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ABSTRACT

Deep visual graph matching (GM) involves finding a permutation matrix that in-
dicates the correspondence between keypoints from a pair of images and their
associated keypoint positions. Recent empirical studies have shown that visual GM
is susceptible to adversarial attacks, which can severely impair the matching quality
and jeopardize the reliability of downstream applications. To our best knowledge,
certifying robustness for deep visual GM remains an open challenge, which entails
addressing two main difficulties: how to handle the paired inputs and the large
permutation output space, and how to balance the trade-off between certified ro-
bustness and matching performance. In this paper, we propose a method, Certified
Robustness based on Optimal Smoothing Range Search (CR-OSRS), which pro-
vides a robustness guarantee for deep visual GM, inspired by the random smoothing
technique. Unlike the conventional random smoothing methods that use isotropic
Gaussian distributions, we build the smoothed model with a joint Gaussian distribu-
tion, which can capture the structural information between keypoints and mitigate
the performance degradation caused by smoothing. We design a global optimiza-
tion algorithm to search the optimal joint Gaussian distribution that helps achieve
a larger certified space and higher matching performance. Considering the large
permutation output space, we partition the output space based on similarity, which
can reduce the computational complexity and certification difficulty arising from
the diversity of the output matrix. Furthermore, we apply data augmentation and a
similarity-based regularization term to enhance the smoothed model performance
during the training phase. Since the certified space we obtain is high-dimensional
and multivariable, it is challenging to evaluate directly and quantitatively, so we
propose two methods (sampling and marginal radii) to measure it. Experimental
results on GM datasets show that our approach achieves state-of-the-art ℓ2 certified
robustness. The source codes will be made publicly available.

1 INTRODUCTION

As an essential and popular combinatorial optimization problem, graph matching (GM) has attracted
lasting and wide attention over the decades with also wide applications in vision (Wang et al., 2019),
text (Xiong et al., 2019), graphics (Vladimir et al., 2012), pattern recognition (Vento, 2015), and
machine learning (Zhang et al., 2022) etc. Meanwhile, studies on the robustness of machine learning
models have attracted intensive attention, while the robustness of combinatorial solvers remains a
crucial, yet largely unexplored area (Geisler et al., 2021; Lu et al., 2021). Under the deep visual
GM paradigm, Ren et al. (2022) show that visual GM algorithms are vulnerable to perturbations
added to keypoints and image pixels, and propose an empirical defense algorithm based on an
appearance-aware regularizer. However, there is still a lack of a principled certified defense to
provide theoretical robustness guarantees for GM (let alone other combinatorial problems). Certified
robustness and empirical robustness are two distinct concepts in the context of adversarial machine
learning. Certified robustness provides a rigorous verification of the model’s output invariance under
a bounded perturbation set, regardless of the attacks employed. Empirical robustness, however, lacks
such a theoretical guarantee and only evaluates the model’s defense capabilities against existing attack
methods, which may not generalize to future unseen attacks. In fact, existing certified robustness
mechanisms (including randomized smoothing, which we focus on in this study) in the graph
domain (Bojchevski et al., 2020; Jia et al., 2020; Rong et al., 2019; Zügner & Günnemann, 2020)
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are limited to the unconstrained node-level or graph-level classification or prediction task within a
single graph, which cannot be easily adopted to solve cross-graph and combinatorial problems with
structured output, such as the permutation matrix in GM.

In general, certified robustness aims to design solvers whose prediction for any input x is verifi-
able invariant within some set around the input (Wong & Kolter, 2018). Randomized smoothing
(RS) (Lecuyer et al., 2019; Cohen et al., 2019) is a promising approach to achieve certified defense of
large-scale neural networks against arbitrary attacks. Given an input x and a base function, RS con-
structs a smoothed function that is certifiably robust within the region defined by x and the smoothing
distribution D (usually an isotropic Gaussian distribution). RS has been widely applied to certify
various models, e.g., image classification (Yang et al., 2020) and object detection in vision (Chiang
et al., 2020), which motivates us to develop RS-based certified robustness for visual GM.

Applying RS to visual GM poses several challenges. C1: paired inputs. The input of visual GM
consists of paired images and keypoint position matrices, which means that perturbations are also
in pairs and mutually constrained in the certified space. This differs from the single input setting of
previous certification problems. C2: dependency of keypoints. The graph structure derived from
Delaunay triangulation of keypoint positions as a whole conveys important structural information
and is an essential intermediate result for the visual GM model, which motivates us to preserve the
original graph structure during the smoothing process to maintain the matching performance. C3:
large permutation output space. The output of visual GM is a 0-1 permutation matrix, which has
an exponential number of theoretical possibilities. For a matching task with n keypoints, the output is
an n× n matrix, and there are n! theoretically possible outputs. This means that we cannot directly
apply the existing RS definition, which assumes that a visual GM task is a classification problem,
and estimate the occurrence probability for each possible output. This would cause a computational
explosion. C4: performance degradation caused by smoothing. Smoothing can affect model
performance, as evidenced by previous studies. Although data augmentation is a conventional method
to improve performance, it is not designed for visual GM and its effect is unsatisfactory.

To address these challenges, we propose Certified Robustness based on Optimal Smoothing Range
Search (CR-OSRS), a novel robustness certification method for visual GM. Specifically, CR-OSRS
assumes that the two perturbations within the pair belong to the joint input space and derives a
certification result that respects the inter-pair constraints (C1). CR-OSRS also designs a smoothed
model with a joint Gaussian distribution that captures the correlation of keypoints and uses global
optimization to determine the optimal correlation parameters that enhance certified robustness. The
rationale of this design is to preserve the difference and avoid the confusion of keypoints under
perturbations as much as possible (C2). Furthermore, CR-OSRS operates on a subspace in the output
space determined by a similarity threshold and defines the certified robustness as the output always
within the subspace under perturbations. This eliminates the need to count the probability of each
possible output and only requires calculating the probability that the output falls into the subspace
(C3). Additionally, CR-OSRS proposes a data augmentation method for GM using joint Gaussian
noise and an output similarity-based regularization term, which improves both the matching accuracy
and certified robustness (C4).

The contributions of this paper are as follows: (1) We propose a novel certification method for
visual GM, CR-OSRS, that provides the rigorous robustness guarantee by characterizing a certified
ℓ2 norm space (see Theorem 4.1). This robustness means that when the perturbation is within the
certified input space, the smoothed model always predicts the output within the output subspace. (2)
Specifically, we propose to use the joint Gaussian distribution to build a smoothed model and globally
optimize the correlation parameters in the distribution. This method can capture the connection of
keypoints to enhance the anti-disturbance ability of the model (see Sec. 4.2). We also apply data
augmentation with joint Gaussian noise and the output similarity-based regularization term during
the training phase to further improve the model performance (see Sec. 4.3). (3) We propose two
methods, sampling and marginal radii respectively, to measure the certified space for quantitative
analysis (see Sec. 4.4). We evaluate our approach on the Pascal VOC dataset (Everingham et al.,
2010) with Berkeley annotations (Bourdev & Malik, 2009), the Willow ObjectClass dataset (Cho
et al., 2013) and SPair-71k dataset (Min et al., 2019) for six representative GM solvers. The results
show that CR-OSRS can provide robustness guarantees for visual GM, and the CR-OSRS mechanism
performs better than directly applying RS (Cohen et al., 2019) to visual GM, which we refer to as
RS-GM. Moreover, the training methods we designed are also effective (see Sec. 5).
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2 RELATED WORKS

We review studies on certified robustness through RS and discuss the robustness of GM. To our
knowledge, this is the first study to combine the RS and GM communities.

Randomized Smoothing based Certified Robustness. RS is proposed in Lecuyer et al. (2019) as
a certified adversarial defense and used to train the (first) certifiably robust classifier on ImageNet.
However, it provides loose guarantees. Cohen et al. (2019) show that Gaussian noise addition provides
a tight ℓ2 certification radius, with subsequent works on new RS-type techniques, e.g. techniques
using smoothing distributions at different norms (Levine & Feizi, 2021; Lee et al., 2019; Yang et al.,
2020), and techniques for different tasks (Chiang et al., 2020; Jia et al., 2020; Kumar & Goldstein,
2021). However, all previous smoothing distributions D deprive of favorable prior knowledge, which
mainly refers to the keypoint positions and graph structure in visual GM. Moreover, all of them only
certify a single image or graph but do not consider the combinatorial nature as in visual GM.

Graph Matching and its Robustness. Approximate GM solvers have evolved from traditional
methods without learning (Emmert-Streib et al., 2016) to learning-based ones (Yan et al., 2020).
Seminal work (Zanfir & Sminchisescu, 2018) proposes a deep neural network pipeline for visual GM,
in which image features are learned through CNN, with subsequent variants (Rolı́nek et al., 2020;
Wang et al., 2019), among which a major improvement is to exploit structural information using
different techniques, for example GNN, rather than only using appearance for node/edge attributes as
done in Zanfir & Sminchisescu (2018). Our work, which uses the RS-type technique, treats the GM
solver as a black box irrespective of whether it is learning-based or not.

