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Abstract

Large Language Models (LLMs) have demon-
strated exceptional performance in natural lan-
guage processing tasks, yet their massive size
makes serving them inefficient and costly. Semi-
structured pruning has emerged as an effective
method for model acceleration, but existing ap-
proaches are suboptimal because they focus on
local, layer-wise optimizations using heuristic
rules, failing to leverage global feedback. We
present ProxSparse, a learning-based framework
for mask selection enabled by regularized op-
timization. ProxSparse transforms the rigid,
non-differentiable mask selection process into a
smoother optimization procedure, allowing grad-
ual mask exploration with flexibility. ProxSparse
does not involve additional weight updates once
the mask is determined. Our extensive evalua-
tions on 7 widely used models show that Prox-
Sparse consistently outperforms previously pro-
posed semi-structured mask selection methods
with significant improvement, demonstrating the
effectiveness of our learned approach towards
semi-structured pruning.

1. Introduction
Large Language Models (LLMs) have demonstrated strong
performance across a wide range of natural language pro-
cessing (NLP) tasks (Achiam et al., 2023; Wei et al., 2022).
However, deploying and serving LLMs is not cost-efficient
due to their massive size with billions of parameters (Fran-
tar & Alistarh, 2023; Sui et al., 2025). To address the high
computational demands and improve accessibility, various
techniques have been proposed to make LLMs more effi-
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cient, such as model compression (Han et al., 2015; Frantar
et al., 2022). By reducing memory footprint and accelerat-
ing computation, model compression significantly improves
the feasibility and cost-effectiveness of deploying LLMs at
scale (Yuan et al., 2024; Lin et al., 2024; Tseng et al., 2025;
Ozkara et al., 2025; Wei et al., 2025).

Network pruning is commonly used to reduce model size
and lower computation cost by removing unimportant pa-
rameters (Bai et al., 2024). Among various pruning patterns,
semi-structured pruning (Mishra et al., 2021), or block-wise
N:M sparsification, has emerged as a practical and effec-
tive approach for LLM compression (Sun et al., 2023; Fang
et al., 2024). In this approach, only N non-zero elements
are retained out of M consecutive elements within each
parameter block. This semi-structured sparsity strikes a bal-
ance between model accuracy and hardware efficiency, and
is well-supported by many hardware accelerators (Mishra
et al., 2021), enabling efficient LLM serving.

Despite its advantages, finding an effective semi-structured
mask for LLMs remains challenging. Pruning must fol-
low per-block structural restriction, making efforts on other
patterns hard to adopt. Additionally, extensive retraining
after pruning is impractical due to LLMs’ massive size (Ma
et al., 2023; Chuang et al., 2024). Recent advances like
Wanda (Sun et al., 2023) and SparseGPT (Frantar & Alis-
tarh, 2023) improved semi-structured pruning using minimal
resources with only hundreds of calibration samples, but
still struggle to maintain optimal performance after pruning.
We identify two main challenges in finding effective semi-
structured masks: 1. The heuristic rules used for mask se-
lection cannot fully take advantage of the calibration dataset
during pruning. Methods like SparseGPT and Wanda rely
on the Hessian matrix and importance scores to select ele-
ments to prune, but these lightweight criteria fail to effec-
tively leverage or learn from the calibration data. 2. Both
methods focus on solving a “local” optimization problem
associated with individual layer, without considering the
broader, end-to-end optimization across the entire model.
In those methods, pruning is based on localized informa-
tion within each layer, without considering the connections
across layers. Thus they cannot benefit from the global
feedback, limiting the effectiveness of the pruning method.
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We advocate a learning based solution for semi-structured
mask selection that incorporates global feedback. We pro-
pose ProxSparse, which learns to discover semi-structured
masks through an end-to-end optimization process, rather
than solely relying on local, heuristic-based decisions. Prox-
Sparse enables a finetuning-like procedure that learns the
mask through only hundreds of calibration datasets with low
resource utilization. The core of ProxSparse is the mask
selection regularizer applied during learning, which trans-
forms the rigid, non-differentiable mask-selection problem
into a gradual search process. ProxSparse progressively
enforces semi-structured sparsity and frozen weight con-
straints during training, and gradually shrinks unimportant
weights to be pruned. ProxSparse does not involve addi-
tional weight updates after determining the mask. One
challenge in regularized learning is the efficiency of the
solver, as a slow solver makes end-to-end learning on LLMs
impractical. To address this, we developed a fast solver us-
ing iterative soft-thresholding, enabling efficient end-to-end
learning at LLM scale.

To comprehensively evaluate our method, we conducted
extensive experiments on 7 widely used high-performance
open-source models from four model families including
Mistral (Jiang et al., 2023), Qwen (Yang et al., 2024), Open-
Llama (Geng & Liu, 2023) and Llama (Touvron et al., 2023)
family. The benchmarks cover language modeling and seven
widely used natural language reasoning tasks. The results
show that our regularized learning significantly outperforms
baselines consistently accross all evaluated models, produc-
ing more effective pruning masks. Our contributions are
summarized as follows:

• We propose to apply mask selection regularizer for end-
to-end learning of semi-structured masks in LLMs. It
allows gradual mask discovery with gradient feedback,
enabling global optimization with flexibility, which
leads to substantial improvements.

• We developed an efficient proximal gradient descent
solver for the semi-structured sparsity regularizer. This
method is 10x faster than gradient descent-based
solvers and 100x faster than Interior Point Method
(IPM) solvers, enabling end-to-end regularized learn-
ing at LLMs scale efficiently.

• Across all tested models, ProxSparse consistently im-
proved perplexity (PPL) and accuracy on 7 common-
sense reasoning tasks. It outperforms the previous
SOTA pruning baselines at the same scale by up to
35% in PPL and 20% in zero-shot tasks, highlighting
its effectiveness.

2. Preliminaries and Problem Setup
2.1. Large Language Model pruning

The massive size of LLMs has drawn attention to model
compression to reduce serving overhead. Network pruning

effectively removes redundant parameters, improving effi-
ciency. In LLMs, pruning has proven effective (Bai et al.,
2024; Frantar & Alistarh, 2023; Huang et al., 2024), and
can be categorized into three classes based on granularity.

Structured pruning (Ma et al., 2023; Xia et al., 2023) re-
moves entire substructures like neurons or attention heads,
reducing computation without extra overhead. However, its
rigidity and lack of flexibility often lead to significant perfor-
mance loss, requiring additional retraining to recover accu-
racy (Ma et al., 2023; Xia et al., 2023). Unstructured prun-
ing (Frankle & Carbin, 2018) effectively preserves model
accuracy by selectively removing unimportant weights in a
fine-grained, non-uniform manner. However, its irregular
pruning pattern is hardware-unfriendly, causing inefficient
memory access. Semi-structured (block-wise N:M) spar-
sity (Mishra et al., 2021) balances accuracy and efficiency
by retaining N non-zero elements per M-sized block. Such
patterns can be effectively leveraged by commercial hard-
wares for real speedup (Fang et al., 2024; Sun et al., 2023;
Mishra et al., 2021), while maintaining flexibility to remove
unimportant weights. This work focuses semi-structured
pruning for LLMs, introducing an end-to-end regularized
learning framework towards optimal mask selection.

