
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CHEMTHINKER: THINKING LIKE A CHEMIST WITH
MULTI-AGENT LLMS FOR DEEP MOLECULAR
INSIGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Molecular property prediction is vital in drug discovery and cheminformatics,
yet many current models lack interpretability, making it difficult for experts to
understand the rationale behind predictions. To address this, we introduce Chem-
Thinker, a novel large language models (LLMs) multi-agent framework designed
to effectively control the internal representations of concepts and functions within
LLMs. ChemThinker emulates the way chemists approach molecular analysis
by integrating insights from three perspectives: general molecular properties,
data-driven analysis, and task-specific factors. Each perspective uses an agentic
approach to stimulate the LLM’s internal representations, enabling more targeted
and interpretable outputs based on the problem at hand, akin to how stimuli trig-
ger the brain’s cognitive processes. By feeding representations from these three
perspectives into a simple multi-layer perceptron (MLP), ChemThinker achieves
superior performance, significantly outperforming existing baselines across multi-
ple benchmarks. Furthermore, our framework provides interpretable insights into
the molecular mechanisms driving the predictions, making it a practical tool for
drug discovery and other cheminformatics applications.

1 INTRODUCTION

“If I have seen further it is by standing on the shoulders of giants.”

– Isaac Newton

Molecular property prediction plays a crucial role in cheminformatics (Yang et al., 2019) and drug
discovery (Drews, 2000; Zhang et al., 2021), enabling experts to estimate essential characteristics
such as blood-brain barrier permeability, solubility, and toxicity (Wu et al., 2023). While numerous
works (Hu et al., 2019; You et al., 2020; Wang et al., 2022; Stärk et al., 2022; Zhou et al., 2023) exist
for this task, they often fall short in providing interpretable insights into the underlying molecular
mechanisms. In real-world applications, simply delivering a prediction is rarely sufficient. Domain
experts require a deeper understanding of the rationale behind the predictions— the “why”—to make
informed decisions. Unfortunately, this critical aspect is often overlooked.

Moreover, current approaches (Xia et al., 2022; Liu et al., 2022; Luo et al., 2024; Rollins et al., 2024)
primarily focus on identifying statistical patterns via extensive model training to predict molecular
properties. However, this often overlooks the incorporation of established scientific knowledge,
limiting the model’s ability to be guided toward more informed and contextually relevant solutions.
Rather than “learning from scratch,” leveraging well-established scientific knowledge and frameworks
offers a more reasonable and effective approach to tackling domain-specific problems like molecular
property prediction. In other words, by “standing on the shoulders of giants,” models can be directed
towards more accurate and interpretable predictions, enhancing their practical utility.

Recently, large language model (LLM) agents have gained significant attention (Taylor et al., 2022;
Dubey et al., 2024; OpenAI et al., 2023). With extensive training on vast amounts of data, these
models have developed emergent abilities (Wei et al., 2022), enabling them to perform complex
tasks such as role-playing and reasoning, at levels akin to human experts (Chen et al., 2024), such as
chemists (Wang et al., 2024). In some cases, LLM agents can match or even surpass human expert
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performance across a wide range of tasks, including medical question answering (Singhal et al.,
2023) and chemical reasoning task (Mirza et al., 2024). Remarkably, Yao et al. (2022) demonstrate
that integrating reasoning traces with task-specific actions can enhance model interpretability and
performance, and the collaborative LLM agents can even further enhance the performance on intricate
tasks (Hong et al., 2023; Li et al., 2024).

In this paper, we propose ChemThinker, a Multi-Agent LLM framework designed to extract deep
molecular insights from three distinct perspectives: General Molecular Thinking, Intuition-Driven
Thinking, and Task-Specific Thinking. Here analysis of each perspective is taken charge of a
specific LLM agent. The thought components extracted from three perspectives are then fused
as representations, which can be utilized in a simple multi-layer perceptron (MLP) classifier for
downstream tasks. This three-perspective analysis framework mirrors how chemists approach real-
world molecular problems. Chemists typically begin with a general molecular analysis, followed by
applying intuition from past experience and data analysis of similar molecules to infer properties.
Finally, they focus on the specific task, adapting their approach to meet the unique requirements
of the problem or prediction. Similarly, ChemThinker follows this process to generate molecular
insights, providing a detailed text report that enhances the framework’s interpretability and deepens
the understanding of its predictions.