There are also works on adversarial attacks and defense on (deep) GM. Previous work (Yu et al.,
2019b) proposes a robust graph matching (RGM) model against perturbations, e.g., distortion,
rotation, outliers, and noise. Zhang et al. (2020) devise an adversarial attack model for deep GM
networks, which uses kernel density estimation to construct dense regions such that neighboring
nodes are indistinguishable. Ren et al. (2021) devise two specific topology attacks in GM: inter-graph
dispersion and intra-graph combination attacks, and propose a resilient defense model. Lin et al.
(2023) integrate the momentum distillation strategy to balance the quadratic contrastive loss and
reduce the impact of bi-level noisy correspondence. However, these defense methods are all heuristic
and lack robustness certification against unseen attacks.

3 PRELIMINARIES

Randomized Smoothing. The original RS (Cohen et al., 2019) can transform an arbitrary base
classifier f into a smoothed classifier g that is certifiably robust under ℓ2 norm. For any single
input x, the smoothed classifier g returns the most probable prediction of f for the random variable
N (x;σ2I), which is defined as:

g(x) = argmax
c∈Y

P (f(x+ ε) = c), (1)

where ε ∼ N
(
0, σ2I

)
is an isotropic Gaussian noise. Then the certified radius within which the

output is unchanged for g(x+ δ) = cA that measures the certified robustness is:

∥δ∥2 <
σ

2

(
Φ−1

(
pA

)
− Φ−1 (pB)

)
, (2)

where the most probable class cA is returned with probability pA and the “runner-up” class is returned
with probability pB . pA and pB are the lower bound and upper bound of pA and pB , respectively,
and Φ−1 is the inverse of the standard Gaussian cumulative distribution function.

Visual Graph Matching. We consider the visual GM task f which is a comprehensive setting
allowing for both visual appearance and structural perturbation: (c1, c2, z1, z2)→ X, where (c1, c2)
is the image pair with keypoint position pair (z1 ∈ Rn1×2, z2 ∈ Rn2×2), X ∈ {0, 1}n1×n2 represents
a 0-1 permutation matrix, n1 and n2 are the numbers of keypoints. Recent deep GM methods tackle
images with keypoints as inputs in an end-to-end manner (Rolı́nek et al., 2020; Wang et al., 2019; 2021;
Zanfir & Sminchisescu, 2018) and typically comprise three components: keypoint feature extractor,
affinity learning, and final correspondence solver. First, two graphs G1 and G2 are constructed by
Delaunay triangulation (Lee & Schachter, 1980). Then node features are obtained via a feature
extractor based on the keypoint positions. Afterward, edge features are constituted based on node
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Figure 1: The pipeline of this work consists of two phases: training and testing. In the training
phase, we enhance the provable robustness and matching accuracy of the model simultaneously
by applying data augmentation and a regularization term as defined in Eq. 11. In the testing stage,
we first construct a joint Gaussian distribution and use the global optimization in Eq. 10 to search
for the optimal smoothing range. Moreover, we use the optimization results and the trained model
to construct a smooth model, and then compute the output subspace and input certified space as
described in Sec. 4.1. Fig. 1 illustrates an example of using the NGMv2 (Wang et al., 2021) solver
and finding a robustness guarantee under keypoint position perturbations.

features and topology information of G1 and G2. Based on these node and edge features, the affinity
matrix K ∈ Rn1n2×n1n2 is initialized which is then fed to the affinity learning layer to learn the
node-to-node and edge-to-edge correspondence similarity. Finally, the correspondence solver outputs
the predicted permutation matrix X by solving quadratic assignment problem (QAP) (Loiola et al.,
2007) which aims to maximize the overall affinity score J :

max
X

J(X) = vec(X)⊤K vec(X),

s.t. X ∈ {0, 1}n1×n2 ,X1n1
= 1n1

,X⊤1n2
≤ 1n2

,
(3)

where vec(X) denotes the column-wise matrix of X which is a partial permutation matrix if n1 < n2.

As discussed above, image pixels affect the extracted node and edge features, while keypoint positions
affect the extracted node features by influencing the bilinear interpolation and the graph structure
extracted by Delaunay triangulation. However, the keypoint positions are inherently vulnerable due
to the randomness of human labeling or keypoint detectors (which are used in the pre-processing
step to locate key objects in an image (Bourdev & Malik, 2009)), and the image pixels are extremely
sensitive to various noises as in other image tasks. Therefore, in this study, we consider the robustness
of visual GM under two types of perturbations: image pixels and keypoint positions as in Ren et al.
(2022). As these two perturbations belong to different spaces and exhibit different effects on GM
models, we devise different certification schemes for them. We investigate the certified robustness
against attacks on image pixels while holding the keypoint positions constant, and attacks on keypoint
positions while holding the image pixels constant.

4 METHODOLOGY

This section introduces the methodology of this work that comprises four parts: (1) the definition of a
smoothed model and the theoretical framework developed for certified robustness analysis (Sec. 4.1);
(2) the construction of the joint Gaussian distribution and an optimization method that helps to
find the optimal correlation parameter to balance the trade-off between certification validity and
model performance (Sec. 4.2); (3) a training method that incorporates data augmentation with joint
Gaussian noise and an output similarity-based regularization term that constrains the smoothed output
gaps (Sec. 4.3); (4) two methods for quantifying the certified space, sampling and marginal radii,
respectively (Sec. 4.4). The pipeline is shown in Fig. 1 with the process detailed in Alg. 1.

4.1 ROBUSTNESS GUARANTEE FOR VISUAL GRAPH MATCHING

As discussed in Sec. 3, we certify the robustness under two types of perturbations: keypoint posi-
tion perturbations and image pixel perturbations respectively. In this subsection, we focus on the
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certified robustness under keypoint position perturbations, and the certified robustness under image
perturbations can be derived in a similar way.

As stated in Sec. 1, visual GM poses a challenge for certified robustness due to its large permutation
output space. Previous line of research e.g. Cohen et al. (2019) aim to certify that the output remains
unchanged under perturbations, but this may result in a failed certification or a small certification
range for visual GM due to the lack of a dominant matrix, that is, the probability difference between
the most probable matrix and the “runner-up” matrix is small. Furthermore, it is computationally
intractable to enumerate the probabilities of all possible matrices. Therefore, we propose a novel
certified robustness definition that guarantees the output always belongs to an output subspace
centered on the core output.

We first define a core output Xc. When queried at (c1, c2, z1, z2), Xc is a more likely output of base
GM function f when (z1, z2) is perturbed by joint Gaussian noise:

Xc = H(S(
∑

f
(
c1, c2, z1 + ε1, z

2 + ε2
)
)),

where ε1 ∼ N (0,Σ1) , ε2 ∼ N (0,Σ2) ,
(4)

where the smoothing noise ε1 and ε2 follow joint Gaussian distributions with covariance matrices Σ1

and Σ2, which represent constraints between keypoints z1 and z2 respectively (for solving C1). S
is the Sinkhorn operator that converts the vertex score matrix into a doubly-stochastic matrix and
H is the Hungarian operator that transforms a doubly-stochastic matrix into a permutation matrix.
The computation of Eq. 4 takes into account the “majority decision” of the smoothed model while
only needing to save the sum of matching matrices rather than the statistics of each possible matrix.
Note that Xc is not the output we want to certify; it is just the center point of the subspace to be
constructed, and so there is no need to consider whether this computation process is provably robust.

Next, we define a subspace X ′ of the entire output space X by a similarity threshold s ∈ [0, 1], and
the similarity between the elements in X ′ and the core output Xc is no less than s (for solving C3).

X ′ =

{
Xi

∣∣∣∣∣Xi ·Xc

Xc ·Xc
≥ s,Xi ∈ X

}
, (5)

where we employ a simple dot product Xi ·Xc to measure the number of identical matching keypoints
in these two output matrices, because the output matrices are 0-1 permutation matrices. Similarly,
Xc ·Xc calculates the total number of keypoints to be matched.

According to the above definition, we construct a new base function f0 based on f . Specifically, we
partition the entire output space into two parts according to Eq. 5, then assign all points inside X ′

with 1 and the rests with 0, and finally convert f to a binary function f0:

f0
(
c1, c2, z1, z2

)
=

{
1, if f(c1, c2, z1, z2) ∈ X ′

0, otherwise . (6)

Then we build a smoothed function g0 from f0. When queried at the input
(
c1, c2, z1, z2

)
with fixed

(c1, c2), g0 outputs the binary labels when (z1, z2) is perturbed by joint Gaussian noise:

g0
(
c1, c2, z1, z2

)
=

{
1, if P (f(c1, c2, z1 + ε1, z

2 + ε2) ∈ X ′) ≥ 1/2
0, otherwise ,

where ε1 ∼ N (0,Σ1) , ε2 ∼ N (0,Σ2) .