2.2. Semi-Structured masks Selection for LLMs

Previous research has explored various mask-finding tech-
niques for LLMs, with many showing success in semi-
structured pruning. Here, we review the most advanced
methods for semi-structured mask selection.

Magnitude pruning (Han et al., 2015) is a standard tech-
nique that removes individual weights based on their mag-
nitudes with certain thresholds. Wanda (Sun et al., 2023)
also avoids retraining or updating weights and introduces
activation-aware pruning. The importance of each weight
is evaluated using a per-output pruning criterion, where the
weight magnitude is multiplied by its corresponding input
activation using calibration data. SparseGPT (Frantar &
Alistarh, 2023) leverages the Hessian matrix to calculate
the weight importance and reconstruction errors with the
calibration data. These pruning methods typically solve a
local optimization problems, providing efficient and low-
resource compression techniques (Ma et al., 2023; Frantar
& Alistarh, 2023; Frantar et al., 2022; Sun et al., 2023).

On the other hand, learning-based solutions for pruning have
been explored in previous works, particularly in vision tasks.
The main challenge is the non-differentiable nature of mask
selection, and techniques like Straight-Through Estimators
(STE) (Bengio et al., 2013) have been proposed to overcome
this. However, these methods typically require large-scale
retraining, which is difficult for LLMs due to their enormous
size. In our work, we propose to use the mask selection
regularizer and efficiently identify the optimal mask in a
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learned manner with only hundreds of calibration samples
without extensive retraining. A recently proposed learning-
based method, MaskLLM (Fang et al., 2024), introduces
a large-scale learning-based approach (∼100,000 samples)
to learn pruning masks using Gumbel Softmax sampling.
Our approach employs a different design and operates with
∼1000x smaller sample size (∼100 samples). We consider
MaskLLM complementary to our approach, as it focuses
on the regime that learns with large-scale data samples. We
provide more comparison and discussion in Sec. 4.3.4.

2.3. Problem setup

Let W0 ∈ Rd be the pre-trained weights of the model and
L(W ) be the (population) loss function for the model with
weight W . We say a W ∈ Rd is 2 : 4-sparse if for every
block of 4 parameters in W only 2 are non-zero.

Our goal is to solve the pruning problem by finding an
appropriate semi-structured sparse masks while keeping the
weights of the pretrained model frozen.

We may express our task using the following stochastic
optimization problem:

min
M

L(W0 ⊙M),

s.t. M ∈ {0, 1}d,M is 2:4 sparse,
(1)

where L denotes the loss, mask M ∈ {0, 1}d denotes a
Boolean-valued with the same shape as the frozen model
weights W0, and ⊙ denotes element-wise multiplication.
The problem is hard to solve because L is non-convex and
the constraints are combinatorial. Moreover, we do not have
access toL directly (since it’s the expected loss). Instead, we
have a small calibration dataset that we can stream through
that gives us stochastic first-order (gradient) access, if we
assume they are new data points drawn from the test-data
distribution.

Given these constraints, our goal is not to solve (1), but
rather to find efficient heuristics that work in practice. In
Section 3, we propose our approach and highlight the inter-
esting aspect of it. In Section 4, we thoroughly evaluate our
method in semi-structured sparse pruning in a number of
open-source LLM models.

3. Methodology
We introduce ProxSparse, a learning-based pruning method
guided by a mask selection regularizer that generates high-
quality semi-structured masks for efficient LLM serving.
ProxSparse enables mask exploration in a global perspec-
tive by leveraging the gradient-based method, taking into
account cross-layer connections with end-to-end feedback,
rather than relying on localized, heuristic-based approaches
for abrupt pruning. In this work, we focus specifically on

2:4 sparsity, and we discuss the extension to other sparsity
patterns in Appendix G.

To address the challenges posed by the non-convex and
non-differentiable nature of (1), our strategy for solving (1)
involves (a) designing a relaxation of the problem with hard
constraints into a (Lagrange) regularized form (b) devel-
oping a principled optimization algorithm for solving the
relaxed problem, thereby facilitating the learning process.

3.1. Relaxation and Structure-inducing regularization

We start by rewriting (1) into an equivalent form:

min
W

L(W ),

s.t. W is 2:4 sparse, (2a)
MaskW ⊙ (W −W0) = 0, (2b)

where MaskW selects the non-zero elements of W , W0

denotes the original pretrained parameter weights.

This seemingly trivial reformulation changes the variables to
optimize from a Boolean mask to a continuous weight vector
which makes it more amenable to continuous optimization.

Next, we propose a relaxation of the two constraints (2a)
and (2b) into a regularized form that gradually induces these
structures:

min
W

L(W ) + λ1Reg2:4(W ) + λ2RegW0
(W ), (3)

where Reg2:4(W ) promotes the structured sparsity con-
straints and RegW0

(W ) penalizes the deviation away from
the initial pretrained weight W0.

Reg2:4 decomposes into every 4-parameter block, where
we apply the following regularizer (Kübler et al., 2025) to
enforce the sparse pattern.

Reg2:4, w∈R4(w) =|w1||w2||w3|+ |w2||w3||w4|
+|w3||w4||w1|+ |w4||w1||w2|.

(4)

Proposition 1. The following statements hold true.

1. Reg2:4, w∈R4(w) = 0 if and only if w is 2:4 sparse.

2. Reg2:4, w∈R4(w) is invariant to permutation of the co-
ordinates.

3. Reg2:4, w∈R4(w) is differentiable when restricting to
the “active set” {i ∈ [4]||wi| > 0}.

Observe that by the first property, if λ1 → ∞ the solu-
tion is guaranteed to be (2a). The non-smoothness of (4)
ensures that it enjoys a “shrinkage” property (analogous
to ℓ1-regularization for sparsity) such that it induces exact
2:4-sparsity even if λ is not tending to∞.
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To promote the locality constraint (2b), we design the sec-
ond regularizer as follows.

RegW0
(W ) =

∥∥∥∥ W

W0 + ϵ sign(W0)
⊙ (W −W0)

∥∥∥∥2
F

,

where the division is coordinate-wise and sign(·) outputs 1
when · ≥ 0 and 0 otherwise.

This regularizer can be viewed as a special weight decay
towards W0, but it imposes a stronger penalty for coordi-
nates of W that are larger and nearly no penalty for those
coordinates that are nearly 0. ϵ sign(W0) is added to avoid
the numerical instability associated with (near)-0 division.
Proposition 2. 1. RegW0

(W ) = 0 if and only if [W ]i =
[W0]i for all coordinates i s.t. Wi ̸= 0.

2. RegW0
(W ) = RegW0[W ̸=0](W [W ̸= 0]).

3. RegW0
(W ) is continuously differentiable.

Together with Proposition 1, we observe that the nullspace
of the two regularizers together is the feasible region of the
original problem, which allows us to optimize towards a
solution that satisfies the original problem’s constraints.
Corollary 3. RegW0

(W ) = 0 and Reg2:4(W ) = 0 if and
only if W satisfies (2a) and (2b).

