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Abstract

Document-level machine translation (MT) ex-
tends the translation unit from the sentence
to the whole document. Intuitively, discourse
structure can be useful for document-level
MT for its helpfulness in long-range depen-
dency modelling. However, few efforts have
been paid on leveraging discourse informa-
tion for document-level neural machine trans-
lation(NMT). In this paper, we propose a de-
pendency Rhetorical Structure Theory (RST)
tree enhanced NMT model, RST-Transformer.
The model only needs to encodes the depen-
dency RST tree of the source document via the
attention mask, and can enhance both the en-
coder and the decoder. Experiments on English-
German datasets in both non-pretraining and
pretraining settings show that our discourse in-
formation enhanced approach outperforms the
current state-of-the-art document-level NMT
model.

1 Introduction

As the neural machine translation (NMT) (Bah-
danau et al., 2014; Vaswani et al., 2017) gets close
to human performance on the sentence-level trans-
lation, the mistakes at the document-level become
more obvious (Kim et al., 2019). Previous work
(Voita et al., 2019; Ma et al., 2021) shows these
mistakes could be reduced by introducing contexts
into context-agnostic NMT models.

Previous methods that explored to integrate con-
text information into NMT models can be broadly
divided into two categories. The first category
takes fix scope sentences as context and model-
ing the context-aware representation by extra con-
text encoder (Miculicich et al., 2018; Wang et al.,
2017a) or unified encoder (Ma et al., 2020; Zheng
et al., 2020). The second category takes global con-
text into consideration by using translation memory
(Kuang et al., 2018; Tu et al., 2018), hierarchical
model (Tan et al., 2019; Maruf et al., 2019) or rein-
forcement learning (Kang et al., 2020). However,
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Figure 1: Illustration of our RST-Transformer handling
the cross-sentence dependency. Other Document-level
NMT models need to encode sentences 1-3 to model the
coreference between "coat" and "it" in sentence 1 and 3.
The proposed discourse-aware model RST-Transformer
selects text span {1-1, 3-1}. The right side of the figure
illustrates the dependency RST tree we use, where the
tree of target document can be converted from the tree
of source.

exploring structured information for document-
level NMT has so far received relatively little atten-
tion (Xiaomian and Chengqing, 2020; Chen et al.,
2020; Xu et al., 2020b). Structured information
is proven be helpful for sentence-level MT in en-
forcing meaning preservation (Marcheggiani et al.,
2018), handling data sparsity (Song et al., 2019)
and modeling long-range dependencies (Zhang
et al., 2019; Wu et al., 2017). In another aspect,
the discourse structure helps many other document-
level tasks like summarization (Xu et al., 2020a),
sentiment analysis (Huber and Carenini, 2020),
translation evaluation (Guzmén et al., 2014; Joty
etal., 2017).

In this paper, we present RST-Transformer, a
discourse-aware document-level NMT model build
upon Transformer (Vaswani et al., 2017). To
shorten long-range dependencies and mask un-
related sentences, we take dependency RST tree
(Mann and Thompson, 1987), a structure describ-



ing how text spans in a document related to
each other, as the indicator for guiding document-
level MT. Figure 1 shows an example for cross-
sentence dependencies, where the "It " in sentence
3 refers to "coat" in the sentence 1. In German,
every noun has a gender (masculine, feminine,
neuter) and the pronoun referring to it also use
the same gender. For example, If the masculine
noun "coat" is changed to a feminine noun, like
"pants", the corresponding translation of "It"
should be changed from "Exr" to "Sie". Guided
by the dependency RST tree, the RST-Transformer
can discard redundant context and obtain additional
capacity to include more long-range dependencies,
producing fewer document-level mistakes.