(7)

Theorem 4.1 (ℓ2 norm certified space for visual GM). Let f be a matching function, f0 and g0 be
defined as in Eq. 6 and Eq. 7, ε1 ∼ N (0,Σ1), ε2 ∼ N (0,Σ2). Suppose p ∈ ( 12 , 1] satisfy:

P (f0
(
c1, c2, z1 + ε1, z

2 + ε2
)
= 1) = P (f(c1, c2, z1 + ε1, z

2 + ε2) ∈ X ′) = p ≥ p. (8)

Then we obtain the ℓ2 norm certified space for the noise pair (δ1, δ2):

δT1 Σ1
−1δ1 + δT2 Σ2

−1δ2

∥δT1 Σ1
−1B1 + δT2 Σ2

−1B2∥
< Φ−1

(
p
)
, (9)

which guarantees g0
(
c1, c2, z1 + δ1, z

2 + δ2
)
= 1. B1 ∈ Rn1×n1 and B2 ∈ Rn2×n2 are full rank

and real symmetric matrics based on the keypoint correlation in keypoint position matrices z1 and z2,
satisfying B⊤

1 B1 = Σ1 and B⊤
2 B2 = Σ2.
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Finally, we formulate a robustness guarantee of g0 that ensures the similarity between the matching
matrix and Xc being no less than s, that is, the matching matrix always belongs to the subspace X ′.
We present and illustrate the detailed settings as well as the properties of B1 and B2 in Sec. 4.2. The
complete proof of Theorem 4.1 is provided in Appendix A.

4.2 JOINT SMOOTHING DISTRIBUTION

This subsection presents the detailed settings and properties of B1 and B2 under keypoint position
perturbations. Additionally, we introduce an optimization method to search the optimal smoothing
range for enhanced robustness. Besides, refer to Appendix C.2 for the case under pixel perturbations.

As stated in Sec. 3, keypoint positions influence the extracted features through bilinear interpolation
and directly determine the graph structure derived by Delaunay triangulation. If the smoothing noise
for each keypoint position is completely independent, then the perturbed keypoint set may exhibit
partial overlaps or high similarities. This may cause the extracted features to overlap and thus degrade
the matching performance. Therefore, our objective is to design a smoothing distribution that can
preserve the diversity of keypoints (for solving C2).

To construct the correlation matrices B1 and B2, we use a correlation parameter b. The diagonals
of B1 and B2 are original σ as in RS (Cohen et al., 2019), the off-diagonal elements adjacent to
the main diagonal are σ × b, and the remaining elements are 0. This setting not only maintains the
correlation between keypoints but also allows b and σ to be global parameters that can be optimized.
We devise an optimization algorithm that aims to maximize the volume of the certified space through
the proxy radius, which will be defined in Sec. 4.4. We impose a constraint on b in the optimization
algorithm to keep it within a reasonable range, as a large b may enhance the matching performance
but diminish the certified space. The optimization problem can be written as:

argmax
σ,b

Φ−1
(
p
) ∑
i=1,2

 2mi

√√√√mi∏
j

λij

+ κb, (10)

where κ ∈ R+ is a hyperparameter, λij is the j-th eigenvalue of Σi, and mi is the eigenvalue number
of Σi. This optimization idea is inspired by the framework in Alfarra et al. (2022); Eiras et al.
(2021), but the main difference is that their optimization is for individual input test points, while our
optimization method is a global optimization for the whole data set. Therefore, our method does not
suffer from the data independence problem in Alfarra et al. (2022); Eiras et al. (2021).

4.3 TRAINING PHASE WITH DATA AUGMENTATION AND AN OUTPUT SIMILARITY-BASED
REGULARIZATION TERM

As noted in the previous RS method (Lecuyer et al., 2019; Cohen et al., 2019), the smoothing noise
influences the matching performance. To improve both the matching performance and the provable
robustness, we adopt two strategies (for solving C4). The first one is data augmentation, which is
motivated by Cohen et al. (2019). The difference is that we use a joint Gaussian distribution for data
augmentation, which is consistent with the type of distribution we used to construct the smoothed
model. The second one is a regularization term based on the similarity between smoothed outputs.
Since RS has the property of “majority decision”, minimizing the loss between each output and the
true matching result is not adequate. We also need to ensure that outputs under multiple perturbations
are as consistent as possible for a fixed datum. Therefore, we copy the same datum n times, perform
data augmentation on the n data, and compute their corresponding outputs, then add a regularization
term to penalize the divergence between n outputs. The total loss function can be written as follows:

L =
1

n

n∑
i

LGM (Xi,Xgt) + β

n∑
i,j

(1− Xi ·Xj

Xgt ·Xgt
), (11)

where β ∈ R+ is a hyperparameter, Xgt is the true matching for input (c1, c2, z1, z2), Xi and Xj

are the outputs for f(c1, c2, z1 + ε1, z
2 + ε2) when (ε1, ε2) are sampled by the i-th and j-th times,

respectively. LGM is the original loss function in GM methods, such as binary cross-entropy (Wang
et al., 2021) and pixel offset regression (Zanfir & Sminchisescu, 2018). In Eq. 11, the first term
represents the average matching loss, which uses data augmentation based on the joint Gaussian
distribution to improve the matching accuracy under perturbations. The second regularization term
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imposes a similarity constraint between the outputs, which will help increase p in Eq. 8 and enhance
the provable robustness.

4.4 QUANTIFY CERTIFICATION

In Sec. 4.1, we derive Eq. 9 to characterize the certified space with multiple perturbations, which
is, however, challenging to quantify and compare. Moreover, previous studies have not tackled the
problem of certification with multiple perturbations. To address this issue, we propose two quantity
metrics to measure certified robustness: sampling and marginal radii.

Sampling. According to Eq. 9, the certified robustness of g0 increases when the certified space
becomes larger, which means that more pairs of (δ1, δ2) satisfy the certified space. However, it is
impractical to determine how many and which pairs of (δ1, δ2) satisfy Eq. 9, so we propose using
a sampling approach to approximate certified robustness. Specifically, we sample the noise pairs
(δ1, δ2) from the distributions and verify if they satisfy Eq. 9. The approximate certified robustness of
g0 is given by the probability of sampled noises that satisfy Eq. 9.

Marginal Radii. Moreover, by fixing one of δ1 and δ2, we can simplify the joint space of Eq. 9 to a
marginal space, which facilitates robustness evaluation. Specifically, we set one of δ1 and δ2 to be a
zero matrix and derive a simpler expression for Eq. 9 as follows. As an example, we consider the
case of setting δ2 to a zero matrix:

∥δ⊤1 B−1∥ <
(
Φ−1

(
p
))

. (12)

Lemma 4.2 (Eigenvalue Comparison). For a real symmetric matrix A ∈ Rn×n, with λmax and λmin
as its maximum and minimum of eigenvalues, then ∀X ∈ Rn, λminX

⊤X ≤ X⊤AX ≤ λmaxX
⊤X.

Using Lemma 4.2, we know that 1
λ1max

δ⊤1 δ1 ≤ δ⊤1 Σ−1
1 δ1 ≤ 1

λ1min
δ⊤1 δ1 and further derive minimum

and maximum ℓ2 norm radii from Eq. 12:

∥δ1∥lower =
√

λ1min
(
Φ−1

(
p
))

, (13)

∥δ1∥upper =
√
λ1max

(
Φ−1

(
p
))

, (14)
where λ1min and λ1max are the minimum and maximum eigenvalue of Σ1. Inspired by Eiras et al.
(2021), we can also use the ellipsoidal volume to measure the certified space. The volume of the
ellipsoid is given by: V (R) = rm

√
πm/Γ(m/2 + 1)

∏m
i=1 ξi (Kendall, 2004), which we use to

obtain a proxy ℓ2 norm radius from Eq. 12:

∥δ1∥volume =
(
Φ−1

(
p
)) (√

π/ m
√

Γ(m/2 + 1)
)

2m

√√√√ m∏
i

λ1i, (15)

where λ1i is the i-th eigenvalue of Σ1, and m is the number of eigenvalues. In summary, the certified
space of Eq. 12 can be regarded as a hyperellipsoid with three radii: ∥δ1∥lower as the minor axis,
∥δ1∥upper as the major axis, and ∥δ1∥volume as a proxy radius of a hypersphere whose volume is
proportional to the volume of this hyperellipsoid. Eq. 13, Eq. 14 and Eq. 15 are all quantifiable forms,
Eq. 13 is the lower bound radius that guarantees robustness against the worst-case adversaries, Eq. 14
is the upper bound radius that indicates the maximum potential to resist adversaries, and Eq. 15 is
the closest assessment to the certified space. Similarly, by setting δ1 as a zero matrix, we can obtain
the three radii of δ2 (∥δ2∥lower, ∥δ2∥upper, and ∥δ2∥volume) in the same manner. We can use these three
radii of δ1 and δ2 to evaluate the probable robustness thoroughly.

