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Abstract

Many real-world settings involve costs for performing actions; transaction costs1

in financial systems and fuel costs being common examples. In these settings,2

performing actions at each time step quickly accumulates costs leading to vastly3

suboptimal outcomes. Additionally, repeatedly acting produces wear and tear and4

ultimately, damage. Determining when to act is crucial for achieving successful5

outcomes and yet, the challenge of efficiently learning to behave optimally when6

actions incur minimally bounded costs remains unresolved. In this paper, we intro-7

duce a reinforcement learning (RL) framework named Learnable Impulse Control8

Reinforcement Algorithm (LICRA), for learning to optimally select both when9

to act and which actions to take when actions incur costs. At the core of LICRA10

is a nested structure that combines RL and a form of policy known as impulse11

control which learns to maximise objectives when actions incur costs. We prove12

that LICRA, which seamlessly adopts any RL method, converges to policies that13

optimally select when to perform actions and their optimal magnitudes. We then14

augment LICRA to handle problems in which the agent can perform at most k <∞15

actions and more generally, faces a budget constraint. We show LICRA learns the16

optimal value function and ensures budget constraints are satisfied almost surely.17

We demonstrate empirically LICRA’s superior performance against benchmark18

RL methods in OpenAI gym’s Lunar Lander and in Highway environments and a19

variant of the Merton portfolio problem within finance.20

1 Introduction21

There are many settings in which agents incur costs each time they perform an action. Transaction22

costs in financial settings [19], fuel expenditure [32], toxicity as a side effect of controlling bacte-23

ria [29] and physical damage produced by repeated action that produces wear and tear are just a24

few among many examples [13]. In these settings, performing actions at each time step is vastly25

suboptimal since acting in this way results in prohibitively high costs and undermines the service life26

of machinery. Minimising wear and tear is an essential attribute to safeguard against failures that can27

result in catastrophic losses [13].28

Reinforcement learning (RL) is a framework that enables autonomous agents to learn complex29

behaviours from interactions with the environment [30, 11]. Within the standard RL paradigm,30

determining optimal actions involves making a selection from among many (possibly infinite) actions;31

a procedure that must be performed at each time-step as the agent decides on an action. In unknown32

settings, the agent cannot immediately exploit any topological structure of the action set (if any33

exists). Consequently, learning not to take an action i.e performing a zero or null action, involves34

expensive optimisation procedures over the entire action set. Since this must be done at each state,35

this process is vastly inefficient for learning optimal policies when the agent incurs costs for acting.36

In this paper, we tackle this problem by developing an RL framework for finding both an optimal37

criterion to determine whether or not to execute actions as well as learning optimal actions. A key38

component of our framework is a novel combination of RL with a form of policy known as impulse39
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control [22, 19]. This enables the agent to determine the appropriate points to perform an action as40

well as the optimal action itself. Despite its fundamental importance as a tool for tackling decision41

problems with costly actions, presently, the use of impulse control within learning contexts (and42

unknown environments) is unaddressed.43

We present an RL impulse control framework called LICRA, which, to our knowledge, is the first44

learning framework for impulse control. To enable learning optimal impulse control policies in45

unknown environments, we devise a framework that consists of separate RL components for learning46

when to act and how to act optimally. The resulting framework is a structured two-part learning47

process which differs from current RL protocols. In LICRA, at each time step, the agent firstly makes48

a decision whether to act or not leading to a binary decision space {0, 1} (we later show that this49

is determined by evaluating an easy-to-evaluate criterion which has the value function as its input).50

The second decision part determines the best action to take. This generates a subdivision of the state51

space into two regions; one in which the agent performs actions and another in which it does not act52

at all. This is extremely useful since the agent quickly determines the set of states to not take actions53

while performing actions only at the subset of states where actions are to be executed.54

We then establish theory that ensures convergence of LICRA to an optimal policy for such settings.55