More specifically, the RST-Transformer has two
different attention modules: Sentence attention !
(SentAttn) and RST attention (RSTAttn), which
have sentence attention mask and RST attention
mask, respectively. The sentence attention mask
is used to differentiate the current sentence and
its context. It makes the SentAttn focus on local
sentences. The mask in RSTAttn is converted by
the dependency RST tree of the source document.
It makes the RSTAttn focus on spans related to
the current span in the dependency RST tree. To
fusion the sentence-level information encoded in
SentAttn and document-level information encoded
in the RSTAttn, we investigate three fusion meth-
ods: Serial, Parallel and Mix.

We evaluate our model on three commonly used
document MT benchmark datasets for English-
German translation. The results show that the RST-
Transformer outperforms Transformer and current
state-of-the-art document-level NMT models both
on non-pretraining and pretraining settings. Fur-
ther, we demonstrate that the RST-Transformer can
still surpass other models without introducing the
dependency RST tree in the decoding process.

2 Problem Definition

Formally, we denote X = {X;, X5,... Xn} as
the source document with N sentences and Y =
{Y1,Y5,... Yy} as the target document with the
same number of sentence. We assume that each
source sentence X; is aligned with the target sen-
tence Y;, where ¢ € [1, N].

't is analogous to GroupAttn in G-Transformer (Bao et al.,
2021). G-Transformer is the state-of-the-art document-level
NMT model, which encode the local and global attention by
GroupAttn and GlobalAttn respectively.
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Figure 2: Example of discourse segmentation and RST
tree conversion. The original document is segmented
into 4 EDUs (r1-74) in step (1) and then parsed into an
RST discourse tree in step (2). The dependency RST
tree is converted from RST tree in step 3). Arcs in RST
tree and dependency RST tree indicate modification.

Given the source document to translate, we as-
sume a pair of source and target dependency RST
trees (defined in Section 2.1) Tx and Ty to help
generate the target document. Therefore, the trans-
lation probability from X to Y can be represented
as:

A~

Y = argmax P(Y|X,Tx, Ty) (1)

2.1 Dependency RST Tree

In the RST framework, the discourse structure of
the text is represented in a constituent tree struc-
ture. The dependency RST tree is the dependency
perspective of the RST tree (Li et al., 2014; Morey
et al., 2018), which is helpful in text summariza-
tion (Xu et al., 2020a; Hirao et al., 2013). The
way to get the dependency RST tree of the input
document is shown in Figure 2. In step (1), the
document is split into contiguous, adjacent and
non-overlapping text spans called Elementary Dis-
course Units (EDUs), a sub-sentence phrase unit
originating from RST. In step (2), non-terminal
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Figure 3: Case of converting the dependency RST tree
of the source document to the tree of the target document
by merging EDUs.

nodes are composed of two or more adjacent EDUs
merged upwards to form an RST tree. When merg-
ing, the more semantically important unit is called
the "nucleus", and the other units that modify the
"nucleus" are called "satellite". The arc from 3
to o means 7o is a "satellite” modifying the "nu-
cleus" 73. The "nucleus-satellite” relationship can
be further refined into a variety of rhetorical re-
lationships such as elaboration and background.
Finally, in step (3, the RST tree is converted to its
dependency perspective (Li et al., 2014).

2.2 Trees for source and target documents

We use third-party tools to get the dependency RST
tree for the source document. The details can be
found in Section 4.2. However, the target docu-
ment cannot obtain the dependency RST tree dur-
ing decoding. The one-to-one correspondence be-
tween sentences in the source and target document
makes the inter-sentence relationship between the
two documents is consistent. Thus we can obtain
a coarse-grained dependency RST tree for the tar-
get document. As shown in Figure 3, the tree for
the target document can be converted by the tree
of the source document by merging the EDUs in
the same sentence and ignoring the inner-sentence
relations. Zhang et al. (2021) empirically shows no
EDU across sentences, and all EDUSs in the same
sentence should be exactly covered by a complete
subtree. This ensures that leaf nodes could be sen-
tences and the target document tree still forms a
tree.