We demonstrate ChemThinker’s performance across eight diverse molecular property prediction tasks,
achieving state-of-the-art results on most tasks while also offering deeper molecular insights. Addi-
tionally, ChemThinker exhibits adaptability and flexibility by leveraging the varying contributions of
each thought component as molecular representation to address different tasks. Our contributions are
summarized as follows: (1) We propose an LLM-based Multi-Agent framework, ChemThinker, which
emulates the thought process of chemists. This framework defines a new paradigm for molecular
representation learning to improve molecular property prediction. (2) ChemThinker demonstrates
flexibility by dynamically adjusting the contributions of each thought component, depending on the
task and backbone model, leading to improved prediction accuracy and generalization across multiple
datasets. (3) Through comprehensive experiments on both open- and closed-source LLMs, Chem-
Thinker achieves state-of-the-art results in various molecular property prediction tasks, showcasing
the power of leveraging pretrained LLMs for scientific applications. (4) In addition to providing
accurate predictions, ChemThinker offers deeper molecular insights, aligning with the reasoning
process used by chemists, thus improving the transparency and interpretability of the predictions.

2 RELTAED WORK

The accurate prediction of molecular properties is a cornerstone of cheminformatics (Yang et al.,
2019) and bioinformatics (Zhang et al., 2021), relying heavily on the computational representation of
molecular structures. Several representation methods have been developed, including molecular graph,
Extended-Connectivity Fingerprints (ECFP) (Rogers & Hahn, 2010), and string line annotations
such as Simplified Molecular Input Line Entry System (SMILES). With the advancement of artificial
intelligence, machine learning models have been extensively utilized for property prediction through
two main approaches: traditional models and deep learning models. In the conventional approach,
computed or handcrafted molecular fingerprints are fed into traditional machine learning models,
such as random forests (Breiman, 2001), effectively capturing the relationship between molecular
substructures and their associated properties (Axen et al., 2017; Jeon & Kim, 2019). However,
they normally rely on predefined fingerprints and may not fully capture the complex patterns and
interactions within molecular structures.

On the other hand, standard deep learning models aim to extract expressive representations of
molecules in a data-driven manner. Recent works (Hu et al., 2019; You et al., 2020; Wang et al., 2022;
Xia et al., 2022) leverage Graph Neural Networks (GNNs) to directly learn from molecular graphs.
By learning hierarchical representations that capture both local and global structural information, they
can uncover complex patterns and relationships within molecules. Additionally, other studies (Zhou
et al., 2023; Luo et al., 2024; Zheng et al., 2024; Rollins et al., 2024) also combine a sequence-based
model with other backbone architectures to capture both contextual relationships from sequential
representations such as SMILES and structural features from GNNs. Nevertheless, these data-driven
approaches are often limited by the quality and size of available datasets, as they typically require
training from scratch. While these standard deep learning models excel at capturing complex patterns,
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Figure 1: The ChemThinker Framework. The general molecular thinking workflow examines
an input molecule’s intermolecular forces, 3D structure, and chemical equilibrium. The intuition-
driven thinking workflow retrieves relevant scientific rules from literature and the experience pool,
i.e., related datasets, to help in addressing downstream tasks. The task-specific thinking workflow
focuses on thinking of the final answer for the downstream task by utilizing the molecular insights
provided by the first two agents stored in memory. After the agentic thinking processes, the thought
representations generated by the three workflows are fused and then input into a linear predictor to
produce the final predictions for various downstream tasks.

they often struggle to provide interpretable insights into the underlying molecular mechanisms,
making it challenging to discern how underlying features contribute to the final predictions.

With the rapid advancement of Large Language Models (LLMs), remarkable success has been
achieved across a wide array of tasks. Mirza et al. (2024) systematically analyze the chemical
reasoning capabilities of LLMs, their findings indicate that even a LLM with 7B parameters can
achieve an average human score, while more advanced models like GPT-4 (OpenAI et al., 2023) can
surpass the highest human scores in chemical reasoning question answering. Furthermore, despite
the growing adoption of LLMs in cheminformatics (Zhong et al., 2024; Jablonka et al., 2023; 2024;
Liao et al., 2024), the potential of LLM-based Multi-Agent systems for molecular property prediction
remains largely unexplored.

Therefore, to address these limitations, we propose a novel LLM-based Multi-Agent framework,
ChemThinker, that leverages the collective intelligence, specialized profiles, and diverse skills of
multiple agents. By standing on the shoulders of giants, our framework utilizes extensive pre-trained
knowledge, human-like language generation, and reasoning abilities of LLMs. ChemThinker achieves
more accurate molecular property predictions while generating detailed reports that experts could use
for real-world analysis and decision-making.