To do this, we give a series of results namely:56

i) We establish a dynamic programming principle (DPP) for impulse control and show that the optimal57

value function can be obtained as a limit of a value iterative procedure (Theorem 1) which lays the58

foundation for an RL approach to impulse control.59

ii) We extend result i) to a new variant of Q learning which enables the impulse control problem to be60

solved using our RL method (Theorem 2).61

iii) We characterise the optimal conditions for performing an action which we reveal to be a simple62

‘obstacle condition’ involving the agent’s value function (Prop. 1). Using this, the agent can quickly63

determine whether or not it should act and if so, then learn what the optimal action is.64

iv) We then extend the result i) to (linear) function approximators enabling the value function to be65

parameterised (Theorem 3).66

iv) In Sec. 6, we extend LICRA to include budgetary constraints so that each action draws from a67

fixed budget which the agent must stay within. Analogous to the development of i), we establish68

another DPP from which we derive a Q-learning variant for tackling impulse control with budgetary69

constraints (Theorem 4). A particular case of a budget constraint is when the number of actions the70

agent can take over the horizon is capped.71

Lastly, we perform a set of experiments to validate our theory within the Highway driving simulator72

and OpenAI’s LunarLander [7].73

LICRA confers a series of advantages. As we demonstrate in our experiments, LICRA learns to74

compute the optimal problems in which the agent faces costs for acting in an efficient way which75

outperforms leading RL baselines. Second, as demonstrated in Sec. 6 LICRA handles settings in76

which the agent has a cap the total number of actions it is allowed to execute and more generally,77

generic budgetary constraints. LICRA is able to accommodate any RL base algorithm unlike various78

RL methods designed to handle budgetary constraints.79

2 Related Work80

In continuous-time optimal control theory [24], problems in which the agent faces a cost for each81

action are tackled with a form of policy known as impulse control [22, 19, 2]. In impulse control82

frameworks, the dynamics of the system are modified through a sequence of discrete actions or bursts83

chosen at times that the agent chooses to apply the control policy. This distinguishes impulse control84

models from classical decision methods in which an agent takes actions at each time step while being85

tasked with the decision of only which action to take. Impulse control models represent appropriate86

modelling frameworks for financial environments with transaction costs, liquidity risks and economic87

environments in which players face fixed adjustment costs (e.g. menu costs) [16, 20].88

The current setting is intimately related to the optimal stopping problem which widely occurs in89

finance, economics and computer science [23, 31]. In the optimal stopping problem, the task is to90

determine a criterion that determines when to arrest the system and receive a terminal reward. In this91

case, standard RL methods are unsuitable since they require an expensive sweep (through the set92

of states) to determine the optimal point to arrest the system. The current problem can be viewed93
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as an augmented problem of optimal stopping since the agent must now determine both a sequence94

of points to perform an action or intervene and their optimal magnitudes — only acting when the95

cost of action is justified [25]. Adapting RL to tackle optimal stopping problems has been widely96

studied [31, 4, 9] and applied to a variety of real-world settings within finance [12], radiation therapy97

[1] and network operating systems [3]. Our work serves as a natural extenstion to RL approaches to98

optimal stopping to the case in which the agent must decide at which points to take many actions. As99

with optimal stopping, standard RL methods cannot efficiently tackle this problem since determining100

whether to perform a 0 action requires a costly sweep through the action space at every state [31]. In101

[26] the authors introduce “sparse action” with a similar motivation as impulse control. However,102

the authors treat only the discrete action space case. The authors in [26] do not discuss a broader103

theoretical framework of dealing with “sparse actions”, and develop purely algorithmic solutions.104

Additionally, unlike the approach taken in [26], the problem setting we consider is one in which the105

agent faces a cost for each action - the produces a need for the agent to be selective about where it106

performs actions (but does not necessarily constrain the magnitude or choice of those actions).107

