € W U U.

0 if Sy > pand Sy < g
pf STW) +(1—-p)f (%) if Syy < pand Sy < (1 — Syy) <Lp)
dy(y,T) =< 4f %“) (1-q)f (11,_%) if Sy > qand Sy > (1 —Sy) (
pf *W)+Qf( )+(1—p—q)f(%) if8u>(1—SW)(ﬂ)
and Syy < (1 — Sy) (ﬁ)
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We now take the derivative with respect to a desirable class (i € W).

0 if Syy > pand Sy < q
P (55) w5 pmas, < 0-5 (1)
dy(y,T) =<0 if Sy > gand Syy > (1 — Sy) (1&)

OTiew f (5%> _ (ﬂwﬁ) if Sy > (1 —Sw) (ﬂ)

and Syy < (1 — Sy) (1%(1)

Now we need only ensure all pieces agree on the boundaries to show that the derivative exists and is continuous.

Boundary 1: Sy, = p. The two functions that share this boundary are 0 and f’ (%‘7&) 1! ( =W ) Plugging the
boundary into the latter function yields

() () () ()

Then setting the derivative at the boundary to 0 makes the derivative on this boundary continuous.

Boundary 2: Sy = g. The two functions that share this boundary are both 0, and setting the derivative at the boundary to 0
makes the derivative on this boundary continuous.

Boundary 3: Sy = (1 — Sw) (%p). The two functions that share this boundary are f’ ( ) f! (1 SW) and
I (SW) —f <m) Plugging the boundary into the latter function yields

1-p—q
() (55 ()0 (5)
p pP—q p p

Then setting the derivative at the boundary to f’ (‘SW ) —f (1 Sw ) makes the derivative on this boundary continuous.

Boundary 4: Sy, = (1 — Sy) ( ) The two functions that share this boundary are 0 and f’ ( ) I’ (%%’_TSM).

We rewrite the boundary as Sy = %SW + 1 and plug it into the latter function.

() (LSS () 1w (tsw 1))

D —-p—q D 1-p—q

Then setting the derivative at the boundary to 0 makes the derivative on this boundary continuous.

This yields the continuous partial derivative

0 if Sy > pand Sy < ¢
7 (é}ng)_f' (11;;9;7&) if Syy < pand Sy < (1—5w)< )
7T =0 0> g and Sy 2 (1= &) <1T") ' @b
Z () - (52 s> a-sw) (%)
and Syy < (1 — Sy) (ﬁ)

We now take the derivative with respect to a undesirable class (i € Uf).
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if Syy > pand Sy < g
1fSW<pandSu<(lfSw)( )
dy(¥,T) = [’ 57“ —f %) if Sy > gand Syy > (1 — Sy) ( )
;(8e) - (e ifsu > (1-Sw) (15)

and Syy < (1 — Sy) (lg;q)

Olicu

Now we need only ensure that there is agreement on the boundaries.

Boundary 1: Syy = p. The two functions that share this boundary are both 0, and setting the derivative at the boundary to 0
makes the derivative on this boundary continuous.

Boundary 2: S;; = ¢. The two functions that share this boundary are both 0 and f’ (57“) I (1 S“) Plugging the
boundary into the latter function yields

Su 1-Sy q 1—¢q

() ()= () r (0
q l—q q l—q

Then setting the derivative at the boundary to 0 makes the derivative on this boundary continuous.

Boundary 3: S;; = (1 — Syy) ( ) The two functions that share this boundary are 0 and f’ (T“) —f (M)

1-p—gq
We rewrite the boundary as Syy = 1 — —Su and plug it into the latter function.
-S, —(1-1=s
Su 1— Sy — Sy Su 1= Su (1 7 u)
f’()—f’( = () - = 0.
q e A q l-p—gq

Then setting the derivative at the boundary to 0 makes the derivative on this boundary continuous.