3 CHEMTHINKER: THINKING LIKE A CHEMIST

In this section, we introduce ChemThinker, a novel multi-agent framework developed to extract deep
molecular insights. As shown in Figure 1, ChemThinker leverages the collaborative capabilities
of three agents from General Molecular Thinking, Intuition-Driven Thinking, and Task-Specific
Thinking. For any given chemoinformatic task, ChemThinker harnesses its collective intelligence to
generate a comprehensive report that provides deep molecular insights, along with fused representa-
tions to ensure precise downstream task predictions.

Notation and Problem Definition. We use The Simplified Molecular Input Line Entry System
(SMILES) (Weininger, 1988) to represent molecular structures, where Si is a SMILES string and
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S is the SMILES dataset. The agent in each thinking component is represented as AGen, AInt
and ATask, each guided by the corresponding persona description P . Given a set of questions
{q1, q2, . . . , qn} 2 Q, the agent will provide a detailed analysis and explanation as the molecular
insights I for the task T , with each thinking component having its own representation Rep.

3.1 GENERAL MOLECULAR THINKING

In the general molecular thinking, AGen is dedicated to examining and interpreting the overall
architecture of molecular data, going beyond what traditional computational chemistry tools can
achieve. While traditional tools excel at calculating explicit molecular properties such as molecular
weight, ring counts, and basic geometries, they often fall short in extracting more nuanced insights
that require a deeper contextual understanding. This is where the AGen agent steps in, leveraging the
advanced reasoning capabilities of LLMs to analyze complex molecular structures.

Based on a large amount pre-training corpora, AGen excels in identifying subtle structural features,
exploring relationships between functional groups, and understanding the broader implications of
molecular configurations that are not readily accessible through conventional rule-based methods. In
this thinking component, the AGen initially identifies the key aspects of the molecular structure that
would be most relevant to a chemist’s real-world analysis. It then generates responses to the question
qi for each aspect based on the input Si, then proceeds to the reflection module to evaluate and correct
its responses. The correct answer will stroed in the memory module. The questions qi 2 QGen as
follows:

Question 1 (q1): How does the molecule’s 3D shape change, and what are the effects of these

changes?

Question 2 (q2): What are the key intermolecular forces that govern the behavior of the molecule?

Question 3 (q3): How does the molecule contribute to the overall chemical equilibrium?

For each question qi, the agent AGen generates corresponding molecular insights by analyzing the
input Si. The overall output of AGen, denoted as IGen, is defined as:

IGen = {AGen(Si, q1), AGen(Si, q2), AGen(Si, q3)} (1)

This represents the set of molecular insights obtained from the agent’s analysis of the given input
and set of questions. In addition, the general structure thinking component includes a representation
RepGen, which captures the thinking process by analyzing three general questions and is subsequently
used for downstream task prediction.

3.2 INTUITION-DRIVEN THINKING

To mimic how chemists use intuition built from domain knowledge and past experience, we introduce
the intuition-driven thinking agent, AInt. This agent is responsible for generating, refining, and
applying heuristic rules that combine insights from literature with empirical observations from
experience pools, i.e., related datasets to identify useful knowledge for a given task T . This is
inspired by Zheng et al. (2023), which has shown that LLM is capable of extracting meaningful
prior knowledge directly from literature and molecular patterns in the training data. By integrating
computational tools and interacting with a coding agent, the AInt derives vectorized representations
that are well-suited for further analysis and predictive modeling. The workflow in this thinking
component consists of the following steps:

Rule Generation from Literature Review: LLM has built-in knowledge and an understanding
of various tasks from its pre-training. To make use of this, we assign the LLM a specific persona,
turning it into an agent that uses this persona to guide its behavior and thinking process. Based on
this persona, the agent formulates a preliminary set of literature rules Rlit relevant to the given task T .
These rules are derived from the agent’s internal understanding and pre-trained knowledge base.

Rule Observation from Empirical Data: Several randomly selected subsets of SMILES strings in
the training data {Si}mi=1 2 Strain with their corresponding label are then provided to the AInt. By
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analyzing these subsets, the agent derives additional rules Robserved based on observed patterns and rela-
tionships within the molecular structures for the specific task T : Robserved =

SK
k=1 AInt({Si}mi=1, T )k

where K is the number of subsets analyzed. This step allows AInt to refine its rule set by incorporating
specific data-driven insights from multiple perspectives, enhancing its understanding of the task T

and capturing context-specific nuances. After completing the reflection process, the refined rules,
considered as molecular insight IInt, will be stored in the memory module.