To say it differently, if λ1, λ2 → ∞, the relaxed problem
(3) is identical to the original problem (1). We encode the
rigid and non-differentiable mask selection constraints into
the learning objectives, enabling a learnable optimization
process. Another benefit of transitioning from hard con-
straints to soft regularization is that it introduces “wiggling
room”, enabling flexibility during exploration. This allows
the learning to make smoother, more informed pruning de-
cisions with a larger exploration space, rather than making
abrupt changes during optimization, which could cause early
commitment to suboptimal state as we will show in exper-
imental Section 4.3.2 later. The main challenge now lies
in an effective solving algorithm for the regularizer with
efficiency, which is crucial to facilitate end-to-end mask
learning for LLMs with scale.

3.2. Proximal Gradient Descent for 2:4 Sparsity

To optimize (3),we propose to use the proximal gradient
descent (Nesterov, 2013) — a popular method for solving
composite optimization problems of the form minx f(x) +
h(x) where f is differentiable but h is not.

Proximal gradient descent iteratively updates x by alternat-
ing between a gradient descent step on f and a proximal
operator (a generalization of “projection”) on h:

y = xt − η∇f(xt), (5a)

xt+1 = argmin
x

1

2
∥x− y∥2 + h(x). (5b)

Algorithm 1 ProxSparse: Proximal Gradient Descent for
End-to-End 2:4-Sparsity Pruning

1: Input: Initial pretrained weights w0. Learning rate
schedule η0, η1, .... Stochastic gradient oracle G that
takes w and outputs g such that E[g] = ∇L(w).

2: for k = 0, 1, 2, ... do
3: gk ← G(wk) ▷ SGD (or Adam) update.
4: V ←Wk − ηk(gk + λ2∇RegW0

(Wk))

5: Wk+1 ← argminW
1
2∥W −V ∥

2+λ1Reg2:4(W ).
6: end for
7: Output: W0 ⊙MaskProj2:4(Wk).

In our problem, f := L + λ2RegW0
and h := λ1Reg2:4.

Pseudocode of this algorithm is given in Algorithm 1.

The main benefit of the proximal gradient approach is that it
does not prematurely commit to a particular sparsity mask,
or fix the weights at the initialization. Instead, the regular-
izers are soft constraints, allowing ample wiggling room
around the rigid constraint set for the gradient descent-based
algorithm to potentially jump out of a suboptimal local re-
gion, and thereby converge to a better qualifying solution.

One issue of not imposing the constraint is that the last
iterate might not be feasible after the specified number of it-
erations. For those cases, we simply project the solutionWk

to a 2:4-sparse solution basing on magnitude and snap the
surviving weights to W0. All our experimental results are
based on solutions that are exactly 2:4 sparse with weights
unchanged from initialization.

3.3. Efficient Proximal Operator

An efficient solver for the proximal operator is essential for
enabling end-to-end learning at LLM scale. Since L and
RegW0

are both differentiable, the efficient implementation
of ProxSparse boils down to solving the proximal operator
associated with Reg2:4.

w∗ = argmin
w∈R4

1

2
∥w − y∥2 + λReg2:4(w) (6)

This is a non-convex optimization problem. Kübler et al.
(2025) showed that it can be solved with three convex sub-
problems.

Theorem 4 ((Kübler et al., 2025)). To solve (6) for any
y ∈ R4, it suffices to solve:

min
w∈R4

+

1

2
∥w − z∥2 + λReg2:4(w) (7)

where z = sorted(|y|) is non-negative and sorted in de-
scending order, i.e., z1 ≥ z2 ≥ z3 ≥ z4 ≥ 0. Moreover, the
optimal solution to (7) must be one of the following three
candidates:
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1.“2-sparse solution” [z1, z2, 0, 0];

2.“3-sparse solution”, [ẇ1, ẇ2, ẇ3, 0]

3.“dense solution” [ẅ1, ẅ2, ẅ3, ẅ4]

where ẇ = argminw∈R3
+
{g3(w) s.t. ∇2g3(w) ⪰ 0} with

g3(w) :=
1

2
∥w − z1:3∥2 + λ(w1w2 + w2w3 + w3w1),

and ẅ = argminw∈R4
+
{g4(w) s.t. ∇2g4(w) ⪰ 0} with

g4(w) being the objective function of (7). Meanwhile,
{w|∇2g3(w) ⪰ 0} and {w|∇2g4(w) ⪰ 0} are convex sets,
making the corresponding optimization problems convex.

This result suggests that we can simply enumerate the three
candidate solutions and return the one with the smallest
objective value. Kübler et al. (2025) thus proposed to solve
for the “3-sparse” and “dense” solutions using interior point
method (IPM) with a log-determinant barrier function, lead-
ing to the EnumIPM algorithm, which optimally solves
(7). However, EnumIPM incurs high computational cost
(Table 1). A faster heuristic, EnumPGD, was introduced to
replace IPM with projected gradient descent without impos-
ing semidefinite constraints. While EnumPGD improves
efficiency, it sacrifices provably guarantees.

We propose a new method based on alternating minimiza-
tion (ALM) with convergence guarantees. The resulting
EnumALM is even more efficient than EnumPGD (see
Table 1 for an numerical comparison). Moreover, in all
20,000 experiments in Table 1, EnumALM provides more
optimal solutions than those of EnumIPM. This enables
us to scale up the proximal gradient method for handling
LLMs with billions of parameters in practice. An example
regularization paths is illustrated in Figure 3 in Appendix C.

Pseudocode for ALM and EnumALM are given in Algo-
rithm 2 and 3 respectively. Algorithmically, ALM works
by iterating over the coordinates of w and minimizing g3 or
g4 over the current coordinate while keeping other coordi-
nates fixed. The solution of this one dimensional problem is
soft-thresholding:

Fact 5. Assume z ≥ 0, the optimal solution to
minw∈R+

1
2 (w − z)

2 + αw is w = max{z − α, 0}.

Observe that soft-thresholding is commonly used in L1-
regularized optimization for inducing (unstructured) spar-
sity. Our algorithm can thus be viewed as iterative soft-
thresholding with adaptive chosen threshold that induces
2:4 structured sparsity rather than standard sparsity.

3.4. Convergence guarantees

Next, we study the convergence theory of ProxSparse. We
first prove that the inner-loop Algorithm 2 always converges

Algorithm 2 ALM: Alternating Minimization
1: Input: z ∈ R4 (sorted, nonnegative), parameter λ,

tolerance ϵ, desired sparsity-level S = 3 or 4.
2: Initialize w′ = 0, w = 0,
3: w1:S ← z1:S
4: while ∥w′ − w∥ > ϵ do
5: for i ∈ {1, ..., S} do

6: wi ← max

{
zi − λ

∑
j,k∈[4]\{i}

j ̸=k

wjwk, 0

}
7: ▷ This is soft-thresholding operator
8: end for
9: w′ ← w

10: end while
11: Output: w

Algorithm 3 EnumALM for solving (6)
1: Input: y ∈ R4, parameter λ, tolerance ϵ
2: s← sign(y) ▷ elementwise
3: z, idx← sort(|y|, ‘descending’) ▷ idx is reverse index.
4: w̃ ← [z1, z2, 0, 0] ▷ 2-sparse solution.
5: ẇ = ALM(z, λ, ϵ, S = 3) ▷ 3-sparse solution.
6: ẅ = ALM(z, λ, ϵ, S = 4) ▷ dense solution.
7: w ← argminw∈{w̃,ẇ,ẅ}

1
2∥w − z∥

2 + λReg2:4(w)
8: Output: s⊙ w[idx] ▷ ⊙ is elementwise product

EnumIPM EnumPGD EnumALM (ours)
Total runtime (sec) 561.70 43.31 8.52
Max suboptimality 10−13 10−6 < 10−13

Table 1. Comparison of the runtime and accuracy of solvers of (6)
for solving 100 randomly generated problem instances, each with
200 different choices of λ. The second row shows the worst-case
suboptimality. IPM is guaranteed to give the optimal solution up-to
a tolerance parameter of 10−13. ALM achieves better objective
value in all experiments than IPM, while GD occasionally gives
solutions with slightly suboptimal objective values.

to a critical point. Then we will argue that if Algorithm 3
returns the correct solution (they do in all our experiments!),
then under mild assumptions on training loss L and bound-
edness of the parameters Wk, the outer-loop Algorithm 1
also converges to a stationary point. The proofs of both
propositions below are deferred to Appendix A.