3 RST-Transformer

Our RST-Transformer extends from the Trans-
former NMT (Vaswani et al., 2017) architecture.
Figure 4(a) provides an overview of the proposed
model. The encoder and decoder are composed
of N, Sentence layers and N, RST layers, respec-
tively. According to Jawahar et al. (2019), lower

layers of Transformer catch more local syntactic
relations, while the higher layers represent long-
distance relations. Based on this finding, we use
the RST layer on the top layers for cross-sentence
interaction and the Sentence layer on the lower lay-
ers for sentence-level information. Section 3.1 and
Section 3.2 describes the Sentence and RST layers,
respectively. Section 3.3 introduces three proposed
methods to infuse local and global information in
the RST layer.

3.1 Sentence Layer

Our sentence layer is the Transformer (Vaswani
et al., 2017) considering sentence boundary.
Roughly speaking, Transformer consists of two
sublayers: self-attention network and feed-forward
network. We integrate the sentence boundary infor-
mation into the self-attention module. The attention
function discussed maps a query and a set of key-
value pairs to an output. The self-attention module
produces representations by applying the attention
function to each pair of tokens from the input se-
quence. Given a text representation H € RT >

Q=HWq, K=HWgk,V=HWy (2)
T

Attn(Q, K, V) = softmax <C\2/£

where the projection matrices {Wgq, Wi, Wi} €
Rk are trainable parameters, 7' denotes the
length of input tokens and d, dj, are the embed-
ding size and hidden size, respectively.

The self-attention network can capture global
contextual features. But too much information may
cause training failure on the document-level trans-
lation task (Bao et al., 2021). Thus, we update
Equation 3 by sentence boundary guiding, naming
sentence attention (SentAttn). In addition to input
@, K and V, the sentence mask M, € RTXT g
also involved:

)V 3)

SentAttn(Q, K, V') = softmax < + M, ) V
’ ’ f (ik‘ °
“4)

where the sentence mask M is an indicator that
detects whether two tokens are in the same sen-
tence. Specifically, M, gives negative infinity for
the token pairs not in the same sentence to make
softmax close to 0. Note that the SentAttn is same
as the GroupAttn in Bao et al. (2021). For every
two tokens x;, x; in the source document, we have:
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Figure 4: (a) Model architecture of RST-Transformer. (b) The schematic of converting sentence boundary and
dependency RST tree to attention masks. The white part in masks means the value is -co and the grey part means 0.
They mean there is a constrain on attention or not, respectively. (c) The architecture of different fusion methods.

M, (i, j) = 0 T, Tj i.n same sentence,
—oo0  otherwise.

&)

The lower half of Figure 4(b) shows an example of

M. Due to the alignment assumption in Section 2,

we can also get the sentence mask for the target

document during training and decoding.

3.2 RST Layer

Our RST layer has two attention modules and one
feed-forward module. One attention module is Sen-
tAttn defined in Equation 4, which captures local
information. The other is RST attention (RSTAttn),
used to capture the discourse structure enhanced
global information.

Similarly, we update Equation 3 using the de-
pendency RST tree. We involve RST mask M, €

RIT*T into it:

RSTAtn(Q, K, V) =
T

QK )
ft — + Mrs v
soItmax ( \/d>k t

(6)

where the RST mask M, is an indicator. If the
EDUs where two tokens z; and x; located are di-
rectly related (parent or child) in the dependency
RST tree or same, M, (i, j) is set to 0 and nega-
tive infinity otherwise:

0 x;, r; in same EDU

Mrst(iaj) = (7)

or related,

—o0  otherwise.

The upper half of Figure 4(b) shows an example of
M, ;. The dependency RST tree of the source and
target document can be get from the Section 2.1.



Dataset #Sent #Documents
TED 0.21M/9K/2.3K 1.7K/92/23
News 0.24M/2K/3K 6K/81/155
Europarl | 1.67M/3.6K/5.1K  118K/239/360

Table 1: Statistics of three datasets.