Boundary 4: Sy, = (1 — Sy) (%q) The two functions that share this boundary are f’ (TM) - f (117_5{1“) and

I ( “) —f (%). Plugging the boundary into the latter function yields

i (S“) _ <1—SW‘SU) _p <SM) g 1= Su—(1-8) (1%)

q 1-p—gq q 1-p—g¢q
(8 ()
q —q

Then setting the derivative at the boundary to f’ (%‘) I (1 Su ) makes the derivative on this boundary continuous.

This yields the continuous partial derivative

if Syy > pand Sy < ¢

1fSW<pandSz,, (1—Sw)( )
—f %) if Sy > gand Syy > (1 - Sy) ( : (22)
- (5Semsi) s> (1-Sw) (15)

and Syy < (1 —Sy) (1%)

~8 dy(y,T) =< [’
f/

2 s

We now present a corollary to Theorem 2.2 that shows explicitly that dy, decreases with added probability to the desirable
classes and increases with added probability to the undesirable classes.
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Corollary A.1. If T is of form (1) and f is twice differentiable, then d (y,T) is decreasing in'y; if i € W and is increasing
ifiel.

To prove Corollary A.1, we need only show equation (3) is decreasing in y; for ¢ € W and increasing in y; for i € U, we
need only prove that the partial derivative (21) is non-positive and the partial derivative (22) is non-negative. We will rely
heavily on the fact thatf’ is increasing because f is convex.

We start with (21):

0 if Sy > pand Sy < ¢
FE) - () irSw <pand Sy < (1-Sw) (1)
S——dy(y,T) = { 0 if Sy > qand Sy > (1 — Sy) ( )
e ;S (s ity > (1= Sw) (1)
and Syy < (1 — Sy) (%;q)

Clearly the first and third cases are non-positive, so we proceed to the second case.

S 1-8
(5= ()
p L—p
S 1-8
() ()
p L—p
Next we prove the partial derivative is negative in the fourth case.

Sy < (1—8y) (1p>

—4q

Because Syy < p, we have STW <1l< % and

Sw — q¢Sw < p —pSu
Sw — qSw — pSw < p — pSu — pSw
Sw _1-Su—Sw
P I1-p—gq

() or (55
D l-p—gq
() (55

D l-p—gq

This shows that (21) is non-positive and (3) is decreasing in y; for ¢ € W.

‘We now consider (22):

if Sy > pand Sy < ¢
if Syy < pand Sy < (1—51/\/)( )
_ %) if Sy > g and Syy > (1_801)( —q
and Syy < (1 — Sy) (%)

dy(y,T) =< [’

O0%icu 7

NS

Clearly the first two cases are non-negative, so we consider the third case.
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(%) (=)
q 1—g¢g
(3)-r ()0
q 1-g¢g

We can no prove the fourth case is positive.

Because Sy > ¢, we have 57“ >1> % and

SM>(1—SW)< a )

1-p
Sy — pSw > q — qSw
Sy — pSw — qSu > q — pSw — qSu
Su 1= Sw—Su
q 1-p—gq

() (558)
q I-p—q
S 1-8Sw -8
IORICE=aR
q l-p—q
This shows that (22) is non-negative and (3) is increasing in y; for i € U.

Additional Analysis on dy The following lemma generalizes the result of Corollary A.1 to any f-divergence if we are
restricted to the binary classification case. That is, dy exhibits expected behavior of a reward measure or any f-divergence
if we restrict ourselves to the binary classification setting (reward goes down as the probability of being the undesirable
class goes up).

Lemma A.2. In the binary classification setting, if T = {z € Y|z > p}, then dy(y,T) is decreasing (not necessarily
strictly) in y1 for D(y||z) any f-divergence.

We now present the proof of Lemma A.2. Recall dy (y,T) = min,er D;(¥||z). For binary probability distributions a and
b, the f-divergence has the simple form

Dy(blfa) = a f ('j) +(1-an)f (1 ‘bl) 23)

1—8.1

for a convex function f with f(1) = 0. We show a relationship between this formula and a secant line. To refer to the secant
line of a function g(x) from point = « to x = 3 evaluated at y, we will use the notation S («, ;). When using this
notation we will assume that o < /3.