The final step involves utilizing the rule set RInt = Rlit [ Robserved to generate numerical feature
vectors for Si. The AInt employs external tool such as RdKit (Landrum, 2013), and interacting to
a coding agent to map each Si to a feature value fi based on the derived rules. This rule-based
representation, encodes the domain-specific knowledge extracted by AInt, will be used for downstream
task prediction and is denoted as RepInt.

3.3 TASK SPECIFIC THINKING

The Task-Specific Thinking component utilizes ATask to directly answer specialized questions related
to a given task T . Given the input Si, the specific task T , and the molecular insights IGen and IInt
stored in the Memory Module, ATask synthesizes this information to generate task-specific insights.
These insights are tailored to the specific requirements of T , leveraging the general and intuitive
knowledge captured by the previous components. The resulting task-specific representation, denoted
as RepTask, will be used to enhance the prediction accuracy for the downstream task. Furthermore,
the molecular insights generated by this task-specific thinking component form the final report,
which consolidates all molecular insights. This report can assist chemists for further analysis and
decision-making. For reference, we also provide an example of a molecular insight report in the
Appendix A.3.

3.4 THOUGHT REPRESENTATION FUSION

This representation fusion module integrates the diverse representations of Si generated from the
three distinct modules: General Molecular Thinking, Intuition-Driven Thinking, and Task-Specific
Thinking. The aim is to create a unified, context-aware representation of the molecular structure that
captures the unique insights derived from each cognitive perspective, dynamically adapting to each
input.

Given that current LLM architectures are based on next-token prediction, the observations produced
in response to a question are inherently influenced by the question’s context. For the General
Molecular Thinking and Task-Specific Thinking module, the question serves as a guide to generate a
representation for SMILES Si. This representation acts as the thought component representation,
encapsulating the LLM’s thinking process for the molecule under each specified context.

Specifically, in the General Molecular Thinking, three different questions (qGen1, qGen2, qGen3) 2 QGen
are posed to the LLM to assess various aspects of the molecular structure. Each question generates a
separate embedding, which are then concatenate into a single, aggregated representation for general
component representation:

RepGen(Si) = RepGen(Si, qGen1)�RepGen(Si, qGen2)�RepGen(Si, qGen3) (2)

In the Intuition-Driven Thinking, the representation is constructed using rule-based features derived
from the empirical analysis of the molecule. Each of these rule values provides a unique view of the
SMILES representation from a specific aspect. Specifically, for each SMILES string Si 2 S, each
rule rj 2 R is used to compute a feature value fij(Si), forming the feature representation RepInt for
Si:

RepInt(Si) = {fi1(Si), fi2(Si), . . . , fin(Si)} (3)
where fij(Si) represents the feature value for Si based on rule rj , and n is the total number of rules
in R.

To generate the final unified representation, a dynamic weight vector wi = (wGen,i, wInt,i, wTask,i) is
calculated for each SMILES input Si, reflecting the relative importance of each thinking component
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for that specific molecule. The final fused representation is obtained by the weighted sum of the
individual embeddings:

Repfusion(Si) = wGen,i ·RepGen(Si) + wInt,i ·RepInt(Si) + wTask,i ·RepTask(Si)

where RepTask(Si) = RepTask(Si, qTask), and the dynamic weights wGen,i, wInt,i, and wTask,i are spe-
cific to each SMILES Si and are learned during the training process. These weights adaptively adjust
based on the context and characteristics of the input molecule, ensuring that the final representation
Repfusion(Si) captures the most relevant information from each thinking mode.

The fused embedding Repfusion(Si) is then passed through a Multi-Layer Perceptron (MLP) to
generate the final prediction:

ŷi = MLP(Repfusion(Si))

where ŷi represents the predicted outcome for the SMILES input Si. The MLP is trained to map
the comprehensive information encoded in Repfusion(Si) to the desired prediction task, leveraging
the full scope of insights derived from the fused representation. Therefore, ChemThinker allows for
a flexible and context-aware integration of insights from different cognitive modules, dynamically
adapting to the unique characteristics of each SMILES input.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Our framework is evaluated on 8 datasets across three chemoinformatics domains,
covering 34 subtasks sourced from MoleculeNet (Wu et al., 2018). In the physiology domain, we
address 29 tasks, including the blood-brain barrier permeability predictor (BBBP) (Martins et al.,
2012), the clinical toxicity evaluator (ClinTox) (Gayvert et al., 2016), and 27 tasks from SIDER (Kuhn
et al., 2016) focusing on predicting adverse drug reactions. In the biophysics domain, we evaluate
2 classification tasks from BACE (Subramanian et al., 2016) and HIV (Wu et al., 2018), while the
physical chemistry domain covers 3 regression tasks from ESOL (Delaney, 2004), FreeSolv (Mobley
& Guthrie, 2014), and Lipophilicity (Wu et al., 2018). To ensure fair comparisons across baselines,
we employed scaffold splitting, following the MoleculeNet-recommended data split (Wu et al., 2018),
which assigns molecules with different structural scaffolds to separate training, validation, and test
sets (Bemis & Murcko, 1996).