3.3 Fusion Methods for SentAttn and
RSTA(ttn

To investigate what kind of structure is better for
information fusion between SentAttn and RSTAttn,
we propose three different RST-Transformer struc-
tures: Serial, Parallel and Mix. Their structural
diagram is shown in Figure 4(c).

Given the source document representation H €
RT*T  we can get the ), K, V same as Equa-
tion 2:

¢ Serial connects SentAttnt and RSTAttn and
in series:

H; = SentAttn(Q, K, V), ()

{Q4, Ky, Vi} = H{W,, Wi, Wy, b (9)

H = RSTAttn(Q;,K;, V;,’), (10)

where the projection matrices {Q’, K., V/}
are trainable parameters.

* Parallel uses a gate-sum module (Zhang et al.,
2016; Tuet al., 2017) to combine RSTAttn and

SentAttn:
H],, = RSTAtn(Q, K, V), )
g = sigmoid([H., H. ,]W +b), (12)
H=H0Og¢g+H,6(1-g), 13)

where the H/, obtained by Equation 8, which
is same as Serial, W and b are linear projec-
tion parameters, and ® denotes element-wise
multiplication.

* Mix integrates the Parallel and Serial struc-

tures. We obtain H and H, by Equation 8-
10, which are same as Serial. Then we com-
bine H. and H/,, to obtain the H’ by a gate-
sum module (Equation 12-13), which is same

as Parallel.

4 Experiments

We compare our RST-Transformer with sentence-
level Transformer and previous document-level
NMT models on both non-pretraining and pretrain-
ing settings. We conduct experiments on three

English-German (En-De) datasets. Following Liu
et al. (2020), we calculate case-sensitive sentence
BLEU (s-BLEU) and document BLEU (d-BLEU)
as the metrics.

4.1 Datasets

Following previous work (Maruf et al., 2019), we
use three En-De datasets as the benchmark to eval-
uate our method, which comes from three different
domains: TED is transcriptions of TED talks from
IWSLT 2017, News comes from News Commen-
tary v11, Europarl is extracted from Europarl v7.
The statistic of these datasets can be found in Ta-
ble 1. We tokenize and truecase the sentences with
MOSES (Koehn et al., 2007) tools, applying BPE
(Sennrich et al., 2016) with 32000 merging opera-
tions. We split documents into instances with up to
512 tokens and ensure the integrity of the sentence.

4.2 Implement Details

We train our models on 4 GPUs of A100.

Hyper-parameters We use the Adam
(Kingma and Ba, 2015) optimizer to train the
models. The training strategy is the same as Bao
et al. (2021), except for 1) the learning rate is
3e-4, 2) the batch size is limited to 4096, 8192,
8192 for TED, News and Europarl, respectively.
We search the batch size in [4096, 8192] and the
learning rate in [le-4, 3e-4, be-4]. We determine
the number of updates/steps automatically by early
stop on validation set. N, is set to 4 and N is
set to 2 for all experiments. Following previous
work (Bao et al., 2021; Miculicich et al., 2018), we
train the models in two stages. First we optimize
the parameters for a Transformer model with
sentence-level data. Then we use the Transformer
to initialize our RST-Transformer and continuous
train on the document-level data.

RST Discourse Parsing We first apply Neu-
ralEDUSeg (Wang et al., 2018) to obtain EDUs.
Then, we use StageDP (Wang et al., 2017b) to parse
the segmented document. After obtaining the RST
tree, we apply the algorithm proposed by Li et al.
(2014) to convert the RST tree to its dependency
perspective.