We assume a; > by and show that D;(b||a) is equivalent to the secant line of f(z) from x = % to % evaluated at 1.
b;

(Note > <1< %.) We show this simply using the point slope form.

(e (o o) LRI oy

a; ' 1l—a 1—a; oL — 1—a;

1-b b
g (b1 1=bi \_(, l-b f(k;)—f(i) 1-b,
! :1,1—&1’ B _1—31 1=b; _ by +f 1—a;

lfal al
b 1-b
a; 1—a
= Dy(bl|a)
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Now that D(b||a) is related to a secant line we prove a few facts about secant lines of convex functions. If g is convex,
then S, («, B; ) is decreasing in « and increasing in 5 whenever o < v < (3. Recall that if g is convex, then by definition
for any v; < ve < vz, we have

g(va) — g(v1) < g(v3) —g(v1) < g(v3) — 9(112)_

< < (24)
Vo — V1 U3 — V1 U3 — U2
Then for any 5 < 3 we have
Sgla, B;7) = (v — a)m + g(e) (25)
Sq(a, B;y) = (v — a)m + g(a) (26)
for m > m. It follows that for any v > « ~
Sg(oz,ﬁ;x)gsg(a,ﬁ;x), (27)

and S, («, B; z) is increasing in 3.
A similar argument shows that Sy (c, 8; ) is decreasing in & when v < .

We will use these facts to analyze dy(y,T) = min,er D;(y||z). The f-divergence between identical distributions is zero,

so we have dy(y,7) = 0 whenever y1 > p. When y1 < p we have 21 <1 < t";'i and

dy(y,T) = Igg;lDf(yIIZ)

S
=min Sy <y1 yl;l) ,

zcT Zl’ 1—2z

which is decreasing in Z—i and increasing in i:i’i , S0 to achieve the minimum we use the smallest possible z;, i.e. z; = p.
We may now simplify

p’ 1-p’
0 ify >p

4y T) = {Sf (ﬁ ﬂq) ity <p

Note that this is continuous at y = p because Sy(1,1;1) = f(1) = 0. With this closed form solution for dy (y,T) we may
finish the proof.

We have already shown that S ( ’%, 11?;)1 ; 1) is decreasing in ’% and increasing in 11?;1 , so increasing y;1 will decrease

S (%, %; 1) and dy (y,T) is decreasing in ¥;.
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A.2. Proofs of Theorem 2.3 (PAC generalization bounds for Verifier)

Let us define D; as the distribution of the data x conditioned on the event that it is drawn from class i. We define a loss
function £ : {0,1} x [0,1] — R as follows:

Uz,v) = z2l(v) + (1 = 2)I(1 —v), (28)

where [ is some differentiable function (e.g., log() which would lead to the cross-entropy loss). Furthermore, we assume
that the output of the loss ¢ is upper bounded by a constant By and is Lipschitz. The verifier output of V' (x, X) estimates
probability that x and X belong to the same class.

Using this loss, we now define the true risk R(V') of a verifier V' as

k
1 L1
R(V)= 17— 0,V (J) - 1,V 29
V)= B0 2w O VOO g 3 B OV 09
R(diff) (V) R (same) (V)

The verifier faces two types of inputs that it should be able to distinguish: (a) pairs of inputs that can come from the same
class (i.e., x,x ~ D; for some class i) and (b) pairs of inputs that can belong to different classes (i.e., x() ~ D, and
x) ~ D; for some pair of classes ¢ # j). This formulation of risk assigns equal value to identifying pairs from the same
class and pairs form different classes because both of R (V) (accuracy on pairs form different classes) and R2me) (V)
(accuracy on pairs form the same class) are normalized by dividing by the total number of terms in the sum. Specifically, we
normalize the total risk for misclassifying pairs from different classes by k(k — 1), which is the number of distinct ordered
pairs of classes we can form out of k classes. Similarly, we normalize the total risk of misclassifying pairs from same classes
by k. Furthermore, both R4 (V') and R(2m¢) (V) assign equal importance to each possible type of class combination
(which class the first element of the pair comes form and which class the second element of the pair comes from).

