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Abstract

Document-level machine translation (MT) ex-001
tends the translation unit from the sentence002
to the whole document. Intuitively, discourse003
structure can be useful for document-level004
MT for its helpfulness in long-range depen-005
dency modelling. However, few efforts have006
been paid on leveraging discourse informa-007
tion for document-level neural machine trans-008
lation(NMT). In this paper, we propose a de-009
pendency Rhetorical Structure Theory (RST)010
tree enhanced NMT model, RST-Transformer.011
The model only needs to encodes the depen-012
dency RST tree of the source document via the013
attention mask, and can enhance both the en-014
coder and the decoder. Experiments on English-015
German datasets in both non-pretraining and016
pretraining settings show that our discourse in-017
formation enhanced approach outperforms the018
current state-of-the-art document-level NMT019
model.020

1 Introduction021

As the neural machine translation (NMT) (Bah-022

danau et al., 2014; Vaswani et al., 2017) gets close023

to human performance on the sentence-level trans-024

lation, the mistakes at the document-level become025

more obvious (Kim et al., 2019). Previous work026

(Voita et al., 2019; Ma et al., 2021) shows these027

mistakes could be reduced by introducing contexts028

into context-agnostic NMT models.029

Previous methods that explored to integrate con-030

text information into NMT models can be broadly031

divided into two categories. The first category032

takes fix scope sentences as context and model-033

ing the context-aware representation by extra con-034

text encoder (Miculicich et al., 2018; Wang et al.,035

2017a) or unified encoder (Ma et al., 2020; Zheng036

et al., 2020). The second category takes global con-037

text into consideration by using translation memory038

(Kuang et al., 2018; Tu et al., 2018), hierarchical039

model (Tan et al., 2019; Maruf et al., 2019) or rein-040

forcement learning (Kang et al., 2020). However,041

1. [What’ll I do with the coat?]1

2. [When you're through with it,]1 

    [sent it to the police.]2

3. [It didn't belong to her.]1

1. Was mache ich mit dem Mantel?

2. Wenn Sie damit fertig sind,

    schicken Sie er an der Polizei.

3. Er gehörte ihr nicht.
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Figure 1: Illustration of our RST-Transformer handling
the cross-sentence dependency. Other Document-level
NMT models need to encode sentences 1-3 to model the
coreference between "coat" and "it" in sentence 1 and 3.
The proposed discourse-aware model RST-Transformer
selects text span {1-1, 3-1}. The right side of the figure
illustrates the dependency RST tree we use, where the
tree of target document can be converted from the tree
of source.

exploring structured information for document- 042

level NMT has so far received relatively little atten- 043

tion (Xiaomian and Chengqing, 2020; Chen et al., 044

2020; Xu et al., 2020b). Structured information 045

is proven be helpful for sentence-level MT in en- 046

forcing meaning preservation (Marcheggiani et al., 047

2018), handling data sparsity (Song et al., 2019) 048

and modeling long-range dependencies (Zhang 049

et al., 2019; Wu et al., 2017). In another aspect, 050

the discourse structure helps many other document- 051

level tasks like summarization (Xu et al., 2020a), 052

sentiment analysis (Huber and Carenini, 2020), 053

translation evaluation (Guzmán et al., 2014; Joty 054

et al., 2017). 055

In this paper, we present RST-Transformer, a 056

discourse-aware document-level NMT model build 057

upon Transformer (Vaswani et al., 2017). To 058

shorten long-range dependencies and mask un- 059

related sentences, we take dependency RST tree 060

(Mann and Thompson, 1987), a structure describ- 061
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ing how text spans in a document related to062

each other, as the indicator for guiding document-063

level MT. Figure 1 shows an example for cross-064

sentence dependencies, where the "It" in sentence065

3 refers to "coat" in the sentence 1. In German,066

every noun has a gender (masculine, feminine,067

neuter) and the pronoun referring to it also use068

the same gender. For example, If the masculine069

noun "coat" is changed to a feminine noun, like070

"pants", the corresponding translation of "It"071

should be changed from "Er" to "Sie". Guided072

by the dependency RST tree, the RST-Transformer073

can discard redundant context and obtain additional074

capacity to include more long-range dependencies,075

producing fewer document-level mistakes.076

More specifically, the RST-Transformer has two077

different attention modules: Sentence attention 1078

(SentAttn) and RST attention (RSTAttn), which079

have sentence attention mask and RST attention080

mask, respectively. The sentence attention mask081

is used to differentiate the current sentence and082

its context. It makes the SentAttn focus on local083

sentences. The mask in RSTAttn is converted by084

the dependency RST tree of the source document.085

It makes the RSTAttn focus on spans related to086

the current span in the dependency RST tree. To087

fusion the sentence-level information encoded in088

SentAttn and document-level information encoded089

in the RSTAttn, we investigate three fusion meth-090

ods: Serial, Parallel and Mix.091

We evaluate our model on three commonly used092

document MT benchmark datasets for English-093

German translation. The results show that the RST-094

Transformer outperforms Transformer and current095

state-of-the-art document-level NMT models both096

on non-pretraining and pretraining settings. Fur-097

ther, we demonstrate that the RST-Transformer can098

still surpass other models without introducing the099

dependency RST tree in the decoding process.100

2 Problem Definition101

Formally, we denote X “ tX1, X2, . . . XNu as102

the source document with N sentences and Y “103

tY1, Y2, . . . YNu as the target document with the104

same number of sentence. We assume that each105

source sentence Xi is aligned with the target sen-106

tence Yi, where i P r1, N s.107

1It is analogous to GroupAttn in G-Transformer (Bao et al.,
2021). G-Transformer is the state-of-the-art document-level
NMT model, which encode the local and global attention by
GroupAttn and GlobalAttn respectively.

