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Abstract

Plug-and-play (PnP) methods with deep denoisers have shown impressive results in
imaging problems. They typically require strong convexity or smoothness of the fi-
delity term and a (residual) non-expansive denoiser for convergence. These assump-
tions, however, are violated in Poisson inverse problems, and non-expansiveness
can hinder denoising performance. To address these challenges, we propose a co-
coercive conservative (CoCo) denoiser, which may be (residual) expansive, leading
to improved denoising performance. By leveraging the generalized Helmholtz
decomposition, we introduce a novel training strategy that combines Hamiltonian
regularization to promote conservativeness and spectral regularization to encourage
cocoerciveness. We prove that CoCo denoiser is a proximal operator of a weakly
convex function, enabling a restoration model with an implicit weakly convex prior.
The global convergence of PnP methods to a stationary point of this restoration
model is established. Extensive experimental results demonstrate that our approach
outperforms closely related methods in both visual quality and quantitative metrics.
A test code is provided for reproducibilityﬂ
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1 Introduction

Image restoration is a fundamental task in the computer vision field. Although most works assume
that the noise follows Gaussian distribution [43\|12]], under low-light condition, such as hyperspectral
imaging [53| [17], medical imaging [67], and limited photon imaging [13]], images are inevitably
corrupted by Poisson noises. In this paper, we focus on solving Poisson inverse problems by
Plug-and-Play (PnP) methods.

The following formula describes the Poisson corruption procedure:
f ~ Poisson(pKu)/p, (1

where u is the potential image, f is the noisy image, the peak value p is the average number of
photons recieved per pixel, and K is a known linear operator such as identity I, blur kernel, or Radon
transform. A small p corresponds to a severe noise environment. In order to recover u from f, a
variational approach is considered:

arg Irél‘r/lF(u) + G(u),G(u) = X1, Ku — flog Ku), (2)

where V is the underlying Hilbert space endowed with the inner product (-, -), F' denotes the prior
regularization term, and the data fidelity G is the Bregman divergence, with A > 0 being the balancing
parameter. Typical choices for F' includes total variation [S9] and its variants [33 [11], weighted
nuclear norm [23]], and group-based low rank prior [44]]. First order methods are employed to find ,
such as the proximal gradient descent method (PGD):

ukftt = PrOX%(uk — B7IVG(W)), 3)
and the alternating direction method with multipliers (ADMM) [10]:
uF*tt = Proxr (vF — b¥),
vP*tl = Proxg (uft! + bF), 4)
bk+1 — bk‘ + Zk‘+1 _ Uk—i-l?

where 8 > 0 is a balancing parameter. For a closed, convex and proper (CCP) function F' :

V — R = (—o0, 0], the proximal operator Proxp : V' — V is defined as: Proxp(y) :=
argmin F'(x) + 3llx =yl

Plug-and-play methods. By replacing Prox £ (+) with an off-the-shelf Gaussian denoiser D, (),

where o denotes the denoising strength, Venkatakrishnan et al. introduced the plug-and-play ADMM
(PnP-ADMM) algorithm [69]. Since then, PnP methods have achieved surprisingly remarkable
recovery results in many inverse problems, including bright field electron tomography [64], diffraction
tomography [65], camera image processing [25]], low-dose CT imaging [9, [72], Poisson image
denoising [38l 27], deblurring [36], inpainting [77]], and super-resolution [37}32].

Challenges. Despite the impressive recovery performance, the convergence analysis of PnP methods
remains challenging, especially in the context of Poisson inverse problems. The standard convergence
of ADMM and PGD relies on the convexity of both ' and G. However, a convex prior term F’ often
leads to limited recovery performance. When F’ is weakly convex, additional assumptions on G, such
as strong convexity or smoothness, are required. Unfortunately, these assumptions do not hold in
Poisson inverse problems. Moreover, in general, a deep denoiser is not a proximal operator, which
further complicates the situation.

In order to get a proximal D, it should satisfy some Lipschitz properties such as non-expansiveness,
and be the (sub)gradient of some CCP potential ¢ [47, 22]]. In the following, we briefly discuss
approaches to satisfy these conditions, as well as some related convergent PnP methods.

Lipschitz property. There are mainly two methods to ensure the Lipschitz property: real spectral
normalization (RealSN) and spectral regularization (SR). Ryu et al. enforced a contractive I — D,,
by applying RealSN to the denoiser, which normalized the spectral norm of each layer [60]. However,
RealSN is computationally expensive, and was specifically designed for denoisers with cascade
residual learning structures, such as DnCNN [74]], making it unsuitable for other networks like UNet
[58]. A more flexible approach is SR technique introduced by Terris et al. [66]]. In order to get a
firmly non-expansive D,, they added a spectral term min{1 — ¢, ||2J —I||.} to the original loss



function, such that ||2J —I||. < 1, where J = V D,, is the Jacobian matrix of D, and ¢ € (0, 1)
is a pre-defined parameter. With this spectral constraint, D, is firmly non-expansive, and thus
becomes the resolvent of some implicitly maximally monotone operator (RMMO), incorporated
into the Douglas-Rachford splitting (DRS) method. RMMO-DRS only requires a convex fidelity,
making it suitable for Poisson inverse problems. Inspired by SR, Wei et al. proposed to train a
strictly pseudo-contractive (SPC) denoiser, termed SPC-DRUNet [71]. By incorporating the Ishikawa
process and half-quadratic splitting (HQS), they developed the PnPI-HQS method. The convergence
of PnPI-HQS only requires a convex fidelity term GG, which makes it suitable for Poisson problems.
SPC is much weaker than firm or residual non-expansiveness. However, SPC-DRUNet is in general
not a proximal operator, and PnPI-HQS does not solve any optimization problem.

Conservativeness. To ensure the conservative property, many works attempt to explicitly define a
prior function ¢, such that the denoiser is its gradient or proximal operator. Romano et al. proposed
the regularization by denoising (RED) [57]. The RED prior term takes the form of ¢(z) = % (z,z —
D, ()). Under the assumptions that D,, is locally homogeneous, and that V D,, is symmetric with
spectral radius less than one, Romano et al. proved that D, = I —V¢. Yet the assumptions might be
impractical for deep denoisers as reported by Reehorst & Schniter [54]. Instead of training a Gaussian
denoiser D, Cohen et al. [16] parameterized ¢ with a neural network, D, = V¢. Unfortunately, as
verified by Salimans & Ho [61]], and Hurault et al. [28]], directly modeling ¢ with a neural network
leads to poor performance. To tackle this, Hurault et al. [28] introduced the gradient step (GS)
denoiser, where D, = V¢, with ¢(z) = 3|z||> — g5 (), go(z) = ||z — N, (2)||%, where N, is a
neural network. Then D, =1-Vg, = N, + J]TVU (I—N,), where J_ is the Jacobian matrix of N,,.
N, uses the light DRUNet architecture [[73]], and such D, is called GS-DRUNet. Following this, they
then proposed Prox-DRUNet, which trains a GS-DRUNet with a non-expansive residual I — D, via
SR [29]. They proved that Prox-DRUNet acts as a proximal operator of some weakly convex prior F'.
The Prox-DRS algorithm is given by plugging L D, +(1 — L) I as the denoiser into DRS. Prox-DRS
converges for proper closed fidelity G with L € [0, 0.5), making it applicable for Poisson inverse
problems. However, this great work still requires a non-expansive residual, which alters the denoising
performance, especially for large noises. To apply GS-DRUNet in Poisson inverse problems, Hurault
et al. proposed to train a Bregman denoiser to remove Gamma noise [27]. Two convergent algorithms
B-RED and B-PnP are derived. However, experimental results indicate that the Gamma denoiser
struggles to remove large Gamma noise, thereby limiting the restoration performance.

Motivations. As discussed above, in order a get a proximal denoiser, it needs to be Lipschitz and
conservative.

Typical Lipschitz conditions, such as non-expansiveness and residual non-expansiveness, are restric-
tive and lead to compromised performance. Weaker assumptions, like (strictly) pseudo-contractive
conditions, can not guarantee a proximal denoiser. This limitation motivates us to explore a more
suitable assumption that ensures the denoiser remains proximal while maintaining good denoising
performance.

For the conservativeness, existing approaches typically construct an explicit potential function ¢.
While this idea is intuitively appealing and convenient for optimization, it raises a question: Is there
any alternative approach to promote the conservativeness, without requiring an explicit prior, by
directly regularizing the denoiser, without significantly changing its network structure?

Contributions. To address the issues outlined above, this paper introduces a novel training strategy
for learning a proximal denoiser. Leveraging the SR technique and the generalized Helmholtz
decomposition, we propose to train a cocoercive conservative (CoCo) denoiser. CoCo denoiser proves
to be a proximal operator of some implicit non-convex prior function. Cocoerciveness is a weaker
constraint on the denoiser, compared to existing constraints like firm or residual non-expansiveness.
As aresult, the CoCo denoiser not only achieves superior denoising performance but also enhances
PnP recovery in Poisson inverse problems. Overall, our main contributions are fourfold:

e We introduce a novel assumption, cocoerciveness, for the deep denoisers. Cocoerciveness is strictly
weaker assumption than non-epansive type assumptions, and therefore, less restrictive for denoisers.
e We shed a new light on the conservative assumption, by studying the denoising geometry. Using
the generalized Helmholtz decomposition, a denoiser is implicitly decomposed into a conservative
part and a Hamiltonian part. We show intuitively and rigorously that an ideal denoiser should be
conservative with no Hamiltonian part.

e We prove that a CoCo denoiser is a proximal operator of some implicit prior. An effective training



strategy is proposed to promote these properties.
e A Poisson inverse model with an implicit prior is derived. The global convergence of PnP methods
with CoCo denoisers is established.