3 Preliminaries108

Reinforcement Learning (RL). In RL, an agent sequentially selects actions to maximise its expected109

returns. The underlying problem is typically formalised as an MDP ⟨S,A, P,R, γ⟩ where S ⊂ Rp110

is the set of states, A ⊂ Rk is the set of actions, P : S ×A× S → [0, 1] is a transition probability111

function describing the system’s dynamics, R : S × A → R is the reward function measuring the112

agent’s performance and the factor γ ∈ [0, 1) specifies the degree to which the agent’s rewards are113

discounted over time [30]. At time t ∈ 0, 1, . . . , the system is in state st ∈ S and the agent must114

choose an action at ∈ A which transitions the system to a new state st+1 ∼ P (·|st, at) and produces115

a reward R(st, at). A policy π : S ×A → [0, 1] is a probability distribution over state-action pairs116

where π(a|s) represents the probability of selecting action a ∈ A in state s ∈ S. The goal of an117

RL agent is to find a policy π̂ ∈ Π that maximises its expected returns given by the value function:118

vπ(s) = E[
∑∞
t=0 γ

tR(st, at)|at ∼ π(·|st), s0 = s] where Π is the agent’s policy set. The action119

value function is given by Q(s, a) = E[
∑∞
t=0R(st, at)|a0 = a, s0 = s].120

We consider a setting in which the agent faces at least some minimal cost for each action it performs.121

With this, the agent’s task is to maximise:122

vπ(s) = E

[ ∞∑
t=0

γt {R(st, at)− C(st, at)}
∣∣∣s0 = s

]
, (1)

where for any state s ∈ S and any action a ∈ A, the functions R and C are given by R(s, a) =123

R(s, a)1a∈A+R(s, 0)(1−1a∈A) where 1a∈A is the indicator function which is 1 when a ∈ A and 0124

otherwise and C(s, a) := c(s, a)1a∈A where c : S ×A → R is a minimally bounded (cost) function1125

that introduces a cost each time the agent performs an action. Examples of the cost function is a126

quasi-linear function of the form c(st, at) = κ+ f(at) where f : A → R>0 and κ is a positive real-127

valued constant. Since acting at each time step would incur prohibitively high costs, the agent must128

be selective when to perform an action. Therefore, in this setting, the agent’s problem is augmented to129

learning both an optimal policy for its actions and, learning at which states to apply its action policy.130

Example: Merton Portfolio Problem with Transaction Costs [10]. An investor performs a series131

of costly portfolio adjustments by buying and selling amounts of different assets within their portfolio.132

Each investment incurs a fixed minimal cost (also known as transaction costs) which is deducted133

from the investor’s available cash-flow. The investor’s aim is to maximise their total wealth (the value134

of the sum of their assets) at some time horizon by adjusting their portfolio of investments. Problems135

of this kind, portfolio investment problems are of fundamental importance within finance [18].136

Example 2. An autonomous vehicle must perform a series of actions to perform a task. Each action137

draws from its fuel budget. In order to complete its task successfully, during the task, the vehicle138

must ensure it maintains an available supply.139

1I.e. a function which is bounded below by a positive constant.

3



4 The LICRA Framework140

In RL, the agent’s problem involves learning to act at every state including those in which actions do141

not significantly impact on its total return. While we can add a zero action to the action set A and142

apply standard methods, we argue that this may not be the best solution in many situations. We argue143

the optimal policy has the following form:144

π̃(·|s) =
{
at s ∈ SI ,
0 s ̸∈ SI ,

(2)

which implies that we simplify policy learning by determining the set SI first — the set where we145

actually need to learn the policy.146

We now introduce a learning method for producing impulse controls. This enables the agent to learn147

to select states to perform actions. Therefore, now agent is tasked with learning to act at states that148

are most important for maximising its total return given the presence of the cost for each action. Now149

at each state the agent first makes a binary decision to decide to perform an action.150