What’ll do with the coat.] When you’re 
through with it,] sent it to the police.] It 

didn’t belong to her.]

[ π1[
π2[ π3[

π4

π1
Background

Elaboration

Elaboration

π2 π3 π4

π1 π2 π3 π4

① EDU Segment

② Parse

③ Convert

What'll I do with the coat. When you're 
through with it, send it to the  police. It 
didn't belong to her. 

Figure 2: Example of discourse segmentation and RST
tree conversion. The original document is segmented
into 4 EDUs (π1-π4) in step 1⃝ and then parsed into an
RST discourse tree in step 2⃝. The dependency RST
tree is converted from RST tree in step 3⃝. Arcs in RST
tree and dependency RST tree indicate modification.

Given the source document to translate, we as- 108

sume a pair of source and target dependency RST 109

trees (defined in Section 2.1) TX and TY to help 110

generate the target document. Therefore, the trans- 111

lation probability from X to Y can be represented 112

as: 113

Ŷ “ argmax P pY|X,TX,TYq (1) 114

2.1 Dependency RST Tree 115

In the RST framework, the discourse structure of 116

the text is represented in a constituent tree struc- 117

ture. The dependency RST tree is the dependency 118

perspective of the RST tree (Li et al., 2014; Morey 119

et al., 2018), which is helpful in text summariza- 120

tion (Xu et al., 2020a; Hirao et al., 2013). The 121

way to get the dependency RST tree of the input 122

document is shown in Figure 2. In step 1⃝, the 123

document is split into contiguous, adjacent and 124

non-overlapping text spans called Elementary Dis- 125

course Units (EDUs), a sub-sentence phrase unit 126

originating from RST. In step 2⃝, non-terminal 127
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What’ll do with the coat.
When you’re through with it,
sent it to the police. It didn’t 

belong to her.

[ ]π1[
]π2[

]π3[
]π4

π1 π2 π3 π4

[Was mache ich mit dem Mantel?
Wenn Sie damit fertig sind, 

schicken Sie er an das Polizei. Er 
gohörte ihr nicht.

]s1[
]s2[

]s3

π1 π2 π3 π4
s1 s2 s3

Source Document Target Document

Figure 3: Case of converting the dependency RST tree
of the source document to the tree of the target document
by merging EDUs.

nodes are composed of two or more adjacent EDUs128

merged upwards to form an RST tree. When merg-129

ing, the more semantically important unit is called130

the "nucleus", and the other units that modify the131

"nucleus" are called "satellite". The arc from π3132

to π2 means π2 is a "satellite" modifying the "nu-133

cleus" π3. The "nucleus-satellite" relationship can134

be further refined into a variety of rhetorical re-135

lationships such as elaboration and background.136

Finally, in step 3⃝, the RST tree is converted to its137

dependency perspective (Li et al., 2014).138

2.2 Trees for source and target documents139

We use third-party tools to get the dependency RST140

tree for the source document. The details can be141

found in Section 4.2. However, the target docu-142

ment cannot obtain the dependency RST tree dur-143

ing decoding. The one-to-one correspondence be-144

tween sentences in the source and target document145

makes the inter-sentence relationship between the146

two documents is consistent. Thus we can obtain147

a coarse-grained dependency RST tree for the tar-148

get document. As shown in Figure 3, the tree for149

the target document can be converted by the tree150

of the source document by merging the EDUs in151

the same sentence and ignoring the inner-sentence152

relations. Zhang et al. (2021) empirically shows no153

EDU across sentences, and all EDUs in the same154

sentence should be exactly covered by a complete155

subtree. This ensures that leaf nodes could be sen-156

tences and the target document tree still forms a157

tree.158

3 RST-Transformer159

Our RST-Transformer extends from the Trans-160

former NMT (Vaswani et al., 2017) architecture.161

Figure 4(a) provides an overview of the proposed162

model. The encoder and decoder are composed163

of Na Sentence layers and Nb RST layers, respec-164

tively. According to Jawahar et al. (2019), lower165

layers of Transformer catch more local syntactic 166

relations, while the higher layers represent long- 167

distance relations. Based on this finding, we use 168

the RST layer on the top layers for cross-sentence 169

interaction and the Sentence layer on the lower lay- 170

ers for sentence-level information. Section 3.1 and 171

Section 3.2 describes the Sentence and RST layers, 172

respectively. Section 3.3 introduces three proposed 173

methods to infuse local and global information in 174

the RST layer. 175

3.1 Sentence Layer 176

Our sentence layer is the Transformer (Vaswani 177

et al., 2017) considering sentence boundary. 178

Roughly speaking, Transformer consists of two 179

sublayers: self-attention network and feed-forward 180

network. We integrate the sentence boundary infor- 181

mation into the self-attention module. The attention 182

function discussed maps a query and a set of key- 183

value pairs to an output. The self-attention module 184

produces representations by applying the attention 185

function to each pair of tokens from the input se- 186

quence. Given a text representation H P RTˆd: 187

Q “ HWQ, K “ HWK , V “ HWV (2) 188

AttnpQ,K, V q “ softmax
ˆ

QKT

?
dk

˙

V (3) 189

where the projection matrices tWQ,WK ,Wku P 190

Rdˆdk are trainable parameters, T denotes the 191

length of input tokens and d, dk are the embed- 192

ding size and hidden size, respectively. 193

The self-attention network can capture global 194

contextual features. But too much information may 195

cause training failure on the document-level trans- 196

lation task (Bao et al., 2021). Thus, we update 197

Equation 3 by sentence boundary guiding, naming 198

sentence attention (SentAttn). In addition to input 199

Q, K and V , the sentence mask Ms P RTˆT is 200

also involved: 201

SentAttnpQ,K, V q “ softmax
ˆ

QKT

?
dk

` Ms

˙

V

(4)
202

where the sentence mask Ms is an indicator that 203

detects whether two tokens are in the same sen- 204

tence. Specifically, Ms gives negative infinity for 205

the token pairs not in the same sentence to make 206

softmax close to 0. Note that the SentAttn is same 207

as the GroupAttn in Bao et al. (2021). For every 208

two tokens xi, xj in the source document, we have: 209
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(a)