2 CoCo denoisers

In this section, we propose CoCo denoisers. First, we introduce the cocoercive assumption, and its
spectral distribution on the complex plane. Next, by the generalized Helmholtz decomposition, we
show intuitively that an ideal denoiser should be conservative, with no Hamiltonian part. Then, we
prove that a CoCo denoiser D, is the proximal operator of some weakly convex and smooth prior
function F' : V — R := RU {o0}, D, = Prox £ Finally, a restoration model with an implicit

weakly convex prior is given.

2.1 Cocoercive denoisers

Let V = R™ be a real Hilbert spac with inner product (-, -}, and the induced norm ||z|| = /(z, z).

LetD:V — V bean operatorﬂ An operator D : V' — V is said to be y-cocoercive (y € [0, c0)), if
Vx,y € V, there holds:

(z —y,D(z) — D(y)) > 7| D(z) — D(y)|>. (5)

Cocoercive operators are an important class of monotone operators. Many operators are cocoercive
operators. Below are two typical cocoercive operators:
o D is firmly non-expansive: (Vz,y € V)

(z —y,D(x) = D(y)) = | D(x) — D(y)||*. (6)

Such D is 1-cocoercive.
e D is residual non-expansive: (Vz,y € V)

[(I=D)o(z) —(I=D)o ()l <z —yl. @)
Such D is 0.5-cocoercive.
When v > 0, cocoercive assumption make denoisers Lipschitz: by Cauchy-Schwarz inequality,
(z —y,D(z) = D(y)) < [z =yl D(x) = D(y)]|. (®)

Therefore, by , ID(z) = D(y)|| < 2lx — yl|, thatis, D is -Lipschitz. When y < 0.5, both the
operator and its residual part are expansive. In general, a smaller - corresponds to less contraint, and
therefore a more powerful denoiser.

Spectral analysis on D. Note that (5)) can be equivalently transformed into the following inequality:
~Vz,y V)

[2yD—TI)o(x) = (2yD Do () <[l -yl ©)
Based on the mean value theorem [[18]], @]) is transformed into:
[2vI(z) = 1]« <L, Vz €V, (10)
where J(z) is the Fréchet differential, that is the Jacobian matrix when V' is finite dimensional, of D
at the point x, and || - ||« denotes the spectral norm. Since the spectral radius p(-) is always no larger
than the spectral norm || - ||, we have that:
p(2yJ(z)-1) <1,Vz e V. (11)

3Please note that, although we limit V' to be finite dimensional for easy understanding, many theoretical
analysis still hold in a general infinite dimensional real Hilbert space. To clarify, the spectrum set of an operator
in a finite space is just the eigenvalue set. The transpose of a matrix in a finite dimensional space corresponds to
the adjoint operator in an infinite space. || - ||« is the spectral norm in a finite space, and denotes the operator
norm in an infinite space. The degradation operator K in an infinite space is assumed to be a bounded linear
operator, that is K € B[V].

* An operator in general may not be single-valued. However, since the operator D in this paper is a denoiser,
its output is unique given fixed input. Thus, we only consider the single-valued operator here.
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Figure 1: Left: Spectrum distributions of the Fréchet differential (Jacobian matrix) on the complex
plane under different assumptions. (a) Firmly non-expansiveness, Sp(J) C {z € C: |2z — 1| < 1};
(b) Non-expansiveness, Sp(J) C {z € C : |z| < 1}; (c) Residual non-expansiveness, Sp(J) C {z €
C: |z — 1] < 1}; (d) -strictly pseudo-contractiveness, Sp(J) C {z € C : |z + 1| < 2}; (e) 0.25-
cocoerciveness, Sp(J) C {z € C:|0.5z — 1| < 1}; (f) Conservativeness, Sp(J) C R. In general, a
larger region means less restrictive assumption. The spectrum of v-CoCo denoisers (7 = 0.25) lies
inside the interval (f) N (e) = [0, 4]. Spectrum outside R corresponds to the Hamiltonian part of the
denoiser, and does not contribute to the denoising performance.

Right: A two-dimensional illustration of the Helmholtz decomposition of a denoiser D. x denotes the
clean image point, £ denotes the Gaussian noise, and x + £ denotes the noisy image. The arrow “—"

represents the denoising direction. (i) Denoising field D. (ii) Conservative field D.. (iii) Hamiltonian
field Dy,.

Let Sp(-) denote the spectrum set, that is, the eigenvalue set when V is finte dimensional:
Sp(J) :={z € C: zI—1J is not invertible}. (12)
(11) implies Sp(J(z)) C{z € C: |[2yz—1| < 1}.

Lemma [2.1] gives an equivalent condition of cocoerciveness in (5)-(9), and thereby enables the
training through SR.

Lemma 2.1 (Proof in Appendix [A7). Let D : V — V, and J = V D be its Fréchet differential.
Then D is y-cocoercive (v € [0,00)), if and only if |2y J(z) — 1|« < 1foranyxz € V.

Since the spectral radius is no larger than the spectral norm, we are able to plot the spectral distribution
on the complex plane C in Fig. [T} A larger region corresponds to a less restrictive constraint, and
thus a better denoising performance. Figs. |I| (a), (¢), (e) show that firm non-expansiveness, and
residual non-expansiveness are special cases of cocoerciveness. Therefore, cocoeriveness is a weaker
assumption for deep denoisers, and yields better denoising performance.

2.2 Conservative denoisers

We consider the conservative assumption intuitively. Let D € C![V] be a denoiser. D is said to be
conservative, if there is a potential function ¢ : V' — R, such that D = V¢. Geometrically, D is
mapping from V to V, thus can be viewed as a vector field.

By the generalized Helmholtz decomposition [8} 4], any vector field D can be decomposed into a
conservative field D, and a Hamiltonian field Dy, such that D.. is curl-free and is the gradient of a
potential function ¢, and Dy, is divergence-free:

D =D, 4Dy, D. = V¢, div(Dy) = 0. (13)

However, the decomposition D = D, + Dy, is implicit. In order to characterize this decomposition,
we consider the Jacobian matrix J. The generalized Helmholtz decomposition can be rewritten as

J=S+A, where S = # is symmetric, and A = 2 _2‘] Tis anti-symmetric. S and A correspond
to D, and Dy, respectively: S =V D,, A =V Dy,

In Fig. [I] we consider a two-dimensional case. z € V is a clean image, £ is the Gaussian noise with
zero mean and standard derivation o, x + ¢ is the noisy image. ||z + £ — z|| = E[||¢]|] = 20 is the
distance between the clean image and the noisy image in V. A denoiser D is expected to reduce the
distance as in Fig. [1|(i). Thatis || D(z + &) — z|| < ||z + £ — z||. The arrow “—" in Fig. [[|denotes
the denoising direction vector ), 7 = D(z + &) — (x + £). n can be decomposed into 7. and 7, see




Figs. [I] (ii)-(iii). n. points to the clean image, and thus represents the correct denoising direction. 7,
circles around x, and Dj, cannot remove noises.

In a general real Hilbert space, given a point x, Vy € V, define the Hamiltonian functional H(y) =

1
5 | D(y) — z||*>. When D is a Hamiltonian field, S = 0. Then, the vector D(y) — z preserves the
level set of H, because:
(D(y) — =, V,H(y)) = (D(y) —a,AT (D(y) —x)) = 0.
Note that when x is a clean image, H is a typical loss function for a denoiser. Therefore, a Hamiltonian

field does not contribute to the denoising. Thus we penalize this useless part Dy, by penalizing A. The
following relations are useful: D is conservative <= D, =0 <= A=0 < ||J-J" |, =0.

In order to penalize Dj,, we only need to minimize || J — J ' ||,. Spectrally speaking, when J = J | is
self-adjoint, Sp(J) C R, see Fig. (f).

2.3 Characterization on CoCo denoisers

In the context of PnP, the denoiser D, is expected to be proximal. Building upon prior findings by
[22] (see Appendix[A.2), we present the following Theorem[2.2] A more general characterization on
CoCo denoisers is given in Theorem [A.5]in Appendix [A.3]

Theorem 2.2 (Proof in Appendix . Let D, € CYV]. B = Z5. D, satisfies that:

e D, is conservative;

e D, is y-cocoercive with v € (0,1).

LetD) =tD, +(1 —t)1, t € [0,1). It holds that:

e there exists a r-weakly convex function F : V. — R, r(t) = ﬁt—t;Z:t’ such that D (z) €
Proxr (x),Vz € V;
e OF is L-Lipschitz, where
L) = Bt > r(t), ift > ;:33 andt € [0,1) (Case 1); 14)
T r(h) =B, it < ;:53 andt € [0,1) (Case 2).

Remark 2.3. Dtg is an averaged version of D,. As reported by [29], when D, is residual non-
expansive, PnP with Df, out-performs PnP with D, in many inverse problems.

Remark 2.4. If v = 0.5, D, is residual non-expansive, DZ is then residual ¢-Lipschitz, and B71Fis

o5 -weakly convex, with 5~ 'OF being t£5-Lipschitz. This special case recovers the result by [29].

Remark 2.5. By Theorem we know that DY, is a proximal operator of a weakly convex function
%. We arrive at the following implicit non-convex restoration model:

U € argnéi‘r/lF(u) + G(u; f), G(u; f) = M1, Ku — flog Ku). (15)

3 Training strategy
Let 0 be the parameter weights in D, to be optimized, 7 be the distribution of the training set of clean
images, and [0min, Omax be the interval of the noise level.

Based on Lemma[2.T]and the pioneer works by [66, [51]], we encourage the cocoerciveness by the SR
technique. The spectral regularization term L takes the form of:

Ls(0) =E,; ;e max{||2yJ —I|., 1 — €}, (16)

where 6 is the network weights, € € (0, 1) is a parameter that controls the constraint. x ~ 7,0 ~
UlOmins Omax)s & ~ N(0,0%1). J = J(x + &) = VD, (z + &; 0).