Our framework, LICRA consists of two core components: firstly a RL process g : S×{0, 1} → [0, 1]151

and a second RL process π : S ×A → [0, 1]. The role of g is to determine whether or not an action152

is to be performed by the policy π at a given state s. If activated, the policy π determines the action153

to be selected. Prior to decisions being made, the policy π communicates to g the action it would154

take. An important feature of our LICRA is the sequential decision process. In LICRA, the policy155

π first proposes an action a ∈ A which is observed by the policy g. Therefore, the role of g is to156

prevent actions for which the change in expected future rewards does not exceed the costs incurred157

for taking such actions. By isolating a decision policy over whether an action should be taken or not,158

the impulse controls mechanism results in a framework in which the problem facing the agent has a159

markedly reduced decision space (in comparison to a standard RL method). Crucially, the agent must160

compute optimal actions at only a subset of states which are chosen by the policy g. Below is the161

pseudocode for LICRA, we provide full details of the code in Sec. 9 of the Appendix.162

Algorithm 1: Learnable Impulse Control Reinforcement Algorithm (LICRA)
1: Input: Stepsize α, batch size B, episodes K, steps per episode T , mini-epochs e
2: Initialise: Policy network (acting) π, Policy network (switching) g,

Critic network (acting )Vπ ,Critic network (switching )Vg
3: Given reward objective function, R, initialise Rollout Buffers Bπ , Bg (use Replay Buffer for

SAC)
4: for Nepisodes do
5: Reset state s0, Reset Rollout Buffers Bπ , Bg

6: for t = 0, 1, . . . do
7: Sample at ∼ π(·|st)
8: Sample gt ∼ g(·|st)
9: if gt = 0 then

10: Apply at so st+1 ∼ P (·|at, st),
11: Receive rewards rt = R(st, at)
12: Store (st, at, st+1, rt) in Bπ
13: else
14: Apply the null action so st+1 ∼ P (·|0, st),
15: Receive rewards rt = R(st, 0).
16: end if
17: Store (st, gt, st+1, rt) in Bg

18: end for
19: // Learn the individual policies
20: Update policy π and critic Vπ networks using Bπ

21: Update policy g and critic Vg networks using Bg

22: end for

While we consider now two policies π, g, the cardinality of the action space does not change. In the163

discrete case the cardinality is still |A|+ 1, where |A| is cardinality of the action space for policy π.164
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Although action space cardinality does not change there are still benefits of using impulse control165

mechanism. This mechanism forces the agent to first determine the set of states to perform actions166

only then determine the optimal actions at these states. An important fact to note is that the decision167

space for the determining whether or not to execute an action is S × {0, 1} i.e at each state it makes a168

binary decision. Consequently, the learning process for aspect is much quicker than a policy which169

must optimise over a decision space which is |S||A| (choosing an action from its action space at170

every state). This results in the agent rapidly learning which states to focus on to learn which actions171

to perform. In the case of π with a continuous action space again the impulse control mechanism172

does not change the cardinality of the action space. However, if the set S/SI , where the optimal173

policy chooses 0, is large enough, then again it can be more efficient to learn g first and only then174

learn π (we later validate this claim empirically, see Sec. 11.2),175

In Sec. 5, we prove the convergence properties of LICRA. LICRA consists of two independent176

procedures: a learning process for the policy π and simultaneously, a learning process for the impulse177

policy g which determines at which states to perform an action. In our implementation, we used178

proximal policy optimisation (PPO) [27] for the policy π and for the impulse policy g, whose action179

set consists of two actions (intervene or do not intervene) we used a soft actor critic (SAC) process180

[14] LICRA is a plug & play framework which enables these RL components to be replaced with any181

RL algorithm of choice.182

5 Convergence and Optimality of LICRA183

A key aspect of our framework is the presence of two RL processes that make decisions in a sequential184

order. In order to determine when to act the policy g must learn the states to allow the policy π to185

perform an action which the policy π must learn to select optimal actions whenever it is allowed to186

execute an action.187

In this section, we prove that LICRA converges to an optimal solution of the system. Central to188