5 EXPERIMENTS

This section describes the experimental settings, such as datasets, GM solvers, parameter settings, etc.,
and the evaluation criteria. Then, it compares the robustness certification and matching performance
of CR-OSRS and RS-GM for six common GM solvers. Furthermore, it conducts ablation studies to
elucidate the effect of different hyperparameters on the results.

5.1 EXPERIMENTS SETTINGS

In this section, we apply CR-OSRS and RS-GM to transform base solvers into smoothed ones
with certified robustness for comparison and analysis. Note that the original RS is not suitable for
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(a) CA and ∥δ∥lower (b) CA and ∥δ∥upper (c) CA and ∥δ∥volume

Figure 2: CA achieved by CR-OSRS and RS-GM for NGMv2 on Pascal VOC when perturbing
keypoint positions. “AUG” denotes data augmentation and “REG” denotes the regularization term in
Eq. 11. Fig. 2 shows the result for original σ = 0.5, s = 0.9 in Eq. 5, β = 0.01 and n = 2 in Eq. 11.

solving robustness certification of functions with paired input, so we use a modified method RS-GM
that follows Theorem 4.1, except replacing the smoothing distribution with an isotropic Gaussian
distribution as in Cohen et al. (2019). Following the GM literature (Wang et al., 2021), we evaluate
our method on the Pascal VOC dataset (Everingham et al., 2010) with Berkeley annotations (Bourdev
& Malik, 2009), the Willow ObjectClass dataset (Cho et al., 2013) and SPair-71k dataset (Min
et al., 2019) for six GM solvers, which are: GMN (Zanfir & Sminchisescu, 2018), PCA-GM (Wang
et al., 2019), CIE-H (Yu et al., 2019a), NGMv2 (Wang et al., 2021), ASAR (Ren et al., 2022),
COMMON (Lin et al., 2023). Unless otherwise specified, we use the same data processing and
hyperparameter settings as in Wang et al. (2021). All the experiments are conducted on CPU (Intel(R)
Core(TM) i7-7820X CPU @ 3.60GHz) and GPU (GTX 2080 Ti GPU).

5.2 EXPERIMENT RESULTS

This subsection reports the results on the Pascal VOC dataset under keypoint position perturbations.
The results under image pixel perturbations as well as on the Willow ObjectClass dataset and
SPair-71k dataset are presented in Appendix E.

Robustness Certification Evaluation. First, we use the sampling method presented in Sec. 4.4 to
estimate the size of the certified space, where a larger space signifies stronger provable robustness.
Specifically, we randomly generate 1,000 pairs of (δ1, δ2) from a uniform distribution U(σ, σ). Then
we insert the pairs into Eq. 9 and calculate the probability of pairs that satisfy Eq. 9. This probability
for CR-OSRS with data augmentation is 83.5% and is 40.7% for RS-GM with data augmentation
when σ = 0.5, s = 0.9 in Eq. 5, β = 0.01 and n = 2 in Eq. 11. This indicates that the certified
space derived by CR-OSRS is larger than that derived by RS-GM, i.e., CR-OSRS achieves better
robustness guarantees.

Second, to evaluate the three marginal radii (∥δ∥lower, ∥δ∥upper, and ∥δ∥volume) proposed in
Sec. 4.4, we propose two indices: certified accuracy (CA) and average certified radius (ACR).
Inspired by CA for classification (Cohen et al., 2019), we define CA for GM: CA(R) =
E(x,Xgt) [I(∥δ1∥ ≥ R)I(∥δ2∥ ≥ R)I(g0(x) = 1)I(Xc = Xgt)], where I is an indicator function,
∥δ1∥ and ∥δ2∥ denote the radii calculated by Eq. 13, Eq. 14, or Eq. 15, R is the scale, g0 rep-
resents the smoothed function defined in Eq. 7, x denotes an element in the test set. Meanwhile, to
measure the certified robustness of the entire test set, we refer to the ACR mentioned in Zhai et al.
(2020) to propose the ACR for GM: ACR = E(x,Xgt) [∥δ1∥∥δ2∥I(g0(x) = 1)I(Xc = Xgt)].

We examine the relationship of CA and three marginal radii for RS-GM and CR-OSRS in Fig. 2.
We also compare the results of adding only data augmentation, as well as adding both the data
augmentation and the regularization term, as in Eq. 11. The curve of CR-OSRS is almost always
above RS-GM in Fig. 2, which implies greater certified robustness and matching accuracy. At the
same time, it also demonstrates that the proposed data augmentation and the regularization term are
effective. Note that there is no line for “REG” only in Fig. 2. This is because when there is no data
augmentation, the outputs corresponding to all copy data described in Sec. 4.3 are the same, so the
regularization term is always zero and the certification result is consistent with RS-GM or CR-OSRS.
To measure the overall provable robustness of the entire dataset, we calculate the ACR of CR-OSRS
and RS-GM for six GM solvers in Table 1. It is obvious that the overall provable robustness of
CR-OSRS is better than that of RS-GM on different GM solvers. We observe a positive association
between the performance of the base and the smoothed models. Namely, the smoothed model exhibits
higher certified robustness and matching performance as the base model’s performance increases.
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Table 1: ACR achieved by CR-OSRS and RS-GM for six GM solvers on Pascal VOC under keypoint
position perturbations. Table 1 shows the result for σ = 0.5, s = 0.9, β = 0.01 and n = 2.

CR-OSRS+AUG+REG RS-GM+AUG+REG
∥δ∥lower ∥δ∥upper ∥δ∥volume ∥δ∥lower ∥δ∥upper ∥δ∥volume

COMMON (Lin et al., 2023) 1.550 1.751 1.900 0.952 0.952 1.069
ASAR (Ren et al., 2022) 1.541 1.648 1.968 0.683 0.683 0.841
NGMv2 (Wang et al., 2021) 1.425 1.586 1.934 0.778 0.778 1.010
CIE-H (Yu et al., 2019a) 0.987 1.167 1.354 0.572 0.572 0.731
PCA-GM (Wang et al., 2019) 0.954 1.158 1.340 0.546 0.546 0.686
GMN (Zanfir & Sminchisescu, 2018) 0.899 1.076 1.253 0.514 0.514 0.617

(a) CA and ∥δ∥lower when varying original σ. σ
determines the scale of Σ1 and Σ2 that controls
the trade-off between certified robustness and
certified accuracy.

(b) CA and ∥δ∥lower when varying the original s.
Reducing s enhances the certified robustness of
the model, as it enlarges the output subspace in
Eq. 5 and relaxes the constraints on the output.

Figure 3: Projections for the certified accuracy if the original σ and similarity threshold s had
been larger or smaller. Fig. 3 shows the result for CR-OSRS trained by data augmentation and
regularization term with β = 0.01 and n = 2 for NGMv2 on Pascal VOC.

Hyperparameter Analysis. Our method introduces the following hyperparameters: original σ,
similarity threshold s for subspace construction as defined in Eq. 5, the constraint hyperparameter κ,
number of copies n and regularization hyperparameter β as shown in Eq. 11 as well as k for Monte
Carlo sampling. This subsection examines the effect of σ and s, and refers the readers to Appendix E
for the other hyperparameters. σ is varied from σ ∈ {0.5, 1.0, 1.5, 2.0} and the certified accuracy
with each σ is plotted in Fig. 3(a). Generally, a lower σ results in higher certified accuracy and lower
certified radii, while a higher σ allows for larger certified radii but lower certified accuracy. s is
varied from s ∈ {0.6, 0.7, 0.8, 0.9, 1.0} and the certified accuracy achieved by CR-OSRS with each
s is plotted in Fig. 3(b). When s = 1, the subspace in Eq. 5 degenerates into a single matrix, which
implies a stringent robustness guarantee that the output remains invariant under any perturbation.
However, as shown in Fig. 3(b), when s = 1, the accuracy is always zero, which is consistent with
the discussion in Sec. 4.1. The certification may fail or yield a small certification range due to the
absence of a dominant matrix.