To encourage a conservative denoiser, we propose the Hamiltonian regularization term Ly,:

Ln(0) =Ep e J—J7 |ls. (17)

Combining and (16), the overall loss function of D, is
Loss(0) = E|| Dy (x + &;0) — x|l1 + a1 Lp + a2 L. (18)



a1, ae > 0 are balancing parameters. The first term in ensures that D, is a Gaussian denoiser,
the second term makes D, conservative, and the third term results in a y-cocoercive denoiser. By
minimizing Loss(6), a properly regularized CoCo denoiser is obtained. Detailed calculation of

[(2yJ =T)||, and || J — J* |, is given in Appendix

4 PnP methods with CoCo denoisers

In order to solve the implicit nonconvex restoration model in (I3)), we first consider PnP-ADMM with
CoCo denoisers, termed CoCo-ADMM. Then, we replace the fidelity term G in (I3)) by its Moreau
envelope, and derive the proximal envelope gradient descent method (PEGD) with CoCo denoisers
(CoCo-PEGD). The convergence are provided.

CoCo-ADMM. We first consider CoCo-ADMM iterations:

ubtl = Proxg (v —bF),
okl — Df,(u’”‘l + bk), (19)
bk+1 — bk + uk‘—i—l _ ’Uk+1,

where Df, is defined in Theorem . and 3 = 2. The PnP-ADMM algorithm in with a y-CoCo

a2

denoiser is referred to as y-CoCo-ADMM, or CoCo-ADMM for short.

When the denoiser D, € C[V] is a CoCo denoiser satisfying the conditions in Theorem and F’
verifies the Kurdyka-Lojasiewicz (KL) property [1,[19], the global convergence of PnP-ADMM in
(T9) can be established as follows.

Theorem 4.1 (Proof in Appendix A.6). Let F: V — R be a coercive weakly convex KL function in

Theorem|2.2|such that D, € Prox L. G : V — R is lower semi-continuous and convex. vy € (0,1).
t € 10,t0), where to = to() is the positive root of the equation
(2 =293 + 4t 429t —y = 0. (20)

Then, the sequence {(u*,v* b*)} generated by (19) converges globally to a point (u*,v*,b*), and
that u* = v* is a stationary point of the model .

Remark 4.2. The KL property has been widely used to study the convergence of optimization
algorithms in the nonconvex and nonsmooth setting [[1]. Many functions, in particular all the real
semi-algebraic functions, satisfy this property.

Remark 4.3. We consider several special cases of Theorem .1} Let D, be conservative. When
v = 0.5, D, is residual non-expansive, and ¢y ~ 0.3761. This recovers the case by [27]; when
v = 0.25, both D, and its residual I — D, can be expansive, but 0.5 D, —I is non-expansive. In this
case, tgp ~ 0.3333. When v = 1, D, is firmly non-expansive and is a proximal operator of some
CCP function by Moreau’s theorem. In this case, ¢y is no more needed to ensure the convergence,
since this is the standard case of ADMM. In experiments, we use D, (u€ + b%) as the final output.

CoCo-PEGD. Now we consider the PGD algorithm with a CoCo denoiser. The standard PGD takes
the form of:
uFtl = Prox% (u’C - B_IVG(uk)) . 2D

When F is r-weakly convex, VG is Lg-Lipschitz, and 37! < max{ LG2+T, i}, the iteration 1|
converges, see [2, [27].
However, in the Poisson inverse problems, G is not smooth, because VG is not Lipschitz. In order to

apply the PGD algorithm, we smooth the fidelity G in (I5)) and @ by replacing it with its Moreau
envelope *G (a € (0,00)): *G(u) := min, G(v) + 5 [Jv — ul|%.

Since G is CCP, “G is differentiable [7]: V*G(u) = 1 (I—Proxac), and that VG is L -Lipschitz.
Since there are already a step parameter § and a balancing parameter A in G, throughout this paper,
we set @« = 1. Now the iteration becomes:

ubtl = Prox% (u* — p7IVIG(uF)). (22)

In (22)), u alternates between a proximal operator Prox%, and a gradient descent step on the envelope
of G. is referred to as the proximal envelope gradient descent method (PEGD). Similar to



CoCo-ADMM li we replace Prox% with Df,, and arrive at CoCo-PEGD:

uF = DY (uf = BTV G (UF)). (23)
By Theorem D! = PPOX%, with I being r-weakly convex. Then by the Theorem 1 in [27],

CoCo-PEGD converges when 31 < max{%, 1}. This convergence result is summarized in
Theorem[4.4] By Theorem .4} when 3 > 1, CoCo-PEGD converges.

Theorem 4.4 (Proof in Appendix . Let F : V — R be a coercive r-weakly convex KL function
in Theoremsuch that D!, = Proxg. G:V = RisCCP.v€[0.25,1]. t€ (0,1. 0 < 87t <

max{l—ir, 1}. Then the sequence {u*} generated in converges to a stationary point of:
& € argmin F(u) + 'G(u; f). (24)
ueV

S Experiments

All the experiments are conducted under Linux system, Python 3.8.12 and Pytorch 1.10.2 with a RTX
3090 GPU.

Training details. For D, we select DRUNet [73], which combines a residual learning [24] and
UNet architecture [58]]. DRUNet takes both the noisy image and the noise level ¢ as input, making it
convenient for PnP image restoration.

To train a CoCo denoiser, we collect 800 images from the DIV2K dataset [30] as the training set
and used a batch size of 32 and patch size 128. We add Gaussian noise with randomly generated
standard deviation values in the range of [Omin, Omax] = [0, 50] to the clean image. Adam optimizer
is applied to train the model with learning rate I = 10~ We set a; = 1, a3 = 0.01, and € = 0.1 to
ensure the regularity conditions. To accurately evaluate the spectral norms || J(z) — J ' (z)|. and
[[(2y J —I)(x)]|«, we use the power iterative method [21]] with 30 iterations to ensure the convergence.

Denoising performance. We evaluate the Gaussian denoising performances of the proposed denoiser
CoCo-DRUNet, strictly pseudo-contractive DRUNet (SPC-DRUNet) [71], resolvent of a maximally
monotone operator (RMMO) [51]] which is firmly non-expansive, GS-DRUNet [28]], Prox-DRUNet
[29], the standard DRUNet, FFDNet [75]], and DnCNN [74].

The PSNR values are given in Table[T} A y-cocoercive conservative denoiser is referred to as y-CoCo-
DRUNet. We see in Table that compared with DnCNN, FFDNet, and the regularized denoisers,
0.25-CoCo-DRUNet has competitive denoising performance. This is because that: cocoercive and
conservative properties are less restrictive for deep denoisers; denoiser is trained with a different loss
function. Both 0.50-CoCo-DRUNet and Prox-DRUNet are conservative with non-expansive residual,
and therefore share a similar denoising performance.

Table 1: Left: Average denoising PSNR performance of different denoisers on CBSD68, for various

noise levels o; Right: Mean symmetry error || J —J T ||« (N = 1) and maximal values of the norm
2y J =1 (N = 30) for various noise levels o and v = 0.50, 0.25.

c=15 0=25 o=40

FFDNet 3386 3118 2881 15 % 40 Norms
DnCNN 3388 3120 2889 DRUNet 41e+0 4.2e+1 1.8+l || J—J" .
DRUNet 3414 3154 2933 0.50-CoCo-DRUNet  8.6e-3 25e4 7.led [|[J—J7|.
RMMO 3221 2999 27.87 0.25-CoCo-DRUNet  3.le-4  1.8e-4 3.9e-4 [ J—JT|.
GS-DRUNet 3356 3101 2881
Prox-DRUNet 33.18 3060  28.38 DRUNet 3.285  4.343  6.283 | J =T
SPC-DRUNet 3390 3129  29.10 0.50-CoCo-DRUNet  0.994  0.992 0972  [[J—1I].
0.50-CoCo-DRUNet ~ 33.38  30.65 2825 0.25-CoCo-DRUNet  0.986  0.969  0.982 [0.5J—1|,

0.25-CoCo-DRUNet  34.00 31.38 29.16

Assumption validations. In the experiments, the symmetric Jacobian and non-expansive residual
are softly constrained by the loss function (97) with trade-off parameters o, ao. We validate the
conditions in Table |1 We use the symmetry error || J(z) — J ' (x)||. over 100 different patches
with N = 1 as in Algorithm|[I]for better demonstration. A smaller error denotes a higher Jacobian
symmetry. The cocoerciveness is validated by calculating |2y J(x) — z|.. If ||2y J(2) — =]« < 1,
the denoiser is y-cocoercive.



As shown in Table [T, DRUNet without regularization terms has an expansive residual part. The
regularized CoCo-DRUNet is cocoercive. Besides, the proposed Hamiltonian regularization term
indeed encourages a symmetric Jacobian: in Table[T] we see that Hamiltonian regularization reduces
the symmetry error. It validates the effectiveness of the proposed training strategy. Ablation study on
the parameters o and s in (97) are provided on Appendix [A.T6]

PnP restoration. We apply CoCo-ADMM and CoCo-PEGD to multiple Poisson inverse problems
including: photon limited deconvolution, single photon imaging in a real-world low-light setting

in Appendix low-dose CT reconstruction tasks in Appendix Poisson denoising in
Appendix Computational time, performances under extreme conditions, and blind deblur

and denoise results, are reported in Appendices[A.14] [A 15} [A.17} and [A.18|respectively.

When K in @ is not the identity matrix, in general, Prox¢ has no closed-form solution. Since G is
convex, we use ADMM to solve Prox efficiently. For details, please refer to Appendix [A8]

We choose v = 0.25 since 0.25-CoCo-DRUNet has a satisfactory performance. According to
Theorems . 1}4.4, CoCo-ADMM and CoCo-PEGD are guaranteed to converge with ¢ < 0.3333. For
both CoCo-ADMM and PEGD, we need to calculate the proximal operator Prox - We detail the

calculations for each task in Appendix[A.8] For each method, we fine tune the parameters to achieve
the best quantitive PSNR values. The proposed methods are initialized with the observed image, that
i 20 0 0

isu’ =v” = f,b° =0.