LICRA is a Q-learning type method which is adapted to handle RL settings in which the agent must189

also learn when to act. We then extend the result to allow for (linear) function approximators. We190

provide a result that shows the optimal intervention times are characterised by an ‘obstacle condition’191

which can be evaluated online therefore allowing the g.192

Given a function Q : S × A → R, ∀π, π′ ∈ Π and ∀g, g′, ∀sτk ∈ S, we de-193

fine the intervention operator Mπ,g by Mπ,gQπ
′,g′

(sτk , aτk) := R(sτk , aτk) − c(sτk , aτk) +194

γ
∑
s′∈S P (s

′; aτk , s)v
π′,g′

(s′)
∣∣∣aτk ∼ π(·|sτk), where τk is an intervention time.195

The interpretation of M is the following: suppose that the agent is using the policy π and at time τk196

the system is at a state sτk and the agent performs an action aτk ∼ π(·|sτk). A cost of c(sτk , aτk)197

is then incurred by the agent and the system transitions to s′ ∼ P (·; aτk , sτk). Lastly, recall vπ,g is198

the agent value function under the policy pair (π, g). Therefore, the quantity MQπ,g measures the199

expected future stream of rewards after an immediate intervention minus the cost of intervention.200

This object plays a crucial role in the LICRA framework which as we later discuss, exploits the cost201

structure of the problem to determine when the agent should perform an intervention.202

Given a function vπ,g : S → R, we define the Bellman operator T , by:203

204
Tvπ,g(s) :=max

{
Mπ,gQπ,g(s, a),R(s, 0) + γ

∑
s′∈S

P (s′; 0, s)vπ,g(s′)
}
, ∀s ∈ S. (3)

205

The Bellman operator captures the nested sequential structure of the LICRA algorithm. In particular,206

the structure in (3) consists of an inner structure which consists of two terms: the first term is the207

expected future return given an action is taken at the current state under the policy π. The second term208

is the expected future return given no action is taken at the current state. Lastly, the outer structure is209

an optimisation which compares the expected return of the two possibilities and selects the maximum.210

Our first result proves T is a contraction operator in particular, the following bound holds:211

Lemma 1 The Bellman operator T is a contraction, that is the following bound holds:212

∥Tv − Tv′∥ ≤ γ ∥v − v′∥ ,
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where v, v′ are elements of a finite normed vector space. We can now state our first main result:213

Theorem 1 Given any vπ,g : S × A → R, the optimal value function is given by lim
k→∞

T kvπ,g =214

max
π̂,ĝ∈Π

vπ̂,ĝ = vπ
⋆,g⋆ where (π⋆, g⋆) is the optimal policy pair.215

The result of Theorem 1 enables the solution to the agent’s impulse control problem to be determined216

using a value iteration procedure. Moreover, Theorem 1 enables a Q-learning approach [6] for finding217

the solution to the agent’s problem.218

Theorem 2 Consider the following Q learning variant:219

Qt+1(st, at) = Qt(st, at)

+ αt(st, at)

[
max

{
Mπ,gQt(st, at),R(st, 0) + γmax

a′∈A
Qt(st+1, a

′)

}
−Qt(st, at)

]
, (4)

then Qt converges to Q⋆ with probability 1, where st, st+1 ∈ S and at ∈ A.220

We now extend the result to (linear) function approximators:221

Theorem 3 Given a set of linearly independent basis functions Φ = {ϕ1, . . . , ϕp} with ϕk ∈ L2,∀k.222

LICRA converges to a limit point r⋆ ∈ Rp which is the unique solution to ΠF(Φr⋆) = Φr⋆ where223

Fv := R+ γP max{Mv, v} . Moreover, r⋆ satisfies: ∥Φr⋆ −Q⋆∥ ≤ (1− γ2)−1/2 ∥ΠQ⋆ −Q⋆∥.224