To calculate our empirical risk we will assume we are given k sets S (i) 1 <4 < k, each containing n/k samples drawn
independently from the corresponding D; as defined above. We index these sets as follows:

S — {8};‘4’;, i=1,2,... k. (30)

We define the entire dataset S as
k .
S = U NO 3D

We define our empirical risk for training the verifier over the set S as follows:

n
k

R 1 1 & 1 £ i) (i
Bs(V) = 1=y 2 7y 22 2 0.V 6 x) EZ S Z 0LV P X)) (6
i#j (7)== o (7)) —no= =1,7#q
ngdiff) ) RSume) %

where RS"™ (V) denotes the empirical risk of the verifier on inputs from different classes; and RS (V) denotes the

empirical risk of the verifier on inputs from the same class. It is straightforward to verify that Rs (V') is an unbiased estimator
of the true risk R(V), i.e., E(Rs(V)) = R(V).

Let us define worst case generalization gap for a given dataset S as

¢(S) = sup [R(V) — Rs(V)|, (33)
Vey

where ) denotes the hypothesis class from which the verifier V'(-) is selected. To bound this generalization gap, we will use
the notion of Rademacher complexity which measures the correlation between the function class and the random labels to
upper bound the generalization gap (Mohri et al., 2018). The Rademacher complexity of a hypothesis class over a particular
data set is formally defined as:
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Definition A.3. The empirical Rademacher complexity of a function class F with respect to the set S = {a;}1_, is given
by the following equation:

Re(F) = fE lsup > oif(ay) ] : (34)
fer i
where o;’s are i.i.d. Rademacher random variables, i.e., Pr(c; = 1) = Pr(o; = —1) = 3.

In the following steps, we upper bound the generalization gap in (33) as using Rademacher complexity. We first bound the
generalization gap using triangle inequality as follows:

$(S) = sup |[REM (V) + RO () — R () — Rf;"‘m”(V)‘ (35)
vey
< sup |[ROD(V) = R (V)| + sup [RE) (V) = RE™ (1) (36)
vey vey

The above bound first decomposes the generalization gap into the sum of two generalization gaps, the first over the pair of
samples coming from different classes; and the second over the samples drawn from the same class. To proceed we will
need a few additional definitions: we define D; x D; to represent the distribution over pairs (x, x)) where x(¥) is drawn
from D; and xU) is drawn from D, independently. We also define the sets

S('L) X S(J) — {(ngli)v gf«;)}1<q r<k 7 7&] ’ (37)
{(X(Q)’ (r))}1<q r<k,gtr 1=1]

and enumerate the elements of each set by S x SU) = {ul }((]l/ 1k)2 when i # j. When i = j the enumeration takes the
form S x S0 = {uixi} (/"=

Using our definitions of true and empirical risk, we can now upper bound the above sum as follows,

1 N - ()
¢($)<‘b/1é%m; Ex(i)EDi,x(j)GDj [E(V(X()’X(J)) :| < > z;z;f (q)7 8«;) 0) |
1F£] q=1r=
e PR o
+ sup o > | Exxen, [0(V(x,%),1)] - 0V (= x), 1) ‘
vey k=1 q=1r=1,r#q
<o np%: (v (u),1) (’“)2(” LV (), 1)
—— up |Eyn - = ug’),
_k( V€I1)J D; xDj n p q
1 F I o (3)*—n
- Eynp, xD, n-|(= Gy 1
+k;31£; u~D; xD; [L(V (1), 1)] (n> 2. £V (ug"), 1) (38)

where the second inequality follows by bounding the absolute value of a sum by the sum of the absolute values (across both
the “diff” and “same” terms).