4.3 Baselines

We compare our model with the following NMT
models:

Transformer is the base configuration Transformer
NMT model in Vaswani et al. (2017) trained on



TED News Europral
s-BLEU d-BLEU | s-BLEU d-BLEU | s-BLEU d-BLEU

Transformer | 24.80 - 25.10 - 31.37 -

HAN | 24.58 - 25.03 - 28.60 -

SAN | 2442 - 24.84 - 29.75 -

Hybrid Context | 25.10 - 2491 - 30.40 -

Flat-Transformer | 24.87 - 23.55 - 30.09 -
G-Transformer | 25.12 27.17 25.47 27.08 32.39 34.08
RST-Transformer-Serial | 25.55 27.757 25.83 27.38 3243 34.16
RST-Transformer-Parallel | 25.57  27.75" | 26.05"7 27.68" | 32.64 34.33
RST-Transformer-Mix | 25.61 27.84" 26.43" 28.00" 32.87! 34.64'

Fine-tune on mBART

BART fine-tuned on sentence 27.78 - 29.90 - 31.87 -
BART fine-tuned on doc - 28.29 - 30.49 - 34.00
G-Transformer + BART | 28.06 30.03 30.34 31.71 32.74 34.31
RST-Transformer-Serial + BART | 27.96 29.95 30.35 31.60 32.94 34.49
RST-Transformer-Parallel + BART | 28.29 30.26 30.71 32.01 33.01 34.59
RST-Transformer-Mix + BART | 28.26 30.23 | 30.89"  32.29" | 33.14 34.63

Table 2: Case-sensitive BLEU scores on En-De translation. "1" indicates statistically significant (Koehn, 2004) over

the state-of-the-art G-Transformer at p < 0.05.

sentence-level data. And we use the model to ini-
tialize our RST-Transformer.

HAN (Miculicich et al., 2018) uses a hierarchical
attention mechanism with two levels (word and
sentence) of abstraction to incorporate context in-
formation from both source and target documents.
SAN (Maruf et al., 2019) considers both source and
target documents by selecting relevant sentences as
contexts from a document.

Hybrid Context (Zheng et al., 2020) uses a relative
self-attention module to encode context at encoder
and decoder.

Flat-Transformer (Ma et al., 2020) uses a uni-
fied encoder encode context and source sentence at
same time and only encode source at top encoder
layer.

G-Transformer (Bao et al., 2021) uses two atten-
tion modules to encode full document and local
sentence at the top two layers. It is a special case
of our RST-Transformer-Parallel structure when all
EDUs connect to each other.

4.4 Results

Table 2 shows the overall results on three datasets.
We find that our three fusion methods outperform
the base model and previous document-level NMT
models. Especially the RST-Transformer-Mix
achieves the best results at all three datasets. the
RST-Transformer-Mix can achieve improvements
of 1.18 average s-BLEU scores over the context-
agnostic Transformer. Therefore, the Mix is the

most effective method of information fusion. It
is worth noting that our RST-Transformer-Parallel
model is better than G-Transformer on average by
0.63 s-BLEU scores and 0.71 d-BLEU scores, re-
spectively. As mentioned above, G-Transformer
can be regarded as the RST-Transformer-Parallel
model without dependency RST tree. It proves that
the RST structure can provide effective informa-
tion.

There is an active topic about document-level
MT using pretraining. We use mBART25 (Liu
et al., 2020) to initialize our RST-Transformer and
finetune it with learning rate 3e-4. Taking advan-
tage of sequence-to-sequence pretraining, the result
of RST-Transformer-Mix+BART is 2.46 s-BLEU
scores better than the RST-Transformer-Mix on
average. Compared to the document-level state-
of-the-art pretrained model G-Transformer+BART,
our best model gives 0.55 s-BLEU score improve-
ment on the News dataset. It shows the discourse
structure information also enhances performance
although in well-pretrained settings.

5 Analysis

In this section, we investigate our RST-Transformer
to reveal its strengths and weaknesses in terms of
(1) training without the Transformer initialization,
(2) decoding without dependency RST tree, (3)
changes in document phenomena of translations,
(4) a case study. We use the Mix structure for



Size | Method | TED News Europarl
Trans 042 045 30.40
Base | G-Trans | 23.53 23.55 32.18
our-Mix | 24.28 24.12  32.33
Trans 0.72 0.33 27.33
Big | G-Trans | 23.29 2222  32.04
our-Mix | 23.99 23.97 33.25
Trans. 0.23 0.31 1.27
Large | G-Trans | 6.23 13.68  31.51
our-Mix | 13.22 20.04 31.99

Table 3: s-BLEU on different model size. "Trans." is
Transformer, "G-Trans" is G-Transformer, "our-Mix" is
our RST-Transformer-Mix.

analysis because of its best performance.