The theorem establishes the convergence of LICRA to a stable point with the use of linear function225

approximators. The second statement bounds the proximity of the convergence point by the smallest226

approximation error that can be achieved given the choice of basis functions.227

Having constructed a procedure to find the optimal agent’s optimal value function, we now seek to228

determine the conditions when an intervention should be performed. Let us denote by {τk}k≥0 the229

points at which the agent decides to act or intervention times, so for example if the agent chooses230

to perform an action at state s6 and again at state s8, then τ1 = 6 and τ2 = 8. The following result231

characterises the optimal intervention policy g and the optimal times {τk}k≥0.232

Proposition 1 The policy g is given by: g(st) = H(Mπ,gQπ,g −Qπ,g)(st, at), ∀st ∈ S, where233

Qπ,g is the solution in Theorem 1, M is the intervention operator and H is the Heaviside function,234

moreover the intervention times are τk = inf{τ > τk−1|Mπ,gQπ,g = Qπ,g}.235

Prop. 1 characterises the (categorical) distribution g. Moreover, given the function Q, the times {τk}236

can be determined by evaluating if MQ = Q holds.237

A key aspect of Prop. 1 is that it exploits the cost structure of the problem to determine when the238

agent should perform an intervention. In particular, the equality MQ = Q implies that performing239

an action and incurring a cost for doing so is optimal.240

6 Budget Augmented LICRA via State Augmentation241

We now tackle the problem of RL with a budget. To do this, we combine the above impulse control242

technology with state augmentation technique proposed in [28] The mathematical formulation of the243

problem is now given by the following for any s ∈ S:244

245

max
π∈Π,g

vπ,g(s) s. t. n−
∞∑
t=0

∑
k≥1

δtτk ≥ 0, (5)

where n ∈ N is a fixed value that represents the maximum number of allowed interventions and246 ∑
k≥1 δ

t
τk

is equal to one if an impulse was applied at time t and zero if it was not. In order to avoid247

dealing with a constrained MDP, we propose to introduce a new variable zt tracking the remaining248

number of impulses: zt = n −
∑t−1
i=0

∑
k≥1 δ

i
τk

. We treat zt as another state and augment the249

state-space resulting in the transition P̃:250

251 st+1 ∼ P (·|st, at), zt+1 = zt −
∑
k≥1

δtτk , z0 = n. (6)
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In order to avoid violations, we reshape the reward as follows: R̃(st, zt, at) =

{
R(st, at) zt ≥ 0,

−∆ zt < 0,
252

where ∆ > 0 is a large enough hyper-parameter ensuring that there are no safety violations. To253

summarise we aim to solve the following problem:254

255

vπ,g(s, z) = E

[
∞∑
t=0

γtR̃(st, zt, at)|at ∼ π(·|st, zt)

]
, (7)

where the policy now depends on the variable zt. Note that P̃ in Equation 6 is a Markov process256

and, the rewards R̃ are bounded, as long as the rewards R are bounded. Therefore, we can apply257

directly the results for impulse control to this case as well. We denote the augmented MDP by258

M̃ = ⟨S × Z,A, P̃, R̃, γ⟩, where Z is the space of the augmented state. We have the following.259

Theorem 4 Consider the MDP M̃ for the problem 7, then:260

a) The Bellman equation holds, i.e. there exists a function ṽ∗,π,g s.th. ṽ∗,π,g(s, z) =261

max
a∈A

(
R̃(s, z,a) + γEs′,z′∼P [ṽ∗,π,g(s′, z′)]

)
, where the optimal policy for M̃ has the form262

π∗(·|s, z);263

b) Given a ṽ : S×Z → R, the stable point solution for M̃ is a given by lim
k→∞

T̃ kṽπ,g = max
π̂∈Π,ĝ

ṽπ̂,ĝ =264

ṽ∗,π,g
∗
, where (π∗, g∗) is an optimal policy of M̃ and T̃ is the Bellman operator of M̃.265

