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Abstract

Table Question Answering (TableQA) combines natural language understanding
and structured data reasoning, posing challenges in semantic interpretation and
logical inference. Recent advances in Large Language Models (LLMs) have
improved TableQA performance through Direct Prompting and Agent paradigms.
However, these models often rely on spurious correlations, as they tend to overfit
to token co-occurrence patterns in pretraining corpora, rather than perform genuine
reasoning. To address this issue, we propose Causal Intervention TableQA (CIT),
which is based on a structural causal graph and applies front-door adjustment to
eliminate bias caused by token co-occurrence. CIT formalizes TableQA as a causal
graph and identifies token co-occurrence patterns as confounders. By applying
front-door adjustment, CIT guides question variant generation and reasoning to
reduce confounding effects. Experiments on multiple benchmarks show that CIT
achieves state-of-the-art performance, demonstrating its effectiveness in mitigating
bias. Consistent gains across various LLMs further confirm its generalizability.

1 Introduction

Tabular data is a prevalent type of structured information, commonly found in many fields [Yang et al.,
2025, Lee et al., 2024, Xia et al., 2023]. Table Question Answering (TableQA), which aims to answer
natural language questions over tables, plays a key role in decision support and data analysis. Early
methods focused on SQL-based semantic parsing [Zhong et al., 2017] or pretraining on table-specific
corpora [Ou and Liu, 2022, Eisenschlos et al., 2020, Xie et al., 2022]. More recently, Large Language
Models (LLMs) have achieved strong results on TableQA by leveraging In-Context Learning [Sui
et al., 2023, Chen, 2023a] and Chain-of-Thought (CoT) prompting [Cheng et al., 2023, Ye et al.,
2023b]. Based on CoT, two main paradigms have emerged: Direct Prompting (DP), which performs
natural language reasoning, and Agent, which relies on symbolic code execution.

Despite strong empirical performance, prompting strategies in LLM-based TableQA are often not
robust [Ye et al., 2023a]. LLMs tend to rely on token co-occurrence patterns from pretraining data,
which can lead to spurious correlations and unfaithful reasoning [Lyu et al., 2023, Wang et al., 2023c,
Bao et al., 2024, Turpin et al., 2023]. For example, as shown in Figure 1, phrases like exactly
frequently co-occur with answers like yes, causing LLMs to prefer yes even when no is correct.
This creates a confounder that affects both question interpretation and answer prediction, forming a
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Opposing
Team score Date ... Status

Cambridge
University 12 18 October

1978 ... Tour
Match

Cardiff 7 21 October
1978 ... Tour

Match

London
Counties 12 28 October

1978 ... Tour
Match

Munster 12 31 October
1978 ... Tour

Match

Ireland 6 4 November
1978 ... Test

Match

Wales 12 11 November
1978 ... Test

Match

... ... ... ... ...

Table

Yes, the following four teams scored
exactly 12 points against Cambridge
University:

1. London Counties exactly 12 points –
28 October 1978

2. Munster exactly 12 points – 31
October 1978

3. Wales exactly 12 points – 11
November 1978

4. Cambridge University exactly 12
points – 18 October 1978

So, these four teams scored exactly 12
points against Cambridge University.

Answer: Yes

Were there four teams that scored exactly 12 versus Cambridge University?🧑‍🎓

Evidence

(a)

C

Q AE

❌
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1978
Tour

Match ]

[ London
Counties 12 28 October

1978
Tour

Match ]

[ Munster 12 31 October
1978

Tour
Match ]

[ Wales 12
11

November
1978

Test
Match ]

(d)

(b)

exactly

(exactly, yes)

yesEvidence

(c)

C

Q AE

❌do(Q)

Figure 1: Illustration of token co-occurrence bias as a confounder in LLM-based TableQA. (a)
Causal graph showing confounding in reasoning; (b) Real-world example where pretraining bias
causes unfaithful answers; (c) Do-intervention to block the back-door path; (d) Adversarial example
demonstrating spurious correlations.

back-door path that distorts reasoning. Although causal methods have been proposed to address such
issues [Niu et al., 2021, Tian et al., 2022, Guo et al., 2023], they often rely on observable confounders
or model internals, limiting their applicability in TableQA where confounders are typically latent.

Beyond the above qualitative analysis, we also conduct quantitative verification of these limitations.
Specifically, we apply double negation perturbations to logically equivalent examples from TabFact
dataset [Chen et al., 2020] and observe a substantial drop in accuracy. This suggests that LLMs rely
more on surface-level linguistic patterns than on deep reasoning.

To address these challenges, we reinterpret TableQA from a causal perspective. As shown in
Figure 1(a), ideal reasoning follows Q→ E → A, but token co-occurrence introduces a confounder
C, forming a spurious path Q ← C → A. We adopt front-door adjustment [Pearl et al., 2016],
which enables causal estimation using only observed variables, without requiring access to C or
model internals. We propose Causal Intervention TableQA (CIT), a framework that mitigates bias
from token co-occurrence patterns through front-door adjustment. CIT avoids explicit do-calculus by
decomposing the adjustment process into four components: (1) Question Variant Generation, which
produces diverse paraphrases of Q to reduce lexical bias; (2) Evidence Aggregation, which combines
retrieved content across variants to improve coverage; (3) Answer Inference, which applies both DP
and Agent reasoning strategies; (4) Joint Voting, which selects the final answer via majority voting.
Experiments across multiple TableQA benchmarks and LLMs show that CIT consistently improves
reasoning robustness and generalization. Our main contributions are as follows:

• Causal formulation of co-occurrence bias: We are the first to introduce causal intervention
into LLM-based TableQA by modeling token co-occurrence as latent confounding and
applying front-door adjustment to mitigate its effect.