6 CONCLUSION AND OUTLOOK

This paper introduces the first definition of certified robustness for visual graph matching and proposes
a novel method, named CR-OSRS. This method uses the correlation between keypoints to construct a
joint smoothing distribution and devises a global optimization algorithm to determine the optimal
smoothing range that balances provable robustness and matching performance. Furthermore, it
presents a data augmentation technique based on the joint Gaussian distribution and a regularization
term based on output similarity to improve model performance during the training phase. Then it
derives an ℓ2-norm certified space and suggests two quantitative methods (sampling and marginal
radii) to address the challenge of quantifying the certified space. Finally, it conducts experiments on
different GM solvers and datasets and achieves state-of-the-art robustness certification.

Potential impact & limitations. A significant direction is to enable robustness certification on
combinatorial solvers whereby GM is one of such cases. We expect that this work can inspire
subsequent research in this promising area where theoretical results are welcomed given recent
intensive empirical studies, e.g., Bengio et al. (2021); Yan et al. (2020).
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A PROOFS

In this section, we present the full proofs for Theorem. 4.1. The main tool for our proofs is the
Neyman-Pearson lemma for two variables, which we establish in Appendix A.1. Based on this
lemma, we obtain the certified result in Appendix A.2. Finally, we provide the details of the linear
transformation used for certification in Appendix A.3.

A.1 NEYMAN-PEARSON FOR TWO VARIABLES

Lemma A.1 (Neyman-Pearson for two variables). Let X1 and Y1 be random variables in Rd with
densities µX1

and µY1
. Then, let X2 and Y2 be random variables in Rd with densities µX2

and µY2
.

Let h : Rd × Rd → {0, 1} be any deterministic or random function with an input pair. Then:

1. If S1 × S2 =
{
z1 ∈ Rd, z2 ∈ Rd :

µY1
(z1)µY2

(z2)

µX1
(z1)µX2

(z2)
≤ t

}
for some t > 0 and P (h(X1, X2) =

1) ≥ P ((X1, X2) ∈ S1 × S2), then P (h(Y1, Y2) = 1) ≥ P ((Y1, Y2) ∈ S1 × S2).

2. If S1 × S2 =
{
z1 ∈ Rd, z2 ∈ Rd :

µY1
(z1)µY2

(z2)

µX1
(z1)µX2

(z2)
≥ t

}
for some t > 0 and P (h(X1, X2) =

1) ≤ P ((X1, X2) ∈ S1 × S2), then P (h(Y1, Y2) = 1) ≤ P ((Y1, Y2) ∈ S1 × S2).

Proof. We denote the complement of S1 × S2 as Sc.

P (h(Y1, Y2) = 1)− P ((Y1, Y2) ∈ S1 × S2)

=

∫
Rd

∫
Rd

h(1 | z1, z2)µY1
(z1)µY2

(z2)dz1dz2 −
∫ ∫

S1×S2

µY1
(z1)µY2

(z2)dz1dz2

=

[∫ ∫
S1×S2

h(1 | z1, z2)µY1
(z1)µY2

(z2)dz1dz2 +

∫ ∫
Sc

h(1 | z1, z2)µY1
(z1)µY2

(z2)dz1dz2

]
−
[∫ ∫

S1×S2

h(1 | z1, z2)µY1
(z1)µY2

(z2)dz1dz2 +

∫ ∫
S1×S2

h(0 | z1, z2)µY1
(z1)µY2

(z2)dz1dz2

]
=

∫ ∫
Sc

h(1 | z1, z2)µY1(z1)µY2(z2)dz1dz2 −
∫ ∫

S1×S2

h(0 | z1, z2)µY1(z1)µY2(z2)dz1dz2

≥ t

[∫ ∫
Sc

h(1 | z1, z2)µX1
(z1)µX2

(z2)dz1dz2 −
∫ ∫

S1×S2

h(0 | z1, z2)µX1
(z1)µX2

(z2)dz1dz2

]
= t[

∫ ∫
Sc

h(1 | z1, z2)µX1
(z1)µX2

(z2)dz1dz2 +

∫ ∫
S1×S2

h(1 | z1, z2)µX1
(z1)µX2

(z2)dz1dz2

−
∫ ∫

S1×S2

h(1 | z1, z2)µX1
(z1)µX2

(z2)dz1dz2 −
∫ ∫

S1×S2

h(0 | z1, z2)µX1
(z1)µX2

(z2)dz1dz2]

= t

[∫
Rd

∫
Rd

h(1 | z1, z2)µX1(z1)µX2(z2)dz1dz2 −
∫ ∫

S1×S2

µX1(z1)µX2(z2)dz1dz2

]
= t[P (h(X1, X2) = 1)− P ((X1, X2) ∈ S1 × S2)]

≥ 0
(16)

Next, we prove Lemma A.2, which is a special case of Lemma A.1 and states the Neyman-Pearson
lemma for two joint Gaussian noise variables.

Lemma A.2 (Neyman-Pearson for Two Joint Gaussian Noise). Let X1 ∼ N (x1,Σ1), X2 ∼
N (x2,Σ2) and Y1 ∼ N (x1 + δ1,Σ1), Y2 ∼ N (x2 + δ2,Σ2). Let h : Rd × Rd → {0, 1} be any
deterministic or random function. Then:

1. If S1 × S2 =
{
z1 ∈ Rd, z2 ∈ Rd : δT1 Σ1

−1z1 + δT2 Σ2
−1z2 ≤ β

}
for some β and

P (h(X1, X2) = 1) ≥ P ((X1, X2) ∈ S1 × S2), then P (h(Y1, Y2) = 1) ≥ P ((Y1, Y2) ∈ S1 × S2).

2. If S1 × S2 =
{
z1 ∈ Rd, z2 ∈ Rd : δT1 Σ1

−1z1 + δT2 Σ2
−1z2 ≥ β

}
for some β and

P (h(X1, X2) = 1) ≤ P ((X1, X2) ∈ S1 × S2), then P (h(Y1, Y2) = 1) ≤ P ((Y1, Y2) ∈ S1 × S2).
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Proof. This lemma is the special case of Neyman-Pearson for two variables when X1, X2, Y1, and
Y2 are joint Gaussian noises. It suffices to simply show that for any β, there is some t > 0 for which:{

z1, z2 : δT1 Σ1
−1z1 + δT2 Σ2

−1z2 ≤ β
}
=

{
z1, z2 :

µY1
(z1)µY2

(z2)

µX1
(z1)µX2

(z2)
≤ t

}
,

{
z1, z2 : δT1 Σ1

−1z1 + δT2 Σ2
−1z2 ≥ β

}
=

{
z1, z2 :

µY1
(z1)µY2

(z2)

µX1
(z1)µX2

(z2)
≥ t

}
.

(17)

For ease of representation, we use M1 ∈ Rd×d (with element m1ij ) instead of Σ1
−1 and M2 ∈ Rd×d

(with element m2ij ) instead of Σ2
−1. The likelihood ratio for this choice of X1, X2, Y1 and Y2 turns

out to be:

µY1
(z1)µY2

(z2)

µX1
(z1)µX2

(z2)

=
exp

(
− 1

2 (z1 − (x1 + δ1))
TΣ1

−1(z1 − (x1 + δ1))
)

exp
(
− 1

2 (z1 − x1)TΣ1
−1(z1 − x1)

) ×
exp

(
− 1

2 (z2 − (x2 + δ2))
TΣ2

−1(z2 − (x2 + δ2))
)

exp
(
− 1

2 (z2 − x2)TΣ2
−1(z2 − x2)

)
=

exp
(
− 1

2

∑d
i

∑d
j (z1i − (x1i + δ1i))m1ij

(
z1j −

(
x1j + δ1j

)))
exp

(
− 1

2

∑d
i

∑d
j (z1i − x1i)m1ij

(
z1j − x1j

))
×

exp
(
− 1

2

∑d
i

∑d
j (z2i − (x2i + δ2i))m2ij

(
z2j −

(
x2j + δ2j

)))
exp

(
− 1

2

∑d
i

∑d
j (z2i − x2i)m2ij

(
z2j − x2j

))
= exp

(
δT1 Σ1

−1z1 − δT1 Σ1
−1x1 −

1

2
δT1 Σ1

−1δ1

)
× exp

(
δT2 Σ2

−1z2 − δT2 Σ2
−1x2 −

1

2
δT2 Σ2

−1δ2

)
= exp

(
δT1 Σ1

−1z1 + δT2 Σ2
−1z2 − δT1 Σ1

−1x1 −
1

2
δT1 Σ1

−1δ1 − δT2 Σ2
−1x2 −

1

2
δT2 Σ2

−1δ2

)
= exp

(
δT1 Σ1

−1z1 + δT2 Σ2
−1z2 + b

)
≤ t,

where b is a constant, specifically b = −δT1 Σ1
−1x1 − 1

2δ
T
1 Σ1

−1δ1 − δT2 Σ2
−1x2 − 1

2δ
T
2 Σ2

−1δ2.
Therefore given any β, we may take t = exp(β + b) and obtain this correlation:

δT1 Σ1
−1z1 + δT2 Σ2

−1z2 ≤ β ⇐⇒ exp (β + b) ≤ t,

δT1 Σ1
−1z1 + δT2 Σ2

−1z2 ≥ β ⇐⇒ exp (β + b) ≥ t.
(18)

A.2 PROOF OF THE CERTIFIED ROBUSTNESS

This subsection presents the logic for proving robustness guarantees and derives the certified spaces
for these guarantees in Eq. 9.