Table 2: Left: Average deconvolution PSNR and SSIM performance by different methods on CBSD68
with Levin’s 8 kernels and Poisson noises with peak value p = 50 and p = 100. Right: Average
low-dose CT reconstruction PSNR and SSIM performance by different methods on Mayo’s dataset
with Poisson noises with peak value p = 500, and p = 100.

p =100 p =250
PSNR SSIM PSNR SSIM = 500 p =100
DPIR 26.51 0.7419 2538 0.6910 PSNR SSIM PSNR SSIM

RMMO-DRS 2594 0.7019 25.10 0.6546
Prox-DRS 25.68 0.6764 2521 0.6572
DPS 23.65 0.6062 23.10 0.5816
DiffPIR 2482 0.6429 24.08 0.6074
SNORE 2633 0.7158 2521 0.6719
PnPI-HQS 26.42 0.7158 25.61 0.6956
B-RED 24.09 0.6794 23.78 0.6603
CoCo-ADMM  26.89 0.7358 26.00 0.7026
CoCo-PEGD  26.79 0.7323 2590 0.6958

FBP 28.76  0.5212 24.10 0.2974
PWLS-TGV 33.16 0.8461 3043 0.7750
PWLS-CSCGR 3545 0.8909 33.78 0.8534
UNet 3693 09139 35.19 0.8875
WNet 37.12 09266 3598 0.9130
CoCo-ADMM  37.63 0.9403 36.68 0.9194
CoCo-PEGD 37.72 09391 3643 0.9159
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Figure 2: Deconvolution results by different methods on the image ‘Butterfly’ from Set3c
with kernel 2 and p = 50 Poisson noises. (a) Blur image. (b) DPIR, PSNR=25.00dB. (c)
RMMO-DRS, PSNR=21.86dB. (d) Prox-DRS, PSNR=22.57dB. (e) DPS, PSNR=21.47dB. (f) Diff-
PIR, PSNR=22.66dB. (g) SNORE, PSNR=25.14dB. (h) PnPI-HQS, PSNR=23.56dB. (i) B-RED,
PSNR=23.34dB. (j) CoCo-ADMM, PSNR=25.25dB. (k) CoCo-PEGD, PSNR=25.17dB. (1) Clean
image. (m) PSNR curves. (n) Relative error curves. x-axis denotes the iteration number.

Photon limited deconvolution. In this task, K in (T3) is the blur kernel. We use 8 real-world camera
shake kernels by [39], see Fig. @]in Appendix [A-9]

We compare our methods with some close related PnP methods, including DPIR [73], which applies
PnP-HQS method with decreasing step size. Please note that DPIR is not guaranteed to converge;



RMMO-DRS [66], which uses the DRS method with a firmly non-expansive denoiser RMMO;
B-RED [27], which uses the gradient descent method with a Bregman denoiser; PnPI-HQS [71],
which uses the Ishikawa HQS method with a strictly pseudo-contractive denoiser; SNORE [55]],
which proposes the novel stochastic denoising regularization by iteratively adding Gaussian noises.
We also compare two state-of-the-art diffusion-based methods: DPS [15] and DiffPIR [77]. The
average PSNR and SSIM values on CBSD68 are summarized in Table [2]

)
%
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Figure 3: Single photon imaging results in a real-world low light setting by different methods.

We show the visual results in Fig. 2] In Fig. 2] (a), the image ‘Butterfly’ is severely degraded. In
this setting, many methods fail to recover the clear edges, see Figs. [2](c)-(i). Compared with DPIR
and SNORE, the enlarged parts by CoCo-ADMM and CoCo-PEGD are closer to the potential clean
image, see Figs. [2](b), (e), (h), (i).

6 Conclusion and Limitation

This paper introduces a novel cocoercive conservative assumption on the denoiser. Cocoerciveness is
weaker than the existing assumptions, and is less restrictive for a deep denoiser. Conservativeness
is analyzed geometrically by the generalized Helmholtz decomposition on the Fréchet differential.
We propose a novel training strategy that incorporates a Hamiltonian regularization term and a
spectral regularization term, which encourages a cocoercive conservative (CoCo) Gaussian denoiser.
Theoretically, CoCo denoiser is proved to be a proximal operator of an implicit weakly convex prior
function. The global convergence results of PnP methods to a stationary point are given. The results
can be naturally generalized to other inverse problems with a convex fidelity term and an implicit
weakly convex prior term. Extensive experimental results demonstrate that the proposed CoCo-PnP
methods achieve competitive performance in terms of both visual quality and quantitative measures.

The main limitation of this paper is that the proposed CoCo denoiser exhibits a slightly worse
Gaussian denoising performance compared to the non-regularized denoiser, see Table [6] This is
because the proposed regularized denoiser sacrifices a little denoising performance in order to achieve
guaranteed theoretical results as stated in Theorems [2.2}4.4] Another limitation is that the proposed
learning strategy can only encourage the desired mathematical properties, not enforce them. In
experiments, we do observe that sometimes, even after a long time spectral regularization training, the
trained denoiser still violates the cocoercive property on some particular images. For conservativity,
we find that when N = 30, the symmetry error compared with standard DRUNet is smaller, but not
significantly smaller. How to enforce such properties without greatly compromising the denoising
performance is still an open problem. Since the paper mainly focuses on the theoretical analysis of
PnP methods, we will address these limitations in future works.
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* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We have provided detailed and correct proofs for each theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have clearly stated the experimental settings.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Once accepted, we will include a GitHub link, containing all the codes and
pretrained models.

Guidelines:

¢ The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have stated the settings clearly in the experiments section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Error bars are not suitable for this paper. Instead, we have reported detailed
quantitive values by different methods on a large dataset.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have reported these informations.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have carefully reviewed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is not related to any potential positive societal impacts and negative
societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All datasets are properly cited in the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A.1 Proof of Lemma

In order to prove Lemma[2.1] we will mainly use Proposition 3.1 by [6]]:

Proposition A.1 (Proposition 3.1 by [6]). Let C' be a nonempty open convex subset of V, let B be
a real Banach space, and let D : C' — B be continuously Fréchet differentiable on C. Then D is
non-expansive if and only if || J(z)||. < 1, Vax € C,J(z) := VD(z).

Now we prove Lemma[2.1]
Proof. In Lemma@ we let C = B =V, thus C is open convex, and B is a real Banach space. In

order to prove Lemma we only need to prove that D is y-cocoercive (v € [0, 00)), if and only if
Ve,y eV

[2yD—I)o(z) = (2yD =D o () < [l —yll. (25)
Note that (23) is equivalent to
49| D(z) = D()|I* + [l =yl = 4y(z — y,D(z) - D(y)) < ||z — yl|*, (26)
and equivalent to
YID(z) = D()|I* < {z —y,D(z) = D(y)), 27)
which means D is y-cocoercive. O

A.2 Characterizations on the denoiser

The first characterization of proximal operators of convex, closed, and proper functions is due to
Moreau’s theorem [47].
Theorem A.2 ([47]). Amap D : V — V is a proximal operator of a proper, closed, convex function
F :V — RU {400}, if and only if the it holds that:

* there exists a convex, closed function ¢ such that D(x) € 0y(z),Vz € V;

* D is nonexpansive, i.e.,

ID(z) = D(y)ll < llz - yl|, Yo,y € V. (28)

[22] generalized Moreau’s theorem to the proximal operators of potentially nonconvex functions.
Theorem A.3 ([22]). LetD : V — V and L > 0. The following are equivalent:

* thereis F' : V — R U {400} such that D(z) € Proxp(z),Vz € V, and x — F(z) +

1y [=]® -
(1 — Z) S closed and convex;

* D is L-Lipschitz, and that there exists a closed, convex function ¢ such that D(z) €
0Y(x),Vr € V.

When D € C![V], Gribonval and Nikolova also provided the following characterization.
Theorem A.4 ([22]]). LetD : V — V, and D € C'[V]. The following properties are equivalent:
* D is a proximal operator of a function F : V — R U {400},
o there exists a convex C2[V] function v such that D(z) = Vi (x),Vz € V;

o the differential J(x) = V D(x) is symmetric positive semi-definite for all v € V.

A.3 More general characterization on the CoCo denoiser

The following theorem is a tight use of Theorem [A.4]

Theorem A.5. Let D, € C'[V]. B = Z5. D, satisfies that:

e D, is conservative;

e D, is y-cocoercive with v € (0,00).

Then, there exists a function F : V — R, such that F is r-weakly convex, where r = (1 — ), and
that D, (z) € Prox% (x),Vz e V.
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Note that here is a little abuse of notation here: when v > 1, » < 0. “r-weakly convexity with a
negative r”” actually means “(—r)-strongly convexity”.

Proof. When D, is y-cocoercive with v > 0, by Lemma [2.1} () =TI« <
Therefore, J(x) is positive semi-definite for any 2 € V. Since D, is conservative, it has no

Hamiltonian part, J(x) = J¥ (2), V& € V. Therefore, J(x) is symmetric semi-positive for any z € V.
By Poincaré’s lemma (see Theorem 6.6.3 in [20]), there exists a convex C2 [V'] function ) such that
Dy(z) = Viy(z), Ve € V.

By Theorem there exists a function F' : V — R, such that D, € Prox £, where we let

8 = 1 for convenience. Now we prove that F' is weakly convex. Recall the resolvent form of
a proxnnal operator: Prox;; = (I+ ﬁf}‘F )~1. Given any =,y € V, choose arbitrary u,v € V,

u=Dy(z) € (I1+59F)""(z),v = Dy(y) € 1+5IF) 7" (y), then

Bla —u) € IF(u), By — v) € IF(v). (29)
Since D,, is y-cocoercive, by deﬁnition@,
(x =y, Do () = Dy (y)) = 7] Do () — Do (). (30)

By substituting u, v in (30), we have
(z—y,u—v) =7|u—v?
((z—u) = (y—v) + (u—2v),u—v) > 7llu—v|?
(B(z —u) = Bly —v) + Blu—v),u—v) > Byllu -] G
(Blz —u) = Bly —v),u—v) = By — 1)|lu— |
(Bl —u) = By —v),u—v) + A1 —7)[u—v[* > 0.