• Efficient intervention via question variants: We estimate causal effects using semantically
diverse question variants. A single-pass generation strategy ensures low overhead.

• Broad empirical validation: CIT achieves state-of-the-art performance on multiple datasets
across both open- and closed-source LLMs, demonstrating strong generalization.

2 Related Work

2.1 LLM-based TableQA

Recent advances in large language models (LLMs) have greatly improved TableQA performance
by leveraging general reasoning capabilities [Pal et al., 2023, Lee et al., 2024, Zhong et al., 2017,
Yang et al., 2025]. Existing methods mainly follow two paradigms: Direct Prompting, which
guides reasoning in a single step [Sui et al., 2023, Chen, 2023a], and Agent, which decomposes
the task into symbolic operations [Li et al., 2024b, Lei et al., 2023]. Representative methods are
listed in Appendix A. However, these approaches focus primarily on guiding LLM reasoning, while
overlooking a key issue: LLMs often encode token co-occurrence patterns from pretraining data,
which can induce spurious correlations between the question and the answer.
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2.2 Causal Intervention

Causal inference offers a principled framework for addressing bias through interventions [Pearl et al.,
2016, Pearl, 2019, Ren et al., 2023a,b]. Prior work has applied counterfactual [Niu et al., 2021,
Xu et al., 2023, Yang et al., 2023b], back-door adjustment [Tian et al., 2022, Zhu et al., 2023], and
front-door adjustment [Yang et al., 2021, Zhang et al., 2024a, Yang et al., 2023a] to mitigate spurious
correlations. Recent studies have extended ideas to LLMs [Jin et al., 2023, Lyu et al., 2024], although
many rely on heuristics or simplified causal graphs [Wang et al., 2023b, Tang et al., 2023]. In contrast
to back-door methods that require explicit modeling of confounders, which is often infeasible for
LLMs, front-door adjustment enables causal estimation using only observed variables. This makes it
particularly suitable for LLM-based TableQA.

3 Preliminaries

3.1 TableQA

Given a question Q and a table T , an LLM first interprets the question, retrieves relevant evidence
E ⊆ T based on Q, and then reasons over Q and E to produce the final answer A. This process can
be formally expressed as Equation 1:

E = Promptretrieve(Q,T ), A = Promptanswer(Q,E) (1)

Here, Promptretrieve refers to the step where the LLM selects evidence based on the question.
Promptanswer performs reasoning over the question and the evidence to get the answer.

3.2 Structural Causal Model (SCM)

Causal inference offers a framework for modeling interventions and estimating causal effects. A
central tool is the Structural Causal Model (SCM)[Pearl et al., 2016], which represents dependencies
among variables as a directed acyclic graph (DAG) G = (V,E), where V is the set of nodes and E
is the set of edges. In Figure 1, we illustrate the causal graph constructed for the TableQA task and
explain its components as follows.

Q→ E → A. In TableQA, the input question Q determines the selection of evidence E, which in
turn leads to the answer A. This forms the ideal causal path Q→ E → A.

Q ← C → A. During pretraining, LLMs tend to overfit to token co-occurrence patterns in the
corpus. In certain cases, this behavior interferes with reasoning and leads to biased predictions.
We treat this as a latent confounder, denoted as C, which introduces a spurious back-door path
Q← C → A.

do(Q). To identify the true causal effect, it is necessary to block the influence of the confounder C
using the do-operator [Fenton et al., 2020]. In an SCM, applying do(Q) corresponds to removing
all incoming edges to Q, thereby eliminating the indirect effect of C on A through Q. In causal
inference, the do-operator represents an ideal intervention that forcibly sets the value of a variable.
However, such interventions are typically infeasible in observational data. Therefore, techniques such
as front-door or back-door adjustment are commonly used to estimate causal effects without directly
applying the do-operator.

3.3 Front-door Adjustment

Back-door adjustment requires access to the confounder C, which is unobservable in LLMs. In
contrast, front-door adjustment bypasses this need and is thus more applicable. By the law of total
probability, the interventional distribution is given in Equation 2.

P (A | do(Q)) =
∑
e

P (A = a | do(Q = q), E = e)P (E = e | do(Q = q)) (2)
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🤖
Q1 Answer: False. It shows Cambridge University as a team that
played against New Zealand and scored 12. It is not four teams.
Q2 Answer: False. There is no indication that four teams played
against Cambridge University. Instead, Cambridge is one of the
teams listed as an opponent.
Q3 Answer: False. It shows that Cambridge University scored 12
against New Zealand, not four teams scored 12 points against
Cambridge University.
Final Answer: False. It shows four teams (Cambridge University,
London Counties, Munster, and Wales) each scored 12         
   points against New Zealand, not against Cambridge University.Opposing

Team score Date ... Status

Cambridge
University 12 18 October

1978 ... Tour
Match

Cardiff 7 21 October
1978 ... Tour

Match

London
Counties 12 28 October

1978 ... Tour
Match

Munster 12 31 October
1978 ... Tour

Match

Ireland 6 4 November
1978 ... Test

Match

Wales 12 11 November
1978 ... Test

Match

... ... ... ... ...