To show that g0
(
c1, c2, z1 + δ1, z

2 + δ2
)
= 1, it follows from the definition of g0 that we need to

show that:

P (f
(
c1, c2, z1 + ε1 + δ1, z

2 + ε2 + δ2
)
∈ X ′) ≥ P (f

(
c1, c2, z1 + ε1 + δ1, z

2 + ε2 + δ2
)
/∈ X ′).

We define two random variables:

I :=
(
c1, c2, z1 + ε1, z

2 + ε2
)
=

(
c1, c2,N

(
z1,Σ1

)
,N

(
z2,Σ2

))
O :=

(
c1, c2, z1 + ε1 + δ1, z

2 + ε2 + δ2
)
=

(
c1, c2,N

(
z1 + δ1,Σ1

)
,N

(
z2 + δ2,Σ2

))
.

We know that:
P (f(I) ∈ X ′) ≥ p. (19)

Our goal is to show that
P (f(O) ∈ X ′) > P (f(O) /∈ X ′). (20)
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According to lemma A.2, we can define the half-spaces:

A =
{
z1, z2 : δT1 Σ1

−1(z1 − z1) + δT2 Σ2
−1(z2 − z2) ≤ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
)}

,

B =
{
z1, z2 : δT1 Σ1

−1(z1 − z1) + δT2 Σ2
−1(z2 − z2) ≥ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
)}

.

Claim 1 shows that P (I ∈ A) = p, therefore we can obtain P (f(I) ∈ X ′) ≥ P (I ∈ A). Hence we
may apply Lemma A.2 to conclude:

P (f(O) ∈ X ′) ≥ P (O ∈ A). (21)

Similarly, we obtain P (f(I) /∈ X ′) ≤ P (I ∈ B). Hence we may apply Lemma A.2 to conclude:

P (f(O) /∈ X ′) ≤ P (O ∈ B). (22)

Combining Eq. 21 and 22, we can obtain the conditions of Eq. 20:

P (f(O) ∈ X ′) ≥ P (O ∈ A) > P (O ∈ B) ≥ P (f(O) /∈ X ′). (23)

According to Claim 3 and Claim 4, we can obtain P (O ∈ A) and P (O ∈ B) as:

P (O ∈ A) = Φ

(
Φ−1

(
p
)
− δT1 Σ1

−1δ1 + δT2 Σ2
−1δ2

∥δT1 Σ1
−1B1 + δT2 Σ2

−1B2∥

)
,

P (O ∈ B) = Φ

(
−Φ−1

(
p
)
+

δT1 Σ1
−1δ1 + δT2 Σ2

−1δ2

∥δT1 Σ1
−1B1 + δT2 Σ2

−1B2∥

)
.

(24)

Finally, we obtain that P (O ∈ A) > P (O ∈ B) if and only if:

δT1 Σ1
−1δ1 + δT2 Σ2

−1δ2

∥δT1 Σ1
−1B1 + δT2 Σ2

−1B2∥
< Φ−1

(
p)
)
.

A.3 LINEAR TRANSFORMATION AND DERIVATION

This subsection begins with Lemma A.3, which is the main tool for deriving all claims. Then, we
present the proof process of claims, which is applied in Sec. A.2.
Lemma A.3 (Joint Gaussian Distribution). If there is a random matrix X ∼ N (µ,Σ), where µ ∈ Rn

is the mean matrix. A positive semi-definite real symmetric matrix Σ ∈ Sn×n
++ is the covariance

matrix of X . There is a full rank matrix B ∈ Rn×n, which makes X = BZ + µ, Z ∼ N (0, I) and
B⊤B = Σ.

We obtain four claims based on linear transformation:

Claim 1. P (I ∈ A) = p

Proof. Recall that A =
{
z1, z2 : δT1 Σ1

−1(z1 − z1) + δT2 Σ2
−1(z2 − z2) ≤ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
)}

,
according to lemma A.3, we can obtain:

P (I ∈ A) = P
(
δT1 Σ1

−1(N
(
z1,Σ1

)
− z1) + δT2 Σ2

−1(N
(
z2,Σ2

)
− z2) ≤ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= P
(
δT1 Σ1

−1N (0,Σ1) + δT2 Σ2
−1N (0,Σ2) ≤ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= P
(
δT1 Σ1

−1B1N (0, I) + δT2 Σ2
−1B2N (0, I) ≤ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= P
(
∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥N (0, 1) ≤ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= Φ
(
Φ−1

(
p
))

= p.

Claim 2. P (I ∈ B) = 1− p
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Proof. Recall that B =
{
z1, z2 : δT1 Σ1

−1(z1 − z1) + δT2 Σ2
−1(z2 − z2) ≥ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
)}

,
according to lemma A.3, we can obtain:

P (I ∈ A) = P
(
δT1 Σ1

−1(N
(
z1,Σ1

)
− z1) + δT2 Σ2

−1(N
(
z2,Σ2

)
− z2) ≥ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= P
(
δT1 Σ1

−1N (0,Σ1) + δT2 Σ2
−1N (0,Σ2) ≥ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= P
(
δT1 Σ1

−1B1N (0, I) + δT2 Σ2
−1B2N (0, I) ≥ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= P
(
∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥N (0, 1) ≥ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= 1− Φ
(
Φ−1

(
p
))

= 1− p.

Claim 3. P (O ∈ A) = Φ
(
Φ−1

(
p
)
− δT1 Σ1

−1δ1+δT2 Σ2
−1δ2

∥δT1 Σ1
−1B1+δT2 Σ2

−1B2∥

)
Proof. Recall that A =

{
z1, z2 : δT1 Σ1

−1(z1 − z1) + δT2 Σ2
−1(z2 − z2) ≤ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
)}

and O ∼
(
c1, c2,N

(
z1 + δ1,Σ1

)
,N

(
z2 + δ2,Σ2

))
, according to lemma A.3, we can obtain:

P (O ∈ A)

= P
(
δT1 Σ1

−1(N
(
z1 + δ1,Σ1

)
− z1) + δT2 Σ2

−1(N
(
z2 + δ2,Σ2

)
− z2) ≤ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= P
(
δT1 Σ1

−1N (δ1,Σ1) + δT2 Σ2
−1N (δ2,Σ2) ≤ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= P
(
δT1 Σ1

−1(B1N (0, I) + δ1) + δT2 Σ2
−1(B2N (0, I) + δ2) ≤ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= P
(
∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥N (0, 1) + δT1 Σ1

−1δ1 + δT2 Σ2
−1δ2 ≤ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= P

(
N (0, 1) ≤ Φ−1

(
p
)
− δT1 Σ1

−1δ1 + δT2 Σ2
−1δ2

∥δT1 Σ1
−1B1 + δT2 Σ2

−1B2∥

)
= Φ

(
Φ−1

(
p
)
− δT1 Σ1

−1δ1 + δT2 Σ2
−1δ2

∥δT1 Σ1
−1B1 + δT2 Σ2

−1B2∥

)
.

Claim 4. P (O ∈ B) = Φ
(
−Φ−1

(
p
)
+

δT1 Σ1
−1δ1+δT2 Σ2

−1δ2
∥δT1 Σ1

−1B1+δT2 Σ2
−1B2∥

)
Proof. Recall that B =

{
z1, z2 : δT1 Σ1

−1(z1 − z1) + δT2 Σ2
−1(z2 − z2) ≥ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
)}

and O ∼
(
c1, c2,N

(
z1 + δ1,Σ1

)
,N

(
z2 + δ2,Σ2

))
, according to lemma A.3, we can obtain:

P (O ∈ B)

= P
(
δT1 Σ1

−1(N
(
z1 + δ1,Σ1

)
− z1) + δT2 Σ2

−1(N
(
z2 + δ2,Σ2

)
− z2) ≥ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= P
(
δT1 Σ1

−1N (δ1,Σ1) + δT2 Σ2
−1N (δ2,Σ2) ≥ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= P
(
δT1 Σ1

−1(B1N (0, I) + δ1) + δT2 Σ2
−1(B2N (0, I) + δ2) ≥ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= P
(
∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥N (0, 1) + δT1 Σ1

−1δ1 + δT2 Σ2
−1δ2 ≥ ∥δT1 Σ1

−1B1 + δT2 Σ2
−1B2∥Φ−1

(
p
))

= P

(
N (0, 1) ≥ Φ−1

(
p
)
− δT1 Σ1

−1δ1 + δT2 Σ2
−1δ2

∥δT1 Σ1
−1B1 + δT2 Σ2

−1B2∥

)
= Φ

(
−Φ−1

(
p
)
+

δT1 Σ1
−1δ1 + δT2 Σ2

−1δ2

∥δT1 Σ1
−1B1 + δT2 Σ2

−1B2∥

)
.
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Algorithm 1 Certified robustness for visual GM.
Input:

(
c1, c2, z1, z2

)
; base function f ; original σ; sample times k0; similarity threshold s; number

of copies n; regularization hyperparameter β.
Output: Core output Xc; evaluation results.