Recall (29), we know that F is r-weakly convex with r = 3(1 — 7). O

A.4 Proof of Theorem

Please note that, when v > 1, D, is firmly non-expansive and conservative, and therefore is a
proximal operator of some convex function. In this case, r(¢) could be negative: the “negative weakly
convexity” actually means convexity. Since a convex implicit prior function F' is out of interest in
this paper, Theoremfocuses on the weakly convex case, that is, v € (0,1).

Proof. Since D,, is y-cocoercive with v > 0, D! is naturally ﬁ-cocoercive: Ve,y € V, we
have

<1130(fv) —Do(y),z—y) Zlvll Dy () — Do (y)|?
<;(D§ —(1=t)o(z)— *(DZ —(1=t))o(y),r—y)

> 4D, —(1—t) D)o (z) — +(D, —(1 —t)I) o (y)|I?
H(DY () — D (), 2 — ) — £(1 — t)[} — y]1> > 7] D () — D, () — (1 — )( — )]

(32)
Denote a = D, (z) — D% (y), b = 2 — y for convenience. Then we have
t(a,b) — t(L = 1)[bI* = llal|? —2y(1 = #)(a,b) + (1 —1)?[b]]%, (33)
(t+2y(1=1)(a,b)  >llall® + (#(1 — 1) + (1 —1)*)[[b]*.
Now note that
<aa b> = t<D0(x) - DU(y)am - y> + (1 - t)HJ? - yH2 (34)

Since D, is y-cocoercive with v > 0, we know that D,, is %-Lipschitz. Therefore, by Cauchy-
Schwarz inequality,

1
(Do(z) = Dy (y),x —y) < ;le—yllz- (35)
That is,
(a.5) < (% +1=1) bl (36)
Y1 —t){a,b) < (L —t)[b]* +~(1 —t)2b]>.
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By substituting (36) into (33, we have

(t+~v(1=1){a,0) =1llal?,

(a,b) lall?, 37

>
T t+y(1-1)

which means that D! is m—cocoercive. Since D, is conservative, D’ is also conservative. By

Theorem we know that there exists a r-weakly convex function F': V' — R, where

_ _ _ ¥ _ t—yt
r_r(t)_5<1 t—i—’y(l—t)) _BH—'y—vt’

such that D!, € Prox%.

Now we prove that OF is L-Lipschitz. We consider two cases seperately.
Case1:t > % and t € [0,1).

In this case, we need to prove that OF is L(t) = Bﬁ Lipschitz. Given Vx,y € V, choose arbitrary
u, v, such that, u = D’ (z) € (I—i—%aF)’l(x),v =Dl (y) € (I—i—éaF)*l(y), then

B(x —u) € OF (u), By —v) € OF (v). (38)

Note that a = u — v,b = x — y. In order to prove OF' is L(t)-Lipschitz, we need to prove

t2
(1)

I8 -l <5l 39

1B(z —u) = Bly —v)lI* < L*(t)[lu—v|* = 82

lu =],

1b = alf?

< 2,

Since a = u — v = D! (2) — D (y) = t(Dy(x) — Dy (y)) + (1 — t)(z — y), b = = — y, we have
a—b=1tD,(z) —Ds(y)) — t(x — y). (40)
Now we only need to prove

t2| Do (z) — Do (y)[|* — 26*(Do (x) — Do (y), & — y) + [l — yl®

£2
S o (#?IIDo () = Do (y)[I* + 2¢(1 = )(Dy (2) = Do (y),x — ) + (1 = )|l — y[|*) ,
(41)
which is equivalent to prove
1-—2t 9
3571 Do (@) = Do )" < (Do (2) = Do (), 2 — y)- (42)
Since t > %, we have that
2l
1-2t _1-2570  2-2y-201-2y) 2y _ @)
22 - 2-2Z  22-2)-20-2) 2
We already have
Do (2) = Do ()] < (Do (2) = Do (y), 2 — 1) (44)
Thus,
1—2¢

551 Do (@) = Do ()[I” < vl Do (2) = Do (9)[|* < (Do (2) = Do(y),z —y). (45

Case2: ¢t < % and ¢ € [0,1).
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In this case, we need to prove that dF is L(t) = r(t) = ti;tjw Lipschitz. Similarly in (39), we
need to prove

T —u)— —)|)? 2@t)|Ju —v|]? = 2 (L—7)° u —vl?
18z —u) ~ By — V)| <Lt2(?1” )2|| TR
2 -7 2
16— all SWH all”.
Since a = u — v = D% (z) — D' (y) = t(D, ( )f D,(y))+ (1 —t)(x —y), b =2 —y, we have
a—b=1Ds(z) = Dy(y)) — t(z —y). 47)

Now we only need to prove
t*| Do () S D, (y)|I? = 2¢*(Dg(z) — Do (y), z — y) + t*]lz — y||®

2(1 —
S G (PIDs(@) = Da)IP + 201 = Do le) = D)o =) + (1= 6P = ol
(48)

When ¢ = 0, it holds naturally. When ¢ € (0,1), and ¢t < %, it is equivalent to prove
| Dy () *QDa(y)ll2 —2(Dg(z) = Dy (y),z —y) + [z — ylI* <

T (PIDa(0) = Do + 2601 = (Do) = Dol ) + (1= 02l o)
49)

which is equivalent to prove

(t+7 —17)? [ Do(z) = Do ()| = 2(Dq (x) — Do (y), x — y) + [l — y|1?]
< (1=7)? [ Do) — Do(y)||? + 2¢(1 — £)(Dy () — Do (y),x — y) + (1 — £)2||z — yl1?] ,

that is to prove
(£ = #9)? = £(1= %] | Dy () = Daly)?
—[2(t +7 = 19) +2t(1 - )(1 = 7)?] (Do (z) — Do (y), = — y) (51)
< [A=020=9)2 = (t+y—t9)?] ll= -yl
Now we check each coefficient, and estimate each term carefully. For the coefficient of || D, (x) —
D, (y)||?, we have
(t+y=t9)? =21 =) =291 =)t +9° > 0 (52)
For the coefficient of (D, (x) — D, (y),x — y), it is obviously non-positive. Besides, we have that
—[20t+ v —ty)? 4+ 2t(1 = £)(1 — 7)?]
= 2[4 21—ty + (= ) (1= )] (53)
= —(2—29)t— 292
Since D,, is y-cocoercive, we have that
[—(2 = 29%)t — 29°] (Do (2) —Do(y), z—y) < [-7(2 — 29)t — 29°] | Do (2) — Do (y) |12 (54)
For the coefficient of ||z — y||2, note that when v € (0,1),¢ € [0,1), and ¢ < %, we have

T oy 1>0. (55
2y

(1= (1= 7)? — (47— ) = 2y =2t = 2y +1 > (27~ )

Combining (32)-(33), to prove (1)), we only need to prove that
[27(1 =)t +92 =92 = 29*)t = 29°] | Do () = Do ()[* < [(2y = 2)t — 2y + 1] = — y|?
= [(29° =29t +9° = 29°] |1 Do () = Do ()* < [(2y = 2)t = 2y + 1 [|lz — y|>.

(56)
Since D,, is %-Lipschitz, we only need to prove that
1
S (2P =2+ —29°] <(2y-2)t—2y+1 7
= (2y=2)t+1-2y <(2y—-2)t—2y+1.
This completes the proof. O

Please note that any Lipschitz operator must be single-valued. Thus, there is actually only one
element in OF (), given any z € V.
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A.5 Calculation for ||(2yJ —1I)||, and || J —J" |,

We mainly use the power iterative method [21] to calculate the spectral norm of a given operator A.

Algorithm 1 Power iterative method

Given ¢° with ||¢°|| = 1, A, N
forn=1:Ndo

oM = Aqnfl
0 ot
T = Tamp
end for

Return AV = (¢™M)T A ¢V

By Algorithm [I] we can compute the spectral norm of A. Note that in Algorithm [I] we need to
calculate the matrix-vector product A ¢, given any g € V.

Given a denoiser D, Vo € V, J(z) = V D, () is the Jacobian matrix at the point z. To specify,
letx = [z1,29,...,2,)T €V =R", andy = [y1,¥2,...,yn]T = Ds(z) be the output after D,,.
Then the Jacobian matrix J(z*) at a given point z* is:

Oy Oy On]
a.’tl 81'2 axn
J(z*) = |Oz1  Oxy Dy, : (58)
L0z, Oxa Oz, | T=x*
We start with a = [a1, as, . .., an)T = I (x)v, where v = [v1,v2, ..., v,]T is any vector. By basic
linear algebra, we know that
a; = %vj, Vi=1,2,...,n, (59)
— Jx;
j=1
which implies
Iy, v)
=J7 = Ly 60
a (z)v o (60)

The calculation of b = J(x)v is a bit more complex. We will use the so-called double back-
propagation technique: since b = J(z)v, we have

"9
by = a—y’“vm Vk=1,2,....n 61)
o 9T
. T T . 8%’
Now consider w = [wy,wa, ..., wy,]|" . Lett = J* (z)w. Thus t; = > 9, Ui
j=10x;
olt
Let z = < ’U>,then
w
o(t,v) 0 - " Jy;
= = — i 1 . 62
i ow ow ;v ;&ciwj ©2)
The kth element of z is:
= i j = i—, Vk=1,2,....,n. 63
2k Duon izzlv ; oz, wj 2 v Bz, n (63)
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That is,

iy = Q) 2 v) "
z=J(z)v= S o , Yw € R™. (64)

The AutoGrad toolbox in Pytorch [S0] allows the calculation for %) The pseudo-codes in Pytorch

0
can be:

# Calculate J(x)v

def _jacobian_vec(y, x, V):
w = torch.ones_like(x, require_grad=True)
t = torch.autograd.grad(y, x, w, create_graph=True)[0]
return torch.autograd.grad(t, w, v, create_graph=True)[0]

# Calculate J "T(x)v
def _jacobian_transpose_vec(y, X, V):
return torch.autograd.grad(y, x, v, create_graph=True)[O0]

By and , one can calculate ||(2yJ —T)||, and || J —JT || by Algorithm

A.6 Proof of Theorem 4.1

We will make use of the Lyapunov function Lg for according to [40, 68, 29]:

Ls(u,0,8) = Fo) + Glus )+ Bb.u— ) + 5 u— o] (65)

We will first prove in part 1 that an important value for Lg(u, v, b) is positive whenever ¢ € (0, tg),
where t is the positive root of the characteristic equation in (20). Then, we will prove in part 2 that
L is non-increasing with the iteration number k. Finally, we will prove in part 3 that CoCo-ADMM
iteration in (T9) converges globally to a stationary point of (I3).