Table

[ Cambridge
U i i

12 ]
[ London Counties 12 ]
[ Munster 12 ]
[ Wales 12 ]

Opposing Team Score

[ Cambridge University 12 ]

[ London Counties 12 ]

[ Munster 12 ]

[ Wales 12 ]
[ Cambridge

U i i
12 ]

[ Cambridge
U i i

12 ]

Q1

Q2

Q3

Q1. Were four teams score a total of 12
points versus Cambridge University?

Q2. Did four teams record 12 points
    versus Cambridge University?

Q3. Were four teams earn a score of
12 versus Cambridge University?

🤖DP

❌do(Q)

C

Q AE

False 
Answer

False

False

Were there four teams that
scored exactly 12

 versus Cambridge
University?

Question

🤖Agent
question_1 = (df['Score'] == 12).sum( ) == 4

question_2 =df[df['Opposing Team'] == 'Cambridge
University']['Score'].sum( ) == 12

question_3 = (df['Score'] == 12).sum( ) == 4

final_answer = question_1 and question_2 and question_3
---------------------------------------------------------------------------
result：
False, False, False, False

Figure 2: Overview of the CIT. Given a question and table, CIT derives the final answer through: (1)
Question Variant Generation, which produces semantically diverse variants; (2) Evidence Aggregation,
which extracts and unifies evidence across variants; (3) Answer Inference, which combines Direct
Prompting and Agent; and (4) Joint Voting, which selects the final answer via majority voting.

By applying the law of total probability and the assumptions of SCM, this expression can be further
transformed into the final formula shown in Equation 3. The full derivation is provided in Appendix B.

P (A = a | do(Q = q)) =
∑
e

P (E = e | Q = q)
∑
q′

P (A = a | E = e,Q = q′)P (Q = q′) (3)

4 Method

By applying the do-operator, we block the bias introduced by the confounder C. Through front-door
adjustment, this intervention can be reformulated into a tractable expression using only observed
variables. Based on Equation 3, our method consists of four components: (1) Question Variant
Generation, (2) Evidence Aggregation, (3) Answer Inference, and (4) Joint Voting. We describe each
component in detail below.

4.1 P (Q = q′): Question Variant Generation

To estimate P (Q = q′), we generate a set of semantically equivalent question variants {q′i}ni=1 that
preserve the intent of the original question Q while differing in surface form. To reduce the cost of
LLM inference, we adopt a single-pass generation strategy using a prompt-based generator, denoted
as Promptgen, which produces all variants in a single call, as shown in Equation 4. Here, Q is the
input question, T is the table, and the prompt used for variant generation is detailed in Appendix C.

{q′i}ni=1 = LLM(Q,T, Promptgen) (4)

Since all variants are generated simultaneously, their generation probability is approximated as
uniform. As a result, P (Q = q′) is treated as a constant and omitted from the final formulation.

Beyond the causal perspective, our method can also be understood semantically. When encoded by
an LLM, the original question and its variants are represented as high-dimensional vectors in a shared
semantic space. Generating multiple variants effectively samples points around the original question,
forming a dense semantic neighborhood. This encourages the LLM to reason over meaning rather
than surface form, which improves robustness and helps mitigate bias.

4.2
∑

e P (E = e | Q = q): Evidence Aggregation

To estimate
∑

e P (E = e | Q = q), we extract supporting evidence for the given question. Since
CIT considers multiple question variants {q′i}, evidence must be extracted for each variant. To reduce
the cost, we adopt a separate single-pass strategy using Promptretrieve for evidence extraction. All
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question variants are provided to the LLM in one prompt, and the LLM extracts the corresponding
evidence eq′i for each variant and then aggregate to form the final evidence, as shown in Equation 5.
The prompt used by Promptretrieve is detailed in Appendix C.

LLM(T, q, q′, P romptretrieve)→ eq′i , e =

n⋃
i=1

eq′i (5)

This union operation ensures that all potentially useful evidence across diverse paraphrases of the
question is captured. By aggregating information from multiple linguistic perspectives, we construct
a more complete and robust foundation for downstream reasoning.

4.3
∑

q′ P (A = a | E = e,Q = q′)P (Q = q′): Answer Inference

To estimate
∑

q′ P (A = a | E = e,Q = q′)P (Q = q′), we infer under each variant q′. We consider
two reasoning paradigms commonly used in LLM-based TableQA: Direct Prompting and Agent.

Direct Prompting (DP) Reasoning. DP guides the LLM to generate step-by-step reasoning via CoT
to obtain the answer, improving performance on complex TableQA tasks. For each question variant
q′, the LLM generates a token sequence conditioned on q′ and the retrieved evidence e, modeled
autoregressively as Equation 6.