Proposition 6 (Convergence of ALM). When ϵ > 0, Algo-
rithm 2 halts with no more than 3λ∥z∥3/ϵ2 iterations. Also,
at the limit ϵ→ 0, the output of Algorithm 2 converges to a
critical point of g3 when S = 3 (or of g4 when S = 4).

Proposition 7 (Convergence of ProxSparse). Assume L is
continuously differentiable, and that there existsB > 0 such
that ∥Wt∥ ≤ B for all t = 1, 2, 3, .... Then Algorithm 1
converges to a critical point in the sense of the limiting
subdifferential of the regularized objective function of (3)
(see (Rockafellar & Wets, 1998)).
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4. Empirical evaluation
In this section, we provide comprehensive evaluations of
ProxSparse by addressing the following research questions:
1. End-to-end performance: how does ProxSparse com-
pare to other state-of-the-art pruning methods? 2. The in-
depth analysis of mask selection regularizer: how does
the regularizer contribute to finding the effective mask? 3.
Efficiency benefit: does sparsified models produced by
ProxSparse improve efficiency?

4.1. Models, tasks and baselines

We evaluated ProxSparse on four most advanced and widely
used open-source LLM families: Mistral (Jiang et al., 2023),
Qwen (Yang et al., 2024), OpenLlama (Geng & Liu, 2023)
and an Llama (Touvron et al., 2023) family. The specific
models used in our experiments include Mistral-v0.1-7b,
Mistral-v0.3-7b, Qwen2.5-14b, OpenLlama-7b-v2, Llama-
2-7b, Llama-2-13b and Llama-3.1-8b.

We assess the performance of pruned models from different
pruning mechanisms on both zero-shot tasks and language
modeling. For calibration, we followed Wanda (Sun et al.,
2023) and SparseGPT (Frantar & Alistarh, 2023) to utilize
the C4 (Raffel et al., 2020) dataset for calibration. Zero-shot
performance was evaluated with the EleutherAI LM-Eval-
Harness (Gao et al., 2024) on seven widely used tasks (Liu
et al., 2024), while Wikitext (Merity et al., 2016) perplexity
(PPL) was used as the language modeling metric, consistent
with previous evaluation protocol (Sun et al., 2023; Frantar
& Alistarh, 2023). The experiments use 400 data samples for
calibration unless specified, with consistent counts across
baselines for fair comparison. We discuss MaskLLM and
present ablation studies on mask effectiveness with regards
to calibration sample size in Section 4.3.4. Comparisons
on additional pruning mechanisms (ADMMPrune (Boža,
2024), OWL (Yin et al., 2023) and AlphaPrune (Lu et al.,
2024)) are further detailed in Appendix E. For hyperparame-
ters and configurations, we detail them in Appendix B. Our
experiments were done on Nvidia A100 GPUs.

4.2. End to end performance evaluation

We first present end-to-end performance comparison against
other baselines that enforce 2:4 sparsity: magnitude prun-
ing (Han et al., 2015), SparseGPT (Frantar & Alistarh,
2023), and Wanda (Sun et al., 2023). Table 2 presents Wiki-
text PPL and performance on seven widely used zero-shot
reasoning tasks. Overall, ProxSparse consistently outper-
forms all baselines across tested models.

Language modeling We first evaluate language modeling.
ProxSparse surpasses magnitude pruning and outperforms
Wanda, the SOTA mechanism without weight updates at the

same scale. More specifically, ProxSparse achieves a PPL
of 9.91 vs. Wanda’s 13.81 on OpenLlama-7b-v2 with 28%
improvement. Similarly, ProxSparse achieves a PPL of 8.51
on Llama-2-7b, compared to Wanda’s 11.42, reflecting a
35% improvement. In the Llama-3.1-8b experiments shown
in Table 9, ProxSparse reduces PPL from Wanda’s 20.91 to
13.63. Compare to the Llama-2-7b model, Llama-3.1-8b
have more information encoded in the model weights as
much larger training corpus was used during pretraining.
This significant performance improvement highlights the
potential of ProxSparse’s effectiveness in handling dense
model pruning mask selection. Even when compared to
SparseGPT, which updates the weights to minimize error,
ProxSparse still outperforms it by up to an 18% margin, as
demonstrated in the Llama-2-7b experiments. In summary,
across different models, ProxSparse consistently achieves
better PPL with a significant gap compared to other base-
lines.

Zero-shot Task Performance We present the perfor-
mance analysis on seven widely used zero-shot natural
language reasoning tasks. Consistent with the language
modeling results, ProxSparse significantly outperforms both
magnitude pruning and Wanda. In the Mistral-v0.1-7B ex-
periments, ProxSparse achieved an average accuracy of
52.7%, compared to Wanda’s 44.1%, marking a 20% im-
provement in performance. Even with weight updates in
SparseGPT, ProxSparse consistently achieves higher accu-
racy. Similar trends hold for Qwen2.5-14b and other mod-
els as well. This highlights ProxSparse’s effectiveness in
finding an optimal semi-structured mask to maintain supe-
rior performance, even compared to pruning methods with
weight reconstruction for error reduction.

Analysis of Better Performance ProxSparse consistently
outperforms all baselines across evaluated models. Its ad-
vantage stems from the global feedback in mask explo-
ration, which enables ProxSparse to overcome localized
constraints. By optimizing in an end-to-end manner, ProxS-
parse achieves superior performance gains.

4.3. Deep dive into the regularizing mechanism

This section explores the core properties of the mask selec-
tion regularizer. The regularizer relaxes rigid mask selection
constraints into differentiable optimization for end-to-end
learning. In the meantime, its added flexibility with ”wig-
gling room” enhances exploration for better convergence.
We ask the question: how does this flexibility aid in explor-
ing the optimal mask during optimization?

4.3.1. HARD CONSTRAINT V.S. SOFT REGULARIZATION

To showcase the effectiveness of soft regularization with
flexibility, we compare it with strict constraints. Unlike
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Table 2. Experimental results on Wikitext perplexity (PPL) and 7 commonly used zero-shot natural language reasoning tasks comparing
ProxSparse to 3 other baselines on 7 widely used LLMs (Llama-3.1-8b results are deferred to Table 9). Bold indicates the best pruning
performance, while italic represents the original unpruned performance. SparseGPT updates weights to minimize reconstruction error,
while the other methods keep retained weights frozen. ProxSparse consistently yields better results compared to all other baselines.