Proof. Let h(t) = (2 — 2v)t3 + 4% + 2yt — , where vy € (0, 1). Note that h is obviously smooth,
and h(0) = —v < 0, h(co0) = oo. Also note that when ¢ > 0,

R(t) = (2 — 29)t% 4 29t 4+ 2 > 0. (66)
Therefore, there exists a unique ¢y > 0, such that h(tg) = 0, h(t) > 0if t > tp, and h(t) < O if
te [0, to).
Part 1:
. . . . r 2
We consider a characteristic value for Lg(u,v,b) in : g -5 %
By Theorem ift €[0,1)and t > %, we have that r = ﬂtjgz% and L = S7%. Thus we
have
g r L* B Bt — 1) pt?
2 2 B2 2t+y—-ty) (1-1)?2
B ) t—nt 2t2
2 t+y—ty (1—1t)2
B 1 2 _ o2 ©7)
= — )2 —26%(t +y —t
20t +v —ty)(1 —t)2 (’Y( ) (t+ 'Y))
B 3 42
= — 2=29)t° + 9"+ 29t — ) .
2t +~—t)(1— 1) (=27 +91% + 291 =)
When 0 < t < ¢, where g is the positive root of the characteristic equation in li g — ’5 — %2 >0
holds.
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Ift € [0,1) and t < é:gz, we have that L = r = S—=2%__ Note that in this case, L = r < ﬁﬁ.

t4y—ty "
Thus,
8 r L?
2 2
o B _Blt—at) B
T2 2t4+vy—ty) (1—1t)? (68)
B

Tty (2 =297 +98* + 29t — ).

Therefore, we also have that when 0 < ¢ < ¢, g — % — LT; > 0 holds.
Part 2:

Now we prove that Lg (u®,v* b*) is non-increasing. Before that, we show two important formulas.
For vF+t1, by the first-order optimal condition, we know that

/Bbk+1 _ _6(Uk+1 _ uk+1 _ bk) c 8F(Uk+1). (69)
Similarly, for u**1, we have

—B(uFt — ok 4 bF) € G (WP f). (70)

In order to prove that Lg(u®,v* b*) is non-increasing, we decompose Lg(u®,v* %) —
Lg(uF+L vF+1 %1 into two parts:

Lg(’u,k, q)k’ bk) _ Lg(uk+1, ,Ulc—i-l7 bk+1)
k (71)

— Lg(u ,Uk7bk) _ Lg(uk+1,vk7bk) +L5(uk+1,vk7bk) _ Lg(uk+1,vk+1,bk+1)7

and estimate them separately as follows. By the convexity of G and the iteration form in (19), we
have
Lﬂ(ukv Uka bk) - Lﬁ(uk—‘rl? ’Uka bk)
— G(uk; f) _ G(uk+1; f) 4 ﬂ<bk,uk _ uk+1> 4 é”uk o UkH2 o §||uk+1 o vk”Q
= G(uh; ) = GuF 13 f) = (—BluFHY — oF b9, ub — b 1) 4 BR — Tk — k)

Lt = o = Dt o2

2 2
> 0+ B<vk: _ uk+17uk _ uk+1> + §<uk o uk+1,uk + uk-i—l _ 2’0k>
ko k+1
= Blub —ubtt ok bt gk DT Tu )
’ 2
= Dt -
(72)
By the r-weakly convexity of F', Vz,y € V, f, € OF(y), we have:
r
F(z) = Fy) = (fy,x = y) = 5llz =yl (73)
By the L-Lipschitz property of OF, Vz,y € V, f, € OF(y), we have:
L 2
F(x) = F(y) < (fyz —y) + 5z —yllI" (74)
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Combining (73) and (74), we can obtain that
La(uF+1 % b9) — Ly(ub+1, ok +1 ph+)
— F(Uk) _ F(’Uk+1) + ﬁ<bk,uk+l _ Uk> _ ﬁ(bk+1,uk+1 _ Uk+1>

+§”uk+1 _ UkH2 _ §||uk+1 _ Uk+1||2

— F(Uk) _ F(Uk—H) 4 B(bk,uk‘H _ Uk> _ ﬁ<bk,uk+l _ Uk+1> _ ﬂ(uk‘H _ vk“,ukH _ Uk+1>
—|—§||Uk _ ,Uk+1H2 —|—ﬂ(uk+1 _ ,Uk+1,vk+1 _ Uk>

= F(0%) = F(u"*) + BF, oM — o) — Blluftt —oF 2
+§”vk . ,Uk‘+1H2 +ﬂ(uk+1 _ vk+1,vk+1 _ Uk>

B

= F(ob) — F(oF*1) — (865, 0h 1 — ob) — Bllub+t — o2 4 Dok — b2

2
+ﬁ<uk+1 _ vk+17vk+1 o Uk>

> _%HUIC _ Uk+1H2 _ 6||uk+1 _ ,Uk—HHQ + gllvk _ Uk+1H2
= (55)w o e

L2
> (55 Ik -k = St - o2

_ ({j - L;) o — o2,
(75)

Note that the second ‘=" comes from the cosine rule, the first ‘>’ follows from the r-weakly convexity
of F as in (73), and the second ‘>’ results from the L-Lipschitz of OF as in (74).

Combining (72) and (73), we get

L6<uk,vk7bk) _ Lﬂ(uk+1,vk+1’bk+1) > g”uk _uk+1||2 + (g _ g _ 5) Hvk _Uk+1||2 >0,
(76)

that is, Lg(u®, v, b¥) is non-increasing.

Now we prove that {(u*, v b*)} is bounded. Note that F' and G are coercive on V. As a result,
Fu*) + Gu”; f) > +o0. (77)

Along with 8b% € OF (v*) and the property that F is L-Lipschitz, we arrive at

Lyl 0¥, B5) = F(u5) + Glubs )+ B0 — o) + O — o2

k k Lo kpzy Byok k2 7%
> P(u) + Gk f) = 2t — b2 4 D — o).
Note that L = %, and that ¢ < 0.5. Thus, L < (. Therefore,
L
F(¥) 4 Gl £) = 2ot = oH 2 + 5 — o2
2 2 (79)
= Fu)+ G )+ 58— D)lu* = o¥|* > —oc.
Since F'(u) + G(u; f) is coercive on V, u* vk, b* are bounded.
Part 3:
Define ¢**! as follows:
qk+1 _ [,B(karl _ bk + ’Uk _ ,Uk+1),ﬂ(vk+l _ uk+1)”8(bk+1 _ bk)] (80)
Define 0L (u,v,b) = [0uLg, Oy Lg, L. By the formulas (69)-(70), we know that
qk+1 c aLﬁ(uk+1’ Uk+17 bk+1). (81)

31



Note that
BB —bF o —o* || < BIOF =" [+ 8]0 —v* | < Lfjo* o4l =0T, (82)
and that

BT —uF )| = BI6" — b < Li" — o* (83)
we arrive at
g+ < Cllo* — o), (84)
where
C =3L+ 3. (85)

Now we can finally prove Theorem By Part 2, {(u*,v*,b%)} is bounded. So there is a
sub-sequence {(u™*,v™ b™ )} such that (u*, v™ ") — (u*,v*,b*), when n — +oo. Since
Lg(u®,v* b¥) is lower bounded and non-increasing, we have that |[u* — u**1|, [[v* — vk — 0
as k — +oo. Besides, since ¢* € OLg(u*,v*,b%) and |¢*|| < C|lv* — v**1||, we know that
il — 0, ||g"*|| — 0. Thus, 0 € OLg(u*,v*,b*), and (u*, v*,b*) is a stationary point of L.
Since F, G is KL, we conclude that Lg is also KL. Then, by the proof of Theorem 2.9 in [2],
{(u™*, v"™, b™ )} converges globally to (u*,v*, b*).

Since (u*, v*,b*) is a stationary point of Lg, and as a result, ¢* = 0, that is

g =1[0,8(v" —u*),0] =0. (86)
Therefore,u* = v*. By CoCo-ADMM iteration in (I9), we know that
u* = Proxg (u* — b*),
e (87)
u* =D, (u*+b*) € Prox%;(u* +b%).
Equivalently,
—Bb* € OG(u*; f), Bb* € OF (u*), (88)
0 € OF(u*) + AG(u*; f). (89)
Therefore, u* is a stationary point of (T3). O

A.7 Proof of Theorem 4.4

The convergence of PGD with weakly convex prior function has been extensively studied. For details,
one can refer to [2,27]. For example, [27] prove that

Theorem A.6 (Theorem 1 by [27]). Let F, H be proper, closed, bounded from below, and H is
differentiable with L py-Lipschitz gradient, and F is r-weakly convex. Then for T < max{+—=— LH et LH}
the iterates

!¢ Prox,p o(I -7V H)(u*) (90)
verify
o (F(u®) 4+ H(u*)) is non-increasing and converges.

k

o All cluster points of the sequence u” are stationary points of F' + H.

o If the sequence u” is bounded and if F + H verifies the KL property at the cluster points of
u¥, then u* converges to a stationary point of F + H.