5.1 Training From Scratch

Most of the current document-level NMT mod-
els are initialized by a pretrained sentence-level
Transformer because this strategy can improve the
performance. Bao et al. (2021) also shows the cur-
rent transformer model prefers to stick around lo-
cal minima without the initialization. The "Trans"
rows in Table 3 show the s-BLEU score of Trans-
former trained on document-level datasets in dif-
ferent model sizes. Here the Base, Big model size
is the same as the base, large configurations in
(Vaswani et al., 2017) and the Large size is the same
setting of BART large model (Lewis et al., 2020).
As the table shows, we have a better performance
on different model sizes. The performance drops
slightly when increasing the model size from Base
to Big. Further to the Large model, there is no sharp
drop either. On the Large setting, the performance
gap between ours and the G-Transformer reaches
+6.99/+6.36 on the two small datasets (TED and
News). The results indicate that our model can
better prevent training failure.

5.2 Decoding without RST Tree

When decoding using RST-Transformer, an addi-
tional step is required to obtain the dependency
RST tree of the source document. This is not
expected in practical application. In order that
our model can still model long-distance dependen-
cies without the help of discourse information, we
added a hyper-parameter drop,s in the training
process. It means the RST attention mask M,
is set to all zero with probability p = drop;s.
Figure 5 shows the results of RST-Transformer-
Mix training with drop,s € [0,0.3,0.5,0.7,1.0].

260 ®w.tree M w/otree G-Trans
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Figure 5: s-BLEU on the TED testset at different
drop.s: and decoding settings. "w. tree" means de-
coding with dependency RST trees and "w/o tree" is
decoding without trees. The empty column, like the red
column at position "0" means the result is lower than
the 24.0 s-BLEU score.
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When drop,s; = 0, our RST-Transformer-Mix can
reach the best result with the help of the depen-
dency RST tree. But it is failed without the tree.
Once considering the absence of dependency RST
tree during training (drop,s; > 0), our model can
quickly adapt to this situation. Especially when
drop,st = 0.5, the RST-Transformer-Mix is better
than the current state-of-the-art model even without
the help of discourse structure. That means we only
need to integrate discourse information during the
training phase and the model could learn to model
long-dependency itself.

5.3 Discourse Phenomena

We examine whether our models can capture dis-
course phenomena by evaluating our model on the
consistency testsets (Voita et al., 2019). The con-
sistency testsets evaluate the discourse phenomena
include deixis, lexicon consistency, ellipsis (inflec-
tion and verb phrase) in English-Russian. Each
testset contains contrastive examples consisting of
a positive translation with correct discourse phe-
nomenon and negative translations with incorrect
phenomena. The goal is to determine whether a
model is more likely to generate a correct trans-
lation than the incorrect variation. We follow the
training setting proposed by Voita et al. (2019) and
use both 6M sentence pairs and 1.5M document
pairs from OpenSubtitles2018 (Lison et al., 2018)
to train our model. As the results are shown in
Table 5, our RST-Transformer-Mix obtains the best
results.

5.4 Case Study

Table 4 shows an example of the deixis problem
in En-De document-level MT, similar to Figure 1.



S_o: Two twin domes, two radically opposed design cultures.

Context . . .
S_1: One is made of thousands of steel parts, the other of a single silk thread.
So:  One is synthetic, the other organic.
Source | Si: One is imposed on the environment, the other creates it.

Sa: One is designed for nature, the other is designed by her.