Weight Update Wikitext PPL ARC-C ARC-E SIQA HellaSwag OBQA PIQA TruthfulQA AVG

Mistral-v0.1-7b - 4.91 0.503 0.809 0.467 0.612 0.324 0.806 0.354 0.554

magnitude ✗ 14.18 0.310 0.666 0.417 0.488 0.204 0.732 0.314 0.447

SparseGPT ✓ 9.43 0.345 0.684 0.418 0.469 0.240 0.730 0.316 0.501

Wanda ✗ 11.49 0.336 0.665 0.408 0.444 0.214 0.716 0.307 0.441

ProxSparse ✗ 8.92 0.362 0.698 0.428 0.525 0.232 0.756 0.350 0.527

Mistral-v0.3-7b - 4.95 0.490 0.797 0.458 0.609 0.336 0.803 0.353 0.549

magnitude ✗ 13.52 0.332 0.665 0.413 0.488 0.226 0.738 0.309 0.453

SparseGPT ✓ 9.23 0.353 0.687 0.421 0.470 0.248 0.733 0.308 0.458

Wanda ✗ 10.97 0.311 0.648 0.408 0.442 0.206 0.716 0.300 0.433

ProxSparse ✗ 8.68 0.362 0.697 0.429 0.525 0.242 0.751 0.321 0.475

Qwen2.5-14B - 4.93 0.56 0.822 0.554 0.634 0.342 0.814 0.493 0.602

magnitude ✗ 48.87 0.359 0.638 0.405 0.418 0.256 0.680 0.356 0.444

SparseGPT ✓ 9.19 0.405 0.750 0.476 0.512 0.296 0.753 0.367 0.507

Wanda ✗ 11.69 0.389 0.729 0.440 0.491 0.286 0.740 0.331 0.485

ProxSparse ✗ 9.28 0.456 0.772 0.456 0.535 0.290 0.756 0.406 0.525

OpenLlama-7b-v2 - 6.48 0.387 0.725 0.441 0.557 0.296 0.789 0.336 0.504

magnitude ✗ 36.15 0.230 0.498 0.380 0.360 0.162 0.683 0.306 0.374

SparseGPT ✓ 11.35 0.278 0.602 0.412 0.428 0.214 0.713 0.301 0.420

Wanda ✗ 13.81 0.261 0.575 0.409 0.409 0.196 0.703 0.310 0.409

ProxSparse ✗ 9.91 0.281 0.616 0.415 0.472 0.236 0.720 0.299 0.434

Llama-2-7b - 5.12 0.433 0.763 0.461 0.571 0.314 0.781 0.321 0.521

magnitude ✗ 54.74 0.301 0.618 0.411 0.454 0.216 0.701 0.322 0.432

SparseGPT ✓ 10.30 0.326 0.655 0.412 0.435 0.246 0.713 0.304 0.441

Wanda ✗ 11.42 0.311 0.623 0.403 0.413 0.248 0.706 0.305 0.430

ProxSparse ✗ 8.51 0.331 0.656 0.407 0.478 0.242 0.716 0.328 0.452

Llama-2-13b - 4.57 0.485 0.794 0.473 0.601 0.352 0.791 0.314 0.544

magnitude ✗ 8.32 0.319 0.623 0.408 0.501 0.232 0.717 0.309 0.444

SparseGPT ✓ 8.14 0.378 0.714 0.437 0.478 0.282 0.735 0.296 0.473

Wanda ✗ 8.35 0.340 0.683 0.424 0.464 0.246 0.739 0.292 0.455

ProxSparse ✗ 6.61 0.383 0.720 0.427 0.532 0.288 0.723 0.319 0.486

the gradually sparse regularizer, projected gradient descent
(PGD) imposes hard thresholding during optimization. We
conducted four experiments to evaluate both regularizers
for mask selection, testing each with both soft and hard con-
straints, as shown in Table 3. In proximal gradient descent,
”hard sparsity constraints” in the table enforce zeroing two
of every four weights after each update, ensuring rigid 2:4
structural sparsity. ”Hard frozen weights” reset the two
largest-magnitude weights to their original values, enforc-
ing strict objectives for mask selection. With the relaxed
regularizer, weights gradually shrink towards the 2:4 pat-
tern (shown in Figure 4(a)), while the retained weights are
encouraged to approximate their original values. This relax-

Table 3. Wikitext PPL under hard/soft constraints. Relaxing mask
selection constraints improves performance over hard thresholding.
Bold indicates the best result.

Both with
relaxation

Fronzen weight
relaxation

Sparsity constraints
relaxation

Both with hard
Constraints

Mistral-v0.3-7b 8.68 13.23 11.24 13.6
OpenLlama-7b-v2 9.91 34 33.07 35.28

ation meets both objectives under more flexible constraints.
Table 3 indicates that hard constraints performs worst, while
relaxed constraints enhance performance. Fully regular-
izing both semi-structured and frozen weight constraints
maximizes flexibility, achieving the best results.
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a. Two-four sparse ratio evolvement b. Dense ratio evolvement c. Initial/final two-four sparse ratio vs. λ₁ b. Mask similarity evolvement

Figure 1. Evolution of sparsity ratio on Llama-2-7b based on the degree of regularization. (a) Evolution of the 2:4 sparsity ratio over
learning progress, where an insufficient regularization degree leads to under-learning. (b) With a larger λ1 parameters shrink more quickly
towards 2:4 sparsity, resulting in early commitment to a suboptimal mask. (c) Comparison of the 2:4 sparse block ratios at early (0.1
epochs) and final stages of learning. (d) Mask similarity between the final mask and the early mask obtained after 10% epochs of learning.
An excessively large λ1 results in premature mask commitment, causing mask selection to stagnate and hindering optimal mask discovery.

Table 4. Wikitext PPL across λ1. Optimal performance occurs at
balanced regularization. Bold indicates the best performance.

λ1 0.001 0.01 0.1 0.25 0.5 2 10 50 inf

Mistral-v0.3-7b 14.19 9.66 9.04 8.69 8.68 8.82 9.32 10.94 11.33

λ1 0.001 0.1 0.25 1 2 5 10 50 inf

OpenLlama-7b-v2 25.23 11.25 10.89 9.91 10.13 10.97 12.11 23.29 33.09

4.3.2. THE SPARSITY PATTERN ENFORCER

In the following sections, we analyze the contribution of
each regularizer individually, starting with the sparsity pat-
tern regularizer, which encourages 2:4 sparsity. The regular-
izer coefficient, λ1, controls the strength of regularization:
higher values enforce more aggressive parameter shrinkage,
approaching a harder projection with less flexibility. To
isolate the effect of regularization, we only study the semi-
structured regularizer in this analysis. We examine how
varying its strength impacts mask learning. As shown in
Table 4, optimal mask selection occurs at a balance between
gradual and aggressive regularization—smaller values lead
to conservative mask evolution, while larger values impose
stricter constraints, both reducing performance.