We now apply the standard Rademacher complexity PAC-bound (Mohri et al., 2018; Bartlett & Mendelson, 2002) to each of
the supremums in (38). This implies that the following inequalities hold with probability 1 — § for any 6 € (0,1). (The
probability in this case stems from he random selection/draw of S.)

1 6kB, [log( 2/5 1< 6k B, 10g(2/5)
¢(3)7k(k Y gﬁj [29@ xs@ (V) +— +ta ;:1 WiswxsoWV) + ———me

k
2 6kB, [log(2/6 6kB log(2/6
_1 E mS(L)XS(]) )—|— A E %S(qz)xs(i)(V)—F ¢ g( / ) + £ g( / )

#] p n 2 vn? — k?n
k
2 12k B, log(2/0
_ 1 ;#]: Rsa >><S(J) ) + % ;:1 %SU)XS(“( \/7]# ( / ) (39)
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where the final inequality comes form replacing >7=* with the larger \/ﬁ Equation (39) can be interpreted as the sum

of three terms: the first term is the average Rademacher complexity over the datasets corresponding to pairs which are drawn
from different classes; the second term is the average Rademacher complexity over the datasets corresponding to pairs which
are drawn from same classes; the third term is a standard term which shows the dependence on ¢ (as well as n, k).

We now apply the bound on empirical Rademacher complexity
Ro(V) =0 (lg ") (40)
with d’ the dimension of the elements of Q (Gottlieb et al., 2016). To apply this we will recall the dimension of the elements

of 8 x 8U) is 24, and |S@ x §U)| = (2) when i # j, and |S® x SO| = (2)? —p = 22=kn Applying our
Rademacher complexity bound yields

2 YYD 2 & k 1/ 12kB log(2/6)
(b(S)Sk(k—l);O((n) >+k;O<(\/n2—k2n) ) +\/n2—lj2n 2 “D

e\ k 1/d 12kB,  [log(2/4)
- l - 42
20<(n> )+20<< W—k%) + P 5 (42)

k 1/4 12kB,  [log(2/9)
<40 ((F = an) ) + 1o 5 (43)

The bound in (43) is our final PAC bound true with probability 1 — §. However, we expect the § containing term to be
dominated by the other term because (\/%) < 1 and d is expected to be much larger than 1.

n2—k2n

A.3. Additional Implementation Details

In this section we give additional details on how we implemented our methods to create the experimental results found in this
paper. We also provide code for replicating our results at https://github.com/JesseFriedbaum/TAP_code.

A.3.1. DATA SET AND COST FUNCTION DETAILS

Here we give additional description of each data set and the corresponding the cost functions dx used in our experiments.
As noted in Section 3 we must ensure dy is differentiable. When dealing with categorical features costs are by nature
discrete (and not differentiable). We show how we were able to write these costs in a differentiable form. Suppose v € R is
a one-hot encoding of a categorical feature and define the transition cost matrix A such that A; ; as the cost of changing
from category 3 to category j. Then z” Az represents the costs of changing this categorical feature and is differentiable in z.

Adult Income Prediction Dataset: (Kohavi & Becker, 1996) This widely used data set contains information from the 1994
U.S. census, with individuals labelled by whether their annual income was over $50,000 (~$100,000 in 2023 adjusted for
inflation). We define our target set 7" as over 80% probability high income. Our actionable set allows changes in job type,
education and number of hours worked with all other attributes immutable. The cost function dy includes the expected
number of years to improve education (e.g. two years to go from associate’s degree to bachelors degree), a one-year cost to
change employer type and the 2-norm of the change in hours worked per week (weighted so 3 hours per week is equivalent
to a year spent on education). Here Trustworthy Actionable Perturbations suggest the best way to improve an individuals
odds of making a large income with the least time and effort.

Specifically dx is the sum cost from changes (1) hours worked per week (2) change in employment type (3) change in
education and (4) change in field of work.

The cost from a change in hours is given by Al—’gz where Ah is the change in weekly hours worked. This will mean 3 extra
hours of work are approximately equivalent to one year of schooling.