(c)(b)
Figure 4: (a) Model architecture of RST-Transformer. (b) The schematic of converting sentence boundary and
dependency RST tree to attention masks. The white part in masks means the value is -8 and the grey part means 0.
They mean there is a constrain on attention or not, respectively. (c) The architecture of different fusion methods.

210

Mspi, jq “

#

0 xi, xj in same sentence,
´8 otherwise.

(5)211

The lower half of Figure 4(b) shows an example of212

Ms. Due to the alignment assumption in Section 2,213

we can also get the sentence mask for the target214

document during training and decoding.215

3.2 RST Layer216

Our RST layer has two attention modules and one217

feed-forward module. One attention module is Sen-218

tAttn defined in Equation 4, which captures local219

information. The other is RST attention (RSTAttn),220

used to capture the discourse structure enhanced221

global information.222

Similarly, we update Equation 3 using the de-223

pendency RST tree. We involve RST mask Mrst P224

RTˆT into it: 225

RSTAttnpQ,K, V q “

softmax
ˆ

QKT

?
dk

` Mrst

˙

V
(6) 226

where the RST mask Mrst is an indicator. If the 227

EDUs where two tokens xi and xj located are di- 228

rectly related (parent or child) in the dependency 229

RST tree or same, Mrstpi, jq is set to 0 and nega- 230

tive infinity otherwise: 231

Mrstpi, jq “

$

’

&

’

%

0 xi, xj in same EDU
or related,

´8 otherwise.

(7) 232

The upper half of Figure 4(b) shows an example of 233

Mrst. The dependency RST tree of the source and 234

target document can be get from the Section 2.1. 235
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Dataset #Sent #Documents

TED 0.21M/9K/2.3K 1.7K/92/23
News 0.24M/2K/3K 6K/81/155
Europarl 1.67M/3.6K/5.1K 118K/239/360

Table 1: Statistics of three datasets.