By Theorem[A.6] we can prove Theorem [4.4]

Proof. Let F be the proper, closed, weakly convex prior function. Let H = G be the Moreau
envelope of G, that is

1
H(u) = 'G(u) := min G(v) + §||v—u||2. 1)
v
Then 'G is diffentiable:
VG =1-Proxg. (92)
Since G is proper, closed, and convex, its proximal operator is firmly non-expansive. Therefore, VG

is also firmly non-expansive, thus 1-Lipschitz. Since F' and G is coercive and KL, F' + G is also
coercive and KL. Therefore, u* is bounded. By Theorem if § < max{{};,1}, CoCo-PEGD

converges to a stationary point of F' + *G. O
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A.8 Proximal operator on the fidelity for each task

When K # 1, in general, there is no closed-form solution for Prox - Given f € V, we say
T = PI‘OX% (2), if

a?:argmin)\(l,Kx—flong>—|—§Hx—z||2. (93)

(93) is solved by ADMM with T iterations and p > 0 as follows:
a = (B4 pKTK) T (B2 + pK T (y' — w')),
y' ! =M@QHMLy—fme+gWﬁﬁi—y+wwa (94)
Wit = i i+l — it

When K is a blur kernel, z-subproblem can be solved by the fast Fourier transformation as in [49]].
When K = R is the Radon transform, one can calculate (3 + pK T K)~! by the conjugate gradient
method. There is a closed form solution for the y-subproblem by [34]:

i 28+ /(292 + 4pA
y +1 _ ( 2) 14 f7 (95)
p
where A ‘ ‘
2= p(Kz™ 4 ') — AL (96)

We initialize 2° = y° = 2, w® = 0, and output # = 2. We set T' = 10 to ensure the convergence of
the z-subproblem.

A.9 Detailed Deconvolution results on each kernel

See Tables 314l

Figure 4: Eight blur kernels from [39]].

Table 3: Average Deconvolution PSNR and SSIM performance by different methods on CBSD68
dataset with Poisson noise with peak value p = 100.

p=100 kernell kernel2 kernel3 kernel4 kernel5 kernel6 kernel7 kernel8 Average

DPIR 26.24 25.97 26.66 25.65 27.61 27.42 26.52 26.00 26.51
0.7321  0.7209 0.7439 0.7016 0.7870  0.7780  0.7462  0.7257  0.7419

RMMO-DRS 25.60 25.39 26.07 25.19 26.92 26.59 26.06 25.67 25.94
0.6895 0.6804 0.7057 0.6665 0.7426 0.7296  0.7089  0.6921  0.7019

Prox-DRS 25.32 25.03 25.82 24.80 26.75 26.39 25.94 25.40 25.68
0.6546  0.6488 0.6842 0.6336 0.7256 0.7050 0.6924 0.6668  0.6764

DPS 23.40 23.23 24.19 22.86 24.74 24.06 23.60 23.10 23.65
0.5941 0.5882 0.6303 0.5699 0.6550 0.6265 0.6039 0.5815  0.6062

DiffPIR 24.46 24.45 25.03 24.17 25.66 25.27 24.93 24.56 24.82
0.6250 0.6251 0.6510 0.6085 0.6838 0.6664 0.6509 0.6325  0.6429

SNORE 25.75 25.99 26.56 25.70 27.13 26.85 26.55 26.09 26.33

0.6985 0.6993 0.7202 0.6856 0.7485 0.7405 0.7249 0.7085  0.7158

PnPI-HQS 26.25 25.95 26.32 25.70 27.32 27.15 26.55 26.15 26.42
0.7024  0.6930 0.7124  0.6797 0.7570 0.7466  0.7269  0.7084  0.7158

B-RED 23.89 23.55 24.09 23.33 25.04 24.61 24.33 23.88 24.09
0.6206 0.6188 0.6537 0.5988 0.6824 0.6584 0.6434 0.6200  0.6370

CoCo-ADMM  26.66 26.46 26.93 26.23 27.78 27.52 26.96 26.59 26.89
0.7270  0.7183 0.7343  0.7075 0.7707 0.7630 0.7404 0.7254  0.7358
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Table 4: Average Poisson deblurring PSNR and SSIM performance by different methods on CBSD68
dataset with Poisson noise with peak value p = 50.

p=50 kernell kernel2 kernel3 kernel4 kernel5 kernel6 kernel7 kernel8 Average

DPIR 25.10 24.83 25.66 24.50 26.45 26.20 25.41 24.89 25.38
0.6773 0.6656 0.6988 0.6480 0.7390 0.7261 0.6981 0.6752  0.6910

RMMO-DRS 24.86 24.73 25.39 24.51 25.84 25.52 25.12 24.83 25.10
0.6439  0.6419 0.6690 0.6292 0.6826 0.6697 0.6549 0.6457  0.6546

Prox-DRS 24.89 24.69 25.45 24.43 26.14 25.81 25.36 24.92 25.21
0.6363 0.6319 0.6676 0.6164 0.7024 0.6829 0.6714 0.6484  0.6572

DPS 2292 22.76 23.72 22.34 24.13 23.48 22.98 22.49 23.10
0.5724  0.5668 0.6088  0.5475 0.6266 0.5990 0.5758 0.5561  0.5816

DiffPIR 23.79 23.73 24.43 23.45 2491 24.45 24.16 23.77 24.08
0.5915 0.5894 0.6220 0.5744 0.6478 0.6263 0.6134 0.5941  0.6074

SNORE 24.57 25.06 25.80 24.75 25.78 25.34 25.34 25.01 25.21

0.6522 0.6617 0.6893 0.6490 0.6967 0.6863 0.6749 0.6648  0.6719

PnPI-HQS 25.54 25.29 25.80 25.02 25.60 26.37 25.83 25.41 25.61
0.6972 0.6705 0.6943 0.6563 0.7359 0.7231 0.7039  0.6837  0.6956

B-RED 23.49 23.41 23.86 22.99 24.69 24.49 23.86 23.46 23.78
0.6083  0.6059 0.6436 0.5854 0.6692 0.6441 0.6264 0.6027  0.6232

CoCo-ADMM  27.74 25.57 26.16 25.32 26.89 26.52 26.09 25.67 26.00
0.6906 0.6817 0.7072 0.6701 0.7412 0.7289 0.7098 0.6911  0.7026

A.10 Single photon imaging

We test the proposed methods in a low-light real-world scenario: single photon imaging task by a
time-correlated single-photon avalanche diode (SPAD) camera [62]. In this task, a SPAD array is
used to track periodic light pulses in flight, and each detector only recieves about 1 signal photon per
pixel on average (p ~ 1). By the uncertainty principle [26}56], since the momentum of the photons
is known, the position of the photons cannot be accurately recorded. Therefore, the arrival time of
each photon in the SPAD array is a random variable, and can be modelled by a Poisson process. By
the filtered histogram method, a reflectivity imageﬂ is obtained, see Fig. |3((a).

We compare the visual denoising performance on Fig. [3|(a) by some state-of-the-art Poisson noise
removal methods: Photon TV using a TV prior specialized for this problem [62]; BM3D-VST, a
BM3D method with variance stabilization transform designed for Poisson noises [3]]; DnCNN [74]]
trained as a Poisson denoiser; VDIR, a variational inference network [63]]; VBDNet, a variational
bayesian deep network for blind poisson denoising [41]. We also compare three PnP methods, DPIR,
RMMO-DRS, and PnPI-HQS, as introduced before.

We show the visual results in Fig. [3] It can be seen in Figs. [3|(b)-(c) that, non-deep methods provide
blurred results with unclear edges. End-to-end deep learning methods provide over-smoothed results,
and cannot restore the fine details in the flower, see Figs. [3|(d)-(f). Compared with other PnP methods,
CoCo methods can recover the fine textures in the flower, as well as the sharp edges in the equation,
see Figs. [3](g)-(k). Since there is no reference image in this real-world scenario, we only report the
relative error curves to validate the convergence in Fig. 3] (1).

A.11 Ablation study on v and ¢ in CoCo-PnP

We report the PSNR values by CoCo-PnP with different y and ¢ in the deblurring task in Table [3}
It can be seen that, the proposed methods are sensitive to -y, because it determines the denoising
performance, but not sensitive to ¢.

A.12 Low-dose CT reconstruction

In order to further illustrate the effectiveness of the proposed methods, we consider the sparse-view
low-dose CT reconstruction task. In this task, K = R is the Radon transform, and f in Eq. is the
down-sampled data in the Radon field. The Radon field data is corrupted by the Poisson noise.

>The data is kindly provided by [62] in github.com/photon-efficient-imaging/single-photon-camera.
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Table 5: PSNR results by CoCo-PnP with different v and ¢ when deblurring the image ‘0005’ from
CBSD68 and kernel 8 from Levin’s dataset. The Poisson noise level is 50. We run the algorithm
for 500 iterations to ensure the convergence. When v = 0.25, to(y) = 1/3, thus ¢t < 1/3. When
v = 0.5, to(7y) =~ 0.3761, thus ¢ < 0.3761.

v =0.25 t 0.3333 0.300 0.200 0.100 0.001
CoCo-ADMM PSNR 2533 2531 2530 2524 25.16
CoCo-PEGD  PSNR 2532 2530 2527 2522 2498
v = 0.50 t 0.3761  0.300 0.200 0.100 0.001
CoCo-ADMM  PSNR 2488 2487 2479 24.64 2447
CoCo-PEGD PSNR 2484 2482 2471 2454 2435

For the test set, we select ten typical images from “the NIH-AAPM-Mayo Clinic Low Dose CT
Grand Challenge” [45]], see Fig. [f

For the comparison methods, we use: FBP, the conventional filtered back projection method; PWLS-
TGYV, penalized weighted least-squares (PWLS) with total generalized variation (TGV) prior [48]];
PWLS-CSCGR, PWLS with convolutional sparse coding and gradient regularization [S]]; UNet,
which take the result by FBP as the input [31]; WNet, which uses two UNets to construct the data
from both the image and Radon domain [14]].