To better understand this phenomenon, we analyze the reg-
ularizer’s impact in detail. We show the evolution of 2:4
sparsity across different λ1 values for Llama-2-7b (Fig-
ures 1) and OpenLlama-7b-v2 (Figure 4 in Appendix F)
with consistent trend. We use Llama-2-7b as the example.
if λ1 is too low, the model remains largely dense, as shown
in Figures 4(a), (b) and (c). This suggests under-learning,
where unimportant weights are not fully recognized by the
end of learning, resulting in incomplete mask selection.
Conversely, a high λ1 value leads to early commitment
to a specific mask. In Figure 4(d), the yellow line shows
similarity to the ”early mask” obtained after just 10% of
learning. The final mask retains ∼99.5% similarity to the
early one, indicating stalled optimization. In between, a bal-
anced strength allows flexible mask exploration that avoids
premature commitment, while also enabling more effective
learning than excessively low values.

Table 5. Wikitext PPL across λ2. A broad optimal plateau suggests
that performance remains stable across a robust range of λ2.

λ2 0 0.5 2 5 20 100 2500 inf
Mistral-v0.3-7b 8.68 8.88 8.9 8.82 8.99 8.85 9.11 13.23

λ2 0 0.5 2 20 100 500 2500 inf
OpenLlama-7b-v2 9.91 9.92 9.96 10.12 10.41 10.9 12.38 34

4.3.3. THE FROZEN WEIGHT RETENTION ENFORCER

We analyze the impact of the frozen weight regularizer, with
its strength controlled by λ2. Using the optimal λ1 from
previous analyses, we vary λ2 to assess its effect. Interest-
ingly, Table 5 shows a broad optimal performance plateau,
suggesting that a robust range of λ2 values can be applied
without significantly affecting performance.

We further plot the evolution of the relative norm gap across
λ2 in Figure 2. This gap quantifies the difference in norm
between the learned model and the original model, with
the mask applied. It assesses how closely retained weights
preserve their original values. We see that even without the
regularizer, the relative norm gap stays ∼20%. Adding the
regularizer incurs small impact until the strength reaches a
high extent. This may result from implicit frozen weight con-
straints imposed by the sparsity pattern regularizer, which
we leave it to future investigation. As λ2 increases toward in-
finity, strict projection enforcement degrades performance,
aligns with previous finding and reinforces the need for
gradual and flexible mask optimization.

4.3.4. PERFORMANCE EVOLUTION WITH VARYING
NUMBERS OF CALIBRATION SAMPLES

Our method enables effective semi-structured mask selec-
tion with only hundreds of samples. Here we analyze per-
formance based on the number of calibration samples with
OpenLlama-7b-v2 and Llama-2-7b. We compare our re-
sults with MaskLLM, SparseGPT, and Wanda using 100,
200, and 400 samples. MaskLLM struggles with small sam-
ple sizes, making it a complementary method to ours in
large-scale learning. We use the statistics reported in the
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Figure 2. The relative norm difference over different λ2. The rela-
tive norm gap measures how closely retained weights match their
original values post-training, with the semi-structured mask ap-
plied. The relative norm remained low (∼20%) with minimal
change until a high lambda value was applied.

Table 6. Wikitext PPL across calibration sample sizes. ProxSparse
outperformed all methods, with performance slightly improved
as sample size increased, confirming its effectiveness in optimal
mask learning. Bold indicates the best performance.

OpenLlama-7b-v2 100 200 400 Llama-2-7b 100 200 400

MaskLLM - - - MaskLLM > 13 > 13 > 11

SparseGPT 11.581 11.478 11.35 SparseGPT 10.36 10.32 10.298

Wanda 13.854 13.828 13.814 Wanda 11.46 11.45 11.42

ProxSparse 10.39 10.09 9.91 ProxSparse 9.24 8.99 8.51

MaskLLM paper (Fang et al., 2024). As shown in Table 6,
MaskLLM performed worst on Llama-2-7b with low sam-
ple sizes, likely due to its reliance on extensive training for
effective masks. SparseGPT and Wanda showed minimal
improvement with increased calibration samples, consistent
with previous observations (Fang et al., 2024; Sun et al.,
2023). ProxSparse achieved the best across these sample
sizes, with slight performance gains as samples increased
within our target range. This confirms the effectiveness of
our method in learning towards an optimal mask for semi-
structured sparsity.

4.4. Improved efficiency during inference

Finally, we evaluate the efficiency metrics of the sparsified
model produced by ProxSparse. We present wall-clock infer-
ence speedup and memory footprint improvements for the
2:4 semi-structured sparsified model induced by ProxSparse.
Our experiments are conducted on Nvidia A100 GPUs. We
utilize the Nvidia CUTLASS library as the underlying im-
plementation for 2:4 semi-structured sparse operations.

4.4.1. INFERENCE SPEEDUP

We follow the evaluation setup of previous work (Frantar
& Alistarh, 2023; Sun et al., 2023) and measure the latency

Table 7. Speedup and memory utilization improvements achieved
by ProxSparse induced 2:4 sparsity models(left: speedup, right:
memory reduction). ProxSparse delivers a 1.3x–1.35x speedup for
matrix multiplication and a 1.26x end-to-end inference speedup
on the Mistral-v0.3-7b model. Additionally, ProxSparse reduces
memory consumption by 29.5%–37.3% across different models,
demonstrating its efficiency in both computation and memory
utilization.

Module name Speedup ratio Model family Memory gain
self attn q/k/v/o 1.35x Openllama 7b v2 70.50%
mlp up/down/gate 1.30x Qwen2.5-14b 67.50%
End-to-end inference 1.26x Mistral-v0.3-7b 62.70%

of matrix multiplication in linear layers. The results of
Mistral-v0.3-7b (batch size of 1) are presented in Table 7.
As shown in the table, 2:4 semi-structured sparsity induced
by ProxSparse provides significant inference speedup for
linear layers in LLMs, achieving an average speedup gains
of 1.3 to 1.35. Additionally, we measured the end-to-end
inference wall-clock speedup and observed a 1.26x speedup,
consistent with other sparsification methods evaluated in
our experiments. We emphasize that the inference speedup
is not specific to our pruning method but rather a result
of the inherent computational efficiency enabled by semi-
structured sparsity.

4.4.2. MEMORY FOOTPRINT IMPROVEMENTS

Next, we evaluate the memory footprint reductions achieved
by ProxSparse-sparsified models. The results of peak mem-
ory utilization during inference time (batch size = 1) for dif-
ferent models are presented in Table 7. ProxSparse reduces
peak memory usage by 29.5% to 37.3%, demonstrating sig-
nificant memory savings with 2:4 sparsification. The exact
reduction varies across different model architectures due to
differences in model weight sizes, which influence activa-
tion sizes and ultimately affect peak memory consumption.
Overall, ProxSparse effectively reduces memory footprint
during LLM inference, highlighting the system benefits of
the 2:4 sparse operation.