3.3 Fusion Methods for SentAttn and236

RSTAttn237

To investigate what kind of structure is better for238

information fusion between SentAttn and RSTAttn,239

we propose three different RST-Transformer struc-240

tures: Serial, Parallel and Mix. Their structural241

diagram is shown in Figure 4(c).242

Given the source document representation H P243

RTˆT , we can get the Q, K, V same as Equa-244

tion 2:245

• Serial connects SentAttnt and RSTAttn and246

in series:247

H 1
s “ SentAttnpQ,K, V q, (8)248

tQ1
s,K

1
s, V

1
su “ H 1tW 1

Q,W
1
K ,W 1

V u (9)249

H 1 “ RSTAttnpQ1
s,K

1
s, V

1
s q, (10)250

where the projection matrices tQ1
s,K

1
s, V

1
su251

are trainable parameters.252

• Parallel uses a gate-sum module (Zhang et al.,253

2016; Tu et al., 2017) to combine RSTAttn and254

SentAttn:255

H 1
rst “ RSTAttnpQ,K, V q, (11)256

g “ sigmoidprH 1
s, H

1
rstsW ` bq, (12)257

H 1 “ H 1
s d g ` H 1

rst d p1 ´ gq, (13)258

where the H 1
s obtained by Equation 8, which259

is same as Serial, W and b are linear projec-260

tion parameters, and d denotes element-wise261

multiplication.262

• Mix integrates the Parallel and Serial struc-263

tures. We obtain H 1
s and H 1

rst by Equation 8-264

10, which are same as Serial. Then we com-265

bine H 1
s and H 1

rst to obtain the H 1 by a gate-266

sum module (Equation 12-13), which is same267

as Parallel.268

4 Experiments269

We compare our RST-Transformer with sentence-270

level Transformer and previous document-level271

NMT models on both non-pretraining and pretrain-272

ing settings. We conduct experiments on three273

English-German (En-De) datasets. Following Liu 274

et al. (2020), we calculate case-sensitive sentence 275

BLEU (s-BLEU) and document BLEU (d-BLEU) 276

as the metrics. 277

4.1 Datasets 278

Following previous work (Maruf et al., 2019), we 279

use three En-De datasets as the benchmark to eval- 280

uate our method, which comes from three different 281

domains: TED is transcriptions of TED talks from 282

IWSLT 2017, News comes from News Commen- 283

tary v11, Europarl is extracted from Europarl v7. 284

The statistic of these datasets can be found in Ta- 285

ble 1. We tokenize and truecase the sentences with 286

MOSES (Koehn et al., 2007) tools, applying BPE 287

(Sennrich et al., 2016) with 32000 merging opera- 288

tions. We split documents into instances with up to 289

512 tokens and ensure the integrity of the sentence. 290

4.2 Implement Details 291

We train our models on 4 GPUs of A100. 292

Hyper-parameters We use the Adam 293

(Kingma and Ba, 2015) optimizer to train the 294

models. The training strategy is the same as Bao 295

et al. (2021), except for 1) the learning rate is 296

3e-4, 2) the batch size is limited to 4096, 8192, 297

8192 for TED, News and Europarl, respectively. 298

We search the batch size in [4096, 8192] and the 299

learning rate in [1e-4, 3e-4, 5e-4]. We determine 300

the number of updates/steps automatically by early 301

stop on validation set. Na is set to 4 and Nb is 302

set to 2 for all experiments. Following previous 303

work (Bao et al., 2021; Miculicich et al., 2018), we 304

train the models in two stages. First we optimize 305

the parameters for a Transformer model with 306

sentence-level data. Then we use the Transformer 307

to initialize our RST-Transformer and continuous 308

train on the document-level data. 309

RST Discourse Parsing We first apply Neu- 310

ralEDUSeg (Wang et al., 2018) to obtain EDUs. 311

Then, we use StageDP (Wang et al., 2017b) to parse 312

the segmented document. After obtaining the RST 313

tree, we apply the algorithm proposed by Li et al. 314

(2014) to convert the RST tree to its dependency 315

perspective. 316

4.3 Baselines 317

We compare our model with the following NMT 318

models: 319

Transformer is the base configuration Transformer 320

NMT model in Vaswani et al. (2017) trained on 321
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TED News Europral
s-BLEU d-BLEU s-BLEU d-BLEU s-BLEU d-BLEU

Transformer 24.80 - 25.10 - 31.37 -
HAN 24.58 - 25.03 - 28.60 -
SAN 24.42 - 24.84 - 29.75 -

Hybrid Context 25.10 - 24.91 - 30.40 -
Flat-Transformer 24.87 - 23.55 - 30.09 -

G-Transformer 25.12 27.17 25.47 27.08 32.39 34.08
RST-Transformer-Serial 25.55 27.75Ò 25.83 27.38 32.43 34.16

RST-Transformer-Parallel 25.57 27.75Ò 26.05Ò 27.68Ò 32.64 34.33
RST-Transformer-Mix 25.61 27.84Ò 26.43Ò 28.00Ò 32.87Ò 34.64Ò

Fine-tune on mBART
BART fine-tuned on sentence 27.78 - 29.90 - 31.87 -

BART fine-tuned on doc - 28.29 - 30.49 - 34.00
G-Transformer + BART 28.06 30.03 30.34 31.71 32.74 34.31

RST-Transformer-Serial + BART 27.96 29.95 30.35 31.60 32.94 34.49
RST-Transformer-Parallel + BART 28.29 30.26 30.71 32.01 33.01 34.59

RST-Transformer-Mix + BART 28.26 30.23 30.89Ò 32.29Ò 33.14 34.63
Table 2: Case-sensitive BLEU scores on En-De translation. "Ò" indicates statistically significant (Koehn, 2004) over
the state-of-the-art G-Transformer at p ă 0.05.

sentence-level data. And we use the model to ini-322

tialize our RST-Transformer.323

HAN (Miculicich et al., 2018) uses a hierarchical324

attention mechanism with two levels (word and325

sentence) of abstraction to incorporate context in-326

formation from both source and target documents.327

SAN (Maruf et al., 2019) considers both source and328

target documents by selecting relevant sentences as329

contexts from a document.330

Hybrid Context (Zheng et al., 2020) uses a relative331

self-attention module to encode context at encoder332

and decoder.333

Flat-Transformer (Ma et al., 2020) uses a uni-334

fied encoder encode context and source sentence at335

same time and only encode source at top encoder336

layer.337

G-Transformer (Bao et al., 2021) uses two atten-338

tion modules to encode full document and local339

sentence at the top two layers. It is a special case340

of our RST-Transformer-Parallel structure when all341

EDUs connect to each other.342

4.4 Results343

Table 2 shows the overall results on three datasets.344

We find that our three fusion methods outperform345

the base model and previous document-level NMT346

models. Especially the RST-Transformer-Mix347

achieves the best results at all three datasets. the348

RST-Transformer-Mix can achieve improvements349

of 1.18 average s-BLEU scores over the context-350

agnostic Transformer. Therefore, the Mix is the351

most effective method of information fusion. It 352

is worth noting that our RST-Transformer-Parallel 353

model is better than G-Transformer on average by 354

0.63 s-BLEU scores and 0.71 d-BLEU scores, re- 355

spectively. As mentioned above, G-Transformer 356

can be regarded as the RST-Transformer-Parallel 357

model without dependency RST tree. It proves that 358

the RST structure can provide effective informa- 359

tion. 360

There is an active topic about document-level 361

MT using pretraining. We use mBART25 (Liu 362

et al., 2020) to initialize our RST-Transformer and 363

finetune it with learning rate 3e-4. Taking advan- 364

tage of sequence-to-sequence pretraining, the result 365

of RST-Transformer-Mix+BART is 2.46 s-BLEU 366

scores better than the RST-Transformer-Mix on 367

average. Compared to the document-level state- 368

of-the-art pretrained model G-Transformer+BART, 369

our best model gives 0.55 s-BLEU score improve- 370

ment on the News dataset. It shows the discourse 371

structure information also enhances performance 372

although in well-pretrained settings. 373

5 Analysis 374

In this section, we investigate our RST-Transformer 375

to reveal its strengths and weaknesses in terms of 376

(1) training without the Transformer initialization, 377

(2) decoding without dependency RST tree, (3) 378

changes in document phenomena of translations, 379

(4) a case study. We use the Mix structure for 380
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Size Method TED News Europarl