P (A = aDP | E = e,Q = q′) =

L∏
l=1

P (wl | w<l, e, q
′) (6)

Here, wl is the l-th token, w<l the preceding tokens, and L the sequence length. The LLM maximizes
this joint probability to generate reasoning steps and the final answer aDP. However, this formulation
may overfit to frequent patterns from pretraining, leading to overconfident but unfaithful predictions.
Our causal framework mitigates this by aggregating outputs across diverse question variants.

Symbolic Reasoning with Agent. In contrast to natural language reasoning, Agent allows the LLM
to generate executable Python code for structured operations over table evidence. Given a question
variant q′ and evidence e, the LLM produces a code snippet code(q′, e), and the final answer is
obtained by executing it within a Python shell as Equation 7. Here execute denotes run the code.

P (A = aAgent | E = e,Q = q′) = execute(code(q′, e)) (7)

This symbolic approach allows direct operations on tabular as filtering, aggregation, and arith-
metic—enabling precise numerical. To reduce API cost, we adopt a unified execution strategy: the
original question q and its variants set{q′i} are processed in a single LLM call. The model reasons
over each variant independently and aggregates intermediate results into a final answer aAgent. This
one-shot process improves efficiency and ensures semantic consistency across variants.

4.4 Joint Voting

CIT supports both DP and Agent reasoning, and integrates their outputs via majority voting to
exploit their complementary strengths. For each question q, the framework performs n rounds of
DP and m rounds of Agent reasoning, yielding answer sets ADP = {aDP

1 , . . . , aDP
n } and AAgent =

{aAgent
1 , . . . , aAgent

m }. The final prediction is selected by majority vote over both sets as Equation 8:

P (A = a | E = e,Q = q′) = Majority V ote(ADP ∪AAgent) (8)

In case of a tie, one of the top answers is selected uniformly at random. The hyperparameters n and m
control the number of DP and Agent rounds. We vary (n,m) in ablations to explore performance-cost
trade-offs. Beyond voting, this joint design enhances semantic diversity by reasoning over multiple
variants q′ and evidence sets E. This is especially beneficial for ambiguous or biased questions,
where aggregating diverse reasoning paths helps mitigate confounder-induced errors.
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5 Experimental Setup

5.1 Datasets and Evaluation

Dataset. We evaluate on three datasets: WikiTableQuestions (WTQ) [Pasupat and Liang, 2015],
TabFact[Chen et al., 2020], and FetaQA [Nan et al., 2022]. WTQ involves aggregation, comparison,
and arithmetic reasoning, with 4,344 test examples. TabFact is a fact verification task over 2,024
samples. FetaQA features free-form questions that require integrating information on 2,003 samples.

Evaluation. Following prior work [Liu et al., 2024a, Yang et al., 2025], we use exact match accuracy
for WTQ and TabFact, which focus on short-form answers. For FetaQA, which requires long-form
generation, we report BLEU [Papineni et al., 2002] to evaluate answer quality.

5.2 Implementation Details

To ensure fair comparison, we first evaluate CIT using GPT-3.5 as LLM. To assess generalizability, we
further test CIT across LLMs: Open-source: LLaMA 2-7B/13B/70B, DeepSeek-R1; Closed-source:
GPT-3.5, GPT-4, GLM 4, Gemini 1.5, Claude 3.5. All LLMs temperature is 0.8.

Table 1: Results on WikiTableQuestions with
GPT-3.5. CIT-DP and CIT-Agent show re-
sults for DP and Agent modes separately. CIT-
DP&Agent shows the joint voting result.

Method Acc.
OmniTab (22’ NAACL) 61.30
Codex SQL (23’ ICLR) 61.10
BINDER (23’ ICLR) 64.60
DATER (23’ SIGIR) 65.90
DTE (23’ ACL) 54.20
TACR (23’ arXiv) 60.20
ITR (23’ ACL) 63.40
StructGPT (23’ EMNLP) 57.00
Liu et al. (24’ arXiv) 55.80
Cabinet (24’ ICLR) 69.10
CHAIN-OF-TABLE (24’ ICLR) 59.94
ReAcTable (24’ VLDB) 68.00
SYNTQA (24’ EMNLP) 70.40
Mix-SC (DP&Agent) (24’ NAACL)73.65
TIDE (DP&Agent) (25’ ICLR) 75.00

CIT-DP 65.40
CIT-Agent 73.76
CIT-DP&Agent 76.38

Table 2: Results on TabFact dataset with GPT-
3.5. CIT-DP and CIT-Agent show results
for DP and Agent modes separately. CIT-
DP&Agent shows the joint voting result.