5. Conclusion
LLMs excel in natural language processing tasks and down-
streaming tasks. However, they suffer from high compu-
tational costs due to the enormous parameter sizes. Semi-
structured sparsity can improve inference efficiency, though
it remains challenging due to the structural constraints dur-
ing pruning. We propose a learning-based method with reg-
ularized optimization, progressively explores optimal mask
through end-to-end gradient feedback. Extensive evaluation
shows that ProxSparse significantly outperforms previous
methods, enabling better accuracy for LLM pruning, making
model deployment more cost-effective.
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Impact statement
This paper presents work with the goal is to advance the
field of machine learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proofs of Technical Results
Proof of Proposition 1. For the first statement, check that if at least two parameters are 0, there is at least one 0 in all

(
4
3

)
subsets, making the whole regularizer 0. If at least three parameters are non-zero, then there is at least one group that is
non-zero. The second statement follows by symmetry. The third statement is valid because it is a cubic function when in the
strict interior of an orthant.

Proof of Proposition 2. First observe that this regularizer applies pointwise to each coordinate of W . It suffices to prove

the statements for one coordinate w,w0. w.l.o.g. assume w0 > 0, then the regularizer gives
∣∣∣w(w−w0)
(1+ϵ)w0

∣∣∣2. Observe
that the nullspace is either 0 or w = w0, thus checking Statement 1. Statement 2 follows because all coordinates with
w = 0 contributes 0 to the total. Statement 3 follows because this is a fourth order polynomial of w, thus continuously
differentiable.

Proof of Proposition 6. We start with S = 4. Define f := g4 as a shorthand.

It should be noted that for all 1 ≤ i, j ≤ 4, the partial functions fi (wi) = f (w), for fixed wj with j ̸= i, are strongly
convex and quadratic. Therefore, when i = 1 for instance, we have for any wi and vi that

fi (wi) = fi (vi) + f ′i (vi) (wi − vi) +
1

2
(wi − vi)2.

Therefore, for any fixed wj with j ̸= i, let w∗
i = argminwi≥0 fi(w). w

∗
i satisfies the following (when i = 1 for instance)

f (w) = f1 (w1) = f1 (w
∗
1) + f ′1 (w

∗
1) (w1 − w∗

1) +
1

2
(w1 − w∗

1)
2

≥ f1 (w∗
1) +

1

2
(w1 − w∗

1)
2

= f (w∗
1 , w2, w3, w4) +

1

2
(w1 − w∗

1)
2. (8)

The inequality is due to the first-order optimality condition. This means that we have a sufficient descent property with
respect to each minimized variable.

Proposition 8. Let
{
wk

}
k∈N be a sequence generated by the Alternating Minimization algorithm. Then, for all k ∈ N, we

have that
f
(
wk

)
≥ f

(
wk+1

)
+

1

2
∥wk+1 − wk∥2. (9)

Proof. Let k ∈ N. Using (8) for all 1 ≤ i ≤ 4 yields

f
(
wk

)
≥ f

(
wk+1

1 , wk
2 , w

k
3 , w

k
4

)
+

1

2
(wk+1

1 − wk
1 )

2

f
(
wk+1

1 , wk
2 , w

k
3 , w

k
4

)
≥ f

(
wk+1

1 , wk+1
2 , wk

3 , w
k
4

)
+

1

2
(wk+1

2 − wk
2 )

2

f
(
wk+1

1 , wk+1
2 , wk

3 , w
k
4

)
≥ f

(
wk+1

1 , wk+1
2 , wk+1

3 , wk
4

)
+

1

2
(wk+1

3 − wk
3 )

2

f
(
wk+1

1 , wk+1
2 , wk+1

3 , wk
4

)
≥ f

(
wk+1

)
+

1

2
(wk+1

4 − wk
4 )

2.

Adding all the inequalities yields the desired result.

Telescope (9), we get that

min
k∈[T ]

∥wk+1 − wk∥2 ≤ 1

T

K∑
k=1

∥wk+1 − wk∥2 ≤ f(w0)− f(wk+1)

T
≤ 4λ∥z∥3

T
.

The last inequality follows as we initialize atw0 = z, thus f(w0) ≤ 4λ∥z∥3. Also, sincewk ∈ R4, f(wk+1) is non-negative.
This completes the proof for the first statement.
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Now take ϵ→ 0, as the position this algorithm halt, ∥wk+1 − wk∥2 ≤ ϵ2 → 0.

By Theorem 1 of (Beck et al., 2016), wk at k → ∞ is a critical point of the objective function with the non-negative
constraints handled by adding an indicator function.

The argument for the S = 3 case follows analogously (hence omitted).

Proof of Proposition 7. Under the assumption, the function RegW0
has a locally Lipschitz continuous gradient, which

implies that the function f also has a locally Lipschitz continuous gradient. Therefore, the convergence of the sequence
{xt}t∈N convergence to a critical point of the function ψ ≡ f + h follows immediately from (Cohen et al., 2022) (since ψ
is a semi-algebraic function and {xt}t∈N is bounded).

B. Hyperparameters and configurations
Table 8 presents the configurations and hyperparameters used in our experiments. There are three key hyperparameters for
learning an optimal semi-structured mask: sparsity regularization strength (λ1), frozen weight regularization extent ( λ2),
and learning rate. As discussed in Section 4.3.3, the frozen weight regularization is robust across a wide range of values.
Our learning procedure follows standard settings, using AdamW as the optimizer with a warmup ratio of 0.1.

Table 8. Configure of the parammeter used in the experiment
λ1 λ2 Learning rate Optimizer Warmup-ratio

Mistral-v0.1-7b 20 0 5.00E-05 Adamw 0.1

Mistral-v0.3-7b 25 0 5.00E-05 Adamw 0.1

Qwen-2.5-14b 0.2 0 0.0001 Adamw 0.1

OpenLlama-7b-v2 1 0 0.0001 Adamw 0.1

Llama-2-7b 0.25 0 0.0001 Adamw 0.1

Llama-2-13b 0.5 0.25 0.0001 Adamw 0.1

Llama-3.1-8b 0.85 0 5.00E-05 Adamw 0.1

C. Regularization trajectory of the optimization algorithm.
We illustrate the regularization path for an example initialization with different λ value using different optimization
algorithms (EnumIPM, EnumPGD, and EnumALM) in Figure 3 as explained in Section 3.3.

0.0 0.2 0.4 0.6 0.8 1.0
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w2 (ipm)
w3 (ipm)
w4 (ipm)
w1 (pgd)
w2 (pgd)
w3 (pgd)
w4 (pgd)
w1 (alm)
w2 (alm)
w3 (alm)
w4 (alm)

Figure 3. Illustration of the solution to (6) with an example input y = [1.4, 1.1, 1.0, 0.7] as λ increases. Observe that (1) the regularizer
shrinks different coordinates differently according to their relative magnitude (2) all three algorithms return the same solution path. (3) the
dashed lines indicate the two thresholds of λ from KKT conditions above which the 3-sparse and 2-sparse solutions become critical points
(a necessary condition for them to become global optimal).
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Table 9. Experimental results on Wikitext perplexity (PPL) and performance across 7 commonly used zero-shot natural language reasoning
tasks comparing ProxSparse to 3 other baselines on Llama-3.1-8b. Bold indicates the best pruning performance, while italic represents
the original unpruned performance. SparseGPT updates weights to minimize reconstruction error, while the other methods keep retained
weights frozen. Similar to the results in Table 2, ProxSparse consistently yields better results compared to all other baselines.