Base
Trans 0.42 0.45 30.40
G-Trans 23.53 23.55 32.18
our-Mix 24.28 24.12 32.33

Big
Trans 0.72 0.33 27.33
G-Trans 23.29 22.22 32.04
our-Mix 23.99 23.97 33.25

Large
Trans. 0.23 0.31 1.27
G-Trans 6.23 13.68 31.51
our-Mix 13.22 20.04 31.99

Table 3: s-BLEU on different model size. "Trans." is
Transformer, "G-Trans" is G-Transformer, "our-Mix" is
our RST-Transformer-Mix.

analysis because of its best performance.381

5.1 Training From Scratch382

Most of the current document-level NMT mod-383

els are initialized by a pretrained sentence-level384

Transformer because this strategy can improve the385

performance. Bao et al. (2021) also shows the cur-386

rent transformer model prefers to stick around lo-387

cal minima without the initialization. The "Trans"388

rows in Table 3 show the s-BLEU score of Trans-389

former trained on document-level datasets in dif-390

ferent model sizes. Here the Base, Big model size391

is the same as the base, large configurations in392

(Vaswani et al., 2017) and the Large size is the same393

setting of BART large model (Lewis et al., 2020).394

As the table shows, we have a better performance395

on different model sizes. The performance drops396

slightly when increasing the model size from Base397

to Big. Further to the Large model, there is no sharp398

drop either. On the Large setting, the performance399

gap between ours and the G-Transformer reaches400

+6.99/+6.36 on the two small datasets (TED and401

News). The results indicate that our model can402

better prevent training failure.403

5.2 Decoding without RST Tree404

When decoding using RST-Transformer, an addi-405

tional step is required to obtain the dependency406

RST tree of the source document. This is not407

expected in practical application. In order that408

our model can still model long-distance dependen-409

cies without the help of discourse information, we410

added a hyper-parameter droprst in the training411

process. It means the RST attention mask Mrst412

is set to all zero with probability p “ droprst.413

Figure 5 shows the results of RST-Transformer-414

Mix training with droprst P r0, 0.3, 0.5, 0.7, 1.0s.415

drop_rst

s-
B

LE
U

24.0

24.5

25.0

25.5

26.0

0 0.3 0.5 0.7 1

w. tree w/o tree G-Trans

Figure 5: s-BLEU on the TED testset at different
droprst and decoding settings. "w. tree" means de-
coding with dependency RST trees and "w/o tree" is
decoding without trees. The empty column, like the red
column at position "0" means the result is lower than
the 24.0 s-BLEU score.

When droprst “ 0, our RST-Transformer-Mix can 416

reach the best result with the help of the depen- 417

dency RST tree. But it is failed without the tree. 418

Once considering the absence of dependency RST 419

tree during training (droprst ą 0), our model can 420

quickly adapt to this situation. Especially when 421

droprst “ 0.5, the RST-Transformer-Mix is better 422

than the current state-of-the-art model even without 423

the help of discourse structure. That means we only 424

need to integrate discourse information during the 425

training phase and the model could learn to model 426

long-dependency itself. 427

5.3 Discourse Phenomena 428

We examine whether our models can capture dis- 429

course phenomena by evaluating our model on the 430

consistency testsets (Voita et al., 2019). The con- 431

sistency testsets evaluate the discourse phenomena 432

include deixis, lexicon consistency, ellipsis (inflec- 433

tion and verb phrase) in English-Russian. Each 434

testset contains contrastive examples consisting of 435

a positive translation with correct discourse phe- 436

nomenon and negative translations with incorrect 437

phenomena. The goal is to determine whether a 438

model is more likely to generate a correct trans- 439

lation than the incorrect variation. We follow the 440

training setting proposed by Voita et al. (2019) and 441

use both 6M sentence pairs and 1.5M document 442

pairs from OpenSubtitles2018 (Lison et al., 2018) 443

to train our model. As the results are shown in 444

Table 5, our RST-Transformer-Mix obtains the best 445

results. 446

5.4 Case Study 447

Table 4 shows an example of the deixis problem 448

in En-De document-level MT, similar to Figure 1. 449
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Context
S´2: Two twin domes, two radically opposed design cultures.
S´1: One is made of thousands of steel parts, the other of a single silk thread.

Source
S0: One is synthetic, the other organic.
S1: One is imposed on the environment, the other creates it.
S2: One is designed for nature, the other is designed by her.

Reference
R0: die eine ist synthetisch, die andere organisch.
R1: eine wird der Umwelt auferlegt, die andere erschafft diese.
R2: die eine ist für die Natur entworfen, die andere wird durch sie erschaffen.

Transformer-sent
T0: eine ist synthetisch, das andere organische.
T1: die eine wird auf die Umwelt auferlegt, die andere schafft es.
T2: man wird für die Natur gestaltet, das andere wird von ihr entworfen.

RST-Transfotmer-Mix
T0: die eine ist synthetisch, die andere organische.
T1: die eine wird auf die Umwelt auferlegt, die andere schafft sie.
T2: die eine ist für die Natur gestaltet, die andere wird von ihr entworfen.

Table 4: An example of deixis problem in En-De. Given the context S´1 and S´2, the phrase "the other" in S1´3

should be translate to "die andere" as shown in T1´3 because the "domes" it refers to is a feminine word in German.

Method deixis lexical Ellipsis
sent 50.0 45.9 40.7
concat 83.5 47.5 76.4
MCN 61.3 46.1 48.3
G-Transformer 89.9 83.6 -
RST-Transformer-Mix 91.7 83.6 79.1

Table 5: Accuracy (%) of consistency testsets.