We show the reconstruction results with 60 projection views and Poisson noises with peak value
p = 100, 500 in Table E} It can be seen that, compared with two iterative PWLS-based methods, and
two end-to-end deep learning methods, the proposed CoCo methods have a significant improvement
in PSNR and SSIM values.

Figure 5: CT test images.

A.13 Poisson denoising results

We apply CoCo-ADMM and CoCo-PEGD to Poisson denoising problems. In this task, ' = I is the
identity. The average PSNR and SSIM values on CBSD68 are summarized in Table[6] It can be seen
that compared with other convergent methods, the proposed methods achieve the best PSNR and
SSIM values. It validates the effectiveness of CoCo methods.

A.14 Computational cost
In Table[7] we give the average computation time in seconds, as well as the memory cost in MB by

different methods when deblurring a 256 x 256 image. It can be seen that the proposed methods are
the most efficient with least memory cost.
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(a) FBP (b) PWLS-TGV  (c) PWLS-CSCGR' (d) UNet (e) WNet

10" ——PWLS-TGV
—Coco-ADMM

0
Coco-PEGD
S s —PWLS-CSCGR
TS —PWLS-TGV 1027
. 30 —Coco-ADMM
> 1] Coco-PEGD
5 - —PWLS-CSCGR
107

50 100 150

100 150 ©

(f) CoCo-ADMM  (g) CoCo-PEGD(h) High-dose reference (i) PSNR (j) Relative error

Figure 6: Sparse view CT reconstruction results with 60 views and Poisson noises (peak=500).
(a) FBP, PSNR=30.91dB. (b) PWLS-TGYV, PSNR=36.12dB. (c) PWLS-CSCGR, PSNR=37.80dB.
(d) UNet, PSNR=38.54dB. (e) WNet, PSNR=38.74dB. (f) CoCo-ADMM, PSNR=40.46dB. (g)
CoCo-PEGD, PSNR=40.28dB. (h) High-dose reference. (i) PSNR curves. (j) Relative error curves.

Table 6: Average denoising PSNR and SSIM performance by different methods on CBSD68 with
peak value p = 30 and p = 20.

p=30 p=20
PSNR SSIM PSNR SSIM
DPIR 29.85 0.8654 28.68 0.8300

RMMO-DRS 2790 0.8008 27.74 0.7887
Prox-DRS 28.99 0.8087 27.94 0.7724
SNORE 2947 0.8474 2834 0.8226
PnPI-HQS 2990 0.8613 28.63 0.8156
B-RED 28.80 0.8041 26.26 0.7362
CoCo-ADMM  29.99 0.8604 28.76 0.8329
CoCo-PEGD  29.99 0.8625 28.77 0.8332

A.15 Performances under extreme conditions

In Fig. [7] we show an example when deblurring an image under severe noisy condition. It can be
seen in Fig. /| (a) that the image is severely corrupted. We compare results by different methods. It
can be seen that CoCo-ADMM and CoCo-PEGD provide sharper edges. Even in this extreme case,
the proposed methods are still convergent, see Figs. [7] (m)-(n).

A.16 Ablation study on the parameters «; and as
Loss(0) = E|| Dy (x + &60) — z|li + a1 | T = I ||« + ag max{[|2y T — 1., 1 — €}. 97)
In the loss function (97)), o1 controls the penalty strength of the Hamiltonian term to encourage con-

servativeness, and a controls the penalty strength of the spectral term to encourage cocoerciveness.

As shown in Table[8] DRUNet without regularization terms has an expansive residual part. When
o gets bigger, the mean symmetry error gets lower. When as is smaller than 1le-2, the regularized
denoiser may not be cocoercive.

B-RED  Prox-DRS SNORE  DiffPIR DPS CoCo-ADMM  CoCo-PEGD

Iteration 300 100 200 100 1000 50 100
Time 42.5s 13.6s 74.1s 11.8s 177s 5.24s 9.08s
Memory 4946MB  3982MB  3624MB 2998MB 4694MB 2304MB 2304MB

Table 7: Average computation time in seconds, and memory cost in MB by different methods when
deblurring a 256 x 256 image.
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Figure 7: Deconvolution results by different methods on the image ‘0005’ from CBSD68
with kernel 8 and p = 10 Poisson noises. (a) Blur image. (b) DPIR, PSNR=22.49dB. (c)
RMMO-DRS, PSNR=22.23dB. (d) Prox-DRS, PSNR=22.54dB. (¢) DPS, PSNR=20.70dB. (f) Dift-
PIR, PSNR=21.66dB. (g) SNORE, PSNR=23.31dB. (h) PnPI-HQS, PSNR=23.14dB. (i) B-RED,
PSNR=21.15dB. (j) CoCo-ADMM, PSNR=23.04dB. (k) CoCo-PEGD, PSNR=23.02dB. (1) Clean
image. (m) PSNR curves. (n) Relative error curves. x-axis denotes the iteration number.

Therefore, we set the penalty parameters large enough to encourage the properties we want. However,
when a gets too large, the denoising performance may be sacrificed. We empirically set a; = 1,
ag = le-2 in the experiments.

Table 8: Mean symmetry error || J — J ' ||, with N = 1 and maximal values of the norm ||2yJ —1I ||,
with N = 30 on CBSD68 for various noise levels ¢ and v = 0.50, 0.25.

15 25 40 Norms aq o)

DRUNet 4.1e+0 4.2e+1 18e+l [[J-JT|. 0 0
0.50-CoCo-DRUNet ~ 8.6e-3  2.5e-4 7.de-4 [[J—J'|, 1 le2
0.50-CoCo-DRUNet ~ 2.9e-1  2.6e-2  9.5e-2 [[J—JT |, 1le2 1le2
0.25-CoCo-DRUNet  3.le-4 1.8e-4 3.9e-4 |[|J—J'|. 1 le-2
0.25-CoCo-DRUNet ~ 5.9e-1  8.5e-1  7.9e-1  [[J—J" |, 1le2 1le2

DRUNet 3.285  4.343  6.283 1 J—=1]. 0 0
0.50-CoCo-DRUNet ~ 0.994  0.992 0972  [[J—1I]. 1 le2
0.50-CoCo-DRUNet ~ 1.011  1.244  1.500  ||[J—TI||. 1 le3
0.25-CoCo-DRUNet  0.986  0.969  0.982 ||0.5J—1I]. 1 le-2
0.25-CoCo-DRUNet  0.992 1.010 1.211  ||0.5J =1 1 le-3
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Figure 8: Blind decovolution results by different methods.

A.17 Blind Deblur Results

In this section, we evaluate the performance of our proposed methods on real-world blind deblurring.
We select 18 images from the dataset by Lai et al. [33], which captures challenging real-world
blurry scenes. Four state-of-the-art methods are benchmarked: Deblur-INR [[76], Lv et al. [42]],
DPIR [77], and RMMO [66]]. Deblur-INR is a self-supervised method that jointly estimates clean
images and blur kernels, while Lv et al. applies total variation regularization to refine latent
image estimation in a blind deblurring framework. In contrast, DPIR, RMMO, and our proposed
CoCo-ADMM/CoCo-PEGD require pre-estimated blur kernels as input. To ensure fairness, all
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INR Lvetal. DPIR RMMO CoCo-ADMM CoCo-PEGD
Average 0.2990 0.3444  0.3629  0.2664 0.5461 0.5474
Table 9: Average CLIP-IQA results across all deblurred images

kernel-dependent methods utilize blur kernels generated by the blind deblurring framework of Liu et
al. [42]. Visual comparisons in Fig. [§]demonstrate that CoCo-ADMM and CoCo-PEGD produce
sharper textures and fewer artifacts than baseline methods.

For quantitative evaluation, we employ the CLIP-IQA metric [[70], a non-reference image quality
assessment tool that leverages the pretrained vision-language representation of CLIP (Contrastive
Language—Image Pretraining) to evaluate perceptual quality without requiring pristine reference
images. The average CLIP-IQA scores across all deblurred images are summarized in Table [9]
Despite relying on the same estimated kernels as DPIR and RMMO, our methods achieve superior
performance, highlighting their robustness to kernel estimation errors and enhanced restoration
capability.

A.18 Blind Denoise Results

Zoomed DRUNet PnPI-HQS DPIR RMMO CoCo-ADMM CoCo-PEGD

Figure 9: Blind noise removal results by different methods.
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Figure 10: Blind noise suppression results in CT images by different methods.

In this section, we evaluate the performance of our proposed denoising framework on two benchmark
datasets that capture real-world noise characteristics. For medical imaging, we employ the Low-Dose
CT dataset from Mayo Clinic [46], which provides paired low-dose CT scans with Poisson noise.

For natural images, we utilize the DND dataset [52]], comprising 50 real noisy photographs corrupted
by a mixture of Poisson and Gaussian noise. Following the standard evaluation protocol, perceptual
quality is quantified using the CLIP-IQA metric [70].

To ensure a fair comparison, we benchmark our proposed methods (CoCo-ADMM and CoCo-PEGD)
against five representative techniques: DRUNet[[77], DPIR [77] , RMMO [66] , and PnPI-HQS
[71]]. Quantitative results in Table[I0]demonstrate that our proposed methods achieve state-of-the-art
performance across both imaging domains.
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DRUNet DPIR RMMO PnPI-HQS CoCo-ADMM CoCo-PEGD

Color images  0.4464  0.4509 0.4561 0.4586 0.4596 0.4593

CT 0.4154  0.4258  0.4398 0.4011 0.4707 0.4730

Table 10: Average CLIP-IQA results for blind image denoising.
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