The cost from a change in employer (the options are government, private, self-employed and other) is always 1 (equivalent
to a year spent on education).

The possible levels of education are (1) any schooling, (2) High School Degree, (3) Professional Degree, (4) some college, (5)
Associate’s Degree, (6) Bachelors Degree, (7) Master’s Degree, (8) Doctorate Degree. The cost transition matrix associated
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with the level of education (as ordered above) is

0 2 10 3 4 6 8 11
L 0 8 1 2 4 6 9
L L 0 L L L 2 5
L L v 0 1 3 5 8
AEducation = L L 6 L 0 2 4 71 (44)
L L 4 L L 0 2 5
L L 4 L L L 0 3
L L 4 L L L L 0]

where L is a large number meant to prevent suggestions that lead to a decrease in education, which is impossible (we use
L =1,000). These numbers represent the expected number of years required to gain the specified degree (i.e. the cost of
going from a high school degree to a bachelors degree is Az ¢ = 4).

Finally the options for fields of work are (1) Service, (2) Sales, (3) Blue-Collar (4) White Collar, (5) Professional, (6) Other.
The cost transition matrix associated with the field of work (as ordered above) is

(45)

AProfession =

el =)
e =
== O N
— = O~ N W
— O = N W
O = = ==

This represents a minimum cost of 1 for any change in field of work with higher costs when moving to a relatively more
selective field (i.e., service to professional).

Law School Success Prediction Dataset: (Wightman, 1998) This data set contains demographic information and academic
records for over 20,000 law school students labelled by whether or not a student passed the BAR exam. Our target set is an
85% chance of passing the BAR. To create .A(x), we suppose the law school performance is merely a projection that can be
changed through more studying, allowing us to change the law school grades and the location where the students take the
BAR. The cost function dy sums the increase in grades and the physical distance travelled to take the BAR where moving
to an adjacent region (e.g. Far West to North West) is weighted the same as increasing grades by one standard deviation.

Specifically dy sums the increase in grades and the physical distance travelled to take the BAR where moving to an adjacent
region (e.g. Far West to North West) is weighted the same as increasing grades one standard deviation. This set up returns
the optimal combination of studying harder and moving location to take the BAR.In this data set dy is sum of the change in
grades (in standard deviations from the mean) and distance traveled. The country was divided into eight regions: (1) Far
West, (2) Great Lakes, (3) Mid-South, (4) Mountain West, (5) Mid-West, (6) North East, (7) New England, (8) North West.
We use the transition cost matrix

034126 5 1
30121213
41021215
1 2 201 4 3 2
ARegi"“—21110323 (46)
6 2 2 43 015
5 1 13 210 5
1352355 0]

Moves to adjacent regions result in a cost of 1, while the highest cost of 6 is incurred by moving from Far West to New
England or back.

Diabetes Prediction Dataset: (for Disease Control & , CDC) This data set contains information on the demographics,
health conditions and health habits of 250,000 individuals labelled by whether an individual is diabetic extracted from the
Behavioral Risk Factor Surveillance System (BRFSS), a health-related telephone survey that is collected annually by the
CDC.. We define A(x) to allow changes in health habits, BMI, education and income. We use a weighted 2-norm for d y to
represent the relative difficulty of making changes. For example, starting to get regular physical activity is weighted the
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same as dropping one BMI point. Increasing education, income and health insurance were weighted as more difficult that
simply adjusting health habits.

German Credit Dataset: (Hofmann, 1994) This commonly used data set contains information on 1,000 loan applications in
Germany labelled by their credit risk. The actionable set allows for changes in the loan request (time and size) as well as the
funds in the applicants checking and savings account and whither the applicant has a telephone. The target set T" is a greater
than 80% of being a good credit risk. The cost function dy is the direct measuring the total difference in Deutsche Marks
(DM) between all elements of the application. No cost was assigned to closing empty accounts. The change in length of
loan is converted to DM through the individual’s monthly disposable income. Finally we set a flat cost of 50DM to acquire a
telephone.