Baselines. For the traditional model, we use Random Forest (Breiman, 2001) with ECFP4 (Rogers
& Hahn, 2010) as the input feature set. For standard deep learning models, we selected the most
representative Graph Neural Networks (GNNs) pretraining baselines, including Attribute Masking
(AttrMask) (Hu et al., 2019), GraphCL (You et al., 2020), MolCLR (Wang et al., 2022), and
MoleBERT (Xia et al., 2022). Additionally, we also compared with models like GraphMVP (Liu
et al., 2022), 3D-InfoMax (Stärk et al., 2022), and Uni-Mol (Zhou et al., 2023), which leverage
3D molecular conformers during training to enhance their ability to reason in 3D space, while
using 2D molecular graphs as input during inference. In addition, We also compare our framework
with LLM4SD (Zheng et al., 2023) framework, which uses LLM generated rules as vectors and
then utilizes a Random Forest for prediction. To ensure a fair comparison, we reran all baseline
models using the same data-splitting method and the same random seed for multiple iterations.
This consistency across runs ensures that any differences in performance are attributable to model
variations rather than random factors.

Backbone Model. Our framework is built on an LLM-based Multi-Agent architecture, utilizing
state-of-the-art LLMs as its backbone. Specifically, we utilize Galactica models (Taylor et al., 2022),
with 6.7B and 30B parameters, which are trained on an extensive corpus of scientific knowledge.
Additionally, we incorporate LLama-3.1 models (Dubey et al., 2024), including the 8B parameter
version and its instruction-tuned variant (8B-instruct), both pretrained on a diverse dataset up to the
end of 2023. For the closed-source model, we employ OpenAI’s text embedding models (OpenAI,
2024) in both small and large configurations, alongside GPT-4o (OpenAI et al., 2023) for agent
reasoning.
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4.2 EXPERIMENTAL RESULTS

Model
Dataset Backbone

Type BBBP(1) ↑ BACE(1) ↑ ClinTox(1) ↑ HIV(1) ↑ SIDER(27) ↑
Ba

se
lin

es
RF + ECFP4 (Rogers & Hahn, 2010) RF 67.6 ± 1.0 85.0 ± 1.2 69.4 ± 3.1 77.1 ± 0.7 62.5 ± 0.5

AttrMask (Hu et al., 2019) GNN 65.2 ± 1.4 77.8 ± 1.8 73.5 ± 4.3 75.3 ± 1.5 60.5 ± 0.9
GraphCL (You et al., 2020) GNN 67.8 ± 2.4 74.6 ± 2.1 77.5 ± 3.8 75.1 ± 0.7 59.8 ± 1.3
GraphMVP(Liu et al., 2022) GNN 70.8 ± 0.5 79.3 ± 1.5 79.1 ± 2.8 76.0 ± 0.1 60.2 ± 1.1

3D-infomax (Stärk et al., 2022) GNN 69.1 ± 1.2 78.6 ± 1.9 62.7 ± 3.3 76.1 ± 1.3 56.8 ± 2.1
MolCLR (Wang et al., 2022) GNN 73.1 ± 1.6 81.5 ± 1.6 91.6 ± 2.7 77.3 ± 1.3 59.6 ± 0.7
MoleBert (Xia et al., 2022) GNN 71.9 ± 1.6 80.8 ± 1.4 78.9 ± 3.0 78.2 ± 0.8 62.8 ± 1.1
Uni-Mol (Zhou et al., 2023) Transformer 71.5 ± 1.4 84.4 ± 2.1 87.8 ± 2.6 78.3 ± 1.3 62.3 ± 5.6

LLM4SD (Zheng et al., 2023) LLM 74.5 ± 0.2 83.8 ± 0.3 92.8 ± 0.5 79.0 ± 0.2 64.8 ± 1.4
ChemThinker(LlamaInstruct) LLM 77.0 ± 1.0 77.4 ± 1.9 99.1 ± 0.4 75.92 ± 1.1 62.7 ± 0.4
ChemThinker(OpenAILarge) LLM 75.5 ± 1.3 78.2 ± 0.9 99.4 ± 0.1 79.5 ± 0.7 63.7 ± 0.3

Table 1: Results on molecular property classification tasks with scaffold split. Mean and standard
deviation of the ROC-AUC (%) performance from 10 random seeds are reported, with higher scores
indicating better performance. The top-2 performances on each dataset are shown in bold, with bold
being the best result, and bold being the second best result.