Given the context S´1,´2, we need to translation450

three sentences S0´2. As the Reference R0´2451

shows, the pronoun phrase "the other" in the Source452

should be translated to the correct gender "die an-453

dere" because the noun "domes" it refers to is fem-454

inine. The Transformer-sent cannot consider the455

cross-sentence context and translate these pronouns456

into neutral "das andere" in T0 and T2. But our457

RST-Transformer-Mix keeps translating "the other"458

into "die andere" correctly, suggesting an effective459

capability of handling long-range dependencies.460

6 Related Work461

Structure-aware NMT is a well-studied topic in the462

sentence-level translation and the structure informa-463

tion is proven to be useful. Many approaches claim464

performance improvements by using treebank syn-465

tax (Sennrich and Haddow, 2016; Eriguchi et al.,466

2016; Bastings et al., 2017; Aharoni and Goldberg,467

2017). Other approaches incorporate syntactic in-468

formation in NMT models relatively indirectly (e.g.469

multi-task learning (Luong et al., 2015; Nadejde470

et al., 2017; Eriguchi et al., 2017; Hashimoto and471

Tsuruoka, 2017)). Unlike these syntactically-aware472

NMT methods mentioned above, Marcheggiani473

et al. (2018) and Song et al. (2019) investigate474

semantic role labeling and abstract meaning rep-475

resentation on NMT by GCN (Kipf and Welling,476

2016) and GRN (Zhang et al., 2018) respectively.477

On the contrary, it is still the mainstream practice 478

to treat documents as plain text in document-level 479

machine translation (Voita et al., 2018; Wang et al., 480

2019; Miculicich et al., 2018; Maruf et al., 2019; 481

Xu et al., 2020b; Ma et al., 2020; Zheng et al., 2020; 482

Liu et al., 2020; Bao et al., 2021). Only little work 483

has done with structured information. Xu et al. 484

(2020b) proposed a graph-based approach where 485

graphs are constructed according to inter-sentential 486

(adjacency, dependency) and intra-sentential (lexi- 487

cal consistency, coreference) relations. Compared 488

with their work, we use the dependency RST tree 489

supported by linguistic theory. and introduce the 490

tree by attention mask. Xiaomian and Chengqing 491

(2020) and Chen et al. (2020) also enrich input 492

word embeddings with path embeddings based on 493

RST trees. Unlike their methods, we integrate RST 494

trees into the encoder and decoder of the conven- 495

tional transformer model via an attention mask. 496

7 Conclusion 497

In this paper, we present a novel discourse 498

structured information enhanced approach for 499

document-level NMT. We modify the Transformer 500

architecture to integrate the dependency RST tree 501

of the source document by attention mask in en- 502

coder and decoder. Experiments show that our 503

method gives state-of-the-art results compared 504

to existing models under pretraining and non- 505

pretraining settings. Our further analysis also 506

shows that our model achieves nearly the same 507

results even when decoding without the discourse 508

information. 509
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Constantin, and Evan Herbst. 2007. Moses: Open 600
source toolkit for statistical machine translation. In 601
Proceedings of the 45th Annual Meeting of the As- 602
sociation for Computational Linguistics Companion 603
Volume Proceedings of the Demo and Poster Sessions, 604
pages 177–180, Prague, Czech Republic. Association 605
for Computational Linguistics. 606

Shaohui Kuang, Deyi Xiong, Weihua Luo, and Guodong 607
Zhou. 2018. Modeling coherence for neural machine 608
translation with dynamic and topic caches. In Pro- 609
ceedings of the 27th International Conference on 610
Computational Linguistics, pages 596–606, Santa Fe, 611
New Mexico, USA. Association for Computational 612
Linguistics. 613

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 614
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 615
Veselin Stoyanov, and Luke Zettlemoyer. 2020. 616
BART: Denoising sequence-to-sequence pre-training 617
for natural language generation, translation, and com- 618
prehension. In Proceedings of the 58th Annual Meet- 619
ing of the Association for Computational Linguistics, 620

9

https://doi.org/10.18653/v1/P17-2021
https://doi.org/10.18653/v1/P17-2021
https://doi.org/10.18653/v1/P17-2021
https://doi.org/10.18653/v1/2021.acl-long.267
https://doi.org/10.18653/v1/2021.acl-long.267
https://doi.org/10.18653/v1/2021.acl-long.267
https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/D17-1209
https://aclanthology.org/D13-1158
https://aclanthology.org/D13-1158
https://aclanthology.org/D13-1158
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
https://aclanthology.org/P07-2045
https://aclanthology.org/P07-2045
https://aclanthology.org/P07-2045
https://aclanthology.org/C18-1050
https://aclanthology.org/C18-1050
https://aclanthology.org/C18-1050
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703


pages 7871–7880, Online. Association for Computa-621
tional Linguistics.622

Sujian Li, Liang Wang, Ziqiang Cao, and Wenjie Li.623
2014. Text-level discourse dependency parsing. In624
Proceedings of the 52nd Annual Meeting of the As-625
sociation for Computational Linguistics (Volume 1:626
Long Papers), pages 25–35, Baltimore, Maryland.627
Association for Computational Linguistics.628

Pierre Lison, Jörg Tiedemann, and Milen Kouylekov.629
2018. Opensubtitles2018: Statistical rescoring of630
sentence alignments in large, noisy parallel corpora.631
In Proceedings of the Eleventh International Confer-632
ence on Language Resources and Evaluation (LREC633
2018).634