1: Use the data augmentation and regularization term in Sec. 4.3 to train a visual GM model, and
then obtain function f0.

2: Obtain B1, B2, Σ1, Σ2 described in Sec. 4.2 for perturbing keypoint position pair or image pair
using an optimization algorithm, and then obtain function g0.

3: Sample k0 number of input samples. For example, when perturbing keypoint position pair, we
obtain the series: {(z1′1 , z2

′

1 ), . . . , (z1
′

k0
, z2

′

k0
)}, where z1

′

i ∼ N
(
z1,Σ1

)
and z2

′

i ∼ N
(
z2,Σ2

)
.

4: Predict the core output Xc and obtain the subspace X ′ using the first sampling series.
5: Sample k = 10k0 number of input samples. For example, when perturbing the keypoint

position pair, we obtain the series: {(z11, z21), . . . , (z1k, z2k)}, where z1i ∼ N
(
z1,Σ1

)
and z2i ∼

N
(
z2,Σ2

)
.

6: Calculate one-sided confidence lower bound p in Eq. 8 using the second sampling series.
7: if p < 1

2 then
8: This input cannot be robustly certified.
9: else

10: Obtain the sampling evaluation result and marginal radii evaluation result as in Sec. 4.4.
11: end if
12: return Xc, evaluation results.

Table 2: Summary of main existing literature in learning GM.

Method Introduction
GMN (Zanfir & Sminchisescu, 2018) The seminal work that employs a convolutional neural network

to extract node features and constructs an end-to-end model with
spectral matching.

PCA-GM (Wang et al., 2019) Leveraging intra-graph and cross-graph structural information
using graph convolutional networks.

CIE-H (Yu et al., 2019a) Enhancing end-to-end training by edge embedding and
Hungarian-based attention mechanism.

NGMv2 (Wang et al., 2021) Developing a matching-aware graph convolution scheme with
Sinkhorn iteration.

ASAR (Ren et al., 2022) An appearance-aware regularizer is employed to explicitly in-
crease the dissimilarities between similar keypoints and improve
model robustness through adversarial attacks.

COMMON (Lin et al., 2023) Integrating the momentum distillation strategy to balance the
quadratic contrastive loss and reduce the impact of bi-level noisy
correspondence.

B SUMMARY OF RELATED METHODS

To present various methods of graph matching and certified robustness more clearly, we have catego-
rized and reviewed the mainstream methods. Deep visual GM solvers aim to align the corresponding
keypoints from different images based on node-to-node and edge-to-edge correlations. We introduce
and compare the mainstream methods in Tab. 2. We then present some of the representative RS-based
methods for certified robustness in Tab. 3, along with their applicable scenarios and features.

C METHODOLOGY SUPPLEMENT

In this section, we provide a supplement to the method described in Sec. 4. We first present the
algorithm of the entire process, and then explain the construction and optimization of the joint
Gaussian distribution under pixel perturbations.
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Table 3: Summary of main existing literature in RS-type methods for robustness certification.

Method Introduction
RS (Cohen et al., 2019) A pioneering work on certified robustness for classification tasks,

demonstrating that Gaussian smoothing distributions can provide
a provable ℓ2 perturbation bound.

DSSN (Levine & Feizi, 2021) Providing a novel non-additive smoothing robustness certificate
for the ℓ1 threat model.

Median Smoothing (Chiang et al.,
2020)

Developing a new variant of smoothing specifically for detection
based on the medians of the smoothed predictions.

RS for Segmentation (Fischer et al.,
2021)

Presenting a scalable certification method for image and point
cloud segmentation based on randomized smoothing.

RS for Community Detection (Jia
et al., 2020)

Building a new smoothed community detection method via ran-
domly perturbing the graph structure.

Algorithm 2 Algorithm for optimization.
Input: L data; base function f ; original σ; original b; iteration times K.
Output: B1, B2, Σ1, Σ2.

1: Initialize: σ0 ← σ, b0 ← b.
2: for k = 0 . . .K − 1 do
3: Calculate Bk

1 , Bk
2 , Σk

1 , Σk
2 using σk and bk according to Sec. 4.

4: Initialize the sum of optimization goal O.
5: for l = 0 . . . L− 1 do
6: Initialize kth data.
7: Sample ε1 ∼ N (0,Bk

1), ε2 ∼ N (0,Bk
2).

8: Calculate p according to Eq. 8 and eigenvalues of Bk
1 , Bk

2 , then calculate the optimization
goal Ol as in Eq. 10.

9: O ← O +Ol.
10: end for
11: σk+1, bk+1 ← ∇σk,bkO.
12: end for
13: Calculate B1, B2, Σ1, Σ2 using σK−1 and bK−1 according to Sec. 4.
14: return B1, B2, Σ1, Σ2.

C.1 ALGORITHM OF THE ENTIRE PROCESS

Alg. 1 consists of training and testing parts. In the training part, we use data augmentation and a
regularization term based on the output similarity as Sec. 4.3 to train a model. In the testing part, we
employ Monte Carlo sampling to estimate the certification result in practice. First, we construct and
optimize the smoothing joint Gaussian distribution according to Sec. 4.2 and construct the smoothed
model g0. Second, we sample (ε1, ε2) with k0 times and obtain the core output Xc in Eq. 4 and
subspace X ′ in Eq. 5. Then we sample (ε1, ε2) with k times, and count how many outputs fall into
the subspace X ′ to obtain the probability p in Eq. 8 and the certified space in Eq. 9. Finally, we use
two quantitative methods as in Sec. 4.4 to obtain evaluation results.

Alg. 2 summarizes the updates for optimizing by solving Eq. 10 with K steps of stochastic gradient
ascent. p is estimated by the Monte Carlo sampling algorithm in the subsequent certification process,
but we simplify its estimation in the optimization algorithm. Since we do not need a very precise
p value here, but a favorable trend, we calculate it by sampling only once. This approach not
only improves the efficiency of the optimization algorithm but also avoids the high variance in the
gradient estimation caused by multiple sampling. We fix the number of iterations for all optimization
algorithms to K = 10, the size of data used for optimization to L = 100, and set the original
correlation parameter b = 0.01. Therefore, the entire optimization process is relatively fast and can
be relatively easily applied to various visual GM models.
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C.2 SMOOTHING DISTRIBUTION FOR PERTURBING IMAGE PIXELS

Due to the large number of image pixels, which far exceeds the number of keypoints, constructing
correlation matrices between pixel points as in Sec. 4.2 is computationally expensive, not to mention
that mining the correlation between pixels is not trivial. We, therefore, simplify B to σ as in Cohen
et al. (2019) under pixel perturbations and modify the optimization problem accordingly:

argmax
σ

Φ−1
(
p
)
σ. (25)

D ADDITIONAL EXPERIMENT SETTINGS

This section provides the details of the baseline for certification, GM solvers, which are supplementary
to Sec. 5.1.

D.1 BASELINE FOR CERTIFICATION

This paper adopts modified RS (Cohen et al., 2019) as the baseline method for the proposed CR-OSRS
strategy, which is referred as RS-GM. Unless otherwise stated, we follow the same experimental
parameter settings as RS. We use the hypothesis test (Hung & Fithian, 2019) as in Cohen et al. (2019)
by using α to represent the probability of obtaining incorrect matching results. In this study, we set
α = 0.001, which ensures a high probability (99.9%) of certification. α can be arbitrarily small, so
in theory our method is highly reliable. We choose the Monte Carlo sample number k in Alg. 1 to be
1000, which is smaller than the sample number for classifier certification, due to the low efficiency of
the GM solver. Theoretically, increasing k would improve the certification results, but at the expense
of the efficiency of the GM solver. We reveal the impact of different k on the experimental results in
Appendix E.1.