Method Acc.
TAPAS-large (20’ EMNLP) 81.00
TAPEX-large (21’ ICLR) 84.20
SaMOE (22’ ACL) 86.70
SASP (22’ ACL) 77.00
T5-3B (22’ EMNLP) 83.68
Codex end-to-end (23’ ICLR) 72.60
Codex SQL (23’ ICLR) 80.70
BINDER (23’ ICLR) 85.10
DATER (23’ SIGIR) 85.60
StructGPT (23’ EMNLP) 87.30
CHAIN-OF-TABLE (24’ ICLR) 80.20
ReAcTable (24’ VLDB) 86.10
Tab-PoT (24’ arXiv) 85.77
Mix-SC (DP&Agent) (24’ NAACL)88.50
TIDE (DP&Agent) (25’ ICLR) 89.82

CIT-DP 83.15
CIT-Agent 90.61
CIT-DP&Agent 91.30

5.3 Baselines

We compare CIT with pretraining models and LLM-based methods, include SASP [Ou and Liu, 2022],
TAPAS-large [Eisenschlos et al., 2020], T5-3B [Xie et al., 2022], TAPEX-large [Liu et al., 2021],
Task Configs [Chen et al., 2023], TARGET [Ji et al., 2024], TabCot [Chen, 2023b], TAG-QA [Zhao
et al., 2023a], UniTabPT[Sarkar and Lausen, 2023], and Codex [Cheng et al., 2023], BINDER [Cheng
et al., 2023], DATER [Ye et al., 2023b], StructGPT [Jiang et al., 2023], DTE [Wang et al., 2023a],
TACR [Wu et al., 2023], ITR [Lin et al., 2023], Tab-PoT [Xiao et al., 2024], [Liu et al., 2024a],
CHAIN-OF-TABLE [Wang et al., 2024], ReAcTable [Zhang et al., 2024c], Cabinet [Patnaik et al.,
2024], SYNTQA [Zhang et al., 2024b], [Liu et al., 2024b] and TIDE [Yang et al., 2025]. Details of
the baseline implementations are provided in Appendix D.
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6 Results and Analysis

6.1 Main Results

Table 1 shows that CIT achieves state-of-the-art performance on WikiTableQuestions, improving
the previous best by 2.73%. On TabFact (Table 2), it outperforms the strongest baseline by 2.21%,
a relative gain of 21.71% over the error rate. CIT also leads clearly on FetaQA (Table 3). We
analyze the effectiveness of CIT from both qualitative and quantitative perspectives: Qualitative
Perspective: CIT introduces causal reasoning via a structural causal model, enabling identification
and blocking of confounding bias through front-door adjustment. Question variants help mitigate
spurious correlations from pretraining, improving answer faithfulness. Quantitative Perspective: On
adversarial data with double negation (Figure 1), CIT significantly outperforms non-intervention
models, confirming its robustness. The combination of DP and Agent leverages complementary
strengths and reduces reliance on any single reasoning mode.

Table 3: Results on FetaQA with GPT-3.5.

Methods BLEU(%)
Task Configs (23’ ACL) 27.80
T5-large (23’ SIGIR) 30.54
TAG-QA (23’ ACL) 31.84
UniTabPT (23’ NeurIPS) 33.12
Codex (23’ SIGIR) 27.96
DATER (23’ SIGIR) 30.92
TabCot (23’ EACL) 29.36
TARGET (24’ NeurIPS) 24.13
ReAcTable (24’ VLDB) 30.43

CIT-DP 36.15
CIT-Agent 33.65
CIT-DP&Agent 36.34

Table 4: Impact of answer selection in CIT-DP and
CIT-Agent.

Agent DP WTQ TabFact FetaQA

1 1 61.60 88.34 35.68
3 3 66.11 90.42 35.93
5 5 66.92 90.81 37.15

1 3 64.46 85.42 35.98
3 1 61.14 89.18 35.73
1 5 69.38 82.16 36.17
5 1 71.04 87.35 36.03

3 5 66.62 86.51 35.99
5 3 76.38 91.30 36.34

We also observe that CIT-Agent consistently outperforms CIT-DP on WTQ and TabFact, likely due to
its structured execution over tables and ability to handle large inputs with precise symbolic operations.
On FetaQA, however, CIT-DP performs comparably, as BLEU evaluation favors the fluency of natural
language outputs generated by DP, which better align with reference answers.

6.2 Effect of n and m in Answer Aggregation

To reduce bias from single-pass or single-mode inference, CIT performs n rounds of Direct Prompting
and m rounds of Agent reasoning, aggregating all n+m results via majority voting. As shown in
Table 4, performance improves with larger n or m. More Agent results tend to yield better accuracy,
while DP offers complementary signals. These results underscore the value of reasoning diversity
and validate the design of our causal aggregation framework.

6.3 Ablation Study

To assess the contribution of each component, we conduct ablation studies under both DP and Agent.
We consider two variants: (1) w/o Evidence Aggregation, which uses evidence extracted from the
original question q for all variants; and (2) w/o Question Variants, which disables variant generation
and reasons directly over q. Results in Table 5 show that removing evidence aggregation yields a
minor drop, as most variants retrieve similar evidence. In contrast, removing question variants leads
to a significant decline, confirming their importance in mitigating confounding bias. These findings
validate the role of front-door variant generation in enabling robust, causally grounded inference.
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Table 5: Ablation results on datasets.