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey635
Edunov, Marjan Ghazvininejad, Mike Lewis, and636
Luke Zettlemoyer. 2020. Multilingual denoising pre-637
training for neural machine translation. Transac-638
tions of the Association for Computational Linguis-639
tics, 8:726–742.640

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol641
Vinyals, and Lukasz Kaiser. 2015. Multi-task642
sequence to sequence learning. arXiv preprint643
arXiv:1511.06114.644

Shuming Ma, Dongdong Zhang, and Ming Zhou. 2020.645
A simple and effective unified encoder for document-646
level machine translation. In Proceedings of the 58th647
Annual Meeting of the Association for Computational648
Linguistics, pages 3505–3511, Online. Association649
for Computational Linguistics.650

Zhiyi Ma, Sergey Edunov, and Michael Auli. 2021.651
A comparison of approaches to document-level ma-652
chine translation. CoRR, abs/2101.11040.653

William C Mann and Sandra A Thompson. 1987.654
Rhetorical structure theory: A theory of text organiza-655
tion. University of Southern California, Information656
Sciences Institute Los Angeles.657

Diego Marcheggiani, Jasmijn Bastings, and Ivan Titov.658
2018. Exploiting semantics in neural machine trans-659
lation with graph convolutional networks. arXiv660
preprint arXiv:1804.08313.661

Sameen Maruf, André F. T. Martins, and Gholamreza662
Haffari. 2019. Selective attention for context-aware663
neural machine translation. In Proceedings of the664
2019 Conference of the North American Chapter of665
the Association for Computational Linguistics: Hu-666
man Language Technologies, Volume 1 (Long and667
Short Papers), pages 3092–3102, Minneapolis, Min-668
nesota. Association for Computational Linguistics.669

Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas,670
and James Henderson. 2018. Document-level neural671
machine translation with hierarchical attention net-672
works. In Proceedings of the 2018 Conference on673
Empirical Methods in Natural Language Processing,674
pages 2947–2954, Brussels, Belgium. Association675
for Computational Linguistics.676

Mathieu Morey, Philippe Muller, and Nicholas Asher. 677
2018. A dependency perspective on RST discourse 678
parsing and evaluation. Computational Linguistics, 679
44(2):197–235. 680

Maria Nadejde, Siva Reddy, Rico Sennrich, Tomasz 681
Dwojak, Marcin Junczys-Dowmunt, Philipp Koehn, 682
and Alexandra Birch. 2017. Predicting target lan- 683
guage ccg supertags improves neural machine trans- 684
lation. arXiv preprint arXiv:1702.01147. 685

Rico Sennrich and Barry Haddow. 2016. Linguistic 686
input features improve neural machine translation. 687
arXiv preprint arXiv:1606.02892. 688

Rico Sennrich, Barry Haddow, and Alexandra Birch. 689
2016. Neural machine translation of rare words with 690
subword units. In Proceedings of the 54th Annual 691
Meeting of the Association for Computational Lin- 692
guistics (Volume 1: Long Papers), pages 1715–1725, 693
Berlin, Germany. Association for Computational Lin- 694
guistics. 695

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo Wang, 696
and Jinsong Su. 2019. Semantic neural machine 697
translation using amr. Transactions of the Associa- 698
tion for Computational Linguistics, 7:19–31. 699

Xin Tan, Longyin Zhang, Deyi Xiong, and Guodong 700
Zhou. 2019. Hierarchical modeling of global context 701
for document-level neural machine translation. In 702
Proceedings of the 2019 Conference on Empirical 703
Methods in Natural Language Processing and the 704
9th International Joint Conference on Natural Lan- 705
guage Processing (EMNLP-IJCNLP), pages 1576– 706
1585, Hong Kong, China. Association for Computa- 707
tional Linguistics. 708

Zhaopeng Tu, Yang Liu, Zhengdong Lu, Xiaohua Liu, 709
and Hang Li. 2017. Context gates for neural ma- 710
chine translation. Transactions of the Association for 711
Computational Linguistics, 5:87–99. 712

Zhaopeng Tu, Yang Liu, Shuming Shi, and Tong Zhang. 713
2018. Learning to remember translation history with 714
a continuous cache. Transactions of the Association 715
for Computational Linguistics, 6:407–420. 716

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 717
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 718
Kaiser, and Illia Polosukhin. 2017. Attention is all 719
you need. In Advances in neural information pro- 720
cessing systems, pages 5998–6008. 721

Elena Voita, Rico Sennrich, and Ivan Titov. 2019. When 722
a good translation is wrong in context: Context-aware 723
machine translation improves on deixis, ellipsis, and 724
lexical cohesion. arXiv preprint arXiv:1905.05979. 725

Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan 726
Titov. 2018. Context-aware neural machine trans- 727
lation learns anaphora resolution. In Proceedings 728
of the 56th Annual Meeting of the Association for 729
Computational Linguistics (Volume 1: Long Papers), 730
pages 1264–1274, Melbourne, Australia. Association 731
for Computational Linguistics. 732