The result has several important implications. The first is that we can use a modified version of LICRA266

to obtain the solution of the problem while guaranteeing convergence (under standard assumptions).267

Secondly, our state augmentation procedure admits a Markovian representation of the optimal policy.268

7 Experiments269

We will now study empirically the performance of the LICRA framework. In experiments, we use270

different instances of LICRA, one where both policies are trained using PPO update (referred to271

as LICRA_PPO) and one where the policy deciding whether to act is trained using SAC and the272

other policy trained with PPO (referred to as LICRA_SAC). We have benchmarked both of these273

algorithms together with common baselines on environments, where it would be natural to introduce274

the concept of the cost associated with actions. We lastly performed a series of ablation studies which275

test LICRA’s ability to handle different cost functions including the case when c(s, a) ≡ 0 which we276

defer to the Appendix which also contains further experiment details.277

Figure 1: Training results in Merton investment problem for PPO style algorithms.

Merton’s Portfolio Problem with Transaction Costs. Merton Investment Problem in which the278

investor faces transaction costs [10] is a well-known problem within finance. In our environment, the279

agent can decide to move its wealth between a risky asset and a risk-free asset. The agent receives a280

reward only at the final step, equal to the utility of the portfolio with a risk aversion factor equal to281

0.5. If the final wealth of risky asset is sT and final wealth of risk-free asset is cT , then the agent will282

receive a reward of u(x) = 2
√
sT + cT . The wealth evolves according to the following SDE:283

dWt = (r + pt(µ− r))Wt +WtptσdBt (8)
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Figure 2: a) Drive Environment. b) Training results in drive environment.

where Wt is the current wealth and the state variable, dBt is an increment of Brownian motion and pt284

is the proportion of wealth invested in the risky asset. We set the risk-free return r = 0.01, risky asset285

return µ = 0.05 and volatility σ = 1. We discretise the action space so that at each step the agent has286

three actions available: move 10% of risky asset wealth to the risk-free asset, move 10% of risk-free287

asset wealth to the risky asset or do nothing. Each time the agent moves the assets, it incurs a cost288

of 1 i.e. a transaction fee. The agent can act after a time interval of 0.01 seconds and the episode289

ends after 75 steps. The results of training are shown in Fig. 1 which clearly demonstrates that290

LICRA_PPO finds a better policy than standard PPO. Also comparing the variance among different291

seeds, we can see that LICRA_PPO is a much more stable algorithm than the other two.292

Driving Environment Fuel Rationing. We studied an autonomous driving scenario where fuel-293

efficient driving is a priority. One of the main components of fuel-efficient driving is controlled usage294

of acceleration and braking, in the sense that 1) the amount of acceleration and braking should be295

limited 2) if accelerations should be performed slowly and gently. We believe this is a problem where296

LICRA should thrive as the impulse control agent can learn to restrict the amount of acceleration297

and braking in the presence of other cars and choose when to allow the car to decelerate naturally.298

We used the highway-env [17] environment on a highway task (see Fig (2. a)) where the green299

vehicle is our controlled vehicle and the goal is to avoid crashing into other vehicles whilst driving300

at a reasonable speed. We add a cost function into the reward term dependent on the continuous301

acceleration action, C(at) = K + a2t , where K > 0 is a fixed constant cost of taking any action,302

and at ∈ [−1, 1], with larger values of acceleration or braking being penalised more. The results are303

presented in Fig. (2.b). Notably, LICRA is able to massively outperform the baselines, especially our304

safety specific baselines which struggle to deal with the cost function associated with the environment.305