Method WTQ TabFact FetaQA

CIT-DP 66.40 83.15 33.15
w/o Question Variants 62.66 (↓ 3.74) 76.38 (↓ 6.77) 31.71 (↓ 1.44)
w/o Evidence Aggregation 63.31 (↓ 3.09) 79.64 (↓ 3.51) 32.43 (↓ 0.72)

CIT-Agent 73.76 90.61 36.15
w/o Question Variants 68.39 (↓ 5.37) 86.86 (↓ 3.75) 34.21 (↓ 1.94)
w/o Evidence Aggregation 71.39 (↓ 2.37) 87.99 (↓ 2.62) 35.38 (↓ 0.77)

CIT-DP&Agent 76.38 91.30 36.34
w/o Question Variants 71.50 (↓ 4.88) 89.87 (↓ 1.43) 35.41 (↓ 0.93)
w/o Evidence Aggregation 74.47 (↓ 1.91) 90.27 (↓ 1.03) 36.02 (↓ 0.32)

6.4 Generalization Across LLMs

We evaluate CIT on a diverse set of open-source and closed-source LLMs, using the same setup
as Section 5.2. As shown in Table 6, CIT consistently improves performance across all models,
regardless of size, architecture, or pretraining corpus. These results highlight the transferability of
our causal intervention framework and suggest that core TableQA challenges—semantic ambiguity,
spurious correlations, and evidence selection—are shared across LLMs.

Table 6: Comparison of LLMs with and without CIT.

Models Init Accuracy(%) + CIT Accuracy(%)

Open-source

Llama 2-7b 48.34 49.95 (1.61 ↑)
Llama 2-13b 50.18 52.07 (1.89 ↑)
Llama 2-70b 59.02 61.33 (2.31 ↑)
DeepSeek R1 78.38 80.48 (2.10 ↑)

Closed-source

GLM 4 65.84 66.53 (0.69 ↑)
GPT 4 70.89 77.09 (6.20 ↑)
Gemini 1.5 61.56 66.51 (4.95 ↑)
Claude 3.5 72.33 75.87 (3.54 ↑)

6.5 Analysis of Influential Factors

Effect of Variant Quantity. As shown in Figure 3, accuracy improves with more question variants
due to greater semantic coverage, but saturates beyond three. Token usage also increases sharply,
especially during reasoning. We set the default to three variants to balance performance and efficiency.
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Performance Across Question Types We analyze CIT across question types on WTQ and TabFact
(Figure 4), excluding FetaQA due to BLEU’s incompatibility with discrete categories. Questions are
grouped by keywords (e.g., who, when, average). On TabFact, both modes perform well across types.
On WTQ, performance drops on numerical reasoning, especially aggregation. CIT-Agent further
struggles due to hallucinated code constraints (e.g., unnecessary unique()). Despite this, the two
modes show complementary strengths, supporting our joint reasoning.

Impact of LLM Size. We evaluate CIT using LLaMA 2 models of different sizes. As shown in
Table 6, larger LLMs consistently yield better performance, likely due to their enhanced knowledge
representation and reasoning capabilities. These strengths improve both the quality of question
variants and the accuracy of evidence selection, which are critical to the effectiveness of front-door
adjustment. This suggests that CIT benefits from scaling and can serve as a lightweight debiasing
layer for increasingly powerful LLMs.
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Figure 5: Impact of table size on TableQA performance.

Table Size Sensitivity. We evaluate CIT’s robustness under varying table sizes by grouping test
samples into bins of roughly 430 examples and computing average accuracy per bin (Figure 5). While
accuracy generally decreases with larger tables, CIT remains stable overall. CIT-Agent outperforms
CIT-DP on larger tables, as it executes Python code over full tables, bypassing context length limits,
whereas DP’s reliance on in-context reasoning leads to degraded performance with long inputs.

Efficiency and API Usage. CIT is efficient and compatible with both open-source and closed-
source LLMs. As shown in Table 6, it performs well on non-API models like LLaMA and DeepSeek,
supporting private deployment. For API-based use, CIT requires only three calls: one each for variant
generation, evidence integration, and answer inference. Table 7 shows that CIT achieves strong
performance with substantially fewer API calls than prior LLM-based methods.

Table 7: Comparison of methods with results and API calls

Methods Result Number of API calls
CHAIN-OF-TABLE 59.94 (Next Operation 1 + Argument 1 + Transform 1) * Iter N = 3N
CIT 76.38 Generate Questions 1 + Evidence Integration 1 + Answer 1 = 3

Error Case Analysis. We manually examine 100 examples to identify common sources of failure.
For CIT-DP, most errors arise from incorrect answer formatting and the inability to recognize special
table lines such as headers, footnotes, or merged cells. For CIT-Agent, errors often involve halluci-
nated constraints—such as adding non-existent conditions—and occasional format inconsistencies.
These findings highlight the challenges of aligning LLM output with task-specific answer expectations.
A detailed breakdown of error types and representative examples is provided in Appendix F.

Additional Analyses. We further investigate whether CIT is affected by LLM data contamination,
details are reported in Appendix E. We also enumerate the range of question types that CIT can
handle effectively—including where, when, which, what, who, is/does, how many, average, sum,
etc.—with corresponding case examples shown in Appendix G.
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7 Limitations

While CIT offers a principled way to mitigate confounding bias, its effectiveness depends on the
quality of question variants. Limited diversity or semantic inconsistency may hinder coverage of the
original intent. Future work may explore controlled generation or filtering to improve variant quality.