A.3.2. MODEL DETAILS

We used fully connected feed forward neural networks. Each network used 3 hidden layers with ReLu activation functions
between each layer. We tuned the parameters of the neural networks until we achieved accuracy on par with common tree
based classifiers (random forests and histogram boosted trees). Accuracy results are presented in table A.3.2. For all data sets
except the German Credit data set each hidden layer had 60 nodes. The German Credit data set required 120 nodes per layer.
Additionally, for the German Credit data set only, we used dropout regularization of 20% on each hidden layer. We trained
these models using the ADAM optimizer to minimize cross entropy loss. We used an 80 — 10 — 10 train-validate-test data
split and implemented early stopping with the validation data. All Trustworthy Actionable Perturbations, counterfactuals
and adversarial examples were created for the testing data. We used identical architecture for V" as M, except for doubling
the input size. Accuracy data may be found in table 3.

Adult Income | Law School Success | Diabetes Prediction | German Credit

Random Forest 73% 64% 62% 74%
Histogram Gradient Boosted Trees 81% 7% 75% 69%
Neural Network 80% 77% 75% 75%

We also tested the calibration of our networks by calculating the expected calibration error (ECE) (Naeini et al., 2015). We
used 15 bins and record the results in table A.3.2

Adult Income | Law School Success | Diabetes Prediction | German Credit
ECE (15 bins) 16% 15% 7% 21%

A.3.3. OBJECTIVE FUNCTION DETAILS

In our implementation we formulated the actionablility penalty term b as

b(x) =G (Z max{0, X; — u;} + max{0,l; — x}) (47)

i=1
with G a sufficiently large constant. We formulated our coherence penalty term p as
2
c
pE)=P> [1->" %], (48)
i=1 JEC;

with P another appropriately large constant. The conditioner function cond simply rounded integer and Boolean values to
the nearest integer value. For one-hot encoded features categorical features, the category with the largest value set to one
and all other categories set to zero.

A.3.4. ADDITIONAL EXPERIMENTAL RESULTS

Here we show success bar charts similar to those found in figure 7 compare the efficacy of Trustworthy Actionable
Perturbations, counterfactuals (Wachter et al., 2017; Mothilal et al., 2020) and adversarial examples from the Carlini Wagner
{5 attack (Carlini & Wagner, 2017b) for all data sets. These are similar to Figure 5, but include all data sets and an increased
number of cost (¢) values.
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Trustworthy Actionable Perturbations

Each bar chart refers to a particular data set and desired distance § to the target set 7. Inside of each chart, the bars show the
percentage of individuals that a method was able to successfully move inside the goal ¢ at a variety of costs e. Figure 7 shows
data before the verification procedure has been performed and 7 shows the data after all . In these tests, the Trustworthy
Actionable Perturbations (in blue) outperform the counterfactuals (in and ) in nearly all cases except for when
both methods achieved 100% success or the very high-cost (large €) high reward (6 = 0) scenarios. Carlini Wagner attacks
(red) are only effective at larger  values because they are designed to move a data point just barely inside the target class.
The Carlini Wagner attacks are not required to be actionable (or even feasible), so they do not constitute useful advise. The
verifier is able to recognize that these adversarial examples are untrustworthy in all cases.
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Figure 7. Performance comparison over entire datasets before verification: The graphs show average success rate for moving
individuals within a variety of distances (9) to the target set. The y-axis shows the percentage of individuals within the goal distance, and
the x-axis, represents different costs (e values) to achieve the goal. These values were obtained before applying the verification procedure.
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(d) Performance comparison over entire German Credit dataset

Figure 8. Performance comparison over entire datasets after verification: The graphs show average success rate for moving individuals
within a variety of distances () to the target set. The y-axis shows the percentage of individuals within the goal distance, and the x-axis,
represents different costs (e values) to achieve the goal. These values were obtained after applying the verification procedure with a 10%
chance of eliminating valid inputs.
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