D.2 DEEP GRAPH MATCHING SOLVERS

This paper evaluates the proposed method on the Pascal VOC dataset (Everingham et al., 2010)
with Berkeley annotations (Bourdev & Malik, 2009), the Willow ObjectClass dataset (Cho et al.,
2013) and SPair-71k dataset (Min et al., 2019) for visual graph matching. Following the protocol
of Wang et al. (2021), for the Pascal VOC dataset, we exclude images with poor annotations. Then
we use 100 inputs (about 650 keypoints) from 20 categories in the dataset to test the proposed
method on six representative deep GM methods: GMN (Zanfir & Sminchisescu, 2018), PCA-
GM (Wang et al., 2019), CIE-H (Yu et al., 2019a), NGMv2 (Wang et al., 2021), ASAR (Ren
et al., 2022) and COMMON (Lin et al., 2023), using the checkpoints of these GM models provided
by ThinkMatch (https://github.com/Thinklab-SJTU/ThinkMatch). For the Willow
ObjectClass dataset, we use 100 inputs from 5 categories to test the method on the NGMv2 solver.
For the SPair-71k dataset, we use 90 inputs from 5 categories to test the method on the NGMv2
solver.

E EXPERIMENTAL RESULTS

This section first presents the certification results on the Willow ObjectClass dataset and SPair-71k
dataset, then presents the certification results for ASAR (Ren et al., 2022) and COMMON (Lin et al.,
2023) solvers. Finally, we report additional results on how the parameters n, κ, β, and k affect the
certified robustness and model performance in Appendix E.1. Finally, it shows the results under pixel
perturbations in Appendix E.2.

E.1 ADDITIONAL EXPERIMENTAL RESULTS UNDER KEYPOINT POSITION PERTURBATIONS

First, we investigate the relationship of CA and three marginal radii (∥δ∥lower, ∥δ∥upper, and ∥δ∥volume)
for RS-GM and CR-OSRS on the Willow ObjectClass dataset in Fig. 4 and the SPair-71k dataset Fig. 5.
We also compare the results of adding only data augmentation or adding both data augmentation
and the regularization term, as shown in Eq. 11. In Fig. 4, the curve of CR-OSRS is almost always
above RS-GM, indicating that CR-OSRS corresponds to larger radii for the same certified accuracy
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(a) CA and ∥δ∥lower (b) CA and ∥δ∥upper (c) CA and ∥δ∥volume

Figure 4: Certified accuracy (CA) achieved by RS-GM and CR-OSRS for NGMv2 on Willow
ObjectClass dataset when perturbing keypoint positions. Fig. 4 shows the result with original
σ = 0.5, s = 0.9 in Eq. 5, β = 0.01 and n = 2 in Eq. 11.

and corresponds to higher accuracy for the same radii, which implies greater certified robustness.
However, we observe that the improvement of model performance by data augmentation and the
regularization term is not as significant as on the Pascal VOC dataset. We conjecture that this is
because Willow is less sensitive to perturbations for keypoint positions. Therefore, data augmentation
and the regularization term have little effect on the “majority decision” of RS and even cause the
model to underfit. In Fig. 5, The curve of CR-OSRS is almost always above RS-GM, which implies
greater certified robustness and matching accuracy. At the same time, it also illustrates that the
proposed data augmentation and the regularization term are effective. As Fig. 4, Fig. 5 and Table 1
show that our method can be applied to various datasets and GM solvers.

Second, we examine the relationship of CA and three marginal radii for RS-GM and CR-OSRS on
ASAR (Ren et al., 2022) and COMMON (Lin et al., 2023) in Fig. 6 and Fig. 7. We also compare
the results of adding only data augmentation, as well as adding both the data augmentation and the
regularization term, as in Eq. 11. The curve of CR-OSRS is almost always above RS-GM, which
implies greater certified robustness and matching accuracy. At the same time, it also demonstrates
that the proposed data augmentation and the regularization term are effective.

Third, we further examine the effect of the number of copies n, the constraint hyperparameter κ, the
regularization hyperparameter β in Eq. 11 as well as the Monte Carlo sample number k for Monte
Carlo sampling on the certification results, which were not examined in Sec. 5.2. We vary n from
n ∈ {1, 2, 3, 4} and plot the certified accuracy with each n in Fig. 8. Choosing appropriate values of
n is crucial for improving the model performance. We vary κ from κ ∈ {0, 1

300 ,
1

200 ,
1

100} and plot
the certified accuracy with each κ in Fig. 9. The figure shows that κ had little overall influence on the
outcomes, but a larger κ results in a larger ∥δ∥volume and ∥δ∥upper as well as a smaller ∥δ∥lower. We
vary β from β ∈ {0.005, 0.01, 0.02} and plot the certified accuracy with each β in Fig. 10. Choosing
appropriate values of β will help balance the trade-off between matching performance and certified
robustness. Furthermore, we vary k from k ∈ {1000, 2000, 3000, 4000, 5000} and plot the certified
accuracy with each k in Fig. 11, which projects how the certified accuracy would change when using
more samples k (under the assumption k = 10k0). We observe that when k increases, the robustness
can be certified to be stronger, which is influenced by the Monte Carlo sampling algorithm.

E.2 EXPERIMENTAL RESULTS ON IMAGE PIXEL PERTURBATIONS

For perturbing image pixels, we plot the relationship of certified accuracy (CA) and three marginal
radii (∥δ∥lower, ∥δ∥upper, and ∥δ∥volume) in Fig. 12 with the original σ = 0.5, β = 0.01 and n = 2.
As discussed in Section C.2, constructing a correlation matrix between pixels is computationally
expensive due to the large number of image pixels. Moreover, it is challenging to extract the
correlation between pixels. Hence, we employ RS-GM to achieve robustness certification under pixel
perturbations. Fig. 12 demonstrates the effectiveness of data augmentation and the regularization term.
Data augmentation has a significant effect, but the regularization term does not improve performance
in this case. We conjecture that this is because the output distribution of a fixed datum sample is not
too dispersed under multiple perturbations, so the regularization term has negligible impact.
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(a) CA and ∥δ∥lower (b) CA and ∥δ∥upper (c) CA and ∥δ∥volume

Figure 5: Certified accuracy (CA) achieved by RS-GM and CR-OSRS for NGMv2 on SPair-71k
dataset when perturbing keypoint positions. Fig. 5 shows the result with original σ = 0.5, s = 0.9 in
Eq. 5, β = 0.01 and n = 2 in Eq. 11.

(a) CA and ∥δ∥lower (b) CA and ∥δ∥upper (c) CA and ∥δ∥volume

Figure 6: CA achieved by CR-OSRS and RS-GM for ASAR on Pascal VOC when perturbing keypoint
positions. “AUG” denotes data augmentation and “REG” denotes the regularization term in Eq. 11.
Fig. 6 shows the result for original σ = 0.5, s = 0.9 in Eq. 5, β = 0.01 and n = 2 in Eq. 11.

(a) CA and ∥δ∥lower (b) CA and ∥δ∥upper (c) CA and ∥δ∥volume

Figure 7: CA achieved by CR-OSRS and RS-GM for COMMON on Pascal VOC when perturbing
keypoint positions. “AUG” denotes data augmentation and “REG” denotes the regularization term in
Eq. 11. Fig. 7 shows the result for original σ = 0.5, s = 0.9 in Eq. 5, β = 0.01 and n = 2 in Eq. 11.
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(a) CA and ∥δ∥lower (b) CA and ∥δ∥upper (c) CA and ∥δ∥volume

Figure 8: Projections for the certified accuracy if the loss function parameter n had been larger or
smaller. Fig. 8 shows the result for CR-OSRS trained by data augmentation and regularization term
with σ = 0.5, s = 0.9 and β = 0.01 for NGMv2 on Pascal VOC.

(a) CA and ∥δ∥lower (b) CA and ∥δ∥upper (c) CA and ∥δ∥volume

Figure 9: Projections for the certified accuracy if the constraint hyperparameter κ had been larger or
smaller. Fig. 9 shows the result for CR-OSRS trained by data augmentation and regularization term
with σ = 0.5, s = 0.9 and β = 0.01 for NGMv2 on Pascal VOC.

(a) CA and ∥δ∥lower (b) CA and ∥δ∥upper (c) CA and ∥δ∥volume

Figure 10: Projections for the certified accuracy if the regularization hyperparameter β had been larger
or smaller. Fig. 10 shows the result for CR-OSRS trained by data augmentation and regularization
term with σ = 0.5, s = 0.9 and n = 2 for NGMv2 on Pascal VOC.
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(a) CA and ∥δ∥lower (b) CA and ∥δ∥upper (c) CA and ∥δ∥volume

Figure 11: Projections for the certified accuracy if the Monte Carlo sample number k had been larger
or smaller. Fig. 11 shows the result for CR-OSRS trained by data augmentation and regularization
term with σ = 0.5, s = 0.9, β = 0.01 and n = 2 for NGMv2 on Pascal VOC.

(a) CA and ∥δ∥lower (b) CA and ∥δ∥upper (c) CA and ∥δ∥volume

Figure 12: Certified accuracy (CA) achieved by RS-GM for NGMv2 on Pascal VOC under pixel
perturbations.
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