8 Conclusion

We present CIT, a causal intervention framework for TableQA that applies front-door adjustment
to mitigate latent confounding bias in LLM-based reasoning. By modeling TableQA as a structural
causal process, CIT identifies and blocks spurious back-door paths introduced by pretraining. The
method implements this via question variant generation, evidence aggregation, and joint reasoning
with both Direct Prompting and Agent paradigms. Extensive results across multiple benchmarks and
LLMs demonstrate CIT’s robustness, effectiveness, and generality.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have clearly stated in these two sections that the paper focuses on LLM-
based TableQA, and we have outlined our contributions in the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have discussed the limitations of our method in the Limitations section,
including unresolved issues and potential future directions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide theoretical explanations and formula derivations in the Preliminar-
ies section.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present the datasets, evaluation metrics, and experimental setup in the
Experiments section, with additional prompt context details provided in the Appendix.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We conducted experiments using publicly available datasets with proper
citations in the Experiments section. Additionally, we have included the critical prompt
context from our code in the Appendix for reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In the Experiments section, we detail the datasets, evaluation metrics, and
experimental configurations, with complementary prompt context provided in the Appendix
to ensure full reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In the Experiments section, we report averaged results across multiple runs,
accompanied by comprehensive analysis and discussion in the main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: In the Experiments section, our primary evaluations were conducted through
API calls. We provide detailed documentation of API call counts, token count and response
times in the Results and Analysis section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The manuscript maintains full anonymity, with no author-identifying informa-
tion disclosed in any section of the paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In the Experiments section, we conduct both positive and negative case analyses
for our main experiments, with further examination provided in the Results and Analysis
section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The study exclusively utilizes publicly available datasets and accesses publicly
released large language models (LLMs) through their official APIs.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This work exclusively utilizes publicly available datasets, with proper citations
provided in the Experiments section.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Detailed specifications of all LLMs used in this work are comprehensively
documented in both the Experiments and Results and Analysis sections.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work: LLM-based TableQA

Direct Prompting in TableQA. In Direct Prompting (DP), LLMs perform step-by-step reason-
ing through serialized natural language prompts, often under the Chain-of-Thought (CoT) frame-
work [Kong et al., 2024, Zhao et al., 2023b, Deng et al., 2024]. Early DP methods [Zhao et al.,
2023a, Sui et al., 2023, Chemmengath et al., 2021] used few-shot examples, SQL-style prompts, or
zero-shot CoT to help LLMs decompose and solve complex queries. For instance, Luo et al.[Luo
et al., 2023] constructed CoT exemplars with retrieval-based reconstruction, while BINDER[Cheng
et al., 2023] composed sub-queries via SQL logic. DATER [Ye et al., 2023b] guided reasoning
through SQL-based parsing and completion. More recently, [Liu et al., 2024a] explored zero-shot
prompting with "think step by step" instructions to encourage implicit decomposition.

Agent in TableQA. In the Agent paradigm, LLMs analyze the question, plan steps, and generate
Python code to operate over tables [Li et al., 2024a, Gong et al., 2020]. CHAIN-OF-TABLE [Wang
et al., 2024] decomposes questions by creating intermediate tables and applying custom functions.
ReAcTable [Zhang et al., 2024c] iteratively generates intermediate results and adapts subsequent
actions based on output. Other works [Liu et al., 2024b,a] integrate SQL or Python-based agents for
structured code-level reasoning.

Joint DP and Agent. DP and Agent can be combined for joint reasoning. Mix-SC [Liu et al.,
2024a] merges both paradigms and uses majority voting for answer selection. TIDE [Yang et al.,
2025] further introduces structured triplets to enhance decomposition. However, current methods
focus on guiding reasoning without addressing token co-occurrence bias from LLM pretraining,
which can introduce spurious correlations. To address this, we are the first to define LLM-based
TableQA from a causal perspective and identify latent confounding in the reasoning process.

B Front-door Adjustment

Back-door adjustment requires explicit access to the confounding variable C. However, in our setting,
the bias induced by LLM pretraining is latent and unobservable, rendering back-door adjustment
inapplicable. Fortunately, the front-door adjustment criterion [Pearl et al., 2016] enables causal
estimation without requiring access to confounder values. It operates by intervening on the treatment
variable using the do-operator and leveraging an observed mediator that satisfies the front-door
conditions.

C

Q AE

C

Q AE

(a) (b)

do(Q)❌

Figure 6: The causal graph of TableQA.

Following the law of total probability, we derive the decomposition expressed in Equation 9.

P (A = a | do(Q = q)) =
∑
e

P (A = a | do(Q = q), E = e)P (E = e | do(Q = q)) (9)

By the back-door criterion, the intervention on E does not alter the conditional distribution of A
given Q and E. Hence, introducing the do-operator on E does not affect the overall expression,
yielding Equation 10.

P (A = a | do(Q = q)) =
∑
e

P (A = a | do(Q = q), do(E = e))P (E = e | do(Q = q)) (10)
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Under the structural causal model (SCM), since Q and E are connected via a direct causal link
without confounders, the do-operator on Q can be omitted, yielding Equation 11.

P (A = a | do(Q = q)) =
∑
e

P (A = a | do(Q = q), do(E = e))P (E = e | Q = q) (11)

In the SCM, Q and A are not directly connected, so intervening on Q does not affect the distribution
of A, yielding Equation 12.