4.2.1 OVERALL PERFORMANCE

We evaluate ChemThinker on five classification datasets with 31 subtasks for molecular property
prediction, and three regression tasks, as shown in Tables 1 and 2. For both tasks, we report the mean
and standard deviation from 10 random seeds: ROC-AUC (%) for classification, where higher scores
indicate better performance, and RMSE for regression, where lower values signify better result. We
present ChemThinker results with two top-performing backbone models for both classification and
regression tasks, compared against other state-of-the-art (SOTA) baselines.

Model
Dataset ESOL(1) ↓ FreeSolv(1) ↓ Lipophilicity(1) ↓

Ba
se

lin
es

RF + ECFP4 (Rogers & Hahn, 2010) 1.34 ± 0.01 4.36 ± 0.04 0.90 ± 0.00
AttrMask (Hu et al., 2019) 1.11 ± 0.05 2.92 ± 0.03 0.73 ± 0.00
GraphCL (You et al., 2020) 1.31 ± 0.07 3.60 ± 0.32 0.78 ± 0.02

GraphMVP (Liu et al., 2022) 1.06 ± 0.02 2.95 ± 0.19 0.69 ± 0.01
3D-InfoMax (Stärk et al., 2022) 0.89 ± 0.04 2.83 ± 0.10 0.70 ± 0.02

MoleBert (Xia et al., 2022) 1.02 ± 0.03 3.08 ± 0.05 0.68 ± 0.02
MolCLR (Wang et al., 2022) 1.31 ± 0.03 2.73 ± 0.08 0.74 ± 0.02
Uni-Mol (Zhou et al., 2023) 1.55 ± 0.26 3.94 ± 0.50 1.19 ± 0.07

LLM4SD (Zheng et al., 2023) 0.52 ± 0.04 2.62 ± 0.01 0.68 ± 0.00
ChemThinker(LlamaInstruct) 0.44 ± 0.01 2.01 ± 0.37 0.73 ± 0.03
ChemThinker(Galactica6.7b) 0.53 ± 0.25 2.39 ± 1.39 0.66 ± 0.02

Table 2: Results on Molecular Property Regression tasks with Scaffold Split. Mean and standard
deviation of the the Root Mean Square Error (RMSE) metric from 10 random seeds are reported,
with lower scores indicating better performance. The top-2 performances on each dataset are shown
in bold, with bold being the best result, and bold being the second best result.

As shown in Table 1, Our framework demonstrates superior performance, particularly on the BBBP,
ClinTox, and HIV datasets, where it surpasses existing baselines with notable improvements over
both LLM and GNN-based frameworks. Notably, our framework exhibits exceptional performance
on the Clintox dataset, achieving a near-perfect accuracy of 99.4% and 99.1%, this result significantly
outperforms all other models. Moreover, on the SIDER datset, our model attains an score of 63.7%,
which is comparable to the best perfoming LLM4SD (Zheng et al., 2023) at 64.8%, and superior
to all GNN-based baselines. This result further enhances the credibility of LLM-based approaches
in molecular property prediction tasks. In the case of the BACE dataset, ChemThinker achieves
78.2, which, while competitive, remains below the highest baseline result of 85.0 achieved by the RF
model. The potential reasons may be the BACE dataset assigns binary labels for molecular inhibitors
of human �-secretase 1 (BACE-1), based on an arbitrary threshold of quantitative potency values
(IC50) set at 7 (Wu et al., 2018). However, potency values can vary significantly depending on the
assay settings (Landrum & Riniker, 2024), lower potency values can still indicate strong inhibition
of BACE-1 (Harding et al., 2024). We hypothesize that this arbitrary threshold and label ambiguity
hinder LLM agents’ ability to reason effectively.
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The molecular property regression results presented in Table 2 demonstrate the superior performance
of our proposed framework compared to all baselines across three datasets: ESOL, FreeSolv, and
Lipophilicity. ChemThinker achieves RMSE values of 0.44 and 0.53 on the ESOL dataset, and
2.01 and 2.39 on FreeSolv, outperforming all LLM-based and GNN-based backbone models. On
the Lipophilicity dataset, ChemThinker with the Galactica-6.7bvariant achieves SOTA results with
an RMSE of 0.66, while our variant with Llama-3.1-Instruct embedding backbone demonstrates
competitive performance against other baseline models.