Reference | Ry:

Ry: die eine ist synthetisch, die andere organisch.
eine wird der Umwelt auferlegt, die andere erschafft diese.
Ro: die eine ist fiir die Natur entworfen, die andere wird durch sie erschaffen.

Transformer-sent | T7:

Ty: eine ist synthetisch, das andere organische.
die eine wird auf die Umwelt auferlegt, die andere schafft es.
T5: man wird fiir die Natur gestaltet, das andere wird von ihr entworfen.

RST-Transfotmer-Mix | T;:

Tyh: die eine ist synthetisch, die andere organische.
die eine wird auf die Umwelt auferlegt, die andere schafft sie.
Ty: die eine ist fiir die Natur gestaltet, die andere wird von ihr entworfen.

Table 4: An example of deixis problem in En-De. Given the context S_; and S_g, the phrase "the other" in S;_3
should be translate to "die andere" as shown in 77 _3 because the "domes" it refers to is a feminine word in German.

Method deixis lexical Ellipsis
sent 50.0 459 40.7
concat 83.5 47.5 76.4
MCN 61.3 46.1 48.3
G-Transformer 89.9 83.6 -
RST-Transformer-Mix 91.7 83.6 79.1

Table 5: Accuracy (%) of consistency testsets.

Given the context S_1 _2, we need to translation
three sentences Sp_o. As the Reference Ry_o
shows, the pronoun phrase "the other" in the Source
should be translated to the correct gender "die an-
dere" because the noun "domes" it refers to is fem-
inine. The Transformer-sent cannot consider the
cross-sentence context and translate these pronouns
into neutral "das andere" in T;; and 75. But our
RST-Transformer-Mix keeps translating "the other"
into "die andere" correctly, suggesting an effective
capability of handling long-range dependencies.

6 Related Work

Structure-aware NMT is a well-studied topic in the
sentence-level translation and the structure informa-
tion is proven to be useful. Many approaches claim
performance improvements by using treebank syn-
tax (Sennrich and Haddow, 2016; Eriguchi et al.,
2016; Bastings et al., 2017; Aharoni and Goldberg,
2017). Other approaches incorporate syntactic in-
formation in NMT models relatively indirectly (e.g.
multi-task learning (Luong et al., 2015; Nadejde
et al., 2017; Eriguchi et al., 2017; Hashimoto and
Tsuruoka, 2017)). Unlike these syntactically-aware
NMT methods mentioned above, Marcheggiani
et al. (2018) and Song et al. (2019) investigate
semantic role labeling and abstract meaning rep-
resentation on NMT by GCN (Kipf and Welling,
2016) and GRN (Zhang et al., 2018) respectively.

On the contrary, it is still the mainstream practice
to treat documents as plain text in document-level
machine translation (Voita et al., 2018; Wang et al.,
2019; Miculicich et al., 2018; Maruf et al., 2019;
Xu et al., 2020b; Ma et al., 2020; Zheng et al., 2020;
Liu et al., 2020; Bao et al., 2021). Only little work
has done with structured information. Xu et al.
(2020b) proposed a graph-based approach where
graphs are constructed according to inter-sentential
(adjacency, dependency) and intra-sentential (lexi-
cal consistency, coreference) relations. Compared
with their work, we use the dependency RST tree
supported by linguistic theory. and introduce the
tree by attention mask. Xiaomian and Chengqing
(2020) and Chen et al. (2020) also enrich input
word embeddings with path embeddings based on
RST trees. Unlike their methods, we integrate RST
trees into the encoder and decoder of the conven-
tional transformer model via an attention mask.

7 Conclusion

In this paper, we present a novel discourse
structured information enhanced approach for
document-level NMT. We modify the Transformer
architecture to integrate the dependency RST tree
of the source document by attention mask in en-
coder and decoder. Experiments show that our
method gives state-of-the-art results compared
to existing models under pretraining and non-
pretraining settings. Our further analysis also
shows that our model achieves nearly the same
results even when decoding without the discourse
information.
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