We believe one reason for the success of LICRA is that it is far easier for it to utilise the null action306

of zero acceleration/braking than the other algorithms, whilst all the algorithms have a guaranteed307

cost at every time step whilst not gaining a sizeable reward to counter the cost.308
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Figure 3: a) The lander must land on the pad between two flags. . b) Training results in Lunar Lander.
Lunar Lander Environment. We tested the ability of LICRA to perform in environment that simulate
real-world physical dynamics. We tested LICRA’s performance the Lunar Lander environment in
OpenAI gym [7] which we adjusted to incorporate minimal bounded costs in the reward definition. In
this environment, the agent is required to maintain both a good posture mid-air and reach the landing
pad as quickly as possible. The reward function is given by:

Reward (st) = 3 ∗ (1− 1dt−dt−1=0)− 3 ∗ (1− 1vt−vt−1=0)− 3 ∗ (1− 1ωt−ωt−1=0)

−0.03 ∗ FuelSpent(st)− 10 ∗ (vt − vt−1)− 10 ∗ (ωt − ωt−1) + 100 ∗ hasLanded (st)
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where dt is the distance to the landing pad, vt is the velocity of the agent, and ωt is the angular309

velocity of the agent at time t. 1X is the indicator function of taking actions, which is 1 when the310

statement X is true and 0 when X is false. Considering the limited fuel budget, we assume that311

we have a fixed cost for each action taken by the agent here, and doing nothing brings no cost. Then,312

to describe the goal of the game, we define the function of the final status by hasLanded(), which is313

0 when not landing; 1 when the agent has landed softly on the landing pad; and −1 when the lander314

runs out of fuel or loses contact with the pad on landing. The reward function rewards the agent315

for reducing its distance to the landing pad, decreasing its speed to land smoothly and keeping the316

angular speed at a minimum to prevent rolling. Additionally, it penalises the agent for running out317

of fuel and deters the agent from taking off again after landing.318

By introducing a reward function with minimally bounded costs, our goal was to test if LICRA can319

exploit the optimal policy. In Fig. 3, we observe that the LICRA agent outperforms all the baselines,320

both in terms of sample efficiency and average test return (total rewards at each timestep). We also321

observe that LICRA enables more stable training than PPO, PPO-Lagrangian and CPO.322

Ablation Study 1. Prioritisation of Most Important Actions. We next tested LICRA’s ability to323

prioritise where it performs actions when the necessity to act varies significantly between states. To324

test this, we modified the Drive Environment to now consist of a single lane, a start state and a goal325

state start (at the end) where there is a reward. With no acceleration, the vehicle decreases velocity.326

To reach the goal, the agent must apply an acceleration at ∈ [−1, 1]. Each acceleration at incurs327

a cost C(at) as defined above. At zones k = 1, 2, 3 of the lane, if the vehicle is travelling below a328

velocity vmin, it is penalised by a strictly negative cost ck where c1 < c2 < c3. As shown in Fig. 4,329

when the intervention cost increases i.e. when K → ∞, LICRA successfully prioritises the highest330

penalty zones to avoid incurring large costs.
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Figure 4: Results for Ablation Study 1. Heatmaps display the number of times the agent drives below
vmin in the penalty zones. Violation 1 refers to the lowest cost zone, whilst Violation 3 refers to the
largest cost zone. K refers to the fixed cost for taking an action.

331

8 Conclusion332

We presented a novel method to tackle the problem of learning how to select when to act in addition333

to learning which actions to execute. Our framework, which is a general tool for tackling problems334

of this kind seamlessly adopts RL algorithms enabling them to efficiently tackle problems in which335

the agent must be selective about when it executes actions. This is of fundamental importance in336

practical settings where performing many actions over the horizon can lead to costs and undermine337

the service life of machinery. We demonstrated that our solution, LICRA which at its core has a338

sequential decision structure that first decides whether or not an action ought to be taken under the339

action policy can solve tasks where the agent faces costs with extreme efficiency as compared to340

leading reinforcement learning methods. In some tasks, we showed that LICRA is able to solve341

problems that are unsolvable using current reinforcement learning machinery. We envisge that this342

framework can serve as the basis extensions to different settings including adversarial training for343

solving a variety of problems within RL.344
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