4.3 EFFECTIVENESS OF THOUGHT REPRESENTATION

BBBP BACE Clintox

0.5

0.6

0.7

0.8

0.9

1.0

ESOL FreeSolv Lipophilicity

0

1

2

3

4

5
SMILES only
ChemThinker

Pr
ed
ic
tio
n
Er
ro
r(
R
M
SE

)

Pr
ed
ic
tio
n
Ac
cu
ra
cy

(R
O
C
-A
U
C
)

+10.2%

0.692

0.770 0.774
0.800

+3.3%

+0.0%

0.999 1.000

-71.3%

-53.3%

-25.2%1.549

0.445

4.290

2.005

0.655
0.888

Classification Tasks Regression Tasks

SMILES only
ChemThinker

Figure 2: Comparison of the performance between ChemThinker and the SMILES-only representation
across 10 random seeds on six datasets.

To assess the effectiveness of our proposed thought representation, we also evaluate SMILES
only representation setting, as shown in Figure 2, the LLM used for encoding the SMILES-only
representation is the best-performing backbone model from our proposed framework. The comparison
with other LLM backbone models can be found in Appendix A.2, where we observe a similar trend
across these six datasets. As shown in Figure 2], our proposed method consistently improved the
scores across all six datasets. Notably, on the FreeSolv regression dataset, where a lower RMSE
indicates better performance, we achieved a significant reduction in prediction error from 4.29 to
2.01. This improvement underscores the effectiveness of our framework, particularly in molecular
property regression tasks. Similarly, for other regression and classification tasks, such as ESOL and
BBBP, our method demonstrated a measurable improvement compared to the SMILES-only baseline.

In the Clintox dataset, the SMILES-only baseline achieved nearly perfect results, with our proposed
method offering only marginal improvement. This may be due to the fact that the LLM already
possesses sufficient understanding of the relevant domain and SMILES structure analysis. This
further demonstrates that LLMs are more effective than other standard sequence encoders in learning
string-based annotations for molecular structures.

4.4 THOUGHT COMPONENT CONTRIBUTION ANALYSIS

In this section, we analyze the contribution of each thinking component to the final decision, as
illustrated in Figure 3. The evaluation is conducted on three classification datasets (BACE, BBBP, and
Clintox) and three regression tasks (ESOL, FreeSolv, and Lipophilicity). Interestingly, the General
molecular thinking component contributes more significantly to the classification tasks, whereas
the Intuition-Driven Thinking component and Task-Specific component play a larger role in the
regression tasks. This suggests that classification tasks may benefit from broader, more generalized
features, while regression tasks require more domain-specific and intuitive insights to achieve optimal
performance.

From the LLM architecture perspective, we find that LLMs with the same architecture tend to exhibit
similar component contributions across different datasets to the final predictions. However, in ESOL
and FreeSolv datasets, even though the LLMs heavily rely on one or two components, Galactica-
6.7B and 30B demonstrate different behavior, despite having the same architectural design, these
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Figure 3: Thought Component Contribution Analysis. General, Intuition, and Task are short for
General Molecular Thinking, Intuition-Driven Thinking, and Task-Specific Thinking, respectively.
Each component contribution to the final score is calculated by averaging component weights for
each SMILES across 10 random seeds.

models exhibit different component contributions for their final decisions. This pattern highlights the
flexibility and adaptability of our proposed multi-agent framework.

Furthermore, the results for the ClinTox dataset, as reported in Table 1, demonstrate that we achieve
near-perfect scores across all backbone settings. However, this component analysis reveals intriguing
insights into how different model architectures rely on various components to make their predictions.
The OpenAI models heavily depend on the General Molecular component, indicating that their
decision-making process is primarily driven by general understanding and extensive pre-trained
knowledge. In contrast, the Galactica models rely more on task-specific components, likely because
our task-specific thinking process is closely aligned with their pre-training dataset and methodology.
The LLaMA-3.1 models demonstrate a relatively balanced utilization of all three components, relying
on every component across the general, intuition, and task-specific components to make accurate
predictions.