Weight Update Wikitext PPL ARC-C ARC-E SIQA HellaSwag OBQA PIQA TruthfulQA AVG

Llama-3.1-8b - 5.84 0.515 0.814 0.470 0.600 0.334 0.801 0.368 0.557

magnitude ✗ 766.91 0.257 0.454 0.365 0.335 0.154 0.634 0.319 0.360

SparseGPT ✓ 14.61 0.316 0.647 0.426 0.435 0.222 0.705 0.301 0.434

Wanda ✗ 20.91 0.269 0.573 0.400 0.380 0.192 0.686 0.309 0.401

ProxSparse ✗ 13.63 0.333 0.623 0.422 0.460 0.240 0.721 0.296 0.444

Table 10. Experimental results on Wikitext perplexity (PPL) and 7 commonly used zero-shot natural language reasoning tasks comparing
ProxSparse to 3 other baselines Llama-2-7b and Mistral-v0.3-7b model. Bold indicates the best pruning performance, while italic
represents the original unpruned performance. AdmmPrune updates weights to minimize reconstruction error, while OWL and AlphaPrune
uses dynamic sparse ratios across layers. ProxSparse consistently yields better results compared to all other baselines.

Weight Update Wikitext PPL ARC-C ARC-E SIQA HellaSwag OBQA PIQA TruthfulQA AVG

Mistral-v0.3-7b - 4.95 0.490 0.797 0.458 0.609 0.336 0.803 0.353 0.549

OWL ✗ 13.03 0.275 0.594 0.406 0.417 0.188 0.688 0.320 0.413

AlphaPrune ✗ 13.58 0.265 0.529 0.398 0.407 0.190 0.668 0.335 0.399

ADMMPrune ✓ 9.06 0.340 0.680 0.416 0.471 0.240 0.739 0.299 0.455

ProxSparse ✗ 8.68 0.362 0.697 0.429 0.525 0.242 0.751 0.321 0.475

Llama-2-7b - 5.12 0.433 0.763 0.461 0.571 0.314 0.781 0.321 0.521

OWL ✗ 13.17 0.287 0.591 0.407 0.420 0.228 0.695 0.339 0.425

AlphaPrune ✗ 13.01 0.293 0.607 0.406 0.411 0.238 0.690 0.317 0.424

ADMMPrune ✓ 9.67 0.328 0.653 0.413 0.440 0.248 0.714 0.302 0.442

ProxSparse ✗ 8.51 0.331 0.656 0.407 0.478 0.242 0.716 0.328 0.452

D. End-to-end evaluation results on Llama-3.1-8b
In this section, we further discuss the evaluation results from Table 2, focusing on Llama-3.1-8b. We present results
on Wikitext perplexity (PPL) and performance across seven commonly used zero-shot natural language reasoning tasks,
comparing ProxSparse to three baselines in Table 9. In the Llama-3.1-8b experiments, ProxSparse significantly reduces
perplexity from Wanda’s 20.91 to 13.63. The overall results, compared to Magnitude Pruning, Wanda, and SparseGPT,
follow the same trends discussed in Section 4.2, with ProxSparse consistently outperforming all other baselines.

E. Comparison with Additional Pruning Baselines (ADMMPrune, OWL, and AlphaPrune)
In this section, we compare ProxSparse with three additional pruning baselines: ADMMPrune (Boža, 2024), OWL (Yin
et al., 2023), and AlphaPrune (Lu et al., 2024). The experiments are done on Mistral-v0.3-7b and Llama-2-7b model.
ADMMPrune introduces a fast and effective weight update algorithm for layerwise pruning based using the Alternating
Direction Method of Multipliers (ADMM). As shown in table 10, ProxSparse outperforms ADMMPrune in both models,
achieving lower PPL (8.51 vs. 9.67) and higher acc (47.6% vs. 45.5%), highlighting its effectiveness. We attribute the
superority of ProxSparse to its end-to-end optimization process, which goes beyond solely relying on local layer-wised
information.

OWL and AlphaPrune aim to determine layer-specfic ratio to protect important layers. Here we argue that they are not the
best-suited mechanism in semi-structured pruning, as the sparse operator supported by hardware typically requires all blocks
to strictly adhere the pattern, making applying varying ratios hard. Nevertheless, we conduct experiments on AlphaPrune
and OWL for comparison. We follow mixed sparsity proposed in OWL and AlphaPrune with Wanda, that layers can have
varying ratios, while the overall ratio remains 2:4. We see ProxSparse outperforms OWL and Alphaprune on Llama-2-7b
and Mistral-v0.3-7b on PPL and accuracy, showing the strength of our end-to-end optimization. Further, as pruning patterns

14



ProxSparse: Regularized Learning of Semi-Structured Sparsity Masks for Pretrained LLMs

a. Two-four sparse ratio evolvement b. Dense ratio evolvement c. Initial/final two-four sparse ratio vs. λ₁ b. Mask similarity evolvement

Figure 4. Evolution of sparsity ratio on OpenLlama-7b-v2 based on the degree of regularization. (a) Evolution of the 2:4 sparsity ratio
over learning, where an insufficient regularization degree leads to under-learning. (b) With a larger λ1 parameters shrink more quickly
towards 2:4 sparsity, resulting in early commitment to a suboptimal mask. (c) Comparison of the 2:4 sparse block ratios at early (0.1
epochs) and final stages of learning. (d) Mask similarity between the final mask and the early mask obtained after 10% of learning. An
excessively large λ1 results in premature mask commitment, causing mask selection to stagnate and hindering optimal mask discovery.

become more fine-grained (e.g., 2:4), varying layer-wise pruning ratios become less effective as critical weights might still
be removed within each block. This was reported in (Yin et al., 2023; Lu et al., 2024), where 4:8 pruning performed just
similarly to uniform pruning in Wanda. This highlights the benefits of ProxSparse in identifying fine-grained semi-structured
masks.

F. Evolution of 2:4 sparsity across λ1 on OpenLlama-7b-v2
In this section, we expand on the discussion from Section 4.3.2 and present the evolution trajectory of 2:4 sparsity across
different λ1 values on OpenLlama-7b-v2. Our findings on OpenLlama-7b-v2 are consistent with the main paper’s discussion:
a balanced regularization strength enables flexible mask exploration, preventing premature commitment while also facilitating
more effective learning compared to excessively low values.

G. Practical scenario of 2:4 sparsity and its extensibility discussion
To the best of our knowledge, commercially available hardware such as Nvidia Ampere GPUs, only supports the 2:4
sparsity pattern1 . Our method directly aligns with the hardware features, making it directly applicable to real-world use
cases. Meanwhile, our regularizer is flexible; extending to a 1:4 sparsity pattern is straightforward, as the regularizer
can be reformulated and solved with even greater efficiency. On the otherhand, semi-structured patterns like 4:8 increase
regularization terms, which could slow the solving process. Despite the longer but tolerable search time, inference gain
remains unaffected once the optimal mask is found. A more efficient solver could further improve handling of such complex
patterns, and we leave this for future exploration.

In the meantime, we note that increasing sparsity complexity (e.g., 2:4 to 4:8) will expand the search space, which is a
common challenge for learning-based methods, including MaskLLM (Fang et al., 2024). Nevertheless, our regularizer
supports extensibility and shows practical benefits in real-world scenarios.

1NVIDIA AMPERE GA102 GPU ARCHITECTURE Whitepaper
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