10

https://doi.org/10.3115/v1/P14-1003
https://doi.org/10.18653/v1/2020.acl-main.321
https://doi.org/10.18653/v1/2020.acl-main.321
https://doi.org/10.18653/v1/2020.acl-main.321
http://arxiv.org/abs/2101.11040
http://arxiv.org/abs/2101.11040
http://arxiv.org/abs/2101.11040
https://doi.org/10.18653/v1/N19-1313
https://doi.org/10.18653/v1/N19-1313
https://doi.org/10.18653/v1/N19-1313
https://doi.org/10.18653/v1/D18-1325
https://doi.org/10.18653/v1/D18-1325
https://doi.org/10.18653/v1/D18-1325
https://doi.org/10.18653/v1/D18-1325
https://doi.org/10.18653/v1/D18-1325
https://doi.org/10.1162/COLI_a_00314
https://doi.org/10.1162/COLI_a_00314
https://doi.org/10.1162/COLI_a_00314
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/D19-1168
https://doi.org/10.18653/v1/D19-1168
https://doi.org/10.18653/v1/D19-1168
https://aclanthology.org/Q18-1029
https://aclanthology.org/Q18-1029
https://aclanthology.org/Q18-1029
https://doi.org/10.18653/v1/P18-1117
https://doi.org/10.18653/v1/P18-1117
https://doi.org/10.18653/v1/P18-1117


Longyue Wang, Zhaopeng Tu, Andy Way, and Qun Liu.733
2017a. Exploiting cross-sentence context for neu-734
ral machine translation. In Proceedings of the 2017735
Conference on Empirical Methods in Natural Lan-736
guage Processing, pages 2826–2831, Copenhagen,737
Denmark. Association for Computational Linguis-738
tics.739

Xinyi Wang, Jason Weston, Michael Auli, and Yacine740
Jernite. 2019. Improving conditioning in context-741
aware sequence to sequence models. arXiv preprint742
arXiv:1911.09728.743

Yizhong Wang, Sujian Li, and Houfeng Wang. 2017b.744
A two-stage parsing method for text-level discourse745
analysis. In Proceedings of the 55th Annual Meeting746
of the Association for Computational Linguistics (Vol-747
ume 2: Short Papers), pages 184–188, Vancouver,748
Canada. Association for Computational Linguistics.749

Yizhong Wang, Sujian Li, and Jingfeng Yang. 2018.750
Toward fast and accurate neural discourse segmen-751
tation. In Proceedings of the 2018 Conference on752
Empirical Methods in Natural Language Processing,753
pages 962–967, Brussels, Belgium. Association for754
Computational Linguistics.755

Shuangzhi Wu, Ming Zhou, and Dongdong Zhang. 2017.756
Improved neural machine translation with source syn-757
tax. In Proceedings of the Twenty-Sixth International758
Joint Conference on Artificial Intelligence, IJCAI-17,759
pages 4179–4185.760

KANG Xiaomian and ZONG Chengqing. 2020. Fu-761
sion of discourse structural position encoding for762
neural machine translation. CHINESE JOURNAL763
OF INTELLIGENT SCIENCE AND TECHNOLO-764
GIE, 2(2):144.765

Jiacheng Xu, Zhe Gan, Yu Cheng, and Jingjing Liu.766
2020a. Discourse-aware neural extractive text sum-767
marization. In Proceedings of the 58th Annual Meet-768
ing of the Association for Computational Linguistics,769
pages 5021–5031, Online. Association for Computa-770
tional Linguistics.771

Mingzhou Xu, Liangyou Li, Derek Wong, Qun Liu,772
Lidia S Chao, et al. 2020b. Document graph773
for neural machine translation. arXiv preprint774
arXiv:2012.03477.775

Liwen Zhang, Ge Wang, Wenjuan Han, and Kewei776
Tu. 2021. Adapting unsupervised syntactic parsing777
methodology for discourse dependency parsing. In778
Proceedings of the 59th Annual Meeting of the Asso-779
ciation for Computational Linguistics and the 11th780
International Joint Conference on Natural Language781
Processing (Volume 1: Long Papers), pages 5782–782
5794.783

Meishan Zhang, Zhenghua Li, Guohong Fu, and Min784
Zhang. 2019. Syntax-enhanced neural machine trans-785
lation with syntax-aware word representations. In786
Proceedings of the 2019 Conference of the North787
American Chapter of the Association for Computa-788
tional Linguistics: Human Language Technologies,789

Volume 1 (Long and Short Papers), pages 1151–1161, 790
Minneapolis, Minnesota. Association for Computa- 791
tional Linguistics. 792

Meishan Zhang, Yue Zhang, and Duy-Tin Vo. 2016. 793
Gated neural networks for targeted sentiment analy- 794
sis. In Thirtieth AAAI conference on artificial intelli- 795
gence. 796

Yue Zhang, Qi Liu, and Linfeng Song. 2018. Sentence- 797
state lstm for text representation. arXiv preprint 798
arXiv:1805.02474. 799

Zaixiang Zheng, Xiang Yue, Shujian Huang, Jiajun 800
Chen, and Alexandra Birch. 2020. Towards mak- 801
ing the most of context in neural machine translation. 802
arXiv preprint arXiv:2002.07982. 803

11

https://doi.org/10.18653/v1/D17-1301
https://doi.org/10.18653/v1/D17-1301
https://doi.org/10.18653/v1/D17-1301
https://doi.org/10.18653/v1/P17-2029
https://doi.org/10.18653/v1/P17-2029
https://doi.org/10.18653/v1/P17-2029
https://doi.org/10.18653/v1/D18-1116
https://doi.org/10.18653/v1/D18-1116
https://doi.org/10.18653/v1/D18-1116
https://doi.org/10.24963/ijcai.2017/584
https://doi.org/10.24963/ijcai.2017/584
https://doi.org/10.24963/ijcai.2017/584
https://doi.org/10.18653/v1/2020.acl-main.451
https://doi.org/10.18653/v1/2020.acl-main.451
https://doi.org/10.18653/v1/2020.acl-main.451
https://aclanthology.org/N19-1118
https://aclanthology.org/N19-1118
https://aclanthology.org/N19-1118