4.4.1 EVALUATION OF DIFFERENT BACKBONE MODELS

Figure 4: Evaluation of Different Backbone Models on 5 classification datasets and 3 regression
datasets.

Figure 4 illustrates the evaluation of ChemThinker with different backbone LLMs. In the classi-
fication datasets, all models achieve high ROC-AUC scores with minimal differences, indicating

9
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stable performance of our proposed framework across various tasks. For the regression datasets
(ESOL, FreeSolv, Lipophilicity), Llama-3.1-8B-ins achieves the lowest RMSE, reinforcing its strong
generalization ability. OpenAI-Large, on the other hand, tends to perform less favorably in these
tasks, particularly for FreeSolv. Our proposed framework, especially with Llama-3.1-8B-instruct,
excels with the lowest RMSE scores, demonstrating its strong ability to generalize and make accurate
predictions even in more challenging tasks.

5 DISCUSSION

Our proposed LLM-based Multi-Agent framework, ChemThinkier, not only aims to predict molecular
properties with greater accuracy but also seeks to provide deeper insights into the rationale behind
these predictions. Inspired by the approach chemists take when addressing molecular problems,
we designed three distinct modules: general molecular thinking, intuition-driven thinking, and
task-specific thinking. Each module generates corresponding molecular insights, offering a more
comprehensive understanding of the molecule. This multi-perspective approach allows ChemThinker
to not only enhance prediction performance but also improve interpretability, making it highly
valuable for both scientific discovery and practical applications. In the Appendix A.3, we provide a
detailed example using a SMILES string, showcasing the ultimate molecular insights generated by
each module.

We find that while reports generated by open-source models provide significant value, they tend to
be less coherent and transparent in conveying their underlying reasoning. Even though open-source
LLMs may not express their “thinking” process as effectively as closed-source models, they still
possess a sufficient ability to generate representations that address prediction tasks well. Perhaps the
gap in report generation quality is due to the lack of access to proprietary data and investment in
instruction-based fine-tuning. Due to their pre-training on large-scale corpora, models like Galactica
(Taylor et al., 2022), which is trained on extensive scientific knowledge, and Llama-3.1 (Dubey
et al., 2024), which leverages more recent datasets, demonstrate a robust foundational understanding.
Moreover, our experiments show that, in certain tasks, these open-source LLMs can achieve state-of-
the-art (SOTA) results, further highlighting their capabilities in molecular analysis.

During the molecular insights generation and reflection process, LLMs tend to produce redundant
responses, and controlling the generated length can be challenging. If we include more content
encoding in the molecular representation, critical information such as the original SMILES may
receive less attention during the generation process. To mitigate this, we limit the input to the question
along with its corresponding SMILES string. Another reason for this approach is that LLMs rely on
the next-token prediction, meaning the quality of their responses is heavily influenced by the input
query and how effectively the model embeds it. We believe that, compared to the generation process
itself, the more critical aspect is how LLM “think” or process the question. Thus, we designed three
thinking modules to emulate the way chemists approach molecular analysis. Our experimental results
demonstrate that ChemThinker is adaptable in leveraging varying contributions from each thought
component to address different tasks, depending on the backbone model used. This flexibility allows
ChemThinker to optimize its process to the specific requirements of each task, enhancing its overall
effectiveness in molecular property prediction.

6 CONCLUSION

In this paper, we introduce, ChemThinker, our proposed LLM-based Multi-Agent framework that
demonstrates significant flexibility and effectiveness in molecular property prediction by adapting its
thought components to different tasks and backbone models. Standing on the shoulders of giants,
we harness the strong reasoning capabilities, extensive pretrained knowledge, and encoding ability
of LLMs to provide both accurate predictions and deeper insights into the reasoning behind those
predictions. Our experimental results show that this approach not only achieves state-of-the-art
performance in certain tasks but also enhances the interpretability of molecular analysis, aligning
with the way chemists approach problem-solving in the field. Future work could explore additional
tasks and architectures to further extend ChemThinker’s applicability and performance.
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environmentally sensitive materials. We foresee no ethical risks or conflicts of interest. We are
committed to upholding the highest standards of scientific integrity and ethical conduct to ensure the
validity and reliability of our findings.

8 REPRODUCIBILITY STATEMENT

Our model is clearly formalized in the main text for clarity and comprehensive understanding.
Detailed implementation, including dataset information, baselines, experimental settings, and model
configurations, are provided in Section 3 and Section 4. The experimental settings and baselines have
been rigorously checked for fair comparison. Our code will be made public upon acceptance.
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