P (A = a | do(Q = q)) =
∑
e

P (A = a | do(E = e))P (E = e | Q = q) (12)

Using the law of total probability, we can derive Equation 13.

P (A = a | do(Q = q)) =
∑
q′

∑
e

P (A = a | do(E = e), Q = q
′
)P (Q = q

′ | do(E = e))P (E = e | Q = q) (13)

Using the same logic as in the transition from Equation 9 to Equation 10, we proceed as Equation 14.

P (A = a | do(Q = q)) =
∑
q′

∑
e

P (A = a | E = e,Q = q′)P (Q = q′ | do(E = e))P (E = e | Q = q)

(14)

Using the same logic as in the transition from Equation 10 to Equation 11, we proceed as Equation 15.

P (A = a | do(Q = q)) =
∑
q′

∑
e

P (A = a | E = e,Q = q′)P (Q = q′)P (E = e | Q = q) (15)

Finally, by reorganizing the summation terms, we obtain the Equation 16.

P (A = a | do(Q = q)) =
∑
e

P (E = e | Q = q)
∑
q′

P (A = a | E = e,Q = q′)P (Q = q′) (16)

C Prompt

We provide the prompts for the three core components in this section.

D Baselines

SASP [Ou and Liu, 2022] uses lexical and structural features to generate programs for solving
pseudo programs. TAPAS-large [Eisenschlos et al., 2020] creates a balanced dataset of millions
of automatically generated training examples for intermediate learning before fine-tuning. T5-3B
[Xie et al., 2022] within the Unified SKG framework unifies 21 SKG tasks into a text-to-text format
for comprehensive SKG research. TAPEX-large [Liu et al., 2021] learns a neural SQL executor on
a synthetic corpus of executable SQL queries and their outputs. Task Configs [Chen et al., 2023]
structured compositional task prompts improve multi-task learning and zero-shot generalization
for table-to-text models. TARGET [Ji et al., 2024] is a benchmark for table retrieval in generative
tasks, evaluating retriever performance and downstream impacts on QA, fact-checking, and text-
to-SQL. TabCot [Chen, 2023b] LLMs excel at table reasoning via chain-of-thought prompting,
matching specialized models without table-specific training. TAG-QA [Zhao et al., 2023a] pioneers
graph-guided + knowledge-augmented TableQA for long-form answers. UniTabPT[Sarkar and
Lausen, 2023] Unified table-pretrained LLMs (T5-based) that outperform specialized models across
parsing/QA/classification at scale (770M–11B).

Codex [Cheng et al., 2023], as an OpenAI API, can generate SQL or Python statements and perform
end-to-end QA. BINDER [Cheng et al., 2023] combines end-to-end and symbolic approaches,
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Figure 7: The prompt of question variants generation.

Figure 8: The prompt of evidence aggregation.

generating and iteratively refining pseudo-SQL queries to construct final answers. For TableQA,
DATER [Ye et al., 2023b] extracts relevant sub-tables and decomposes questions to reason jointly over
them. StructGPT [Jiang et al., 2023] enhances zero-shot reasoning by iterating through specialized
interfaces for structured data. DTE [Wang et al., 2023a] generates counterfactual examples to refine
text-to-SQL question answering. TACR [Wu et al., 2023] aligns multi-hop questions with different
modalities for accurate evidence retrieval. ITR [Lin et al., 2023] selects relevant rows and columns to
form a compact sub-table for efficient reasoning.

[Liu et al., 2024b] creates new tables with external information, enabling SQL queries over both
original and new tables to answer. CHAIN-OF-TABLE [Wang et al., 2024] dynamically plans
operation chains based on table structure and associated questions. ReAcTable [Zhang et al., 2024c]
uses LLMs to iteratively generate intermediate tables, with external code execution for accuracy.
Cabinet [Patnaik et al., 2024] removes irrelevant noise in tables to improve LLM reasoning accuracy.
Mix-SC [Liu et al., 2024a] explores the combination of CoT and PyAgent to address LLM sensitivity
to table structure. SYNTQA [Zhang et al., 2024b] unifies Text-to-SQL (arithmetic/long tables) and
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Figure 9: The prompt of answer inference.

E2E TQA (ambiguity/schemas) via answer selection, boosting performance. TIDE [Yang et al., 2025]
use structuring triples to help LLMs decompose and validation reasoning context.

E Data Contamination

Mitigating Data Contamination with CIT. Data contamination is a common concern in LLM-based
methods, where test samples may appear in the model’s training data. To evaluate the robustness of
CIT, we compare the performance of direct answering with that of CIT-based reasoning. As shown in
Table 8, CIT achieves approximately 27% higher accuracy, indicating that its effectiveness primarily
stems from the method itself rather than potential data leakage.

Table 8: Comparison of direct QA for data contamination.

Models Accuracy(%)
Direct QA [Cheng et al., 2023] 48.70
CIT 76.38
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Figure 10: Incorrect answer format and unable to recognize special line errors.

Figure 11: Halluciantion adds extra conditions error.
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Figure 12: Incorrect answer format error.

F Error Case

G Question Types

Figure 13: Type of wh- questions.
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Figure 14: Type of how- and average questions.
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